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A detailed theoretical understanding of topological phases of matter is a key development in
condensed matter physics over the last 40 years. As periodically driven, Floquet systems gain
widespread interest, a logical question is how these topological phases, as developed in a single-
particle band theory, extend to quasiperiodic Floquet spectra. In particular, we focus in on how
chiral edge states, due to nontrivial topology, can arise in Floquet systems. In approaching this
problem, various models of Floquet condensed matter systems displaying edge states are discussed
along with an appropriate bulk-boundary correspondence based on the winding number of a properly
chosen time evolution operator, rather than simply the Chern numbers of the Floquet eigenstates.
In addition, we consider the role that many-body effects play in realizing these Floquet topological
phases in physical systems.
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I. INTRODUCTION

Beginning with the theoretical understanding of the
quantum Hall effect in the 1980s, topology and topo-
logical order has played an important role in modern
condensed matter physics1,2. Nonlocal properties of
ground states of certain systems, combined with the
presence of an energy gap, allow for robust topological
order that doesn’t depend strongly on details such as
sample size and composition. As this theoretical frame-
work was developed around the quantum Hall effect, it
led to the later hypothesis and discovery of nontrivial
topological phases in more general classes of condensed
matter systems, such as topological insulators in 2 and
3 dimensions and topological superconductivity. While
electronic correlations are inevitable in any physically
realizable system, many of these effects are most easily
classified and understood through a single-particle (i.e.
band theory) picture, upon which a more robust, many-
body picture can be developed. In topological band
theory, the definition of Chern numbers (below) and
the bulk-boundary correspondence connects intrinsic
properties of the bulk band structure and the existence
of edge states on the boundary. These edge states are
a measurable signature of topological order; in the case
of topological insulators, for example, the existence of a
topological insulating phase was first confirmed through
measurements of these edge states3.
Recently, theoretical interest has grown in condensed
matter systems out of equilibrium. One way of achieving
this is to give the Hamiltonian H(t) explicit time
dependence, so that energy is no longer conserved. This
case of completely arbitrary time-dependence is general
to the point that it can difficult to admit a theory
that covers this entire class of Hamiltonians. A more

restrictive case of time-dependence which allows for
a richer theoretical understanding is that of Floquet
systems, where the time dependence is periodic with
period T , i.e. H(t + nT ) = H(t) for n ∈ Z. This also
holds relevance to many experimental systems in the
lab, as optically pumping via lasers provides a time
dependence of this form.
In Floquet systems, there’s still a notion of energy
bands, albeit with some subtlety. A natural question
is how one might extend the notions of topological
band theory and the bulk-boundary corresponse to
a system that is periodically driven. In this paper,
we review the work of Rudner et. al., “Anomalous
Edge States and the Bulk-Edge Correspondence for
Periodically Driven Two-Dimensional Systems,” which
generalizes the concept of edge states to the case of a
Floquet system4. In Part II, we discuss some necessary
background of topological order in static systems and
develop some formalism around Floquet systems. In
Part III, we review the theoretical understanding of
chiral edge states in Floquet systems following Rudner
et. al., before discussing relevance to some recent
physical experiments and many-body generalizations in
Part IV.

II. BACKGROUND

A. Topological order in static systems

Before defining their generalization in Floquet systems,
we will set down the important concepts of topological
order in the time-independent case, following the notes
from Charles Kane in “Topological band theory and the
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Z2 invariant”5. Assuming some underlying lattice, the
eigenstates of the Hamiltonian from Bloch’s theorem can
be expressed as |ψ(k)〉 = eik·r|u(k)〉 where |u(k)〉 is pe-
riodic over the unit cell. These |u(k)〉 form eigenvec-
tors of the Hamiltonian H(k) which have corresponding
eigenvalues En(k) that form the “bands” of band theory.
However, these |u(k)〉 are only defined up to a phase, the
Berry phase φ(k),

|u(k)〉 → eiφ(k)|u(k)〉 (1)

Noting the similarity to a gauge transformation in elec-
tromagnetism, one can define a Berry connection

A = −i〈u(k)|∇k|u(k)〉 (2)

for which the curl of A, defined as the Berry curvature
F = ∇×A, is analagous to a magnetic field. For a closed
loop in k-space, then, the Berry phase γc is well defined
(i.e. gauge invariant)

γc =

∮
C

A · dk (3)

A simple case of this is a two-level system H(k) = d(k) ·
σ, for which the Berry phase is simply one half the solid

angle swept out by d̂(k) along a closed curve on a sphere.
In general, one can define a topological invariant called
a Chern number on a closed surface S that is given by

n =
1

2π

∫
S

Fd2k (4)

While this is certainly an integer in the spherical, two
level case, it remains integral even in more general cases,
analagous to the Gauss-Bonnet theorem.
If we take the closed surface S over which we evaluate
the Chern number to be individual bands in the band
structure separated by an energy gap, then due to an ar-
gument from Laughlin and Halperin, the Chern number
of a single band defines the difference between the num-
bers of chiral edge modes above and below the band2,6,7.
In the case of isolated, static bands, then, the net number
of chiral states is given by the sum over the Chern num-
ber of all occupied bands. Evaluating the Chern num-
bers of all of the bands in the band structure is then
sufficient for completely understanding the behavior of
edge states, and nontrivial Chern numbers are required
to observe chiral edge states.

B. Floquet formalism

Eigenstate solutions to a Hamiltonian that is invari-
ant under discrete time translation as H(t + T ) = H(t)
can be understood via Floquet’s theorem analagously to
Bloch’s theorem for eigenstates invariant under discrete
space translation. A general eigenstate |ψ(t)〉 can be de-
composed as

|ψ(t)〉 = e−iεt|Φ(t)〉, |Φ(t+ T )〉 = |Φ(T )〉 (5)

where quasienergy ε can be defined up to integer mul-
tiples of 2π

T . Just as we can reduce to a single Bril-
louin zone in momentum space in the spatial case, we
can take the quasienergy to be defined on a Brillouin
zone −π/T < ε < π/T , so that the Floquet spectrum
consists of a set of quasienergy bands {εn(k)}, where we
assume spatial translation symmetry as well. This Bril-
louin zone for our Floquet band structure is periodic in
quasienergy as well as momentum, providing a qualita-
tive difference from the static case. Further, the eigen-
states {|Φn(k, t)〉} do retain time dependence t, though
that time dependence is periodic with period T . We can
understand this also through the evolution operator U(t).
Because |ψ(T )〉 = e−iεT |ψ(0)〉, the quasienergy comes di-
recty from the eigenvalues of U(T ):

|ψ(T )〉 = U(T )|ψ(0)〉 = e−iεT |ψ(0)〉 (6)

Another way to put this is that U(t) can be expressed as

U(t) = φ(t)e−iHF t, φ(t) = φ(t+ T ) (7)

where HF is a Floquet effective Hamiltonian which is
equivalent (considered as a static Hamiltonian under
time evolution by time T ) to the more complicated time
evolution dictated by H(t).

III. EDGE STATES IN FLOQUET SYSTEMS

In extending the concept of chiral edge states to the
Floquet band theory, it’s quick to see that the situation
is more subtle. It is possible to define a Chern number for
each band, though it now it must be evaluated over the
eigenstates at a single moment in time t. This is cleaned
up by the finding that the Chern numbers of the Floquet
bands do remain fixed over the period T , so specifying
Chern numbers of each band at t = 0, over the eigenstates
{|Φn(k, 0)〉}, is equivalent to any other point in time4,8.
However, the periodicity in quasienergy suggests that the
bottom of the lowest band is no longer isolated from the
rest of the system; edge states between the bottom of
the lowest band and the top of the highest band are pos-
sible. Such behavior would allow for chiral edge states
even if the Chern number of each band is trivial: con-
sidering two bands with zero Chern number, there could
be one edge state connecting the two bands through the
middle of the quasienergy zone and another edge state
(in the same direction) connecting the two bands around
the periodic quasienergy boundary. The Chern numbers
are both satisfied as zero as the bands have net zero edge
states entering and exiting them, but the system admits
chiral edge states in the gaps.
A recent review9 chooses to categorize drives as Type
I and Type II depending on whether static topological
band theory applied to Floquet-Bloch band structure is
sufficient to describe the edge states and topological fea-
tures of the system. With a Type I drive, the effective
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Hamiltonian HF can be evaluated considering its Flo-
quet band structure as if it was static. While this doesn’t
lead to qualitatively new physics, this is of great inter-
est in terms of “engineering” new physics not present
in the original (undriven) Hamiltonian10. For example,
a system with topologically trivial band structure, with
every Chern number equal to zero, can develop nonzero
Chern bands and corresponding edge states arise. Alter-
natively, Type II drives lead to “anomalous” or “nontriv-
ial” edge , which would not be accounted for if we consid-
ered the Floquet-Bloch band structure as if it was a static
band structure, such as the example of two Chern zero
bands with edge states connecting them described above.
A deeper theoretical understanding of these anomalous
edge states is the main focus of the paper by Rudner et.
al.4 and will be discussed in the following sections.

A. RLBL (Lattice) Model

Rudner et. al. construct a tight-binding model on a
square lattice to illustrate the possibilites of both of these
sort of edge states, referred to as the RLBL Model. In
this model, we have a bipartite square lattice with tight-
binding hopping coefficients that are varied in time. The
Hamiltonian is given by

H(t) =
∑
k

(
c†k,A c†k,B

)
H(k, t)

(
ck,A
ck,B

)
,

H(k, t) = −
4∑

n=1

Jn(t)(eibn·kσ+ + e−ibn·kσ−) + δabσz.(8)

Here the c†k,A/B are the usual Bloch creation operators

with momentum k on the A/B sublattice and the vec-
tors bi are given by the lattice vectors b1 = −b3 = (a, 0)
and b2 = −b4 = (0, a). The system is driven in such
away that Jn(t) is piecewise constant along T/5 cycles,
where on the n ∈ {1, 2, 3, 4} cycles, Jn is set to value
J and all others are set to zero. In step 5, only the σz
term contributes as a “holding period.” A schematic is
provided in Fig. 1a. H is Floquet periodic and controls
the hopping on each of the 4 bonds from an A site to a
neighboring B site (and vice versa) for an equal period
of time - this leads to a chirality inherent in the drive as
driving as 1− 2− 3− . . . is inequivalent to 5− 4− 3− . . .
due to hopping occuring in opposite directions around
the plaquettes.
A simple set of parameters to demonstrate the edge
physics in this problem are J = 2.5π

T and δAB = 0. In
this case, a particle will hop with probability 1 between
neighboring sites on each unit of the cycle. Thus, in an
infinite system, every particle will simply hop around its
plaquette and will be left as before. More technically,
if we express Hi to be the Hamiltonian on each of the
time steps, then U(T ) = e−iH5T/5e−iH4T/5 . . . e−iH1T/5

reduces immediately to 1, corresponding with an effective
Hamiltonian HF = 0, completely trivial. However, the

edge physics are a little more complicated, as a full pla-
quette cycle cannot be completed off of an edge and the
resulting hopping will be only laterally along the edge.
To investigate the edge effects, we can solve numerically
for the Floquet spectrum on a strip geometry. Setting
a finite number of sites M in the y-direction, we express
the Hamiltonian within each T/5 timestep as a 2M×2M
matrix corresponding to the hopping in real-space along
the y-axis and momentum k‖ (and sublattice degree of
freedom) along the x direction. By solving for the sta-
tionary states of U(T ) = e−iH5T/5e−iH4T/5 . . . e−iH1T/5,
we can find the quasienergy spectrum via Eq. 6 above.
Applying these numerics to J = 2.5π

T and δAB = 0 with
a width of 30 sites along the y direction, we solve for
the Floquet spectrum, seen in Fig. 1b. Nearly all of
the modes are completely flat at quasienergy ε = 0, as
expected from the bulk HF = 0. However, two linearly
dispersing modes cross the Brillouin zone corrsponding
to the two chiral edge modes described above.
Varying J along with δAB 6= 0 yields a rich phase
diagram. In Fig. 1c-e, we plot the calculated
Floquet spectrum for δAB = 0.5π/T and J =
0.5π/T, 1.5π/T, 2.5π/T . For the smallest hopping (Fig.
1c), the two bands are completely isolated and no edge
states are seen. At intermediate J = 1.5π/T , we can
see a single edge state crossing at ε = π

T but the gap
at ε = 0 still completely open. This suggests that the
Chern numbers of the Floquet-Bloch bands are C = ±1
respectively, which can be confirmed by direct numerical
calculation from the Floquet eigenstates in the infinite
size system calculated at a particular time. This signifies
a “Type I” topological phase, as edge states arise due to
the drive causing nonzero Chern bands in the spectrum.
In the largest hopping, we see edge states crossing at
both ε = 0 and ε = π

T , so that both of our Floquet-Bloch
bands have Chern numbers C = 0 but there are “anoma-
lous” chiral edge states nevertheless. The physics of this
model motivate a bulk-boundary correspondence that’s
generalized to the Floquet case, which is established by
Rudner et. al. and discussed in the following section.
Application of this invariant predicts the correct num-
ber of edge states seen in the numerical solutions of the
RLBL model.

B. Construction of invariant

Considering a tight binding model on a 2D lattice
with an arbitrary number of sublattices, then the time-
dependent Hamiltonian can be expressed as

H(t) =
∑

k,α,α′

c†k,αHαα′(k, t)ck,α′ (9)

Recognizing H(k, t) as an N ×N Hermitian matrix, the
bulk time evolution operator is given by the Schrodinger
equation as

U(k, t) = T e−i
∫ t
0
dt′H(k,t′) (10)
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a)

e)b) c) d)

FIG. 1: In a), we show a schematic of the hopping parameters in each of the T/5 timesteps of one cycle of the RLBL Hamiltonian
defined in the text; colored bonds indicate nonzero hopping J between the four distinct types of bonds on each timestep. In
b-d), we plot the Floquet spectra in the model in a cylindrical geometry with periodic boundary conditions along one direction
and finite width M = 30 along the other. The parameters are given by: b) J = 2.5π/T , δAB = 0, c) J = 0.5π/T , δAB = 0.5π/T ,
d), J = 1.5π/T , δAB = 0.5π/T , J = 2.5π/T , δAB = 0.5π/T . Data in this figure has been generated by the author’s own code,
after Rudner et. al.4

Now, consider a Floquet spectrum with a gap in some
interval [ε− δ, ε+ δ]. Then any Floquet eigenstates with
eigenvalues in this gap must be localized on the edge -
otherwise this would not be a gap in the bulk spectrum
- and thus correspond with edge modes. Ideally, an in-
variant would be able to be defined that would tell us
how many (net) chiral edge modes exist at quasienergy ε
given by the bulk time evolution operator U(k, t).
Rudner et. al. take an approach to this by first recog-
nizing that the invariant is straightforward in the case
where U(k, T ) = 1 everywhere, and then proceed by re-
ducing a more general U(k, T ) case to the first case. If
U(k, T ) = 1 for all k, we can recognize this as identi-
cal to the case illustrated in Fig. 1b from the RLBL
model above, where all of the bulk states have ε = 0 and
the Floquet spectrum is gapped everywhere else, because
the effective Floquet Hamiltonian HF = 0. Then there
should be an integer nedge for each U(k, t) counting the
number of edge modes winding around the quasienergy
Brillouin zone, invariant under all smooth deformations

that leave U(k, T ) = 1. If U has this form, then it is
periodic in kx, ky, and t, because U(0) = U(T ) = 1, so
U gives a map from S1 × S1 × S1 → U(N). This sort
of map can be classified by an integer winding number
given by

W [U ] =
1

8π2

∫
dtdkxdkyTr(U−1∂tU [U−1∂kxU,U

−1∂kyU ])

(11)
Rudner et. al. show that this winding number W [U ] is
equivalent to nedge.
Sketching this proof, we consider a cylindicral geometry
with open boundary conditions at x = 1 and x = Lx and
periodic boundary conditions in the y direction. Then let
H̃ and Ũ be Hamiltonian and time evolution operators,
respectively, that agree with H and U on the interior but
can take any local and y-translationally invariant form on
the boundary of the cylinder. Then we can describe H̃
and Ũ in mixed x and ky space. Noting that Ũ(ky, T )
reduces to the identity matrix on the interior, we can
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express Ũ(ky, T ) in block diagonal form as

Ũ(ky, T ) =

Ũ1(ky) 0 0
0 1 0

0 0 Ũ3(ky)

 (12)

where Ũ1(kY ) and Ũ3(ky) describe the action of Ũ near
the two boundaries. Then the total number of modes
propagating in the y direction along both edges is given
by − 1

2πi

∫
dkyTr(Ũ−1∂ky Ũ), which is known from previ-

ous theoretical studies on edge states8. Adjusting this by
an operator Qxx′ = g(x)δxx′ where g(x) = 0 for x ≤ Lx/3
and g(x) = 1 for x ≥ 2Lx/3, the total number of edge
modes along the x = Lx edge is given by

nedge = − 1

2πi

∫
dkyTr[Ũ(ky, T )−1∂ky Ũ(ky, T )Q] (13)

From Eq. 13, a number of algebraic manipulations and
algebra identities allow us to derive that nedge = W [U ], in
particular using that Q is constant near the edges so that
Ũ can be replaced by the bulk operator U and Fourier
transforming to introduce an integral over kx, yielding
Eq. 11. Even as this derivation may not be partic-
ularly illuminating, the comparison to classification by
the Chern numbers of the Floquet-Bloch bands demon-
strates that this winding number is qualitatively differ-
ent. Rather than depending on the Floquet states at a
single moment in time, the expression W [U ] integrates
the complete time evolution U(k, t) over the entire pe-
riod of Floquet time T .
Now, consider the general case where U(k, T ) is arbi-
trary, so that the Floquet spectra is more complex than
ε = 0. We can achieve this by defining a family of evolu-
tion operators {Us|s ∈ [0, 1]} such that

Us=0(k, t) = U(k, t), Us=1(k, t) = Uε(k, t) (14)

such that this interpolation maintains a gap around
quasienergy εs that changes from εs=0 = ε and εs=1 =
π/T and Uε(k, T ) = 1. Then, because the gap doesn’t
close by construction, the number of edge modes of U at
quasienergy ε is equivalent to the number of edge modes
of Uε at quasienergy π/T , so that following from the sim-
pler case,

nedge(ε) = W [Uε] (15)

While Uε is not general, one useful definition is

Uε(k, t) =

{
U(k, 2t) 0 ≤ t ≤ T/2
Vε(k, 2T − 2t) T/2 ≤ t ≤ T

(16)

for

Vε(k, t) = e−iHeff(k)t, Heff(k) =
i

T
logU(k, T ) (17)

where the branch cut of the logarithm is chosen along the
direction e−iεT , which is where the ε dependence comes

in. This sort of Vε is a “return” map connecting Flo-
quet operator U(k, T ) to the identity via a static effective
Hamiltonian which generates a time evolution identical
to U(k, T ), so that combining them in series in this way
sets Uε(k, T ) = 1. The interpolation between them Us
can be written as

Us(k, t) =

{
U(k, (1 + s)t) 0 ≤ t ≤ T

1+s

Vε(k, 2T − (1 + s)t) T
1+s ≤ t ≤ T

(18)

While slightly technical in its construction, this invari-
ant does provide an effective classification. Applying
it othe RLBL Model described above, U(t) can be ex-
pressed piecewise as U(t) = e−iH1t for t ∈ [0, T/5],
U(t) = e−iH2(t−T/5)e−iH1T/5 for t ∈ [T/5, 2T/5], and
so on, which reduces to a small number of exponen-
tials of 2 × 2 matrices in momentum space. The re-
turn map is also given by the matrix of logarithm of
U(k, T ) = e−iH5T/5 . . . e−iH1T/5. Combining these, we
can calculate the appropriate winding numbers from Eq.
11 and 16. If we apply to the specific examples displayed
in Fig. 1b-d, this winding number predicts the correct
number of chiral edge states, W0 = Wπ = 0 for the small
hopping case, W0 = 0 and Wπ = 1 for the intermedi-
ate case and W0 = Wπ = 1 for the strong hopping case.
While this model has been explicitly constructed in a
single-particle picture, the extension of the RLBL Model
to a many-body analog through interactions is possible,
though it is unclear whether these extensions can be de-
scribed with a bulk topological invariant9,11–13. General
concerns of extending single-particle Floquet systems to
the many-body case are discussed below (Sec. IV).

C. Harmonic picture

The above model and classification is theoretically
robust and useful for understanding “anomalous” edge
states that Chern numbers alone would not predict in
the Floquet-Bloch spectra. However, it’s somewhat cum-
bersome for Floquet Hamiltonians that we might think
about in the frequency, rather than time, domain. Given
that experimentally, most of these time-periodic drives
are implemented via laser or microwave fields, rather
than any sort of time-piecewise drive like the RLBL
model, it’s useful to think of how this applies in the fre-
quency domain. In the frequency domain, the Floquet
theorem can be expressed on a state ψnα as

ψnα(k, t) = e−iεn(k)t
∞∑

m=−∞
φ(m)
nα (k)eimωt (19)

for ω = 2π
T and φ

(m)
nα satisfying a time independent eigen-

value equation: ∑
α′,m′

Hmm
′

αα′ φ
(m′)
nα′ = εnφ

(m)
nα (20)
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This “Floquet Hamiltonian” is given by

Hmm
′

αα′ = mωδαα′δmm′ +
1

T

∫ T

0

dte−i(m−m
′)ωtHαα′(t)

(21)
These quasienergies εn aren’t restricted to lie in [− π

T ,
π
T ]

even though it must be equivalent to that described
above. Effectively, Eq. 20 is describing a repeated zone
scheme along the energy axis. Now, we consider the phys-
ically realistic case where all of the time-dependence in
H(t) is at a single frequency, as

H(t) = H0 + ∆eiωt + ∆†e−iωt (22)

In the limit of weak driving, the Floquet Hamiltonian
Hmm′

αα′ is given to zeroth order in ∆ as a copy of H0

shifted up and down at integer multiples of ω. Nonzero
∆ induces hopping between levels with different m levels,
so that gaps open in the spectrum. The Floquet states
are localized in m, meaning that they decay reapidly for
|m −m0|ω � Λ, where Λ is the total bandwidth. This
follows from an analogy of Wannier-Stark localization in
real space, which describes how Bloch electrons localize
in an electric field, to “m-space.” Similarly to the elec-
tric field in that calculation, the linear contribution of
m~ω along the diagonal of H leads to their localization,
though now as a function of m rather than of spatial
coordinates. This allows the Floquet Hamiltonian to be
truncated at large but finite M . Once this is done, the
(2M + 1) × N bands in the extended zone scheme can
be considered as a static Hamiltonian and the standard
bulk-edge correspondence applies, so that the net num-
ber of chiral edge modes in a particular gap is given by
the sum of Chern numbers from all bands below that
gap. This gives a more convenient way to calculate the
number of chiral edge modes crossing a gap in the first
(quasienergy) Brillouin zone, in that we can expand the
Floquet Hamiltonian in an extended zone scheme and
count the Chern numbers of the bands below the gap.
As a concrete example, Rudner et. al. consider a two-
band model where H0(k) = e(k) + d(k) · σ where the
resulting bands have Chern numbers C = ±C0. Assum-
ing the drive creates a single resonance between the va-
lence and conductance bands of H0 simultaneously for
all k values, then the entire band structure can be trans-
lated up and down, opening gaps between the crossings.
If the resulting bands each have Chern numbers CF and
−CF , due to the hybridization, then they will always
have C0 +CF chiral edge modes in the gap because there
will always be a C0 band at the bottom of the spectrum,
independent of the termination. Such a model can dis-
play anomalous edge modes as a proper choice of d(k)
will cause C0 = ±1 but CF = 0. Thus, all the inter-
mediate gaps will have edge modes even though they are
between bands with zero Chern number. In this picture,
the anomalous states arise from the topological proper-
ties of the bands near the truncation boundaries, which
retain the history of the undriven H0 bands. Rudner
et. al. comment that if more resonances are allowed

(e.g. from multi-photon processes), the situation be-
comes more complicated, and anomalous edge states can
come from an original Hamiltonian that is topologically
trivial.
In Figure 2, we examine the two-band model suggested
by Rudner et. al. with

d(k) =
(
a sin(kx), a sin(ky),

(µ− J)− 2b(2− cos(kx)− cos(ky)) + J cos(kx) cos(ky)
)

e(k) = 0 (23)

In order to investigate the edge state properties of this
two-band model, we need to realize this Hamiltonian in
real-space, so that it may be solved numerically in a cylin-
drical geometry. This can be accomplished by consider-
ing the model of two orbitals on a triangular lattice and
identifying kx and ky with the momentum along each
Bravais vector14. In this way, the Hamiltonian can be
rewritten in terms of real-space creation and annihilation
operators on a triangular lattice as

H =
∑
ij

[
c†i+1(ia2σx)cij + c†i,j+1(ia2σy)cij

+c†ij

(
µ−J−4b

2

)
cij + c†i+1,j(bσz)cij + c†i,j+1(bσz)cij

+c†i+1,j+1(J4 σz)cij + c†i+1,j−1(J4 σz)cij + H.c.

]
(24)

By Fourier transforming the i coordinate in Eq. 24, corre-
sponding to kx, we can solve the Hamiltonian on a cylin-
drical geometry with periodic boundary conditions along
one axis and open boundary conditions on the other. The
band structure for the nondriven case is shown in Fig. 2a,
for a width along the ky direction of M = 20. The spe-
cific parameters chosen are J/µ = b/µ = 1.5, a/µ = 4,
and the energy is scaled in units of ω = µ/.07, corre-
sponding to the drive in Fig. 2c (see below). This band
structure shows a clear set of edge states crossing the
bulk band gap, corresponding to a single chiral mode on
each edge of the cylinder. The existence of these edge
states shows that the unperturbed bands have Chern
number C0 = ±1, due to the usual bulk-boundary corre-
spondence, as there’s no Floquet dynamics at this point.
This can also be checked explicitly. Next, in Fig. 2b-c,
we plot the spectrum of the Floquet Hamiltonian as de-
fined in Eq. 21 above, where the driving term introduced
to the static Hamiltonian is ∆ = ∆0σz cos(ωt). We set
∆0/µ = 1 in both plots; their only difference is that in the
Fig. 2b, ω = µ

.05 and in Fig. 2c, ω = µ
.07 . In Fig. 2b, ω is

large enough that the bands translated up and down by
ω just hybridize and open gaps around k‖ = ±π/a and
it’s straightforward to identify the individual copies of
the static band structure shown in Fig. 2a with m = −1,
m = 0, and m = +1 in the extended, Floquet band
structure. Because the opened gaps at the k‖ = ±πa
are quite small, it’s difficult to see the edge states cross-
ing these gaps. Alternatively, in Fig. 2c, the smaller
drive frequency leads to larger hybridization between ad-
jacent m in the Floquet Hamiltonian, and the edge states
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FIG. 2: In a), we show the band structure of two-band static
Hamiltonian H0 (see Eq. 23, 24). The band structure is
solved numerically in a cylindrical geometry with periodic
boundary conditions in one direction and M = 20 sites in the
other direction. The parameters chosen are J/µ = b/µ = 1.5
and a/µ = 4. A pair of chiral edge states can be seen crossing
the bulk band gap; this static band structure is topologically
nontrivial with Chern numbers C0 = ±1 of each band. In
b-c), we plot the Floquet spectra via numerical solution of
the Floquet Hamiltonian as defined in Eq. 21, truncated at
m = ±1. The drive is given by ∆0σz cos(ωt) where ∆0/µ = 1.
In b), ω = µ

.05
and in c), ω = µ

.07
. To zeroth order, the Floquet

Hamiltonian results in repeated copies of the band structure
shifted up and down by ω, though higher orders of perturba-
tion theory lead to gaps opening where these bands cross (e.g.,
at ε = ±0.5 in the Floquet spectra). Even though the Flo-
quet bands in the middle of this spectrum have CF = 0, chiral
edge states are still observed traversing these gaps. Data in
this figure has been generated by the author’s own code, after
Rudner et. al.4

crossing these opened gaps are apparent. Due to the

bulk-edge correspondence, these internal Floquet bands
must have Chern numbers CF = 0, and yet they still
exhibit edge states at the gaps between them. Through
this toy model, the consistency of anomalous edge states
with harmonic Floquet drives is apparent, and, conve-
niently, the number of edge states in a given gap can be
computed in a much more straightforward manner than
the general formula (Eq. 15).

IV. RELEVANCE TO PHYSICAL SYSTEMS

This single-particle picture of Floquet dynamics
in a completely closed system allows for a detailed
theoretical understanding of topological edge modes and
predictions of multiple types of induced, nonequilibrium
topological phases. A number of recent experiments,
such as in cold-atomic gases and solid-state systems
have realized these phenomena15,16. In understanding
how the single-particle, closed system picture extends to
physical systems, we consider how general concepts from
many-body systems might apply.

A recent review from Harper et. al.9 discusses some of
the implications of many-body interactions on the topo-
logical Floquet systems. In principle, a closed, inter-
acting Floquet system should heat to infinite tempera-
ture. Without energy conservation, entropy is always
maximized by the infinite temperature state17–19. In
this trivial case, any interesting topological properties
would be essentially unmeasurable under the thermaliza-
tion to a completely trivial state. However, there are
some possibilities that avoid devolution into the infinite-
energy state: many-body localization (MBL), prether-
malization, and cooling, each discussed in further detail
below.

A. Floquet-MBL

In analogy to the way that static, highly interacting,
closed systems can be classified as thermalizing or MBL,
one might expect that this limit for a driven system also
leads to the possibility of localized phase. Following the
l-bit definition of MBL in time-independent systems, in
the limit of large enough disorder, localized l-bit oper-
ators τzi can be defined such that [U(T ), τzi ] = 0. A
conceptual way to think of these operators are that each
one exchanges energy (absorbing and transfering it back)
to the driving field over an evolution U(T ) but no energy
is exchanged between the local oscillators. Making this
definition more formal requires extending eigenstate ther-
malization hypothesis (ETH), the hypothesis as to how
closed quantum systems thermalize as opposed to local-
ize, to Floquet eigenstates. A number of recent theo-
retical and experimental works suggests the existence of
Floquet-MBL phases, including those which have their
own rich phase structure well beyond the scope of this



8

paper19–24.
One feature that’s worth commenting on is that MBL
phases can, in some cases, be incompatible with the re-
quirement of delocalized states that arise from nontrivial
topology. The existence of delocalized states in equilib-
rium topological phases, connected with the chiral modes
that appear on the system boundaries, cannot be local-
ized by disorder. These delocalized states will generically
destabilize MBL phases at any energy density25,26. In
the logical extension Floquet topological case, this sug-
gests that the Floquet bands carrying non-trivial topo-
logical indices, such as those in Type I Floquet topologi-
cal phases described above, will likely not exhibit stable
MBL-Floquet phases even in a limit of high disorder.
However, the Type II phases where trivial Floquet bands
exist alongside anomalous edge modes should be consis-
tent with an MBL phase, as these bands do not include
delocalized bulk states25.

B. Prethermalization

A second manner in which heating may be avoided
is the possibility of “prethermalization,” that heating
to the steady state will take O(eJ/T ) time in some
physically relevant energy scale J . This is a temporal
analog of how Anderson localization is difficult to ob-
serve in a clean d = 2 system where, with weak enough
disorder, the localization length may be parametrically
large compared to the measurable system size. Many
of the early experiments probing for edge states in
Floquet systems purposefully try and examine this
regime by performing their measurements on ultrafast
length scales, long before the system reaches any sort
of steady state16. Generally, heating rates will be small
if the drive frequency is much larger than the relevent
energy scales in the problem, such as the single-particle
bandwidth. But in any real physical system, higher
bands will always be present. However, this regime
can still be useful. If ~ω is much smaller than the gap
separating higher energy bands from bands closer to the
Fermi level, then many photons need to be absorved to
excite into a high-energy state, so that these excitations
are exponentially suppressed, allowing the “finite”
bandwidth to be recovered to a certain extent. The
precise nature of the length of time that a quasisteady,
prethermalized state may exist is dependent on details
of the system being measured and periodicity of the
drive, but in certain limits it is likely to be long-lived.
Regardless, systems of ultrafast measurement are ap-
propriate for ensuring that these Floquet systems are
in something like these “prethermal” states by avoid-
ing any questions and concerns about long-time behavior.

C. Open Systems

A third way that Floquet systems generically avoid
heating to infinite temperature, trivial states is due
to their existence as open systems - particularly in
solid-state systems. Due to coupling to the environment
and external baths, the steady state will be reached
by balancing the heating from the drive with energy
and entropy exchanged with the baths. These can
be bosonic or fermionic baths, due to any number of
physical parameters such as phonons or external leads.
Because this is happening out of equilibrium for a
Floquet system, the steady-state is not dependent on
a small number of macroscopic parameters as in the
usual, equilibrium case (e.g. temperature, chemical
potential, and so on). The precise steady state will
depend sensitively on the microscopics of both the bath
and the coupling to the bath. A number of recent
theoretical studies have addressed in specific systems
whether these sorts of topological Floquet states will
be stable as open systems. For example, Dehghani
et. al. simulated the nonequilibrium Floquet occupa-
tion of graphene driven by circularly polarized light
in the presence (and absence) of phonons at a finite
temperature27. They conclude that there might be a
regime where the quantized transport from edge states
remains, but only in specific parameter regimes, such
as low phonon bath temperature and relatively high
frequency drive to avoid excited photocarriers. However,
some of these issues can be ignored at short time scales
as a Floquet drive is turned “on”, as the time-scales of
electron-phonon coupling are somewhat slower than the
electronic dynamics. Regardless, in the general case,
these open systems (and the extent to which Floquet
chiral edge states may or may not survive with the
addition of dissipation) remain an open question.

V. CONCLUSION

While the theory of Floquet edge states is relatively
well-developed in the single-particle picture, there are
numerous open experimental and theoretical questions.
For instance, even though topological Floquet edge states
have been seen in multiple types of experiments, the more
physically novel “Type II” phases in a single-particle sys-
tem hasn’t been shown in the lab, though more gen-
eral “Type II” phases in a many-body context have been
seen28,29. These single-particle “Type II” phases should
have particular experimental signatures30 and are intrin-
sically dynamical phases. Further, beyond the ultrafast
regime, there are a number of open theoretical questions
that can be asked about these sorts of systems. For exam-
ple, the time dynamics of thermalization in the presence
of dissipation and the topological properties that might
exist in certain Floquet-MBL phases are relatively lit-
tle understood and studied. The interplay of topological
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and inherently nonequilibrium states of matter should
continue to be an active field of research, particularly as

experiments can begin to address some of these questions.
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