
Engineering Dense Hydrogen Based Energy Systems

Simon Brink Environmental Engineer

World Engineers Convention, November 2019

Climate Emergency

"...one third of the Great Barrier Reef is now dead" Prof. Terry Hughes, 2016

The Real Climate Challenge

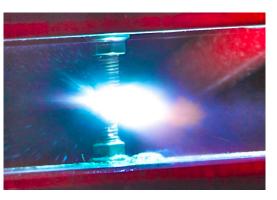
Now: 1.2°C above pre-industrial (~1700)

Ocean, ice & geological lag +0.6°C

Sulphate emission cooling +0.5°C

Already "locked in" to >2°C

Can new technology keep us to under +3 deg C?


New Directions in Physics

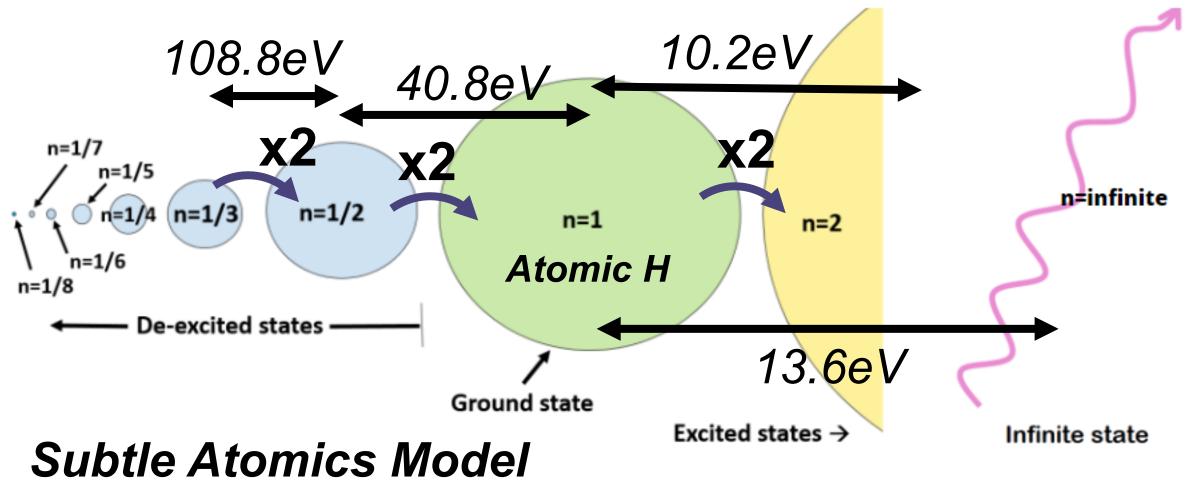
Background	Toroidal	Expanding
energy	nuclear	earth theory
Fusion doesn't power the sun	physics Electrons are not points	Black holes as super-nuclei

Dense Hydrogen – What is it?

Extreme ultraviolet state transitions

6

Excess heat & transmutation observations



Geological

dense

hydrogen

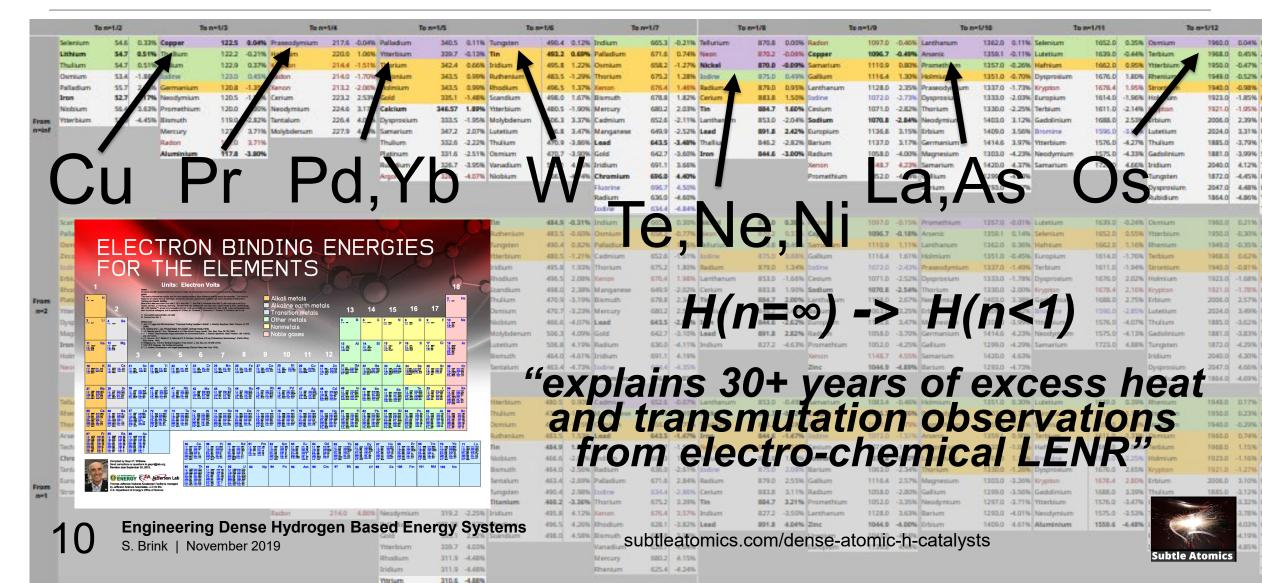
Dense Atomic Hydrogen Physics

Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

Changing the Rydberg Model

New size relationship:

Rydberg: Linear, based on "ground state"


Subtle Atomics: Exponential, 2x previous state

B Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

subtleatomics.com/electrons


Dense Atomic Hydrogen Catalysts

Dense Hydrogen Technologies

Elemental transmutation

Advanced materials

Nuclear waste deactivation

Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

subtleatomics.com/energy-technology

New Energy Technologies

Super-Chemical

Low Energy Nuclear

Sub-Nuclear

Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

subtleatomics.com/energy-technology

Super-Chemical Reactions

H(n=1/3) catalyst: Copper – $M_i3s = 122.5 \text{ eV/c}^2$

Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

subtleatomics.com/hydrogen-loaded-electrodes Photography S. Brink 2017

Low Energy Nuclear Reactions

H(n=1/8) catalyst: Nickel - $L_{ii}^2p_{1/2} = 870.0 \text{ eV/c}^2$

Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

subtleatomics.com/extreme-uv-halos

Photography S. Brink 2017

Sub-Nuclear Reactions

H(n=1/6) catalyst: Tungsten - $N_{ii}4p_{1/2} = 490.4 \text{ eV/c}^2$



Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

subtleatomics.com/prototype-3

Photography S. Brink 2017

Dense Molecular H₂ Systems

De-excited molecular hydrogen

15 Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

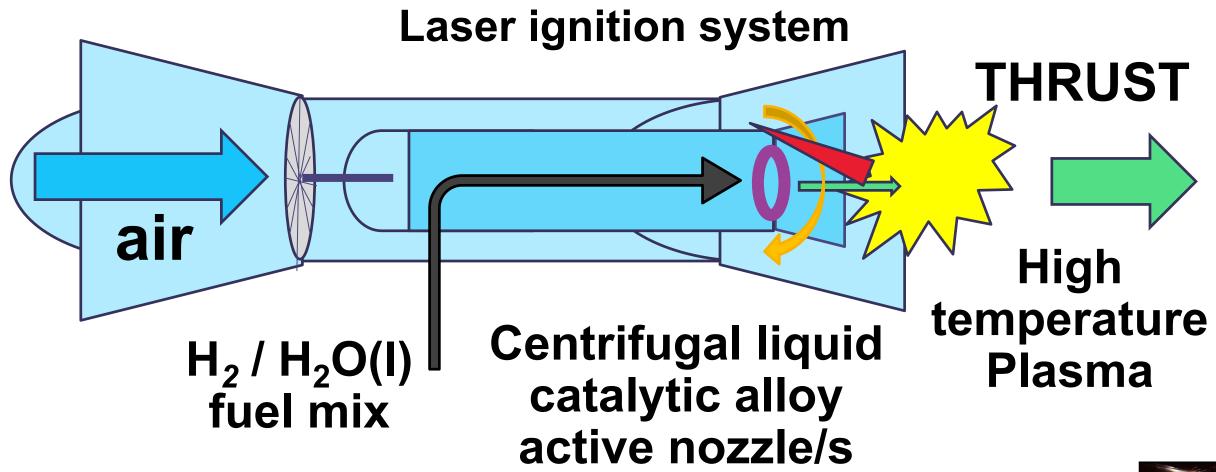
Dense Molecular H₂ Technologies

Low energy chemical production of micro-diamonds

Carbon

6 Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

Oxygen Catalysed Dense Molecular H₂


Oxygen, K 1s, first augur energy Infrared laser and/or secondary catalyst $H_2(n=1) \xrightarrow{} H_2(n=4)$

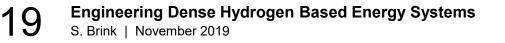
Engineering Dense Hydrogen Based Energy SystemsS. Brink | November 2019

subtleatomics.com/dense-molecular-h-catalysts

Jet Propulsion System - Subtle Atomics

18 Engineering Dense Hydrogen Based Energy Systems S. Brink | November 2019

subtleatomics.com/advanced-aviation



Extension to Expanded Hydrogen

Subtle Atomics Gas Model:

"Atomic hydrogen size varies with pressure in the gas phase"

At atmospheric pressure H gas can expand to: <u>n=4</u>

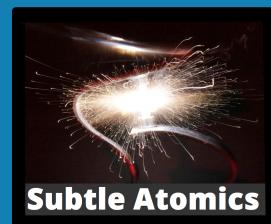
Intergalactic Atomic Hydrogen

Intergalactic medium identified as: ~H(n=24 to 31),

Subtle Atomics, 2019

Warm to hot neutral medium transition energies consistent with Cosmic Microwave Background radiation!!!

	Rydberg	Ionisation	Excitation	Radius	Example
State	Variable	Energy	Energy		i
			n to n+1		1
	n	eV/mc^2	eV/mc^2	metres	
		0.000 (0000	0.000.000	7.070504	
	38	0.00942223	0.0094222	7.270521	
	37	0.00993842	0.0005162	3.635260	
	36	0.01049822	0.0005598	1.817630	
	35	0.01110669	0.0006085	0.908815	Cosmic Microwave Background source
	34	0.01176963	0.0006629	0.454408	< (dEv/dv peak)
	33	0.01249375	0.0007241	0.227204	
	32	0.01328681	0.0007931	0.113602	
nterstellar Medium	31	0.01415785	0.0008710	0.056801	Hot Neutral Medium (HMN)
	30	0.01511744	0.0009596	0.028400	Cosmic Microwave Background source
	29	0.01617799	0.0010606	0.014200	< (dΕλ/dλ peak)
	28	0.01735420	0.0011762	0.007100	Warm Neutral Medium (WMN)
	27	0.01866350	093	9.003550	
	25	0201267	0.00 533	0.001775	
		0217691	-54	0. 088	
	1	36209	e00.0	. 044	Co Neutr Medium (CNM)
		02 196	0.07 87	0 022	
	22	.0281		J	
		.030851.	J027410	0.000055	
	20	0.03401423	0031623	0.000028	



For more information:

subtleatomics.com

+61 419 370 971 simon_brink@yahoo.com.au

World Engineers Convention November 2019

