

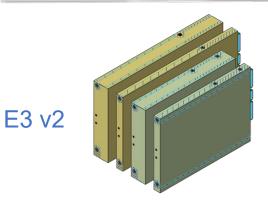
EDSFF – A Dynamic Family of Form Factors for Data Center SSDs Jonmichael Hands, Sr. Strategic Planner & Product Manager, Intel

STORAGE

DPEN PLATINUM[™]

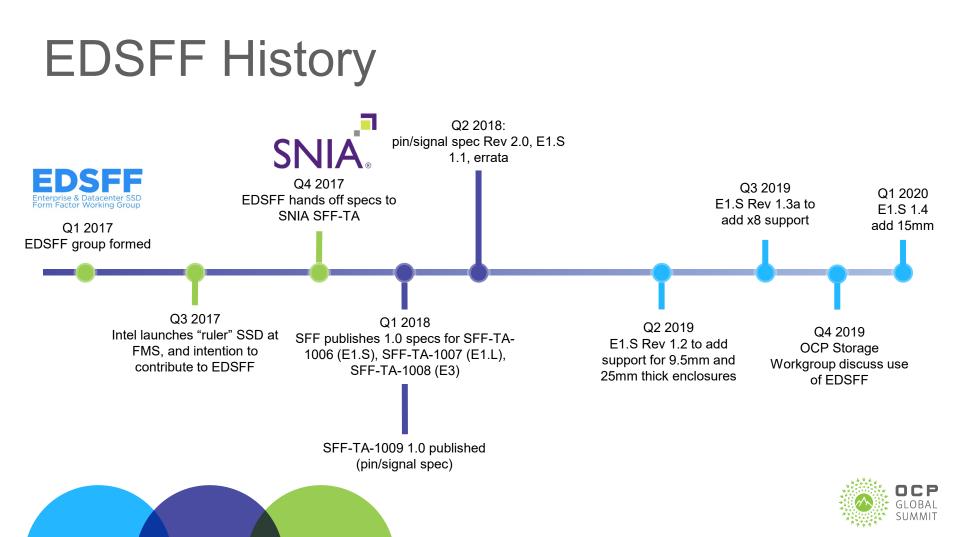
EDSFF Family Overview

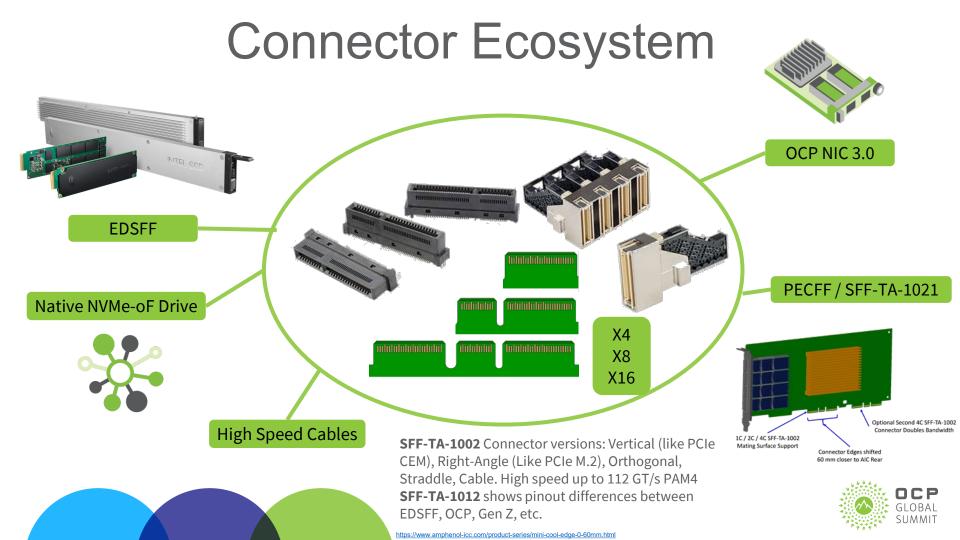
- Family of form factors and standards for data center NVMe SSDs
- E1.S for scalable & flexible performance storage
- E1.L for high capacity storage (e.g. QLC)
- E3 high performance SSD for 2U server / storage



E1.L 9.5mm

E1.L 18mm




What is EDSFF?

- A family of form factors and standards for data center SSDs
- Improved SSD capacity, thermals, power, and scalability
- Flexible options for high density and improved data center TCO (E1.L), scalable performance (E1.S) and mainstream 2U server/storage (E3)
- High-speed multi use connector with robust ecosystem
- Full hotplug support
- Built in LEDs, carrier-less design, enclosures for ESD
- Fully customizable latch (OCP opportunity!) for toolless serviceability
- Common pinout for SSD

E1.S Thermal Options and Use Cases

Enclosure Parameter	5.9mm Device	Device with Heat Spreader (8.01mm)	Device with Symmetric Enclosure (9.5mm)	Device with Asymmetric Enclosure (15mm)	Device with Asymmetric Enclosure (25mm)
Recommended sustained power (W)	12	16	20	20	25
Enclosure Max Inlet air temperature, 950 m to 3050 m (° C)	35 - (1° C for 175 m of elevation gain)	35 - (1° C for 175 m of elevation gain)	35 - (1° C for 175 m of elevation gain)	35 - (1° C for 175 m of elevation gain)	35 - (1° C for 175 m of elevation gain)
Add in card to add in card pitch (mm)	9	11	13	17	26
Recommended Fan Pressure loss across device (Pascal)	83	52	64	40	21
Airflow, average min per device (CFM). 1 CFM = 1.7 m3/h)	1.41 – (0.01 CFM for every 1° C below 35° C inlet temp)	1.71 – (0.06 CFM for every 1° C below 35° C inlet temp)	2.02 - (0.02 CFM for every 1° C below 35° C inlet temp)	1.5 - (0.02 CFM for every 1° C below 35° C inlet temp)	4.10 - (0.04 CFM for every 1° C below 35° C inlet

Source: SFF-TA-1006 rev 1.4 Touch point Temperature limit (80 °C) Enclosure Max Inlet air temperature, < 950 m (35 °C)

New – proposed at OCP, E1.S 15mm

- E1.S new thickness at 15mm, up to 25-35W @ 35C, 24x drives in 1U server
- Higher performance than U.2 in smaller form factor
- Scales to PCIe 5.0, 3D NAND and storage class memory (e.g. Intel[®] Optane[™] SSD)
- Performance, power, and thermals for mainstream SSD capacities (4, 8, 16TB) in the next 2-5 years

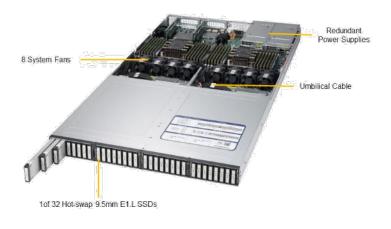
System designs for E1.S

SuperServer SSG-1029P-NES32R

(Angled View - System)

E1.S optimized for IOPS intensive workloads

© Super Micro Computer, Inc. Information in this document is subject to change without notice.



GLOBAL SUMMIT

System designs for E1.L

SuperStorage SSG-1029P-NEL32R

(Angled View - System)

© Super Micro Computer, Inc. Information in this document is subject to change without notice.

E1.L optimized for TB/rack unit & performance

E1.L optimized for lowest TCO on QLC NVMe

EDSFF Future

The OCP Cloud NVMe SSD Specification is Built on EDSFF

E1.S

U.2 like performance with better thermals Hot-Plug & serviceability Flexible heat sink options for different solutions Compute/Server Optimized

E1.L

Best TCO for QLC, high performance TLC Hot-Pluggable & Front Serviceable 9.5mm & 18mm 2x more thermally efficient vs U.2 Cloud Storage Optimized

OCP

Call to Action

- Attend OCP Storage Workgroup! Start building on EDSFF today
- E1.S 15mm by mid 2020
- Join OCP Storage Workgroup https://www.opencompute.org/wiki/Storage
- Find more info about Intel EDSFF here
- <u>https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/edsff-brief.html</u>
- Find more details about EDSFF at SNIA here
- <u>https://www.snia.org/forums/sssi/knowledge/formfactors</u>
- <u>www.edsffspec.org</u>
- <u>https://www.snia.org/technology-communities/sff/specifications</u>

MARCH 4 & 5, 2020 | SAN JOSE, CA