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Abstract

Despite its importance, uncertainty of measurements and parameters is fre-
quently neglected by practitioners in the design of systems even in safety
critical applications. Thus, problems arising from uncertainty may only be
identified late in the design process or even remain. This can lead to ad-
ditional costs and increased risks. Although there exists numerous tools to
support uncertainty calculation, reasons for limited usage in early design
phases may be low awareness of the existence of the tools and insufficient
training in the practical application.

In order to enhance the widespread use of such tool support we suggest a
teaching concept for uncertainty calculation in measurement science educa-
tion that is directly based on the utilization of software tools. Although the
developed material is currently based on the GUM (Guide to the expression
of uncertainty in measurement) method we believe that it is also useful with
other methods. Additionally, the concept goes beyond the scope of mea-
surement uncertainty quantification demonstrating that it is also useful for
system analysis and optimization.
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1. Introduction and Motivation

The fact that measurement results are more than just numeric values is
well known and accepted when it comes to physicals units. Thus, it is com-
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mon practice to report the unit together with the numeric result of a measure-
ment. However, it is not as common to emphasize that measurement results
are usually composed by realizations of random variables. The ideal way to
represent random variables is to provide the probability distribution . How-
ever, this may be difficult, impractical or even impossible in many situations.
As an alternative, the uncertainty attributed to the measurement result may
be reported in terms of certain parameters of the probability density func-
tion. In the simplest case we could just report a single additional parameter
to indicate if the distribution is narrow or wide; i.e. a non-negative param-
eter characterizing the dispersion of the quantity values being attributed to
a measurand, based on the information used [1]. In other words, it provides
information about the remaining uncertainty about the measurand [2]. The
idea to develop a new guide for the treatment of uncertainty in measure-
ment was to overcome some of the limitations that are associated with the
previously used term error [3] and led to the the change in the treatment of
measurement uncertainty from an Error Approach (sometimes called Tradi-
tional Approach or True Value Approach) to an Uncertainty Approach [1].
With respect to metrology, the uncertainty reflects the fact that measure-
ments can only provide incomplete knowledge and that a measurement is
only useful when the lack of knowledge is somehow quantified. This is par-
ticularly true with respect to safety and reliability. Consider, for example, a
monitoring system that should validate that a certain parameter lies within
a certain interval. If the measurement uncertainty of the monitoring system
becomes larger than the interval to be monitored, then the monitoring sys-
tem can never be used to validate that the parameter is actually within the
interval; it can only be used to validate that the parameter (with high prob-
ability) resides outside of the interval. This may not be apparent for a user
or even for a developer of such a system, in particular considering that the
engineer may not be an expert in stochastics and uncertainty quantification.
Therefore, it seems to be reasonable to provide a method that is commonly
accepted by practitioners and experts, can easily be applied for a wide range
of problems and still provides good results (even if they may not be optimal
in a theoretical sense).

In 1977, as it was recognized the existence of a lack of international con-
sensus on the expression of uncertainty in measurement, the world’s high-
est authority in metrology, the Comité International des Poids et Mesures
(CIPM), requested the Bureau International des Poids et Mesures (BIPM) to
address the problem in conjunction with the national standards laboratories



and to make a recommendation. The effort finally led to the development
of the Guide to the Expression of Uncertainty in Measurement (GUM) [3].
According to the GUM, the ideal method should be universal (applicable to
all kinds of measurements and to all types of input data used in measure-
ments), internally consistent (directly derivable from the components that
contribute to it), and transferable (possibility to directly use the uncertainty
evaluated for one result as a component in evaluating the uncertainty of
another measurement in which the first result is used).

With respect to one of the initial requirements for such a recommen-
dation - i.e. the approach has to be universal - the GUM [3] treats all
uncertainty contributions identically, more or less as if the distributions were
Gaussian and the relations were linear. The Central Limit Theorem is signif-
icant in this context because it shows the very important role played by the
variances of the input quantities’ probability distributions, compared with
that played by the higher moments of the distributions, in determining the
form of the resulting convolved distribution of Y. Further, it implies that
the convolved distribution converges towards the normal distribution even
for comparatively small numbers of contributing parameters. For instance,
the convolution of as few as three rectangular distributions of equal width is
approximately normal [3].

However, the GUM working group was aware that there are limitations
of the GUM [3] method and in supplements [3, 4, 5] suggested to use Monte
Carlo sampling in certain cases. A recent survey [6] on current research
activities in the field of measurement uncertainty reports that most recent
work addresses the GUM. Consequently, the present paper focuses on this
approach, which has a wide acceptance within the field of metrology. Sim-
plicity of tools that implement the method is also crucial for the acceptance,
as stated e.g. in [7]. Similarly, the authors of [8] emphasize the beneficial role
that tools may play to eventually make uncertainty propagation an inherent
component of computational procedures instead of an optional addendum.
With the same motivation, we aim to bring students in touch with such tools
early in their curriculum.

Our approach uses a tool that integrates well into a mathematical pro-
gramming environment with which our students are familiar. We currently
use Matlab, but the approach may also be used with other environments,
e.g. [9] for students well trained in Java. The basic educational concept was
presented in [10]. In the present paper, we discuss additional aspects such as
the numeric representation of uncertainty and the utilization of the concept



beyond the scope of classical measurement uncertainty quantification.

Our educational concept is directly applicable to two toolboxes for Matlab
[11]; i.e. Metas.UncLib MatLab toolbox [12] and a toolbox developed by our
group. Both toolboxes include an implementation of the GUM tree method
[13] /automatic differentiation [14]. The toolboxes are similar in basic usage
and basic functionality. Differences mainly relate to reporting of uncertainty
and analysis of uncertainty contributions (in part as a response on student
feedbacks). Furthermore, to keep things transparent for the students they
can have a look into the MatLab source code rather than obtaining a ”black
box”.

It should be noted that there have been many discussions about the GUM
and several alternative approaches exist as discussed e.g. in [15], [16] and
recently in [17]. Additionally, a revision of the GUM [18, 19] is in preparation.
However, the teaching concept that we present in this paper can be used
with different approaches as long as it is possible to implement them in an
automatic tool. In this context it will be important to outline the methods
and explain their advantages and disadvantages to the students. However,
the main objective is to sensitize students for the concept of uncertainty such
that it becomes a part of practices of daily life. This can be achieved with
different approaches and we currently use the classical GUM approach.

2. Software Tool Concept

2.1. Assigning and Reporting Uncertainty

In principle, the GUM [3] has two different types of uncertainty evalua-
tion. The Type A evaluation uses statistical methods, i.e. the uncertainties
are obtained from experiments by drawing samples from the distribution and
calculate the standard uncertainty based on the empirical data. In the Type
B evaluation, the uncertainty of input quantities is known a-priori. In order
to obtain the combined standard uncertainty attributed to the final measure-
ment result it is necessary to determine the individual contributions of the
input quantities.

In this paper, we focus on the determination of the combined standard
uncertainty based on the standard uncertainty of the input quantities. Our
examples are based on Type B uncertainties, which represents a common
case where the prior knowledge is provided by the manufactures of the de-
vices, e.g. instrumental measurement uncertainty for voltmeters or sensors
in the respective datasheets. However, the standard uncertainty of the input
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quantities could also be determined using Type A evaluation. Transduc-
ers may even provide uncertainty information in a Transducer Electronic
Datasheet [20]. In addition, other impact factors such as material properties
and mechanical geometries may come with known uncertainties. The aim is
to combine all the individual contributions in a simple way.

Dealing with uncertainty in mathematic programming environments such
as MatLab[11] or R [21] requires several steps:

e Attributing standard uncertainties to the input quantities, i.e. indicat-
ing them as realizations of random variables. Assigning uncertainty to
a variable, i.e. create a random variable.

e Keeping track of uncertainties during calculations.

e Reporting the results including the uncertainties.

As the second and third step are the job of the software tool, the main
novelty for students is that they additionally need the assignment step
in order to obtain results including the corresponding combined standard
uncertainty.

The requirements on the developed software tool, supporting uncertainty
calculations, are explained and summarized in the following. The tool shall
be usable in the typical developer or engineering software environment. Only
if the tool is smoothly integrated into the existing tool landscape wide ac-
ceptance can be achieved. In our approach, we integrated the functions into
MatLab. MatLab has been chosen due to the high usage in education and
research as well as in in industry. Assigning uncertainty requires connecting
the uncertainty of a parameter to the estimated value of the parameter it-
self, or to consider the uncertainty during the evaluation of the mathematical
model representing the measurement. A smart approach allows for tying the
uncertainty directly to the variable. Thus, our toolbox extends the datatypes
of MatLab by a new class called unc. The estimated value and uncertainty
are assigned to a variable of this class unc. For instance, a value of 3.67
and a corresponding standard uncertainty of 0.35 are assigned to a variable
x according to Figure 1.

With respect to reporting uncertainty, [3] suggests four different ways to
report (combined) standard uncertainty. All of them include a textual expla-
nation of how the reported result should be implemented. We believe that
it is not very practical to provide a full textual explanation for each result,
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>> x=unc(3.67,0.35)

X =

)\ |

3.67(35) L

fN

Figure 1: Assigning and reporting of a variable z with the value and the standard uncer-
tainty.

in particular when larger numbers or even matrices are to be reported in a
mathematical programming environment. Therefore, a textual explanation is
only displayed once, when a first uncertain variable is reported. All following
reports of standard uncertainty use the numerical representation alone.

In order to keep the representation short and compact, we decided to
use a representation where the (combined) standard uncertainty is reported
in parentheses after the numerical value of the measurement result, where
the number in parentheses is the numerical value of (the combined standard
uncertainty) u referred to the corresponding last digits of the quoted result.
Using this representation, the number of digits for expressing the uncertainty
also defines the number of reported digits for the numerical value of the
measurement result. The number of digits can be configured in our toolbox.
In previous courses we used three digits. However, [3] suggests to use only
two digits. Therefore, in all examples in the present paper we follow the
suggestion of [3]. Examples for assigning and reporting of uncertainty are
given in Table 1. Please note that in contrast to the recommended way
according to [3] we do not report a unit (and thus it is not necessary to
assign it).

2.2. Calculation of the Standard Uncertainty

With the use of a tool during the introduction of uncertainty calculation
we aim to put the focus on the meaning and implications of uncertainty rather
than on how standard uncertainty is calculated. This may be compared, e.g.
with the introduction to trigonometric functions. In order to understand the
meaning of sine, cosine and tangent it is initially not important to know how
these are calculated numerically. Similarly, our teaching concept initially



Value Standard Uncertainty Displayed Result

-144.587 15.1 -145(15)
0.001351 0.0000001543 0.00135100(15)
0.555550123 0.061002 0.556(61)

Table 1: Examples for reporting uncertainty in MatLab. Please note that two significant
digits are used to report the standard uncertainty, following the recommendation given in

[3]-

does not focus on how the calculation is actually performed. In this pa-
per, we use the linearization approach as suggested in the GUM [3]. In the
background, for each variable that is assigned or created by mathematical
operations a list of input quantities is maintained and the derivatives (of-
ten called sensitivity coefficients) of the variable with respect to these input
quantities calculated analytically and stored with a reference to that input
quantity. This also allows for a later analysis of the contributions of the
individual input quantities. The verification of the software tool has been
based on a regression suite including several hand written test cases and the
corresponding expected results. Therefore, the tool should currently only be
used for educational purposes, for uncritical cases or as an auxiliary means,
e.g. during system optimization. Nevertheless, in upcoming versions the ver-
ification can be extended by the method proposed e.g. in [22]. Besides this
simple approach described above, it is also possible to use more accurate yet
more complex methods, such as higher order derivatives or even Monte-Carlo
sampling [12]. We believe that a fast operation of the tools is mandatory for
a wide acceptance (we are even considering the use in real time applications).
This favors the linearization approach, yet an automatic justification of the
applicability would be desirable. Such an automatic justification would rise a
warning when the linearization is a poor approximation of the function (e.g.
for 2% at x = 0).

3. Teaching Concept

The course in question, Measurement Science, Sensors and Actuators,
comprising a lecture and an exercise, is part of the bachelor curriculum In-
formation Technology at Alpen-Adria-University Klagenfurt and usually at-
tended by students in their third year. Consequently, we expect that the



students are familiar with basic concepts of electrical engineering, have some
experience with measurement devices and also have background from a math-
ematically oriented course on stochastic. Therefore, they are familiar with
the concept of random variables, Ohms law and electrical networks. Thus,
we decided to actually start the course with the concept of measurement
uncertainty before we introduce the SI system. Consequently, the discussion
on "good” definitions for base units can already be based on the uncertainty
concept. Furthermore, traceability is also directly linked to this discussion.
This should provide a holistic view of how measurement science work and
that knowing the uncertainty is as important as knowing the estimate of
some parameter in question.

Our proposed introduction to the concept of uncertainty is illustrated in
Table 2. Starting with a discussion of the difference between measurement
results and indications and the interpretation of indications as a realizations
of random variables that provide some information about the parameter
in question, we introduce the GUM [3] including terms such as standard
uncertainty, combined uncertainty and determination by means of Taylor
series expansion.

In order to get familiar with the difference between ordinary numbers
and measurement results with attributed standard uncertainties we use and
explain introductory examples as shown in Figure 2.

After the introductory examples, our first practical example is the deter-
mination of a resistance value and corresponding combined standard uncer-
tainty from the measurement of voltage and current with respective rectan-
gular distribution using Ohm’s law

R=— 1
- 1)
as the measurement model and the corresponding equation for uncorrelated
input quantities and linearization

W2(R) = (‘Zf)Zum) " (gg)im o)

with the partial derivatives to be computed in the measured values of the
input quantities. As a second step, systematic errors due to the inner re-
sistance of the measurement instruments are included in the measurement
model.



>> a=unc(100,1);
>> b=unc(100,1);
>> a-b

ans =

0.0(1.4)

>> a=unc(100,1);
>> b=3g;
>> a-b

>> a=unc(100,1);
>> b=unc(100,1);
>> a/b
ans =

1.000(14)

>> a=unc(100,1);
>> b=3a;

>> a/b

ans =

1(0)

Figure 2: Introductory examples. The construction of a variable using unc generates in-
dependent variables, whereas an assignment means that two variables are fully correlated.
Consequently, the difference between two random variables with equal value and uncer-
tainty is zero with non-zero uncertainty when the variables are independent. However,
when two variables are actually identical (i.e. b = a), then they are fully correlated, i.e.
all random influences affect both, a and b, equivalently. Therefore, the uncertainty of
their difference vanishes. The same applies to ratios. For partially correlated variables,
i.e. where some but not all random influences affect both, a and b, equivalently, the re-
sulting uncertainty is somewhere in between of those of the previous cases, depending on
the degree of correlation. By this, the benefits of the differential measurement method as
well as the ratiometric method are easily illustrated.

After this simple example, we apply the method to the Wheatstone Bridge
circuit as another common method to evaluate resistance. There we also
introduce software tools for the evaluation of uncertainty. This is described
in the next section.

3.1. The Wheatstone Bridge with Uncertainties

Bridge circuits for the determination of unknown impedances and as re-
alization of the compensation method are important building blocks in mea-
surement science and thus usually treated in introductory courses. We use
the Wheatstone Bridge to emphasize how tools for uncertainty calculation
may change the way how the material is presented to students. Figure 3
shows the circuit of a Wheatstone Bridge.

First, we start from the classical result for the equation to determinate
the value of the unknown resistor Ry, i.e.

Ry

Ry = Ry— 3
= R )
and directly apply the GUM method to this, leading to

OR,? OR,? OR,?
(R) = —— v*(R — u*(R — u*(R 4
uct(Re) = et v (R) + SRy + Gl () (@)

9



o
)

o
q

Figure 3: Example for a Wheatstone Bridge.

and let the students do an interpretation of the results. The aim is to point
out that apparently some important influences are missing, e.g., it seems
that the choice of Uy and the accuracy of the instrument that measures U,
would not be important with respect to the uncertainty. This is obviously
not correct. This leads to a more detailed analysis, showing that it may not
be sufficient to only consider a measurement equation to fully determine the
standard uncertainty.

The students are instructed to derive a more complete measurement

model such as
UoR2(R3 + Ry)

" UoRy + Uy(Rs + Ry)
Here we emphasize that a value that is measured to be zero may still be

significantly different from zero and must thus not be omitted for uncertainty
considerations. In the next step the measurement equation is derived with

Ry

— Ry ()

respect to Uy, Uy, Ra, R3, R4, leading to the sensitivity coefficients Cry = g—g;,
Crs = 28 and so on. The resulting uncertainty of the resistor Ry can be

AR
calculated as follows:

uc?(Ry) = Chgu?(Up)+Cfyu? (Uy)+Chou® (Ry)+Chsu®(Rs) +Chyu®(Ry) (6)

with the uncertainty u(X) of the respective input quantities and the sensi-
tivity coefficients calculated previously.

Following this analysis we use the toolboxes for MatLab and the datatype
"uncertain”. With this, we perform the same calculation as above, but nu-
merically and step by step as shown in Figure 4 emphasizing that it does not
require any additional effort to obtain the combined standard uncertainty
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>> R2 = unc(1e3,5,'R2");
>>R3 = unc(1e3,5,'R3");

>> R4 = unc(1.001e3,1,'R4");
>> U0 = unc(5,0.1,'U0");

>> Ug = unc(0,0.01,'Ug’);

>> [2=U0/(R3+R4);

>> [1=(12*R4+Ug)/R2;

>> R1 = U0/I1-R2

R1=

999(11)

Figure 4: Calculation of the measurement result according to Figure 3 including the
standard uncertainty of the unknown resistor Ry using Metas.UncLib toolbox for MatLab
[12].

but providing the standard uncertainty for the input quantities. It is also
shown that the toolbox could also be applied to equation ( 3) but leading to
the same incorrect result as above (Fig. 5).

>> R2*R3/R4
ans =

999.0(7.1)

Figure 5: Incorrect determination of the standard uncertainty of R; due to direct appli-
cation of the GUM to the classical solution (3) of the Wheatstone Bridge (Figure 3).

The reason - failing to correctly consider the uncertainty of the voltage
measurement (the imbalance of the bridge) - is otherwise often not obvious
for students. Consequently, several rules for use of uncertain measurement
results but also for the derivation of measurement equations (including their
simplification) can be derived. This allows obtaining the well known result
according to equation (3) but clearly highlighting that other parameters that
do not occur in the equation may significantly contribute to the uncertainty.

However, the benefit is not just the automatic calculation of the stan-
dard uncertainty. Additionally, with respect to analysis and optimization
the toolboxes also provide means to determine the contribution of the uncer-
tain input variables to the combined uncertainty of the result. This is shown
in Figure 6. In the present example, the main contribution to the uncertainty
comes from the uncertainty of the voltage measurement, which is in practice
not truly zero.
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>> disp_contribution(R1);

Uncertainty Contribution:
(Square root of the contribution of the variable X to the squared standard uncertainty of Y)
Variable Name | Contribution

S | 7.99
R2 ..., | 5

R3 oo, 5

R4 ..., | 0.998
ST | 5.68e-15

>> disp_contribution(R1);

Uncertainty Contribution:
(Square root of the contribution of the variable X to the squared standard uncertainty of Y)
Variable Name | Contribution

UG e | 79.9
R3 oo | 5
R2 ..., | 5
R4 ... | 0.998
U0 ......... | 4.55e-14

Figure 6: Analysis of the contributions of the various sources of uncertainty to the standard
uncertainty of Ry using MatLab and an uncertainty toolbox. The reported 2contribution
values represent the contribution w;(R;) of each input quantity . The toolbox also pro-
vides a function to report the sensitivity coefficients. This example aims to demonstrate
interdependencies between parameters. Even though the contribution of the uncertainty
of the voltage Uy to the uncertainty of R; is very low, the choice of Uy has a strong impact
on the contribution of U,.

In this example, the contribution of Uj to the uncertainty is close to zero.
By reducing Uy to one tenth of its original value, we show that although its
contribution to the standard uncertainty is still negligible we see an increase
of the combined standard uncertainty as the contributions of other input
quantities increase. Here we aim to emphasize such interdependencies and
how they are easily studied with the tools.

3.2. Hall Sensor with Uncertainties

In order to demonstrate the influence of correlated uncertainties and the
benefit of calibration we use a simple Hall sensor example. Starting from the
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equation for the Hall voltage Ugen,
Ugem =V SIB (7)

with amplifier gain V', Hall sensor sensitivity S, bias current I and magnetic
flux density B [23], we can determine the flux density B from the Hall voltage
under consideration of the random sensor offset U,y and random amplifier
offset U,y using
B— Ug% - UOIV - UOH (8)
IS
For the example data, the flux density signal is much smaller than the
corresponding standard uncertainty as shown in Figure 8. Looking at the
uncertainty contributions provided in Figure 7 it can be seen that the major
contribution results from the offsets. However, as all output voltages are
subject to the same offsets, an offset calibration can be used, e.g. by exposing
the sensor to a known flux density for the first sample. The effect is also
shown in Figure 8. Now, the uncertainty contributions, provided in Figure 7
for the calibrated case, show that the major contributions from the offsets
are eliminated and the uncertainty of the calibration flux density becomes
the main contribution. The uncertainty of the voltage (ADC) appears twice
as two voltage values (current sample and calibration sample) are now used
to calculate one flux density result.

3.3. Transient Characteristics of a Digital to Analog Converter

Besides the determination of measurement uncertainty, the concept can
generally be applied where uncertainties are relevant for a result and even for
the evolution of uncertainty over time. We demonstrate this in the example
of a simple model of the analog output stage of a digital to analog converter
(DAC) as shown in Figure 9. The input x represents the static output signal
of the DAC, y represents the actual output signal that is subject to a filter
characteristic described by a low-pass comprising a resistor R and a capacitor
C'. A discrete time model (Euler method) is given by

yln] = yln = 1]+ a(z[n] —yln — 1)) (9)

with n is the discrete step and a = 1/RCdt with time step dt.
As all real components also the filter’s resistor and the capacitor are sub-
ject to uncertainties. In order to study their impact it is only necessary to
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% assign parameters and corresponding standard uncertainties
I=unc(le-3,1le-5, 'Bias Current');

U oIV=unc(0,le-3, 'Amplifier Offset');

U oH=unc(0,1le-3, 'Hall Sensor Offset');

V=unc(100,1,"'IV Amplification');

S=unc (2e-3,1e-4, '"Hall Sensor Sensitvity');

B K=unc (0,3, 'Calibration Flux Density');

calculate the Flux Density from the measurements
just as if there were no uncertainty...
=(Ugem/V-U oIV-U oH)/I/S;

now apply calibration
K=B(:)-B(1)+B K;

0 o° T oo oe

>> disp contribution (B(10))

Uncertainty Contribution:
(Square root of the contribution of the variable X
to the squared standard uncertainty of Y)

Variable Name | Contribution
Hall Sensor Offset .... | 500
Amplifier Offset ...... | 500

Hall Sensor Sensitvity | 7.47

IV Amplification ...... | 1.49

Bias Current .......... | 1.49

72N I | 0.5

>> disp contribution (BK(10))

Uncertainty Contribution:
(Square root of the contribution of the variable X
to the squared standard uncertainty of Y)

Variable Name | Contribution
Calibration Flux Density | 3

Hall Sensor Sensitvity .. | 2.47

ADC ittt et e e e e | 0.5

ADC ittt it et e e e e e e e e | 0.5

IV Amplification ........ | 0.494

Bias Current ............ | 0.494

Figure 7: Code for the determination of the flux density from Hall voltages with and
without calibration
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Figure 8: Measurement results for the flux density obtained with a Hall sensor with and
without calibration

assign the uncertainty to these parameters and the toolbox does the calcu-
lation. Without a high effort, students can thus focus on the analysis of the
results. The commands to study this model are given in Figure 10 and results
are shown in Figure 11 (”Time Invariant”), where the output value y as well
as the uncertainty of the output u(y) are plotted. Obviously, the uncertainty
of the output result is not constant. The uncertainty at the beginning of the
signal is initially low, fast increases and finally decreases until converging to
zero. Thereby, the maximum of the uncertainty is in the dynamic region of
the output signal. This example aims to illustrate that transient behavior of
a DAC is subject to large variations even when the static uncertainty is very
low.

R
O O
X —C y
O O

Figure 9: Lumped element model of the output of a DAC circuit consisting of a resistor
R and a capacitor C.

As a continuation of the example and in order to demonstrate once again

the difference between correlated and uncorrelated variables, we modify the
previous example such that the variables R, C' and x are drawn at each time
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%% Low Pass filter

dt=0.1le-6; % sampling period
C = unc(10e-9,1e-9);% Capacitance

R = unc(820,40); % Resistance

a = 1/ (R*C) *dt; % Coefficient

% Simulation

y=unc (zeros (1,1000),zeros (1,1000)) ;

x=unc (ones (1,1000),1e-3*ones (1,1000)) ;

x(:)=unc(l,le-3);

y(1l)=unc (0,1le-3);

for n=2:1:1000
y(n)=y(n-1)+a*(x(n)-y(n-1));

end

Figure 10: MatLab code to simulate the model according to Figure 9 (Euler method) with
consideration of the uncertainties.

step. This means that we obtain a time variant system. The results em-
phasize the counter-intuitive result that the introduction of more uncertain
variables (i.e. one at each time step) actually reduces the uncertainty of the
result. The results are also shown in Figure 11. Additionally, the analysis
shows that the contributions of all filter coefficients ("old” and "new”) are
equal whereas the contribution of ”old” input values is much lower than for
"new” input values.

4. Discussion of Advantages and Disadvantages and Student Feed-
back

We consider toolboxes for the calculation of the combined standard un-
certainty just as an additional feature of an electronic calculator. In order to
illustrate this, consider e.g. the calculation of a non-linear function such as
a trigonometric function. A user of the calculator does not need to precisely
know how the calulator determines the numeric value. It is more important
that the user can interpret and understand the results (e.g. the cosine of an
angle). Similarily, at this point we aim to put the focus on the interpretation
of the result.

As with the electronic calculator in general, a frequently observed disad-
vantage is a loss of the 'feeling’” whether a result is in the correct order of
magnitude, which otherwise could help to identify mistakes.

Our aim with respect to uncertainty is to put the focus on the fact that
measurement results are actually composed of realizations of random vari-
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Solution Time Invariant

Solution Time Variant

— — — Uncertainty Time Invariant
—  —  Uncertainty Time Variant |1 g4

10.03

10.02

Value of the outputy / V
Uncertainty of the output u(y) / V

10.01

Time [ps]

Figure 11: Simulation results according to the model shown in Figure 9 for time variant and
time invariant parameters. Please note that the linearization approach leads to identical
solutions for both cases, yet the standard uncertainties are different. During the transient
period, the uncertainty is significantly higher than for stabilized states for both cases. In
the time variant case, model parameters and the input signal can change over time due to
independent realizations of the uncertainty. Even though this means that we have 3000
instead of three uncertain input quantities, the resulting uncertainty of y is lower. This -
for students usually counter-intuitive effect - is due to the averaging of uncorrelated input
quantities.
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ables and that the GUM aims to describe the probability density function
using the standard uncertainty Consequently, the effort to perform the cal-
culations is left to tools. As a drawback of this approach, students may not
be aware of the limitations of these tools as they are used to fully rely on the
results from electronic calculators. Therefore, it is important to continuously
emphasize the limitations of the tools.

The positive students’ feedback reasons from the initial introduction of
the uncertainties, which are directly coupled to the variables. This allows
copying the uncertainties given in the specification directly to the variable
itself. Since the students are familiar with MatLab, the barrier of using
the tool is low. They can work in the known environment without any
additional training. Nevertheless, the most important positive point is that
the students’ attention can be unglued from the already known mathematical
calculations and guided towards the measurement model construction and the
analysis of the contribution of the various sources of uncertainty. Especially,
the simple analysis of the contributions of the various input quantities allows
for immediate highlighting of the main contributors to the uncertainty. The
students get a feeling on what shall be tried to improve first. Based on
students feedback using [12] we implemented a different uncertainty reporting
approach and a different approach for analysis in our toolbox as described
above, aiming to get a more intuitive tool.

5. Conclusion

We propose an approach for considering uncertainty in measurement sci-
ence education from the very beginning using special tools. The approach
does not offer different or even better results; it is currently simply based on
the GUM method. However, the use of tool support allows for emphasizing
the meaning and implications of uncertainty. Furthermore, we show that
the use of the tools is not restricted to determination of measurement un-
certainty. We believe that this approach may help to increase the awareness
with respect to uncertainty, has a high practical applicability in particular
with respect to safety engineering and may thus lead to consideration of
uncertainty in early design phases.

References

[1] BIPM, “JCGM 200:2012 : International Vocabulary of Metrology - Basic
and General Concepts and Associated Terms (VIM 3rd edition).”

18



2]

3]

[4]

[11]

[12]

A. Ferrero and S. Salicone, “Uncertainty: Only one mathematical ap-
proach to its evaluation and expression?” IEEE Transactions on Instru-
mentation and Measurement, vol. 61, no. 8, pp. 2167-2178, 2012.

BIPM, “JCGM 100:2008: Guide to the expression of uncertainty in
measurement.”

—, “JCGM 101:2008: Evaluation of measurement data - supplement
1 to the "guide to the expression of uncertainty in measurement” - prop-
agation of distributions using a monte carlo method evaluaton of mea-
surement data.”

——, “JCGM 102:2011: Evaluation of measurement data - supplement
2 to the "guide to the expression of uncertainty in measurement” - ex-
tension to any number of output quantities.”

P. da Silva Hack and C. S. ten Caten, “Measurement uncertainty: Lit-
erature review and research trends,” IEFE Transactions on Instrumen-
tation and Measurement, vol. 61, no. 8, pp. 21162124, 2012.

A. Steele and R. Douglas, “Simplicity with advanced mathematical tools
for metrology and testing,” Measurement, vol. 39, no. 9, pp. 795 — 807,
2006, advanced Mathematical Tools for Measurement in Metrology and
Testing.

Mari, L, “A computational system for uncertainty propagation of mea-
surement results,” Measurement, vol. 42, 2009.

L. Mari, “STGraph,” http://www.liuc.it/cmgenerale /-
default.asp?ssito=125&codice=100, last accessed March 24 2015.

H.Zangl, M. Zine-Zine, and K. Hoermaier, “Utilization of software
tools for uncertainty calculation in measurement science education,” in
IMEKO Joint Symposium TC 1 - TC 7 - TC 13, Funchal, Portugal,
2014.

MATLAB, wversion 7.14.0.739 (R2012a). Natick, Massachusetts: The
MathWorks Inc., 2012.

M. Wollensack, “Metas.UncLib - An advanced Measurement Uncer-
tainty Calculator,” b, September 2012.

19



[13]

[14]

[15]

[16]

[17]

[18]

[22]

23]

B. D. Hall, “Computing uncertainty with uncertain numbers,” Metrolo-
gia, vol. 43, pp. L56 — L61, 2006.

L. Rall, Automatic Differentiation: Techniques and Applications, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1981.

F. Attivissimo, A. Cataldo, L. Fabbiano, and N. Giaquinto, “System-
atic errors and measurement uncertainty: An experimental approach,”
Measurement, vol. 44, no. 9, pp. 1781 — 1789, 2011.

A. Forbes and J. Sousa, “The GUM, Bayesian inference and the obser-
vation and measurement equations,” Measurement, vol. 44, no. 8, pp.
1422 — 1435, 2011.

R. N. Kacker, “Probability distributions and coverage probability in
GUM, JCGM documents, and statistical inference,” Measurement,
vol. 65, no. 0, pp. 61 — 70, 2015.

W. Bich, M. G. Cox, R. Dybkaer, C. Elster, W. T. Estler, B. Hib-
bert, H. Imai, W. Kool, C. Michotte, L. Nielsen, L. Pendrill, S. Sidney,
A. M. H. van der Veen, and W. Woeger, “Revision of the ”guide to the

expression of uncertainty in measurement”,” Metrologia, vol. 49, no. 6,
p. 702, 2012.

W. Bich, “Revision of the "Guide to the Expression of Uncertainty in
Measurement”. why and how,” Metrologia, vol. 51, pp. 155-158, 2014.

IEEFE Standard for a Smart Transducer Interface for Sensors and Actu-
ators - Common Functions, Communication Protocols, and Transducer
FElectronic Data Sheet (TEDS) Formats, IEEE Std. 1451.0-2007, 2007.

R Core Team, R: A Language and FEnvironment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013, ISBN 3-900051-07-0. [Online]. Available:  http://www.R-
project.org/

Greif, N.; Schrepf, H.; Richter, D., “Software validation in metrology:
A case study for a GUM-supporting software,” Measurement, vol. 39,
2006.

E. Ramsden, "Hall-Effect Sensors (Second Edition)”.  Burlington:
Newnes, 2006.

20



Section

11

10

Content

Introduction to Uncertainty

Introduction to GUM [3], Error Propagation
by means of Taylor Series

Example Resistor Measurement
(Voltage /Current)

Consideration of systematic errors

Example Wheatstone Bridge - Simple

Example Wheatstone Bridge - More Accurate

Example Wheatstone Bridge - Tool Based

Example Wheatstone Bridge - Analysis of
Sources of Uncertainty

Example Wheatstone Bridge - Influence of
Parameters

Example Hall Sensor

Discussion

Educational Objective
Understand measurements as realizations of random
variables

Know GUM and its application to measurement
equations

Practical experience with the GUM

Understand importance of measurement model
Identify pitfalls in approach according to section 2

Practice, learn that a correct consideration of
uncertainties may be time consuming if done "by
hand"

Understand the concepts of "uncertain” as a datatype

Understand that tools can ease the analysis of
measurement chains

Understand that parameters that do not directly
contribute to the uncertainty may do so through other
parameters.

Understand correlated and uncorrelated uncertainties
and calibration approach.

Understand that uncertainty must always be
considered in measurement. Awareness that tools are
available that simplify most of the calculations.
Awareness that the tools and GUM have limitations

Table 2: Steps of the proposed introduction to the concept of uncertainty.
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