EE 495-695 Grid-Tied PV Systems

Y. Baghzouz Spring 2011

Applicable Codes & Standards

- Most Important:
 - NEC
 - IEEE Std 1547

Reference #	Title/Contents
NEC 2008	National Electrical Code/Wiring methods (comprehensive)
IEEE 928	IEEE Recommended Criteria for Terrestrial Photovoltaic Power Systems
IEEE 929	IEEE Recommended Practice for Utility Interface of Residential and Intermediate Photovoltaic Systems
IEEE 937	IEEE Recommended Practice for Installation and Maintenance of Lead-Acid Batteries for Photovoltaic Systems
IEEE 1013	IEEE Recommended Practice for Sizing Lead-Acid Batteries for Photovoltaic Systems
IEEE 1144	Sizing of Industrial Nickel Cadmium Batteries for PV Systems
IEEE 1145	IEEE Recommended Practice for Installation and Maintenance of Nickel Cadmium Batteries for Photovoltaic Systems
IEEE 1187	Recommended Practice for Design and Installation of Valve-Regulated Lead-Acid (VRLA) Storage Batteries for Stationary Applications
IEEE 1262	Recommended Practice for Qualification of Photovoltaic Modules
IEEE 1361	Recommended Practice for Determining Performance Characteristics and Suitability of Batteries in Photovoltaic Systems
IEEE 1373	Recommended Practice for Field Test Methods and Procedures for Grid-Connected Photovoltaic Systems
IEEE 1374	Guide for Terrestrial Photovoltaic Power System Safety
IEEE 1479	Recommended Practice for the Evaluation of Photovoltaic Module Energy Production
IEEE 1513	Recommended Practice for Qualification of Concentrator Photovoltaic Receiver Sections and Modules
IEEE 1526	Recommended Practice for Testing the Performance of Stand-Alone Photovoltaic Systems
IEEE 1547	IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems
IEC TC-82	A compendium of 25 standards relating to the electrical and mechanical performance testing and measurement of PV systems
ISO 9001	An international quality standard, comprising of 20 segments, dealing with all aspects of design, manufacturing, and delivery of service
UL 1741	Standard for Static Inverters and Charge Controllers for Use in Photovoltaic Power Systems
ANSI Z97.1	Relates to safety relating to potential glass breakage
ASCE 7-05	Minimum Design Loads for Buildings and Other Structures
ASTM	A compendium of tests and standards that may apply to building integrated photovoltaic systems

Summary of Content of NEC

Section	Contents	NEC Cross References				
I	General: Scope, Definitions, Installation, Ground-fault protection, ac modules	Article 240				
II	Circuit Requirements: Maximum voltage, Circuit sizing and current, Overcurrent protection, Stand-alone systems	Articles 110, 210, 240				
Ш	Disconnecting Means: Conductors, Additional provisions, PV equipment, Fuses, Switches and circuit breakers, Installation and service	Article 230				
IV	Wiring Methods: Methods permitted, Component interconnections, Connectors, Access to boxes	Articles 310, 339, 400				
V	Grounding: System grounding, Point of system grounding connection, Equipment grounding, Size of equipment grounding conductor, Grounding electrode system	Article 250				
VI	Marking: Modules, ac modules, PV power source, Point of common connection					
VII	Connection to Other Sources: Identified interactive equipment, Loss of interactive system power, Ampacity of neutral conductor, Unbalanced interconnections, Point of connection	Article 230				
VIII	Storage Batteries: Installation, Charge control, Battery interconnections	Articles 400, 480				
IX	Systems Over 600 V: General, Definitions	Article 490				

NEC (Voltage Drop Requirement)

• NEC requires that the voltage drop in the circuit cannot exceed 5%.

$$\% VD = \frac{0.2d}{V_s} R$$

where *R* is the resistance of the wire (per 1,000 ft) and *d* is the distance from the source to the load.

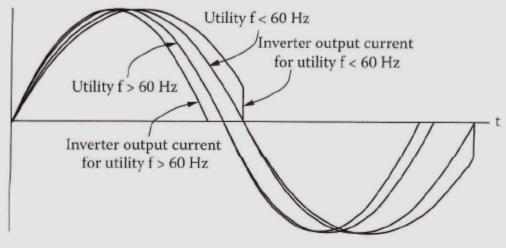
• Table 4.2. below show the maximum current allowed for different copper wire sizes (with THWN-2 insulation)

Table 4.2	Properti	es of Cop	per Condu	uctors wit	h 90°C Ins	sulation		
Size	18	16	14	12	10	8	6	4
dc Ω/kft	7.77	4.89	3.07	1.93	1.21	0.764	0.491	0.308
I _{max} (A)	14	18	25	30	40	55	75	95
Size	3	2	1	0	00	000	0000	250 kcm
dc Ω/kft	0.245	0.194	0.154	0.122	0.0967	0.0766	0.0608	0.0515
I _{max} (A)	110	130	150	170	195	225	260	290

IEEE Std. 1547 Requirements for Abnormal Voltage and Frequency and Current Harmonic Content

Table 4.4 Required Clearing Times for PV Inverters und Abnormal Grid Voltage Conditions										
Voltage Ra % of Base		<50%	50% to 88%	110% to 120%	≥120%					
Clearing Ti	me (s)	0.16	2.0	1.0	0.16					

Table 4.5 Required Clearing Times for PV Inverters under Abnormal Grid Frequency Conditions									
Inverter Size (kW)	Frequency Range (Hz)	Clearing Time (s)							
<20 KW	>60.5	0.16							
≤30 kW	<59.3	0.16							
	>60.5	0.16							
>30 kW	<(59.8-57.0) (adjustable)	Adjustable 0.16-300							


Table 4.6			Harmonic Am Load Current		/ Inverter Out	out in
Harmonic	Range	<i>n</i> < 11	11 ≤ <i>n</i> < 17	17 ≤ <i>n</i> < 23	23 ≤ <i>n</i> < 35	35 ≤ <i>n</i>
% of Rated	Current	4.0	2.0	1.5	0.6	0.3

0.16

<57.0

Inverter Islanding Detection

- The inverter is disconnected for 5 minutes when it sense over-voltage, under-voltage, over-frequency, and under-frequency using UV,OV,UF,OF relays.
- In rare situations (when the power produced by the PV matches that of the local load), the above relays do not sense any deviation in voltage nor frequency, and islanding may occur.
 - In this case, other means to detect an island are needed. A popular example of such islanding detection techniques is the Sandia Frequency Shift (SFS).

Islanding (cont.)

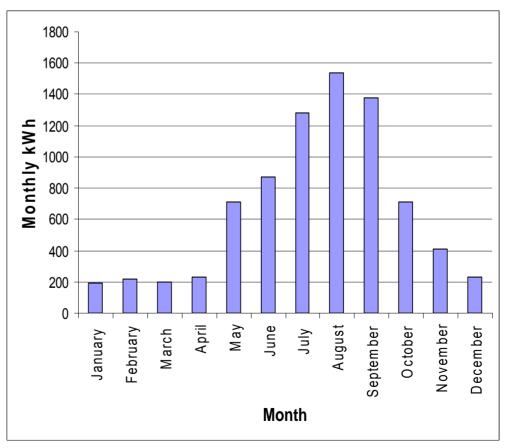
 Another rare situation is when resonance in the islanded circuit occurs. This can be evaluated by an under-damped parallel RLC circuit.

$$v(t) = V_m e^{-\alpha t} \cos(\omega_d t + \phi)$$

$$\alpha = \frac{1}{2RC}, \quad \omega_o = \frac{1}{\sqrt{LC}}, \quad \omega_d = \sqrt{\omega_o^2 - \alpha^2}$$

$$Q = \frac{\omega_o}{2\alpha} = \omega_o RC.$$

 Question: For how many cycles does it take for the voltage to decrease to the inverter trip limit (0.5 V_m) as a function of the quality factor Q? Answer:

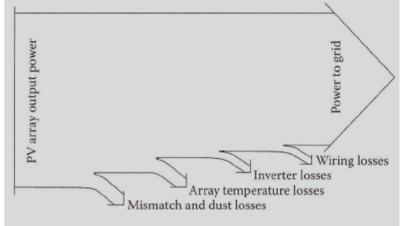

$$t = \frac{2\ln 2}{\omega_d} \sqrt{Q^2 - 0.25}$$

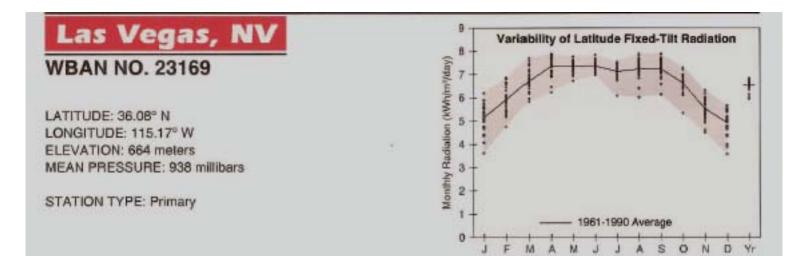
Other Issues Related to Grid-Tied PV Systems

- During a fault, PV inverters contribute a little more than the rated current to the fault. On the other hand, rotating generators generally contributes 5 to 10 times their rated current.
- Aesthetics of PV installation are of particular concern to architects, building owners, and the community.
- Electromagnetic Interference (EMI): both conducted and radiated EMI must be contained and meet Part 15 of the FCC Code.
- Surge protection on both the AC and DC side of a PV system is required per NEC (article 280). A Metal Oxide Varistor (MOV) is used for protection against lightning and switching surges.

PV System Sizing: Example of Electric Usage (kWh/month) in Las Vegas

- Jan: 190 kWh
- Feb: 220 kWh
- March: 200kWh
- April: 230kWh
- May: 710kWh
- June: 870kWh
- July: 1280kWh
- Aug: 1540kWh
- Sept: 1380kWh
- Oct: 710kWh
- Nov: 410kWh
- Dec: 230kWh




Total: 7,970 kWh

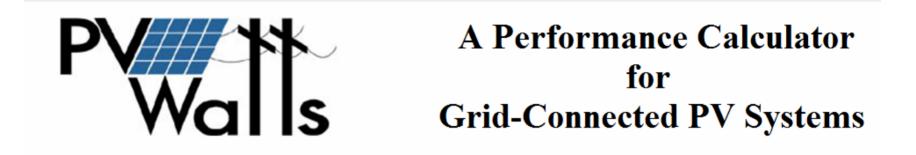
System Sizing – Rough Calculation

Assumptions:

- PV System de-rating:
 - The PV peak power is de-rated by 10% since it is expected to operate at a higher temperature that 25°.
 - 5% loss due to dust/debris/mismatch
 - 2% loss due to losses in the wires
 - 6% loss due to losses in the inverter
- Hence, a 100 W PV module is expected to produce 77 W of AC power in the real world.
- The roof faces south with 21° tilt angle. The average daily solar energy received is 6.4 kWh/m² (or 6.4 peak sun hours).

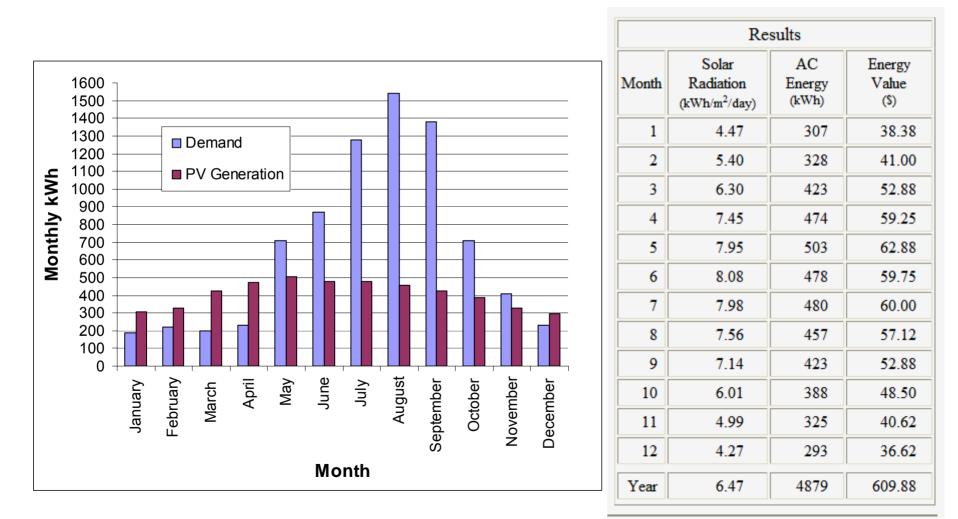
Solar Radiation for Flat-Plate Collectors Facing South	h at a Fixed Tilt (kWh/m²/day), Uncertainty ±	9%
--	---	----

Tilt (")		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average	3.0	4.0	5.4	6.9	7.8	8.4	7.9	7.2	6.2	4.7	3.4	2.8	5.7
	Min/Max	2.3/3.4	3.4/4.5	4.8/6.1	6.1/7.4	7.2/8.3	7.8/8.9	6.6/8.4	6.0/7.8	5.4/6.7	4.0/5.1	3.0/3.7	2.2/3.1	5.3/5.8
Latitude -15	Average	4,4	3.3	6.4	7.5	7.8	8.1	7.7	7.5	7.1	6.1	4.8	4.2	6.4
	Min/Max	3.2/5.3	4.4/6.1	5.6/7.3	6.4/8.0	7.2/8.3	7.6/8.6	6.5/8.2	6.2/8.2	6.1/7.7	5.0/6.7	4.0/5.4	3.1/4.8	5.9/6.7
Latitude	Average Min/Max	5.1 3.6/6.2	5.9 4.8/6.8	6.7 5.8/7.7	7.4 6.2/7.9	7.3 6.7/7.8	7.4	7.1 6.1/7.5	7.2 6.0/7.9	7.2 6.1/7.9	6.6 5.3/7.3	5.5 4.5/6.3	4.9 3.6/5.7	6.5 5.9/6.8
Latitude +15	Average	5.6	6.1	6.6	6.8	6.5	6.3	6.2	6.5	7.0	6.8	5.9	5.4	6.3
	Min/Max	3.8/6.8	4.9/7.2	5.7/7.6	5.7/7.3	5.9/6.8	6.0/6.7	5.3/6.5	5.5/7.2	5.9/7.6	5.4/7.5	4.7/6.8	3.8/6.2	5.7/6.6
90	Average	5.0	5.1	4.7	3.9	3.0	2.6	2.6	3.4	4.5	5.3	5.2	5.0	4.1
	Min/Max	3.4/6.2	4.0/6.0	4.0/5.4	3.3/4.1	2.8/3.1	2.4/2.7	2.4/2.7	2.9/3.7	3.8/4.9	4.2/5.9	4.1/6.1	3.5/5.8	3.7/4.5


Solar Radiation for 1-Axis Tracking Flat-Plate Collectors with a North-South Axis (kWh/m²/day), Uncertainty ±9%

Axis Tilt (*)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average Min/Max	4.6 3.3/5.6	5.9 4.6/7.0	7.8 6.2/9.3	9.8 8.2/10.9	10.9 9.8/11.9	11.6	10.8 8.2/11.8	10.1 8.1/11.3	9.0 7.1/10.1	7.1 5.7/7.9	5.1 4.1/6.0	4.2 3.0/4.9	8.1 7.2/8.5
Latitude -15	Average Min/Max	5.7 3.9/6.9	6.9 5.3/8.2	8.5 6.9/10.2	10.3 8.5/11.4	11.0 9.9/12.0	11.5	10.8 8.2/11.8	10.4 8.4/11.7	9.7 7.7/10.9	8.1 6.4/9.1	6.2 4.9/7.3	5.3 3.7/6.2	8.7 7.7/9.1
Latitude	Average Min/Max	6.2 4.3/7.7	7.3 5.6/8.7	8.8 7.1/10.5	10.2 8.4/11.3	10.6	11.1 10.0/11.9	10.4 7.8/11.4	10.3 8.2/11.5	9,8 7,8/11,1	8.6	6.7 5.3/7.9	5.9 4.1/6.9	8.8 7.8/9_3
Latitude +15	Average Min/Max	6.5 4,4/8.1	7.5 5.7/9.0	8.7 7.0/10.4	9.8 8.1/10.9	10.0 9.0/11.0	10.3 9.3/11.1	9.8 7.3/10.7	9.8 7.8/11.0	9.6 7.6/10.9	8.7 6.7/9.7	7.0 5.4/8.3	6.2 4.3/7.3	8.7 7.6/9.1

	Solar Radiation for 2-Axis Tracking Flat-Plate Collectors (kWh/m ² /day), Uncertainty ±9%												
Tracker	1	Jan	Feb	Mar Ap	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
2-Axis	Average Min/Max		7.5 5.7/9.0	8.8 10.1 7.1/10.5 8.5/1		11.8 10.6/12.7	11.0 8.3/12.1	10.5 8.4/11.8	9.8 7.8/11.1	8.7 6.7/9.7	7.1 5.5/8.3	6.3 4.3/7.4	9.1 8.1/9.6


- What percent of the Annual energy needs is expected from 3 kW roof-mounted PV system?
 - A 3 kW (peak) is de-rated to: 3x0.77 = 2.31 kW
 - The average daily energy production is: 2.31x6.4 =14.8 kWh
 - The yearly energy production is: 14.8 x 365 = 5,396 kWh
 - The above amount represents: $100 \times 5,396/7970 = 67\%$ or 2/3 of the annual energy needs.
- What system size is needed to generate all the annual energy needs?
 - Annual energy to be produced by the PV: 7,970/0.77 = 10,350 kWh
 - Average daily energy production: 10,350/365 = 28.3 kWh
 - PV system size: 28.3/6.4 = 4.43 kW

More Accurate Sizing Tool: PV-Watts http://www.nrel.gov/rredc/pvwatts/version1.html

PV-Watts performs an hour-by-hour calculation using TMY weather data, with corrections for things such as the PV module temperature's impact on PV efficiency and inverter efficiency as a function of power generation.

Simulate Previous Example with PV-Watts Using 3 KW Array (61% of energy needs)

Simulate Previous Example with PV-Watts using 4.9 KW Array (100% of energy needs)

Station Identification							
City:	Las_Vegas						
State:	Nevada						
Latitude:	36.08° N						
Longitude:	115.17° W						
Elevation:	664 m						
PV System Specifications							
DC Rating:	4.9 kW						
DC to AC Derate Factor:	0.770						
AC Rating:	3.8 kW						
Array Type:	Fixed Tilt						
Array Tilt:	21.0°						
Array Azimuth:	180.0°						
Energy Specifications							
Cost of Electricity: 12.5 ¢/kWh							

	Results									
Month	Solar Radiation (kWh/m²/day)	AC Energy (kWh)	Energy Value (\$)							
1	4.47	501	62.62							
2	5.40	536	67.00							
3	6.30	690	86.25							
4	7.45	774	96.75							
5	7.95	822	102.75							
6	8.08	781	97.62							
7	7.98	7.98 784								
8	7.56	746	93.25							
9	7.14	691	86.38							
10	6.01	634	79.25							
11	4.99	531	66.38							
12	4.27	479	59.88							
Year	6.47	7970	996.25							

You can Write Your Own Calculator in Excel

- Obtain the actual hourly global solar radiation data S_{sun} and ambient temperature T_c: <u>http://www.nrel.gov/midc/unlv</u>
- Compute the following each clock hour (CT) for each day n of the year:
- The declination angle δ :
- The equation of time E:
- The solar time ST:
- The hour angle ω:
- The sun altitude angle α and azimuth angle ψ :
- Solar radiation received by the array (specify orientation): S_{pv}
- Approximate temperature of the PV cells:
- PV system de-rating in terms of rated power, temperature coefficient, inverter and other losses.

$$P_{PV} = P_{rated} \frac{G_{PV}}{850} K_{conv} [1 - K_T (T_c - 25^o)]$$

Array Installation

- Maximum annual energy production is achieved when the array faces south with a tilt angle equal latitude angle.
- Little energy is lost if the array is within ± 20° of south and tilt angle is within ± 15° of latitude.
- **Homework:** Use PVWatts to plot the annual energy produced by a 2.5 kW PV array in Las Vegas, NV for the following orientations and tilt angles:
 - (south-20°, Latitude 20°), (south-20°, Latitude 10°), (south-20°, Latitude), (south-20°, Latitude +10°), (south-20°, Latitude + 20°).
 - (south-10°, Latitude 20°), (south-10°, Latitude 10°), (south-10°, Latitude), (south-10°, Latitude +10°), (south-10°, Latitude + 20°).
 - (south, Latitude 20°), (south, Latitude 10°), (south, Latitude), (south, Latitude +10°), (south, Latitude + 20°).
 - (south+20°, Latitude 20°), (south+20°, Latitude 10°), (south+20°, Latitude), (south+20°, Latitude +20°), (south+20°, Latitude + 20°).

Example of Design of System based on Specific Energy Needs

- Energy needed in Oklahoma City: 3,996 kWh/year
- According to PVWatts, a 2.842 kW array (with 22.6° tilt facing south) is needed.
- Module selection: Modules 1-4: 190 W, 175 W, 200W, 230W

Module #	V _{oc} (V)	I _{sc} (A)	$V_m(V)$	$I_m(A)$	∆V _{oc} /∆T (%/°C)	∆V _m /∆7 %/°C	NOCT (°C)
1	32.8	8.05	26.7	7.12	-0.35	-0.49	47
2	44.4	5.30	35.8	4.89	-0.33	-0.47	46
3	68.7	3.83	55.8	3.59	-0.25	-0.29	47
4	48.7	5.99	41.0	5.61	-0.27	-0.38	46

Table 4.9 Electrical Characteristics of Four Different PV Modules

Assume ambient temperature range between -20°C and +38°C

Table 4.10 Tabulation of V_{oc}(max) and V_m(min) for the Modules of Table 4.9

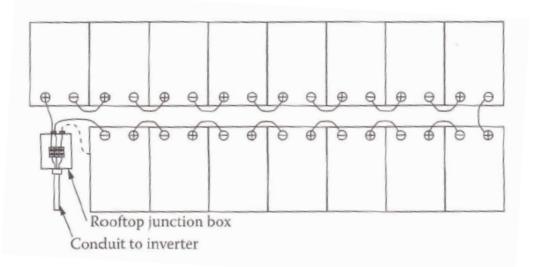
Module #	Max V _{oc}	Min V _m		
1	38.0	20.6		
2	51.0	28.1		
3	76.4	48.2		
4	54.6	33.8		

Inverter Selection:

- Inverter must have a UL 1741 listing
- Input and output performance characteristics of two compatible inverters:
 - Rated AC Power, and output voltage
 - Peak efficiency
 - Maximum Array Power and DC voltage
 - Maximum power tracking voltage range

Inverter #	Rated ac Power (W)	Max Array Power (W)	Max dc V _{in} (V)	V _{in} MPPT Range (V)	/ _{in} Max (A)	V _{ac} Out (V)	/ _{ac} Out Max				
1	2800	3100	600	$195 < V_m < 550$	15.4	040					
2	3000	3750				240	11.7				
_	0000	3750	500	$200 < V_m < 400$	17	240	13				

Table 4.8 Input and Output Performance Characteristics of Two Different Inverters


Which Combination to Use?

- Determine minimum (maximum) number of module to be connected in series by dividing the minimum MPPT voltage (maximum array DC voltage) by the minimum voltage at maximum power (maximum module open circuit voltage).
- Determine the number of modules that most closely match the required array power: module 1: 15, module 2: 17, module 3: 15, module 4: 13. ... best selection: module 1 and inverter 1

Inverter	Allowed # of Module #1	Allowed # of Module #2	Allowed # of Module #3	Allowed # of Module #4
Inverter #1 with:				
One source circuit	10, 11, 12, 13, 14, or 15	7, 8, 9, 10, or 11	5, 6, or 7	6, 7, 8, 9, or 10
Two source circuits	20, 22, 24, 26, 28, or 30	14, 16, 18, 20, or 22	10, 12, or 14	12, 14, 16, 18, or 20
Inverter #2 with:				
One source circuit	10, 11, 12, or 13	8 or 9	5 or 6	6, 7, 8, or 9
Two source circuits	20, 22, 24, or 26	16 or 18	10 or 12	12, 14, 16, or 18

Table 4.11 Summary of Allowed Numbers of Modules That Fall within Inverter Input Voltage Limits

Rooftop Arrangement & Balance of System

- The modules come with 36" long leads (#10 USE-2): total wire length: 90'.
- Assume 75' from rooftop junction box to inverter:
- Wire size must satisfy ampacity and voltage drop:
 - Minimum ampacity: 156% of short circuit current (8.05 A) per NEC 690.8(A).
 - Conductor de-rating when operating at higher temperatures.

Temperature correction factors

- Assume conduit height is 3.5" above rooftop, the 22°C are added to the maximum ambient temperature: 38°+22° = 60°C
- Hence a de-rating factor of 71% applies.

Table 4.12	Summary of Ambient Temperature Correction Factors for Wire with 90°C Insulation								
Temp (°C)	21–25	26–30	31–35	36–40	41–45				
Correction	1.04	1.00	0.96	0.91	0.87				
Temp (°C)	46–50	51–55	56–60	61–65	66–70				
Correction	0.82	0.76	0.71	0.58	0.41				

Source: Based on data from NFPA 70 National Electrical Code, 2008 ed., National Fire Protection Association, Quincy, MA, 2007.

Table 4.13	Ambient Temperature Correction Factors
	for Conduit Run across Rooftops

Height of Conduit above roof (in.)	0-0.5	0.5–3.5	3.5-12	>12
Add to ambient (°C)	33	22	17	14

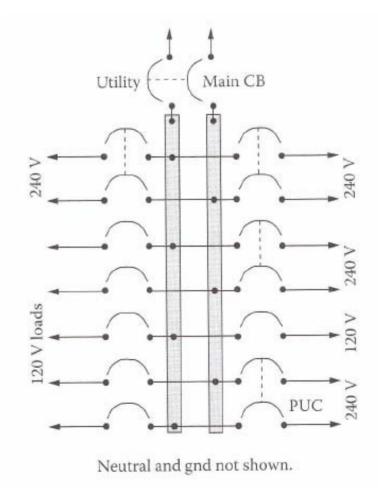
Source: Based on data from NFPA 70 National Electrical Code, 2008 ed., National Fire Protection Association, Quincy, MA, 2007.

Conductor Size

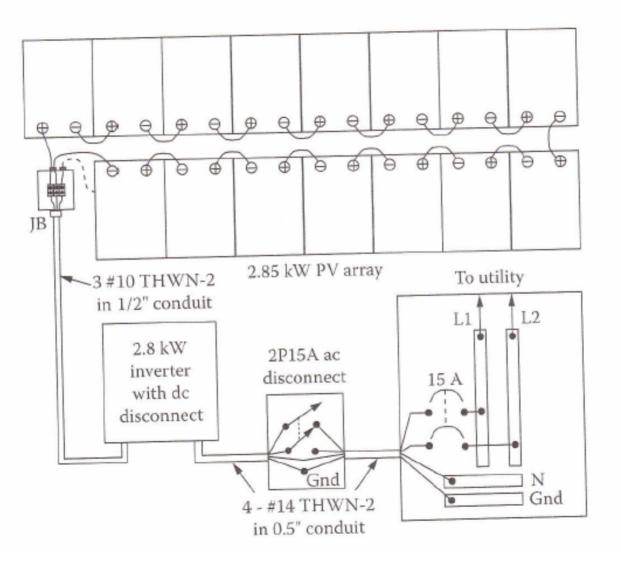
- In this example, it is assumed the conduit leaving the junction box goes directly into the attic, hence the derating is 91%.
 Furthermore, no derating of conduit fill since the number of current carrying conductors is 2.
- Note that a #10 wire is more than adequate.
- Voltage drop: %VD = 0.517% (using Im = 7.12 A, Vm = 400.5 V, resistively = 1.21 Ω/kft, d = 45+75)

 Output Circ	cona	uctor	512	e tor	PV	Sou	rce	JITCU	ns and	1/01
					1.00	-				_

I _{sc}	1.25/ _{sc}	1.56/ _{sc}		30°C Ampacity					Derated Ampacity
8.05	10.06	12.58	10	40	38	0.91	2	1.0	36.40

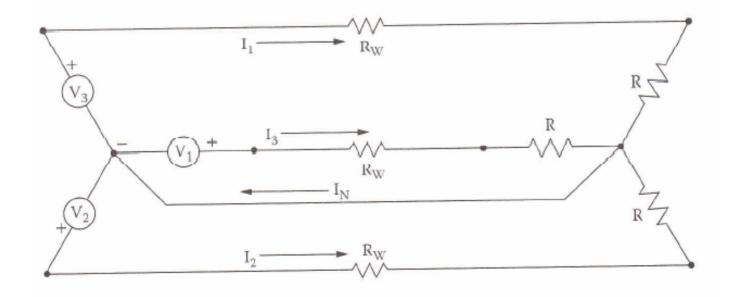

Table 4.14 Derating Factors Based on Conduit Fill

Number of current- carrying conductors	0–3	4-6	7–9	10-20	21–30
Derating factor	1.0	0.8	0.7	0.50	0.45


Source: Based on data from NFPA 70 National Electrical Code, 2008 ed., National Fire Protection Association, Quincy, MA, 2007.

AC and DC Disconnect and Utility Interconnection

- Grid-tied Inverters usually come with DC Disconnects.
- Inverter 1 is rated at 11.7 A@ 240
 V on the AC side. The AC
 disconnect must be rated at not
 less than125% of the rated output
 current (i.e., 14.6 A). Hence a 15
 A disconnect switch is
 satisfactory.
- Further, # 14 wire rated at 20 A, may be used to connect the inverter to the utility panel through the disconnect switch.


Final Electrical Schematic Diagram

Voltage Drop in 3-Phase Circuit

• When ignoring the cable reactance, the voltage drop can be approximated by

%VD = 100IR/V_{phase} = 100
$$\sqrt{3}$$
IR/V_{line}
where V_{line} = $\sqrt{3}$ V_{phase} and R = (Ω /kft)d/1000

