

ANALYSIS OF GATE 2021

Memory Based

Electrical Engineering

EE ANALYSIS-2021_Feb-7_Morning

SUBJECT	No. of Ques.	Topics Asked in Paper (Memory Based)	Level of Ques.	Total Marks
Engineering Mathematics	1 Marks: 4 2 Marks: 4	Complex variable, probability, Eigen Values,	Easy to moderate	12
Digital Circuits	1 Marks: 1 2 Marks: 1	Sequential circuit, Counter, grey code	Medium	3
Control System	1 Marks: 1 2 Marks: 2	Bode plot, ESE, space analysis, damping frequency,	Medium	5
Signal and System	1 Marks: 2 2 Marks: 3	Fourier transform, Z- transform, types of system,	Medium	9
Network Theory	1 Marks: 3 2 Marks: 4	Transient, Thevenin's theorem, maximum power transfer theory,	Easy	11
Analog Electronics	1 Marks: 4 2 Marks: 3	BJT, Zener diode,		10
Power Electronics	1 Marks: 0 2 Marks: 3	Buck booster converter	Medium	6
Electro-Magnetic Theory	1 Marks: 2 2 Marks: 2	Magnetic flux density,	Easy	6
Electrical Machines	1 Marks: 2 2 Marks: 3	Signal phase transformer, induction motor, DC-generator	Medium	8
Power Systems	1 Marks: 3 2 Marks: 4	Load flow analysis	Difficult	11
Measurement	1 Marks: 2 2 Marks: 1	Bridges	Easy	4
General Aptitude	1 Marks: 5 2 Marks: 5	Geometry, Arrangement, spatial reasoning, remainder theorem	Easy	15
Total	65			100
Faculty Feedback	MCQ-24, 31 Exam Moder	NAT Questions, No MSQ Questions. Overall e	Difficulty	vel of

GATE 2021 Examination* (Memory Based)

Electrical Engineering

Test Date: 7th Feb 2021
Test Time: 09:30 am to 12:30 pm
Stream Name: Electrical Engineering

General Aptitude

Q. 1 - Q. 5 Carry One Mark each.

1. Rectangular polygon having 10 sides \Rightarrow Interior Angle between sides of polygon in degree is
(A) 216
(B) 396
(C) 144
(D) 324
[Ans. *]
2. 7 Cars P, Q, R, S, T, U and V are parked in row not necessarily in that order. The cars T and U should be parked next to each other. The cars S and V also should be parked next to each other. Whereas P and Q can't be parked next to each other. Q and S must be parked next to each other. R is parked to the immediate right of V. T is parked to the left of U. Choose incorrect option.
(A) There are 2 cars parked in between Q and V
(B) V is the only car parked in between S and R
(C) P is parked at extreme end
(D) Q and R are not parked together.
[Ans. *]
3. The people \qquad were at demonstration were from all sections of society.
(A) whom
(B) who
(C) which
(D) whose
[Ans. *]
4. Oasis is to sand as island is to \qquad .
Identify similar logical relation
(A) Mountain
(B) Stone
(C) Land
(D) Water
[Ans. *]
5. Students who pass the exam can't appear for the exam again. Students who fail the exam in 1 st attempt must appear for the exam in the following year. Students always pass the exam in their $2^{\text {nd }}$ attempt. Number of students who took the exam for the first time in year 2 and year 3 respectively are

Year	Pass	Fail
Year 1	50	10
Year 2	60	5
Year 3	50	3

(A) 65 and 53
(B) 60 and 50
(C) 55 and 48
(D) 59 and 53
[Ans. *]
Q. 6 - Q. 10 Carry Two Mark each.
6. Which of the following numbers is exactly divisible by $\left(11^{13}+1\right)$?
(A) $11^{33}+1$
(B) $11^{52}+1$
(C) $11^{26}+1$
(D) $11^{29}+1$
[Ans. *]
7. The triangle square sheet shown is folded along the dotted line. The folded sheet will look like

[Ans. *]
8. Area of smallest square (shaded) is

(A) 1.5625
(B) 6.25
(C) 12.50
(D) 3.125
[Ans. *]
9. X is a continuous random variable denoting the temperature measured. Range of Temperature is $[0,100]$ degree Celsius and Let the probability density function of X be $\mathrm{F}(\mathrm{x})=0.01$ for $0 \leq$ $\mathrm{X} \leq 100$. Mean of X is \qquad _.
(A) 50
(B) 2.5
(C) 5
(D) 25
[Ans. *]
10. A

Technical

Q.1-Q. 25 Carry One Mark each.

1. Let p and q be real numbers such that $p^{2}+q^{2}=1$. The given value of the matrix $\left[\begin{array}{cc}p & q \\ q & -p\end{array}\right]$ are
(A) j and -j
(B) 1 and -1
(C) pq and -pq
(D) 1 and 1
[Ans. *]
2. $\mathrm{f}(\mathrm{x})$ real valued $\mathrm{f}^{\mathrm{n}}, \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0$ for some $\mathrm{x}_{0} \in(0,1), \mathrm{f}^{\prime \prime}(x)>0$ for all $\mathrm{x} \in(0,1)$, Then $\mathrm{f}(\mathrm{x})$ has
(A) exactly one local minima in $(0,1)$
(B) One local maxima (0,1)
(C) 2 distinct local minima in $(0,1)$
(D) No local minimum in $(0,1)$
[Ans. *]
3. Suppose circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+(y-1)^{2}=r^{2}$ intersect each other orthogonally at the point (u, v). Then $u+v=$ \qquad .
[Ans. *]
4. Let $P(Z)=z^{3}+(1+j) Z^{2}+(2+j) Z+3$ where Z is a complex number. Which of the following is true?
(A) All the roots can't be real
(B) Sum of roots of $\mathrm{P}(Z)=0$ is real number
(C) The complex root of the equation $\mathrm{P}(\mathrm{Z})=0$ come in conjugate pairs
(D) Conjugate $\{\mathrm{P}(\mathrm{Z})\}=\mathrm{P}$ (Conjugate $\{\mathrm{Z}\}$ for all Z
[Ans. *]
5. One sub-matrix of the Jacobian matrix J as shown below.
$\left[\begin{array}{c}\Delta \mathrm{P} \\ \Delta \mathrm{Q}\end{array}\right]=\mathrm{J}\left[\begin{array}{l}\Delta \delta \\ \Delta \gamma\end{array}\right]$, where $\mathrm{J}=\left[\begin{array}{cc}\mathrm{N} & \mathrm{S} \\ \mathrm{M} & \mathrm{R}\end{array}\right]$
The dimension of the sub matrix M is
(A) $\mathrm{N}_{\mathrm{L}} \times \mathrm{N}-1$
(B) $\mathrm{N}_{\mathrm{L}} \times\left(\mathrm{N}-1+\mathrm{N}_{\mathrm{L}}\right)$
(C) $(\mathrm{N}-1) \times\left(\mathrm{N}-1+\mathrm{N}_{\mathrm{L}}\right)$
(D) $(\mathrm{N}-1) \times\left(\mathrm{N}-1-\mathrm{N}_{2}\right)$
[Ans. *]
6. A CMOS Schmitt trigger inverter has a low output level of 5 V . It has ijp threshold of 1.6 V and 2.4 V. The frequency of the oscillator is \qquad Hz. [Neglect input C \&

7. A 16-bit syn-binary up counter is clocked with true. The 2 most SB are OR-ed together to form an $o / p \gamma . \mathrm{M} / \mathrm{m}$ shows that γ is periodic and duration for which γ remains high in each period is 24 m sec . The force is \qquad Hz.
[Ans. *]
8. In a $1-\phi$ transformer $P_{i}=2500$ watts at nominal voltage of 440 volts and frequency at 50 Hz the iron -Loss is 850 walts at 220 volts and 25 Hz . Then at nominal voltage and frequency , the $P_{h} P_{e}$ loss respectively are :-
(A) 600 walts ,250walts
(B) 250 walts; 600 walts
(C) 900 walts; 1600 walts
(D) 1600 wlats;900 walts
[Ans. *]
9. moved from $(0,10,0)$ to $(5,5,5)$ to $(5,0,0)$.

Calculate the total work done in moving the charge.
10. A 1μ point charge of origin. If a $2^{\text {nd }}$ point charge of $10 \mu \mathrm{C}$ is moved from $(0,10,0)$ to $(5,5,5)$ and subsequently to $(5,0,0)$ the total work done is \qquad mJ
11. One columns of point charge moving with a uniform velocity $10 \hat{x} \mathrm{~m} / \mathrm{s}$ enters the region $\mathrm{x} \geq 0$ having $\vec{B}=(10 y \hat{x}+10 x \hat{y}+10 \hat{z})$ T. The magnitude of force on the charge at $x=0+$ is
\qquad N .
11. $h_{1}(n)=S(n-1)+S(n+1), h_{2}(n)=\delta(n)+\delta(n-1)$ connected in cascade. The impulse response of the cascade system
(A) $S(n-2)+S(n-1)+S(n)+S(n+1)$
(B) $S(n-1) S(n)+S(n+1) S(n-1)$
(C) $\delta(N) \delta(n-01)+\delta(n-2) \delta(n+1)$
(D)
[Ans. *]
12. A
13. A
14. A
15. A
16. A
17. A
18. A
19. A
20. A

Refer \& Win

Get Exciting Benefits

Share your key to Success
Refer upto 5 buddies

Refer Now

Q. 26 - Q. 55 Carry Two Mark each.
26. Let $(-1-\mathrm{j}),(3-\mathrm{j}),(3+\mathrm{j})$ and $(-1+\mathrm{j})$ be the vertices of rectangle C in complex plane then
$\oint_{C} \frac{d z}{z^{2}(z-4)}$ is
(A) 0
(B) $\mathrm{j} \frac{\pi}{2}$
(C) $-\mathrm{j} \frac{\pi}{8}$
(D) $-\mathrm{j} \frac{\pi}{10}$
[Ans. ${ }^{*}$]
27. Let A be 10×10, such that A^{5} is a null matrix and Let I be 10×10. Then $|A+I|$ is \qquad .
[Ans. ${ }^{*}$]
28. In open interval $(0,1)$, the $p(x)=x^{4}+4 x^{3}+2$ has
(A) 2 real roots
(B) 1 real roots
(C) No real roots
(D) 3 real roots
[Ans. ${ }^{*}$]
29.
$\mathrm{G}_{\mathrm{p}}(\mathrm{s})=\frac{2.2}{(1+0.15)(1+0.45)(1+1.25)}$
$G_{c}(s)=\frac{K\left(1+T_{1} s\right)}{\left(1+T_{2} s\right)}$. It is desired the where $D(s)$ is unit step, less $\leq 0.1 K_{\min }$ \qquad .

30. $\cdot 8.2 \mathrm{e}^{-10 \mathrm{t}} \cdot 10 \cdot 8 \mathrm{e}^{-10 \mathrm{t}} \cdot 10\left(1-\mathrm{e}^{-2 \mathrm{t}}\right)$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=$?

34. in fig $\mathrm{X}_{\mathrm{S}}=1.5 \mathrm{jPu}$. each line be $\mathrm{Z}_{\mathrm{m}}=10$. SPU. Given $\delta>6, \mathrm{Max}^{\mathrm{m}}$ steady state real power that can be transfers from bus-1 to bus-2

35. Let $\mathrm{f}(\mathrm{t})$ be an even function. Let the Fourier transform $\mathrm{f}(\mathrm{t})$ be defined as
$F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$. Suppose $\frac{d F(\omega)}{d \omega}=-\omega F($ omega $)$ for allow and $F(0)=10$ then
(A) $f(0)>$
(B) $\mathrm{f}(0)<1$
(C) $\mathrm{F}(0)=0$
(D) $\mathrm{f}(0)=1$
[Ans. *]
36. Cascade System $\mathrm{Z}^{2}(z-a)^{-2}$ is
(A) $n^{2} a^{n} x(n)$
(B) $\mathrm{z}^{2 \mathrm{n}} \mathrm{x}(\mathrm{n})$
(C) $\mathrm{n}^{-1} \mathrm{a}^{\mathrm{n}} \mathrm{x}(\mathrm{n})$
(D) $(\mathrm{n}+1) \mathrm{a}^{\mathrm{n}} \mathrm{u}(\mathrm{x})$

Coming Soon

GATE Score Booster

Visit Now

THE GATE ACADEMY PRESENTS
Be a Member

Stand a chance to WIN exciting prizes \& Post GATE Guidance

