
13.1

Unit 13

Sequential Logic Constructs

13.2

Learning Outcomes

• I understand the difference between level-
sensitive and edge-sensitive

• I understand how to create an edge-triggered
FF from 2 latches

13.3

LATCHES AND FLIP-FLOPS

How sequential building blocks work

13.4

Sequential Logic

• Suppose we want to build a 4-bit counter which produces a
4-bit output Q whose value increases by 1 every time period

• Possible solution: Route the outputs back to the inputs so we
can add 1 to the current counter value (i.e. Q+1)

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

4-bit

Adder

Q0

Q1

Q2

Q3

13.5

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

1

0

0

0

Q0

Q1

Q2

Q3

4-bit

Adder

Sequential Logic

• Suppose we want to build a 4-bit counter which produces a 4-
bit output Z whose value increases by 1 every time period

• Possible solution: Route the outputs back to the inputs so we
can add 1 to the current counter value (i.e. Q+1)

• Problem 1: No way to
initialize sum

• Problem 2: Outputs can
race around to inputs with
different delays leading
to arbitrary output values

Possible Solution

1

1

0

0

(slowest)

(fastest)

13.6

Sequential Logic

• Add logic at outputs to help initialize the output AND to
synchronize and hold the output until we are ready to update
to the next value

This logic should remember (i.e.

sequential logic) the sum and only

update it when all the sum bits have

stabilized

1

1

0

0

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

1

0

0

0

Q0

Q1

Q2

Q3

4-bit

Adder

13.7

Sequence Adder

• Q should only update once per clock cycle (time unit)

• That is why we will use a register (flip-flops) to ensure
the outputs can only update once per cycle

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

4-bit

Adder

1

0

0

0

D

CLR

Q

D Q

D Q

D Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

CLR

CLR

CLR

Reset

13.8

Sequence Adder

time

• The Reset (aka Clear) input on the register will cause Q to be
initialized to 0, but then Q can’t change until the next positive edge

• That means we will just keep adding 0 + 1 = 1

1 0

0

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

4-bit

Adder

1

0

0

0

D

CLR

Q

D Q

D Q

D Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

CLR

CLR

CLR

Reset

During this time the adder outputs are

still being computed and the outputs

may be arbitrary.

0

D

Q

Clock

Reset

1

13.9

Sequence Adder

time

• At the edge the flip-flops will sample the D inputs and then
remember 1 until the next positive edge

• The adder will then add 1+1=2

2 1

1

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

4-bit

Adder

1

0

0

0

D

CLR

Q

D Q

D Q

D Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

CLR

CLR

CLR

Reset

0

1D

Q

Clock

1

Reset

2

During this time the adder outputs are

still being computed and the outputs

may be arbitrary.

13.10

0

1D

Q

Clock

1

2

2

3

3

Reset

Sequence Adder

time

• The register will capture the adder output on each
clock edge

3 2

2

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

4-bit

Adder

1

0

0

0

D

CLR

Q

D Q

D Q

D Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

CLR

CLR

CLR

Reset

13.11

Sequential Logic

• But how do flip-flops work?

• Our first goal will be to design a circuit that
can remember one bit of information

• Easiest approach…

• But how do you change the input?

– A signal should only have one driver

13.12

D-Latches

• The primary building block of sequential logic is a
D-Latch

• D-Latches (Data latches) store/remember/hold
data when the clock is low (CLK=0) and pass data
when the clock is high (CLK=1)

D-Latch

Q
D

CLK

Closed when

CLK=1

Closed when

CLK=0

Q

These "switches" which can be

closed or open are really

transistors that can be on or off

13.13

Transparent & Hold Mode of D-Latches

• The D-Latch operates in either
transparent or hold mode based
on the clock value

Q
D

CLK

When Clock = 1

Q

Q
D

CLK

When Clock = 0

Q

Transparent Mode

(Q=D when CLK=1)
Hold Mode

(Q=Q0 when CLK=0)

C D Q Q’

0 x Q0 Q0’

1 0 0 1

1 1 1 0

Function Table

Description of D-Latch

✓

✓

13.14

D-Latches

C D Q Q’

0 x Q0 Q0’

1 0 0 1

1 1 1 0

Hold Mode

Hold Mode

Transparent

Mode

D

C

Q

Q’

D Latch

CLK

D

Q

D-LATCH

7475 As clock is LOW, don’t

look at the D input

Complete

waveform for Q

Triggering Rule: The Q output follow the D input

(i.e. Q=D) when the clock or gate input is high (i.e.

the latch is enabled). When the latch is disabled

(Clock = LOW) the output remains put.

0 1 2 3 6 7

13.15

D-Latches

C D Q Q’

0 x Q0 Q0’

1 0 0 1

1 1 1 0

When C=1,

outputs

change based

on inputs

When C=0, outputs don’t change no

matter what the inputs do

Hold Mode

Hold Mode

Transparent

Mode

CLK

D

Q

D

C

Q

Q’

D Latch

13.16

Adding a Sequence of Numbers

• What if we put D-Latches at the outputs

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

Adder

1

0

0

0

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

13.17

0 ? ? ?

1 ? ? ?D

Q

?

?

Clock

?

Adding a Sequence of Numbers

• Since the clock starts off low, the outputs of the
latches can’t change and just hold at 0

– So far, so good. There is no uncontrolled feedback loop

When C=0 => Q* = Q

When C=1 => Q* = D

1 0

time

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

Adder

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

1

0

0

0

13.18

0 ? ? ?

1 ? ? ?D

Q

?

?

Clock

?

Adding a Sequence of Numbers

• When the clock goes high the D input is allowed to
pass to Q which then loops back with the same
arbitrary timing discussed earlier

When C=0 => Q* = Q

When C=1 => Q* = D

? 1

time

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

Adder

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

1

0

0

0

13.19

Adding a Sequence of Numbers

• When the clock goes low again, the outputs will stop
changing but the value we are storing may be arbitrary

When C=0 => Q* = Q

When C=1 => Q* = D

?

time

?

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

Adder

X0

X1

X2

X3

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

0 ? ? ?

1 ? ? ?D

Q

?

?

Clock

?

13.20

Adding a Sequence of Numbers

• Latches clearly don’t work

• The goal should be to get one change of the outputs per
clock period

When C=0 => Q* = Q

When C=1 => Q* = D

?

time

?

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

Adder

X0

X1

X2

X3

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

D0

D1

D2

D3

Q0

Q1

Q2

Q3

0 ? ? ?

1 ? ? ?D

Q

?

?

Clock

?

13.21

BUILDING A FLIP FLOP

13.22

Building an Edge-Triggered Device

• We generally build FFs from
latches

• To build a device that can only
change at 1 instant (clock edge)
we can:
– Try to only enable 1 latch for a

small instant in time

– Use two latches running on
opposite clock phases

Door opening and

closing almost

instantly

Input

Queue

Two door system

(when 1 is open the

other is closed)

13.23

Leader-Follower D-FF

• To build an edge-triggered D-FF we can use two
D-Latches

– The configuration below forms a negative-edge triggered FF

These 2 latches form a flip-flop

D

C

Q

Clock

Q

Q

D

C

Q

Q Q

D
Leader Follower

13.24

Complete the Waveform
D

C

Q

Clock

Q

Q

D

C

Q

Q Q

D
Leader Follower

CLK

D

QLeader

QFollower

1 3 5 7

13.25

Leader-Follower D-FF

• To implement a positive edge-triggered D-FF
change the clock inversion

Negative-Edge Triggered Positive-Edge Triggered

D

C

Q

Clock

Q

Q

D

C

Q

Q Q

D
Leader Follower

D

C

Q

Clock

Q

Q

D

C

Q

Q Q

D
Leader Follower

13.26

FLIP-FLOPS

13.27

Flip-Flops vs. Latches

Flip-Flops

• Synchronous

• Clock Input

• Edge Sensitive

– Outputs change
only on the
positive
(negative) edges

Latches

• Asynchronous

• Clock/Enable input

• Level Sensitive

– Action of the device is dependent
on the level of the clock

– Outputs can change anytime
Clock = 1

D Q

QCLK

D-Latch

D Q

QCLK

D-FF

13.28

Flip-Flops

• Change D Latches to D Flip-Flops

Triangle at clock

input indicates edge-

sensitive FF

D

C

Q

Q

D-Latch

D Q

QCLK

D-FF

13.29

Flip-Flops

• To indicate negative-edge triggered use a bubble in
front of the clock input

Bubble indicates

negative-edge

triggered

No bubble indicates

positive-edge

triggered

Positive-Edge Triggered

D-FF

Negative-Edge Triggered

D-FF

D Q

QCLK

D-FF

D Q

QCLK

D-FF

13.30

Notation

• To show that Q remembers its value we can put
it in the past tense:

– Q = Q0 (Current Value of Q = Old Value of Q)

• OR put it in the future tense

– Q* = Q (Next Value of Q = Current Value of Q)

C D Q* Q’*

0 x Q Q’

1 0 0 1

1 1 1 0

C D Q Q’

0 x Q0 Q0’

1 0 0 1

1 1 1 0

Indicates “next-value”

of Q

Current Value = Old Value Next Value = Current Value

13.31

Positive-Edge Triggered D-FF

• Q looks at D only at
the positive-edge

CLK D Q* Q’*

0 x Q Q’

1 x Q Q’

↑ 0 0 1

↑ 1 1 0

Q only samples D at the positive edges and then

holds that value until the next edge

CLK

D

Q

13.32

Negative-Edge Triggered D-FF

• Q looks at D only at
the negative-edge

CLK D Q* Q’*

0 x Q Q’

1 x Q Q’

↓ 0 0 1

↓ 1 1 0

Q only samples D at the negative edges and then

holds that value until the next edge

CLK

D

Q

13.33

D FF Example

• Assume positive edge-triggered FF

CLK

D

Q

13.34

INITIALIZING OUTPUTS

13.35

Initializing Outputs

• Need to be able to initialize Q to a ________ value (0 or 1)
• FF inputs are often connected to logic that will produce values

after initialization
• Two ___________ are often included: (PRE)SET and CLEAR

Logic

When CLEAR = on

Q*=_____

When SET = on

Q*=____

When NEITHER are on

_______ FF operation

Note: CLR and SET have

________ over normal FF inputs

D Q
SET

CLR

CLK

13.36

Initializing Outputs

• To help us initialize our FF’s use a RESET signal
– Generally produced for us and given along with CLK

• It starts at Active (1) when power _________ and
then goes to Inactive (0) for the _____________

• When it’s active, use it to initialize the FF’s and then
it will go inactive for the rest of time and the FF’s will
work based on their inputs

Active (1) at time=0

Inactive (0) for the rest of time

RESET

13.37

Initializing Outputs

• Suppose we want our FF to initialize to 0 when the power turns on
– Connect ________ to the CLR input

– Connect ________ to the SET input

Logic

0

When RESET = 0,

CLR is inactive and

Q looks at D at each

clock edge

RESET

Q* = 0

1

D Q
SET

CLR

CLK

Logic

0

Q* = D

0

D Q
SET

CLR

CLK

When RESET = 1,

CLR is active and Q

is forced to 0

regardless of D

13.38

Implementing an Initial State

• When RESET is activated: Q’s initialize to 0

• When RESET is deactivated: Q’s look at the D inputs

Forces Q’s to 0 because it’s

connected to the CLR inputs

Once RESET goes to 0, the FF’s

look at the D inputs

RESET

Q0

Q1

...

...

13.39

Synchronous vs. Asynchronous

• The new preset and clear inputs can be built to be synchronous
or asynchronous

• These terms refer to when the initialization takes place
– Asynchronous…initialize as soon as signal is activated

– Synchronous…initialize at clock edge

AsynchronousSynchronous

Clock

Q s

Clock

CLR

Q s

Synchronous SET or CLR

means the signal must be

active at a clock edge before

Q will initialize

CLR

Asynchronous SET or CLR

means Q will initialize as soon

as the SET or CLR signal is

activated

13.40

Implementing SET and CLEAR

• Synchronous set and clear can be implemented
through adding additional gates in front of the input

• Asynchronous set and clear are a bit more
complicated due to their asynchronous nature and
are not covered in this class

D Q
SET

CLR

CLK

D Q

CLKCLK

D

CLR

SET

Q

Implementation of SYNCHRONOUS SET and CLEAR

13.41

Set / Clear Example

• Complete the waveform for a D-FF with
asynchronous SET and CLR

1 3 5 7

D

CLK

Q

CLR

SET

13.42

REGISTERS AND
REGISTERS WITH ENABLES

Groups of flip-flops

13.43

Registers

• Registers are simply collections of flip-
flops (n-bit register = n flip flops) that
have a common clock and reset signal

• Registers in HW are analogous to
variables in SW (used to store a value)

• Can use an asynchronous or
synchronous "reset" to force the flip-
flops to 0's
– Which is shown in the table below? Synch.

CLK RST Di Qi*

1,0 X X Qi

↑ 1 X 0

↑ 0 0 0

↑ 0 1 1 4-bit Register

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

13.44

Register Operation (and a Problem)

• The value on the D input is sampled at the clock edge
and passed to the Q output and holds until the next
clock edge

• Feature/Problem: Register saves data on EVERY edge

– Often we want the ability to save on one edge and then
keep that value for many more cycles

4-bit Register – On clock edge, D is passed to Q

CLK

RST

D[3:0]

Q[3:0] 0000

0011 0100 0101 0110 0111 1000 1001 10100010

0011 0100 0101 0110 0111 1000 1001?

13.45

Solution

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this

CLK RST EN Di Qi*

0,1 X X X Qi

↑ 1 X X 0

↑ 0 0 X Qi

↑ 0 1 0 0

↑ 0 1 1 1

FF with Data Enable

(Always clocks, but selectively

chooses old value, Q, or new

value D)

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

13.46

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

Registers w/ Enables

• When EN=0, Q value is
passed back to the input
and thus Q will maintain its
value at the next clock edge

• When EN=1, D value is
passed to the input and
thus Q can change at the
edge based on D

When EN=0, Q is

recycled back to the input

1

When EN=1, D input is

passed to FF input

D
D

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

0

Q
Q

13.47

4-bit Register w/ Data (Load) Enable

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this

CLK RST EN Di Qi*

0,1 X X X Qi

↑ 1 X X 0

↑ 0 0 X Qi

↑ 0 1 0 0

↑ 0 1 1 1

4-bit register with 4-bit

wide 2-to-1 mux in front

of the D inputs

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
0

1

Y

S

0

1

Y

S

0

1

Y

S

0

1

Y

S

EN

13.48

Registers w/ Enables

• The D value is sampled at the clock edge only
if the enable is active

• Otherwise the current Q value is maintained

CLK

RST

EN

D[3:0]

Q[3:0] 0000 0101 0111 1000

0011 0100 0101 0110 0111 1000 1001 10100010

13.49

COUNTERS

13.50

Counters
• Count (Add 1 to Q) at each

clock edge

– Up Counter: Q* = Q + 1

– Can also build a down counter as
well (Q* = Q – 1)

• Standard counter components
include other features

– Resets: Reset count to 0

– Count Enables (CE): Will not
count at edge if CE=0

– Data Load Inputs: Can initialize
count to a value D (i.e. Q* = D
rather than Q+1)

R
e

g
is

te
r

1

A
d
d

e
r

(+
)

Q

RESET

CLK

13.51

Sample 4-bit Counter

• 4-bit Up Counter
– RST: synchronous

reset input

– LD and Di inputs: loads
Q with D when LD is
active

– CE: Count Enable
• Must be active for the

counter to count up
CLK RST LD CE Q*

0,1 X X X Q

↑ 1 X X 0

↑ 0 1 X D[3:0]

↑ 0 0 1 Q+1

↑ 0 0 0 Q

CLK

D0

D1

D2

D3

Q0

Q1

Q2

Q3

LD

RST

4-bit

CNTR

CE

13.52

Counter Design

• Sketch the design of the 4-bit counter
presented on the previous slides

CLK

D[3:0] Q[3:0]

Reg

CLR

D[3:0]

LD

RST

CE

CLK

Q[3:0]

+

0

1 0

1

0001

Muxes

13.53

Counters

RST=active

at clock

edge, thus

Q=0

Q*=Q+1 CE=0,

thus Q

holds

LD =

active,

thus

Q=P

Q*=Q+1 Q*=Q+1 Q*=Q+1 Q*=Q+1

0000

CLK

RST

CE

LD

D3-D0

Q3-Q0 0001 0010 0011 1110 1111

1110

1 0000

13.54

Counter Exercise

CLK

RST

LD

CE

D[3:0]

Q[3:0]

0011 1101 1001

0000 0001 1101 1110 1111 1 0000

13.55

Shift Register

• A shift register is a device that acts as a
‘queue’ or ‘FIFO’ (First-in, First-Out).

• It can store n bits and each bit moves one step
forward each clock cycle

– One bit comes in the overall input per clock

– One bit ‘falls out’ the output per clock

0 1 1 0 1 0 1 1

1 0 1 1 0 1 0 1

Data In

= 1

Last

Data

Data during

clock i

Data during

clock i+1

S0S1S2S3S4S5S6S7

13.56

Sample Shift Register
• Shift registers come in

many flavors, we'll just look
at one example

• 4-bit Bi-directional Shift
Register
– RST: synchronous reset

– S[1:0]: Hold, Right Shift, Left
Shift, or Load

– DSL and DSR
• Data to shift in from left or right

CLK RST S1 S0 Q*[3:0] (case)

0,1 X X X Q[3:0]

↑ 1 X X 0000 Reset

↑ 0 0 0 Q[3:0] Hold

↑ 0 0 1 DSR,Q[3:1] Right

↑ 0 1 0 Q[2:0],DSL Left

↑ 0 1 1 D[0:3] Load

RST

CLK

D0D1D2D3

Q0Q1Q2Q3

DSR

S1

S0

4-bit Shift

Register

DSL

13.57

Shift Registers

CLK

RST

S[1:0]

D[3:0]

Q[3:0] 0000

1011 1111

00 11 01 00 01 10 10 0000

DSR

DSL

1011 0101 1010 0100 1001

LoadHold HoldRight LeftRight Left

13.58

Shift Register

• Can we build a shift register from latches?

CLK

D_IN

Q0

Q1

Q2

Q3

D Q D Q D QD_IN

Clock

C

D Q Q3

Shift Register w/ Latches

Q0 Q1 Q2

C C C

13.59

Shift Register
• Can we build a shift register from flip-flops?

CLK

D_IN

Q0

Q1

Q2

Q3

D Q D Q

CLK

D QD_IN

Clock

CLK CLK

D Q

CLK

Q3

Shift Register w/ FF’s

Q0 Q1 Q2

When we want to ensure an output updates only ONCE per clock, we need to

use flip-flops (not latches or bistables)!

13.60

Exercise 1

• Q outputs change on an edge while D0,
D1, and F can change anytime the inputs
change (since they are combinational)

• Process for solving:

– Step 0: Write Boolean eqns for D inputs

– Step 1: Hold Q values steady for full cycle

– Step 2: Use Q values to solve for D value

– Step 3: Use D value at the next edge to
determine next Q values

– Go back to step 1

D Q

Q

D Q

Q

Q0

Q1

D0

D1

X

CLK

F

SET

CLR

0

RESET

SET

CLR

0

RESET

Q0

Q1

• D0 = ______

• D1 = X + Q1•Q0

• F = Q1•Q0

CLK

X

RESET

D0

Q0

D1

Q1

F

13.61

Exercise 2

• Complete the waveform for the ouput of the 3
registers: X, Y, Z

D[3:0]

Q[3:0]

CLK

D[3:0]

Q[3:0]

CLK

+ D[3:0]

Q[3:0]

CLK

-
3

X

Y Z

 X 3

7Y

Clock

12 4

10 6

12Z 4 7

7

10

3

