EE141

EE141-Fall 2004
Digital Integrated
Circuits

Lecture 19
Pass-Transistor Logic
Dynamic Logic

Administrative Stuff

0 Homework #8 due the Spring break

0 Project phase 2 due on Monday
» Report template posted on the web
» Reports due after Spring break

0 Midterm 2 coming up
» Thursday, April 6, 6:30-8pm, 277 Cory
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Class Material

Q Last lecture
» Decoder design
» Pass-transistor logic
0 Today’s lecture
» Finish pass-transistor logic
= Dynamic logic
0 Reading
= Chapter 6

Practical SRAM Design
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Pass-Transistor
Logic

NMOS Only Logic:
Level Restoring Transistor

Level Restorerﬁ
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« Advantage: Full Swing
« Restorer adds capacitance, takes away pull down current at X

« Ratio problem
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Restorer Sizing
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Solution 2: Transmission Gate
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Pass-Transistor Based Multiplexer
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Transmission Gate XOR
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Delay in Transmission Gate Networks
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Delay Optimization
* Delay of RC chain
f =069 ; CR_k=06ocg M2tLl)
r ey eq 2
* Delay of Buffered Chain
= 0.69L%CReq’ﬂj7T2—ﬂlJ+ [’27 1]:buf
= 0.69[0}2%4’"2—”)} + [% - 1] ot

1
bt
o = 5 phuf
H
op CReg




EE141

Transmission Gate Full Adder

P
Y

Vo
Ci '
PI S Sum Generation
Gi
_ i Vbp
Y ) .
P C,Carry Generation
E_ .
-T- e
P

Similar delays for sum and carry

= Setup

Dynamic Logic
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Dynamic CMOS

Q In static circuits at every point in time (except
when switching) the output is connected to
either GND or Vg via a low resistance path.

= fan-in of n requires 2n (n N-type + n P-type)
devices

0 Dynamic circuits rely on the temporary
storage of signal values on the capacitance of
high impedance nodes.

= requires on n + 2 (n+1 N-type + 1 P-type)
transistors

Dynamic Gate

Clk —4@: Clk —45\/!:

T Out Out
| TcC
Ny — L
In,—| PDN | A L.
s~ B
Clk 4%\/&
1 clk —1[m,

Two phase operation =
Precharge (CLK = 0)
Evaluate (CLK=1)
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Dynamic Gate

off
Clk _C“:;,/l: Clk _‘“:;,";on
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In, —| C ((AB)+C)
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In,—{ PDN a - .
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Clk —||§/Ij p
L ck =M, op

Two phase operation =
Precharge (Clk = 0)
Evaluate (Clk =1)

Conditions on Qutput

0 Once the output of a dynamic gate is
discharged, it cannot be charged again until
the next precharge operation.

a Inputs to the gate can make at most one
transition during evaluation.

0 Output can be in the high impedance state
during and after evaluation (PDN off), state is
stored on C,
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Properties of Dynamic Gates

a Logic function is implemented by the PDN only

= number of transistors is N + 2 (versus 2N for static complementary
CMOS)

0 Full swing outputs (Vo = GND and Vg = Vpp)
0 Non-ratioed - sizing of the devices does not affect
the logic levels
Q Faster switching speeds
» reduced load capacitance due to lower input capacitance (C;,)

= reduced load capacitance due to smaller output loading (Cout)
* no I, so all the current provided by PDN goes into discharging C,

Properties of Dynamic Gates

a Overall power dissipation usually higher than static
CMOS
* no static current path ever exists between Vy, and GND

(including P.)
= no glitching
= higher transition probabilities
» extra load on Clk
0 PDN starts to work as soon as the input signals
exceed Vq,, so Vy, V,; and V, equal to V4,
= low noise margin (NM,)

0 Needs a precharge/evaluate clock

11
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Issues in Dynamic Design 1.
Charge Leakage

CLK
Clk -TJM
Out
A IO A W -
Vv Evaluate
Clk —4M - Out
Leakage sources

Dominant component is subthreshold current

Solution to Charge Leakage

Keeper
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Same approach as level restorer for pass-transistor logic
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Issues in Dynamic Design 2:
Charge Sharing

Charge stored originally on

Clk —{[m C, is redistributed (shared)
—/_ Out over C, and C, leading to
A—| TC. reduced robustness
B=0 [ Ic,
Ck —[m, Ic,

Charge Sharing Example
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ck —4 |M,

Charge Sharing

v
jDD— case 1) if AVqy < Vrn

out CiVpp = CLVoutM*+ CaVpp ~Vrn(Vx)
or

CL
A M L _ _ Ca
ﬁ - = AVout = Vout®-Vpp = _C_L(VDD_VTn(VX))

c
B=0 —{ My L ° case 2) if AVqy > V1

Ca
T Co AVout = _VDD[Ca T CJ

Precharge internal nodes using a clock-driven transistor
(at the cost of increased area and power)
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Issues in Dynamic Design 3:
Backgate Coupling
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Issues in Dynamic Design 4: Clock
Feedthrough

Coupling between Out and

Clk *lr{ci M Clk input of the precharge
Out device due to the gate to
A— TC. drain capacitance. So
B - voltage of Out can rise
above V. The fast rising
Clk —|[w (and falling edges) of the

clock couple to Out.

Clock Feedthrough

Clock feedthrough
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Clock feedthrough
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Other Effects

0 Capacitive coupling

0 Substrate coupling

0 Minority charge injection

a Supply noise (ground bounce)

Next Lecture

a Finish dynamic logic
» Domino logic

a Digital arithmetic
» Datapath design
= Adders
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