EE382V: System-on-a-Chip (SoC) Design

Lecture 21 – SoC Testing

Sources: Jacob A. Abraham

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 21: Outline

- SoC Manufacturing Test
 - The testing problem
 - SoC testing costs
 - Design for Test (DFT)
- SoC Testability Features
 - Boundary Scan
 - P1500 standard
- Built-In Self Test
 - Functional Test Access Mechanism (TAM)

EE382V: SoC Design, Lecture 21

© 2014 A. Gerstlauer

2

Partitioning for SoC Test

- · Partition according to test methodology:
 - · Logic blocks
 - · Memory blocks
 - · Analog blocks
- Provide test access:
 - · Boundary scan
 - · Analog test bus
- Provide test-wrappers for cores
- Design for Test (DFT)

EE382V: SoC Design, Lecture 21

© J. A. Abraham

4

Boundary Scan

- · Testing boards is also difficult
 - Need to verify solder joints are good
 - Drive a pin to 0, then to 1
 - Check that all connected pins get the values
- Through-hold boards used "bed of nails"
- SMT and BGA boards cannot easily contact pins
- Build capability of observing and controlling pins into each chip to make board test easier

EE382V: SoC Design, Lecture 21

© J. A. Abraham

7

Boundary Scan Interface

Boundary scan is accessed through five pins

TCK: test clock

TMS: test mode select

TDI: test data in TDO: test data out

• TRST*: test reset (optional)

• Chips with internal scan chains can access the chains through boundary scan for unified test strategy.

EE382V: SoC Design, Lecture 21

© J. A. Abraham

10

Additional DFT Components

- Test source: Provides test vectors via on-chip LFSR, counter, ROM, or off-chip ATE.
- Test sink: Provides output verification using on-chip signature analyzer, or off-chip ATE.
- Test access mechanism (TAM): User-defined test data communication structure; carries test signals from source to module, and module to sink; tests module interconnects via test-wrappers; TAM may contain bus, boundary-scan and analog test bus components.
- Test controller: Boundary-scan test access port (TAP); receives control signals from outside; serially loads test instructions in test-wrappers.

Source: H. Kerkhoff

EE382V: SoC Design, Lecture 21

© J. A. Abraham

11

Test Wrapper for a Core

- Logic added around a core to provide test access to the embedded core
- Test-wrapper provides for each core input terminal
 - An external test mode Wrapper element observes core input terminal for interconnect test
 - An internal test mode Wrapper element controls state of core input terminal for testing the logic *inside core*
- For each core output terminal
 - A normal mode Host chip driven by core terminal
 - An external test mode Host chip is driven by wrapper element for interconnect test
 - An internal test mode Wrapper element observes core outputs for core test

Source: H. Kerkhoff

EE382V: SoC Design, Lecture 21

© J. A. Abraham

12

Goals of IEEE P1500

- Core test interface between embedded core and system chip
- Test reuse for embedded cores
- Testability guarantee for system interconnect and logic
- Improve efficiency of test between core users and core providers

Source: H. Kerkhoff

EE382V: SoC Design, Lecture 21 © J. A. Abraham

Lecture 21: Outline

- √ SoC Manufacturing Test
 - √The testing problem
 - √SoC testing costs
 - ✓ Design for test (DFT)
- √ SoC Testability Features
 - √ Boundary Scan
 - ✓P1500 standard
- Built-In Self Test
 - Functional Test Access Mechanism (TAM)

EE382V: SoC Design, Lecture 21

© 2014 A. Gerstlauer

18

Built-In Self Test (BIST)

- Increasing circuit complexity, tester cost
 - Interest in techniques which integrate some tester capabilities on the chip
 - Reduce tester costs
 - Test circuits at speed (more thoroughly)
- · Approach:
 - Compress test responses into "signature"
 - Pseudo-random (or pseudo-exhaustive) pattern generator (PRG) on the chip
- Integrating pattern generation and response evaluation on chip – BIST

EE382V: SoC Design, Lecture 21

© J. A. Abraham

19

Pseudo-Random Sequences

- Linear Feedback Shift Register
 - · Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Can also be used to compress test responses

Step	Q
0	111
1	110
2	101
3	010
4 5 6	100
5	001
6	011
7	111
	(

(repeats)

EE382V: SoC Design, Lecture 21

© J. A. Abraham

20

Why is Conventional Test Successful?

- Two innovations have allowed test to keep up with complex designs
 - The stuck-at fault model
 - The model allows structural test generation, with a number of faults which is linear in the size of the circuit
 - Partitioning the circuit
 - Partitioning the circuit (with scan latches for example), alleviates the test problem so that test generation does not have to deal with the entire circuit
- Do these two assumptions hold for Deep SubMicron (DSM) circuits?

EE382V: SoC Design, Lecture 21

© J. A. Abraham

22

Defects in DSM Technologies

- Experiments on real chips (e.g., Stanford)
 - Stuck-at tests do not detect some defects unless they are applied at speed
- Resistive opens comprise the bulk of test escapes in one production line
 - Likely in copper interconnect cause delay faults
- Delay faults identified as the cause of most test escapes on another line
 - Speed differences of up to a factor of 1.5 can exist between fast and slow devices - problems with "speed binning"
- Increasing possibility of shorts and crosstalk

EE382V: SoC Design, Lecture 21

© J. A. Abraham

27

Effects on Chip?

- Change in delays of paths
- Effects could be distributed across paths

EE382V: SoC Design, Lecture 21

© J. A. Abraham

28

Native-Mode Built-In Self Test

- Functional capabilities of processors can be used to replace BIST hardware – [UT Austin, ITC'1998]
 - Application to self-test of processors at Intel FRITS method applied to Pentium 4, Itanium [ITC'2002]

Hardware for MISR

```
for each data value D<sub>i</sub> {
    Shift_Right_Through_Carry(S);
    if (Carry) S = XOR(S, polynomial);
    S = XOR(S, D<sub>i</sub>);
}
```

Software implementation of MISR

EE382V: SoC Design, Lecture 21

© J. A. Abraham

29

Native-Mode Self Test for Processors

- Random instructions can be run from cache and results compressed into a signature
- Implementation in Intel FRITS system showed benefits for real chips (Pentium 4, Itanium)
- Technique can be used for self-test of an embedded processor in a System-on-Chip
- ➢ Is it possible to now use this processing capability to test other modules (digital, analog/mixed-signal and RF) on the SoC?
 - First, can the processor test be improved to detect realistic defects, e.g., small delays?

EE382V: SoC Design, Lecture 21

© J. A. Abraham

30

Are Random Tests Sufficient?

- Intel implementation involved code in the cache which generated random instruction sequences
- Interest in generating instructions targeting faults
 - Possible to generate instruction sequences which will test for an internal stuck-at fault in a module [Gurumurthy, Vasudevan and Abraham, ITC 2006]
- In order to deal with defects in DSM technologies, need to target small delay defects
 - Recent work: automatically generate instruction sequences which will target small delay defects in an internal module [Gurumurthy, Vemu, Abraham and Saab, European Test Symposium (ETS) 2007]

EE382V: SoC Design, Lecture 21

© J. A. Abraham

31

Test Access Mechanisms (TAMs)

- Non-functional access
 - Uses a kind of access to core not allowed during the normal functional operation
 - Generally based on scan chains or other design for test (DFT) structures
 - Can also use the embedded processor as the test source/sink → Needs wrappers around the core under test
- Functional access
 - Embedded processor is the test source/sink → No DFT structures or wrappers around the cores

EE382V: SoC Design, Lecture 21

© J. A. Abraham

32

Non-Functional TAMs

- Boundary scan based
 - Uses the JTAG/boundary scan mechanism to load/capture the tests
 - Slow since the access is serial
- Direct access based
 - Direct access to core test pins given through external pins
 - Faster
 - High overhead to route the access pins and also multiple pins required

EE382V: SoC Design, Lecture 21

© J. A. Abraham

33

Functional TAMs

- Software-Based Self Test (SBST): Use the intelligence of the embedded processor to test the SOC
- At-speed tests are possible
- Cores in the SOC can be of three kinds
 - 1. White box -- internals visible, structure changeable
 - 2. Grey box all the internals visible, but structure of the core cannot be changed
 - 3. Black box no internals visible, no change can be made on the core
- Any methodology for testing black box cores should not depend on knowledge of the core's internals

EE382V: SoC Design, Lecture 21

© J. A. Abraham

34

Pre-Existing Vectors

- If using a core bought from vendor
 - Vectors might also be provided by the vendor
- Reusing a core
 - · Vectors from the previous use
- Newly designed core
 - Validation vectors
- Only constraint: these vectors must be functional test patterns for the core

EE382V: SoC Design, Lecture 21

© J. A. Abraham

36

Reverse Driver

- Parses the vector sequence to generate the data set to be sent to the core being tested
- Is specific to each core as many as the number of driver programs
- Only overhead involved
- Generates the output in a format readable by the driver program

EE382V: SoC Design, Lecture 21

© J. A. Abraham

37

Reverse Driver Illustration

- Peripheral core communicating with external environment (send/receive 32-bit data)
- Five 8-bit registers addresses 0 4
 - Register 0 Control
 - Registers 1 to 4 Data

Address	Data
0x00	0x07
0x01	0x54
0x02	0xDF
0x03	0x71
0x04	0x78

Reverse

Driver

Send at speed rate 1 Data 0x0754DF7178

EE382V: SoC Design, Lecture 21

© J. A. Abraham

38

Software Generation

- Use the driver program associated with each core being tested
- Driver programs
 - Software code that actually talks with the non-processor cores
 - Know about the bus protocol
 - Generally able to take in the data to be sent to the core or read back data from the core
 - Developed as part of designing the SOC

EE382V: SoC Design, Lecture 21

© J. A. Abraham

39

Coverage Measurement

- Simulate the SOC using the software generated
 - Platform used SOC validation can be used
- Monitor the core boundaries to capture the pin data
- Fault simulate the core with the captured data

EE382V: SoC Design, Lecture 21

© J. A. Abraham

40

Results

Details about the synthesized AES core

No. of inputs	69
No. of outputs	33
No. of sequential elements	9225
No. of combinational elements	1119
No. of stuck-at faults	64070

Results

	Size (bytes)	Fault coverage	Original coverage	No. of cycles	Original cycles
Test1	7808	90.01	90.26	6700	6373
Test2	9128	90.15	90.35	7816	7435
Test3	10432	90.20	90.44	8932	8496

EE382V: SoC Design, Lecture 21 © J. A. Abraham 42

Lecture 21: Summary

- SoC Manufacturing Test
 - · Scan chains
 - JTAG Boundary Scan
 - · Test wrappers for cores
 - Built-in self test (BIST)
- Advanced SoC test topics
 - Analog/Mixed-Signal (AMS) test
 - RF test
 - Micro-Electro-Mechanical Systems (MEMS) test

EE382V: SoC Design, Lecture 18

© 2014 A. Gerstlauer

43