EE 3CL4, §2 1/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace ir action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

EE3CL4 C01: Introduction to Linear Control Systems Section 2: System Models

Tim Davidson

McMaster University

Winter 2020

Outline

EE 3CL4, §2 2/97

Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response
- Transfer fn of DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Modelling physical systems

- Translational Newtonian Mechanics Rotational Newtonian Mechanics
- 2 Linearization
- 3 Laplace transforms
- 4 Laplace transforms in action
- 5 Transfer function
- 6 Step response
- Transfer function of DC motor
- 8 Our first model-based control system design
- 9 Block diagram models
 - Block diagram transformations

EE 3CL4, §2 4/97

Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Differential equation models

- Most of the systems that we will deal with are dynamic
- Differential equations provide a powerful way to describe dynamic systems
- Will form the basis of our models
- We saw differential equations for inductors and capacitors in 2CI, 2CJ
- What about mechanical systems? both translational and rotational

EE 3CL4, §2 5/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

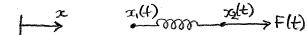
Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor


Our first model-based control system design

Block diagram models Block dia. transform.

Translational Spring

F(t): resultant force in direction x Recall free body diagrams and "action and reaction"

• Spring. *k*: spring constant, *L_r*: relaxed length of spring

 $F(t) = k([x_2(t) - x_1(t)] - L_r)$

EE 3CL4, §2 6/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Bot. Newton. Mech.

Linearization

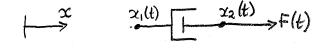
Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor


Our first model-based control system design

Block diagram models Block dia. transform.

Translational Damper

F(t): resultant force in direction x

• Viscous damper. b: viscous friction coefficient

$$F(t) = b\left(\frac{dx_2(t)}{dt} - \frac{dx_1(t)}{dt}\right) = b(v_2(t) - v_1(t))$$

EE 3CL4, §2 7/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

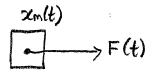
Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor


Our first model-based control system design

Block diagram models Block dia. transform.

F(t): resultant force in direction x

Mass: *M*

$$F(t) = M \frac{d^2 x_m(t)}{dt^2} = M \frac{d v_m(t)}{dt} = M a_m(t)$$

Mass

EE 3CL4, §2 8/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech.

Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Rotational spring

T(t): resultant torque in direction θ

 Rotational spring. k: rotational spring constant, φ_r: rotation of relaxed spring

$$T(t) = k ([\theta_2(t) - \theta_1(t)] - \phi_r)$$

EE 3CL4, §2 9/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech.

Rot. Newton. Mech.

Linearization

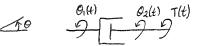
Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor


Our first model-based control system design

Block diagram models Block dia. transform.

Rotational damper

T(t): resultant torque in direction θ

Rotational viscous damper.
 b: rotational viscous friction coefficient

$$T(t) = b\left(\frac{d\theta_2(t)}{dt} - \frac{d\theta_1(t)}{dt}\right) = b(\omega_2(t) - \omega_1(t))$$

EE 3CL4, §2 10/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech.

Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Rotational inertia

T(t): resultant torque in direction θ

Rotational inertia: J

$$T(t) = J \frac{d^2 \theta_m(t)}{dt^2} = J \frac{d \omega_m(t)}{dt} = J \alpha_m(t)$$

EE 3CL4, §2 11/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech.

Rot. Newton. Mech.

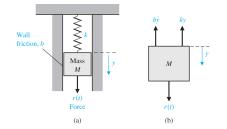
Linearization

Laplace transforms

Laplace in action

Transfer function

Step response


Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Example system (translational)

Horizontal. Origin for y: y = 0 when spring relaxed

• $F = M \frac{dv(t)}{dt}$

•
$$v(t) = \frac{dy(t)}{dt}$$

•
$$F(t) = r(t) - b \frac{dy(t)}{dt} - ky(t)$$

$$M\frac{d^2y(t)}{dt} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

EE 3CL4, §2 12/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech.

Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace ir action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Example, continued

$$M\frac{d^2y(t)}{dt} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

Resembles equation for parallel RLC circuit.

EE 3CL4, §2 13/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech.

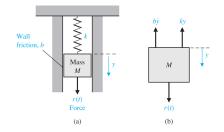
Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function


Step response

Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Example, continued

- Stretch the spring a little and hold.
- Assume an under-damped system.
- What happens when we let it go?

EE 3CL4, §2 15/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

- Laplace transforms
- Laplace in action
- Transfer function
- Step response
- Transfer fn of DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Taylor's series

- Nature does not have many linear systems
- However, many systems behave approximately linearly in the neighbourhood of a given point
- Apply first-order Taylor's Series at a given point
- Obtain a locally linear model
- Use this to obtain insight into behaviour of physical system via Laplace Transforms, poles and zeros, etc
- In this course we will focus on the case of a single linearized differential equation model for the system, in which the coefficients are constants
- e.g., in previous examples mass, viscosity and spring constant did not change with time, position, velocity, temperature, etc

EE 3CL4, §2 16/97

Tim Davidson

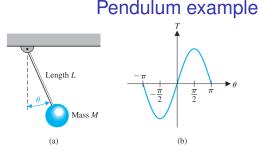
Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action


Transfer function

Step response

Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

- Assume shaft is light with respect to M, and stiff with respect to gravitational forces
- Torque due to gravity: $T(\theta) = MgL\sin(\theta)$
- Apply Taylor's series around $\theta = 0$: $T(\theta) = MgL \left(\theta - \theta^3/3! + \theta^5/5! - \theta^7/7! + ... \right)$
- For small θ around $\theta = 0$ we can build an approximate model that is linear

$$T(\theta) \approx MgL\theta$$

EE 3CL4, §2 18/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

- Laplace in action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Laplace transform

- Once we have a linearized differential equation (with constant coefficients) we can take Laplace Transforms to obtain the transfer function
- We will consider the "one-sided" Laplace transform, for signals that are zero to the left of the origin.

$$\mathsf{F}(s) = \int_{0^-}^{\infty} f(t) e^{-st} \, dt$$

- What does \int^{∞} mean? $\lim_{T\to\infty} \int^{T}$.
- Does this limit exist?
- If |f(t)| < Me^{αt}, then exists for all Re(s) > α.
 Includes all physically realizable signals
- Note: When multiplying transfer function by Laplace of input, output is only valid for values of *s* in intersection of regions of convergence

EE 3CL4, §2 19/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

• In this course, most Laplace transforms will be rational functions, that is, a ratio of two polynomials in *s*; i.e.,

$$F(s) = rac{n_F(s)}{d_F(s)}$$

Poles and zeros

where $n_F(s)$ and $d_F(s)$ are polynomials

- Definitions:
 - Poles of *F*(*s*) are the roots of *d*_{*F*}(*s*)
 - Zeros of F(s) are the roots of n_F(s)
- Hence,

$$F(s) = \frac{K_F \prod_{i=1}^{M} (s+z_i)}{\prod_{j=1}^{n} (s+p_j)} = \left(\frac{K_F \prod_{i=1}^{M} z_i}{\prod_{j=1}^{n} p_j}\right) \frac{\prod_{i=1}^{M} (s/z_i+1)}{\prod_{j=1}^{n} (s/p_j+1)}$$

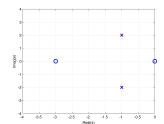
where $-z_i$ are the zeros and $-p_j$ are the poles

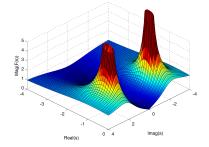
EE 3CL4, §2 20/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.


Linearization


Laplace transforms

- Laplace in action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Visualizing poles and zeros

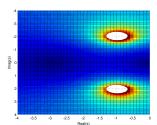
- Consider the simple Laplace transform $F(s) = \frac{s(s+3)}{s^2+2s+5}$.
- zeros: 0, −3; poles: −1 + j2, −1 − j2
- Pole-zero plot (left) and magnitude of *F*(*s*) (right)

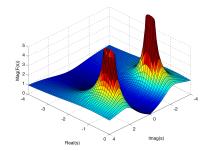
EE 3CL4, §2 21/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.


Linearization


Laplace transforms

- Laplace in action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Visualizing poles and zeros

- $F(s) = \frac{s(s+3)}{s^2+2s+5}$; zeros: 0, -3; poles: -1 + j2, -1 j2
- |F(s)| from above (left) and prev. view of |F(s)| (right)

EE 3CL4, §2 22/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

• Simple ones can be computed analytically; often available in tables; see Tab. 2.3 in 12th ed. of text

• For more complicated ones, one can typically obtain the inverse Laplace transform by

- identifying poles
- constructing partial fraction expansion
- using of properties and some simple pairs to invert each component of partial fraction expansion

Laplace transform pairs

Tim Davidson

Modelling physical systems

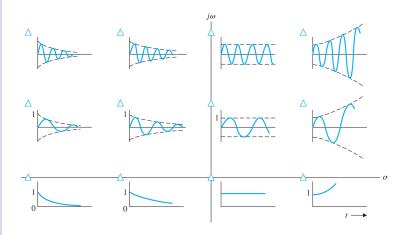
Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace ir action

Transfer function


Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Some Laplace transform pairs

Recall that complex poles come in conjugate pairs.

EE 3CL4, §2 24/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Linearity

$$\frac{df(t)}{dt} \iff sF(s) - f(0^{-})$$

$$\int_{-\infty}^{t} f(x) \, dx \iff \frac{F(s)}{s} + \frac{1}{s} \int_{-\infty}^{0^{-}} f(x) \, dx$$

Key properties

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace ir action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Final value theorem

Can we avoid having to do an inverse Laplace transform? Sometimes.

Consider the case when we only want to find the final value of f(t), namely $\lim_{t\to\infty} f(t)$.

• If *F*(*s*) has all its poles in the left half plane, except, perhaps, for a single pole at the origin, then

$$\lim_{t\to\infty}f(t)=\lim_{s\to0}sF(s)$$

Common application: Steady state value of step response

What if there are poles in RHP, or on the $j\omega$ -axis and not at the origin?

EE 3CL4, §2 27/97

Tim Davidson

Modelling physical systems

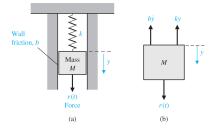
Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function


Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Mass-spring-damper system

- Horizontal (no gravity)
- Set origin of y where spring is "relaxed"

•
$$F = M \frac{dv(t)}{dt}$$

•
$$v(t) = \frac{dy(t)}{dt}$$

•
$$F(t) = r(t) - b \frac{dy(t)}{dt} - ky(t)$$

$$M\frac{d^2y(t)}{dt} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

EE 3CL4, §2 28/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

MSD system

$$M\frac{d^2y(t)}{dt} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

Consider $t \ge 0$ and take Laplace transform

$$M\left(s^{2}Y(s)-sy(0^{-})-\frac{dy(t)}{dt}\Big|_{t=0^{-}}\right)+b\left(sY(s)-y(0^{-})\right)+kY(s)=R(s)$$

Hence

$$Y(s) = \frac{1/M}{s^2 + (b/M)s + k/M} R(s) + \frac{(s+b/M)}{s^2 + (b/M)s + k/M} y(0^-) + \frac{1}{s^2 + (b/M)s + k/M} \left. \frac{dy(t)}{dt} \right|_{t=0^-}$$

Note that linearity yields superposition

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Response to static init. cond.

Spring stretched to a point y_0 , held, then let go at time t = 0

Hence, r(t) = 0 and $\frac{dy(t)}{dt}\Big|_{t=0^-} = 0$

Hence,

$$Y(s) = rac{(s+b/M)}{s^2 + (b/M)s + k/M} \, y_0$$

What can we learn about this response without having to invert Y(s)

EE 3CL4, §2 30/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

1

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Standard form

$$Y(s) = \frac{(s+b/M)}{s^2 + (b/M)s + k/M} y_0$$
$$= \frac{(s+2\zeta\omega_n)}{s^2 + 2\zeta\omega_n s + \omega_n^2} y_0$$

where
$$\omega_{n}=\sqrt{k/M}$$
 and $\zeta=rac{b}{2\sqrt{kM}}$

Poles:
$$s_1, s_2 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

- $\zeta > 1$ (equiv. $b > 2\sqrt{kM}$): distinct real roots, overdamped
- $\zeta = 1$ (equiv. $b = 2\sqrt{kM}$): equal real roots, critically damped
- $\zeta < 1$ (equiv. $b < 2\sqrt{kM}$): complex conj. roots, underdamped

EE 3CL4, §2 31/97

Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Overdamped case

•
$$s_1, s_2 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

• Overdamped response: $\zeta > 1$ (equiv. $b > 2\sqrt{kM}$)

•
$$y(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$$

•
$$y(0) = y_0 \implies c_1 + c_2 = y_0$$

•
$$\frac{dy(t)}{dt}\Big|_{t=0} = 0 \implies s_1c_1 + s_2c_2 = 0$$

- What does this look like when strongly overdamped
- s₂ is large and negative, s₁ is small and negative
- Hence e^{s₂t} decays much faster than e^{s₁t}
- Also, $c_2 = -c_1 s_1/s_2$. Hence, small
- Hence $y(t) \approx c_1 e^{s_1 t}$
- Looks like a first order system!

EE 3CL4, §2 32/97

Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Critically damped case

•
$$s_1 = s_2 = -\omega_n$$

•
$$y(t) = c_1 e^{-\omega_n t} + c_2 t e^{-\omega_n t}$$

•
$$y(0) = y_0 \implies c_1 = y_0$$

•
$$\frac{dy(t)}{dt}\Big|_{t=0} = 0 \implies -c_1\omega_n + c_2 = 0$$

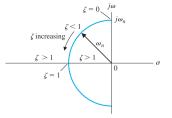
EE 3CL4, §2 33/97

Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms

Laplace in action


- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

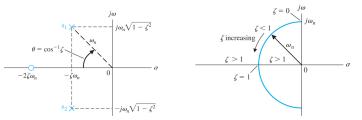
Underdamped case

•
$$s_1, s_2 = -\zeta \omega_n \pm j \omega_n \sqrt{1-\zeta^2}$$

- Therefore, $|s_i| = \omega_n$: poles lies on a circle
- Angle to negative real axis is cos⁻¹(ζ).

EE 3CL4, §2 34/97

Tim Davidson


Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn of DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Underdamped case

• Define $\sigma = \zeta \omega_n, \, \omega_d = \omega_n \sqrt{1 - \zeta^2}$. Response is:

$$y(t) = c_1 e^{-\sigma t} \cos(\omega_d t) + c_2 e^{-\sigma t} \sin(\omega_d t)$$
$$= A e^{-\sigma t} \cos(\omega_d t + \phi)$$

- Homework: Relate A and ϕ to c_1 and c_2 .
- Homework: Write the initial conditions $y(0) = y_0$ and $\frac{dy(t)}{dt}\Big|_{t=0} = 0$ in terms of c_1 and c_2 , and in terms of A and ϕ

EE 3CL4, §2 35/97

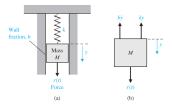
Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms


Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Numerical examples

•
$$Y(s) = \frac{(s+2\zeta\omega_n)}{s^2+2\zeta\omega_n s+\omega_n^2} y_0$$
, where $\omega_n = \sqrt{k/M}$, $\zeta = \frac{b}{2\sqrt{kM}}$

- Poles: $s_1, s_2 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 1}$
- $\zeta > 1$: overdamped; $\zeta < 1$: underdamped
- Consider the case of M = 1, k = 1. Hence, $\omega_n = 1$,

•
$$b = 3 \rightarrow 0$$
. Hence, $\zeta = 1.5 \rightarrow 0$

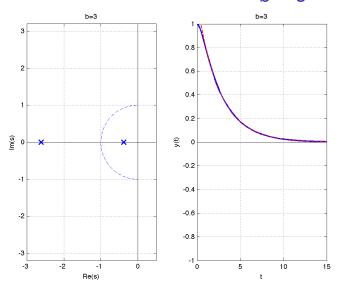
• Initial conds:
$$y_0 = 1$$
, $\frac{dy(t)}{dt}\Big|_{t=0} = 0$

EE 3CL4, §2 36/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.


Linearization

Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

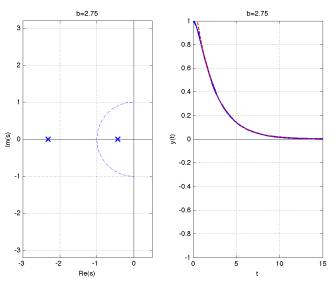
Poles and transient response, b = 3

EE 3CL4, §2 37/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.


Linearization

Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

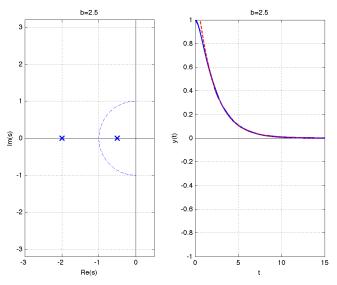
Poles and transient response, b = 2.75

EE 3CL4, §2 38/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.


Linearization

Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

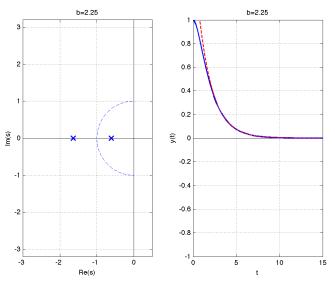
Poles and transient response, b = 2.5

EE 3CL4, §2 39/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.


Linearization

Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

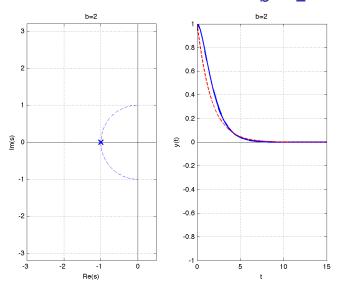
Poles and transient response, b = 2.25

EE 3CL4, §2 40/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.


Linearization

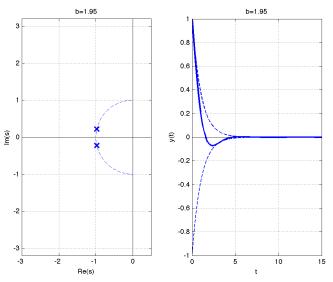
Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Poles and transient response, b = 2

EE 3CL4, §2 41/97


Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms

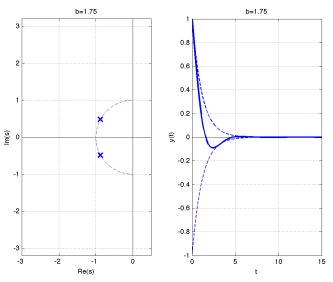
Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 42/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

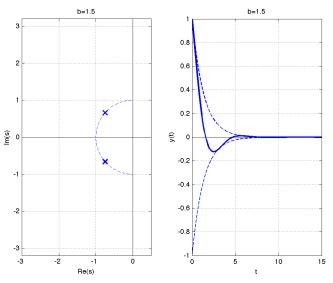
Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 43/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

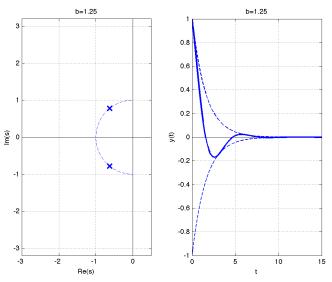
Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 44/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

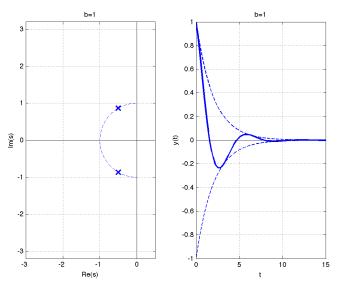
Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 45/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 46/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

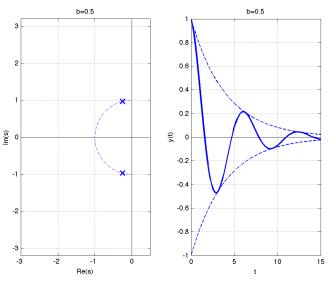
Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 47/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 48/97

Tim Davidson

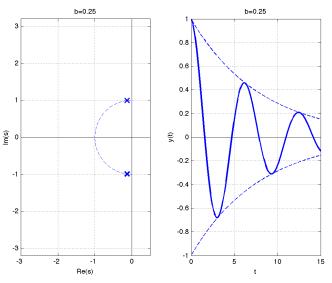
Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action


Transfer function

Step response

Transfer fn o DC motor

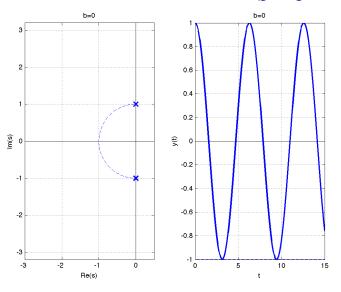
Our first model-based control system design

Block diagram models Block dia. transform.

EE 3CL4, §2 49/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

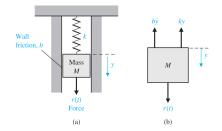
EE 3CL4, §2 51/97

Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action

Transfer function


- Step response
- Transfer fn of DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Transfer function

Definition: Laplace transform of output over Laplace transform of input when initial conditions are zero

- Most of the transfer functions in this course will be ratios of polynomials in *s*.
- Hence, poles and zeros of transfer functions have natural definitions

Example: Recall the mass-spring-damper system,

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Y

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Transfer function, MSD system

For the mass-spring-damper system,

$$(s) = \frac{1/M}{s^2 + (b/M)s + k/M} R(s) + \frac{(s + b/M)}{s^2 + (b/M)s + k/M} y(0^-) + \frac{1}{s^2 + (b/M)s + k/M} \left. \frac{dy(t)}{dt} \right|_{t=0^-}$$

Therefore, transfer function is:

$$\frac{1/M}{s^2 + (b/M)s + k/M} = \frac{1}{Ms^2 + bs + k}$$

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Step response

- Recall that $u(t) \longleftrightarrow \frac{1}{s}$
- Therefore, for transfer function G(s), the step response is:

$$\mathscr{L}^{-1}\Big\{\frac{G(s)}{s}\Big\}$$

• For the mass-spring-damper system, step response is

$$\mathscr{L}^{-1}\Big\{rac{1}{s(Ms^2+bs+k)}\Big\}$$

- What is the final position for a step input? Recall final value theorem. Final position is 1/k.
- What about the complete step response?

EE 3CL4, §2 55/97

Tim Davidson

Modelling physical systems

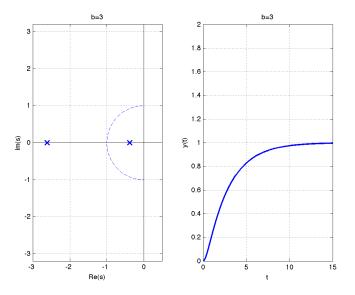
- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response
- Transfer fn of DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Step response

- Step response: $\mathscr{L}^{-1}\left\{G(s)\frac{1}{s}\right\}$
- Hence poles of Laplace transform of step response are poles of *G*(*s*), plus an additional pole at *s* = 0.
- For the mass-spring-damper system, using partial fractions, step response is:

$$\mathcal{L}^{-1}\left\{\frac{1}{s(Ms^2+bs+k)}\right\}$$
$$= \mathcal{L}^{-1}\left\{\frac{1/k}{s}\right\} - \frac{1}{k}\mathcal{L}^{-1}\left\{\frac{Ms+b}{Ms^2+bs+k}\right\}$$
$$= \frac{1}{k}u(t) - \frac{1}{k}\mathcal{L}^{-1}\left\{\frac{Ms+b}{Ms^2+bs+k}\right\}$$

• Consider again the case of M = k = 1, $b = 3 \rightarrow 0$. $\omega_n = 1$, $\zeta = 1.5 \rightarrow 0$.

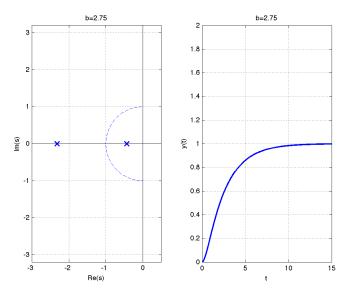

Tim Davidson

- Modelling physical systems
- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

Poles and step response, b = 3



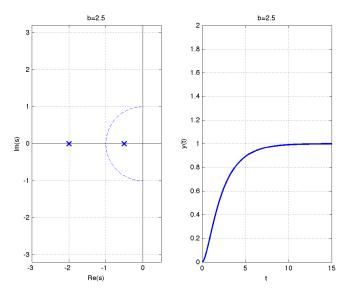
Tim Davidson

- Modelling physical systems
- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 58/97


Tim Davidson

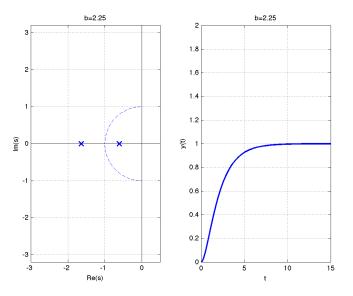
Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 59/97


Tim Davidson

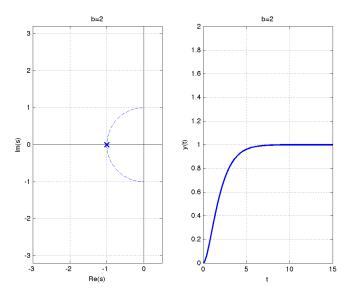
Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 60/97


Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

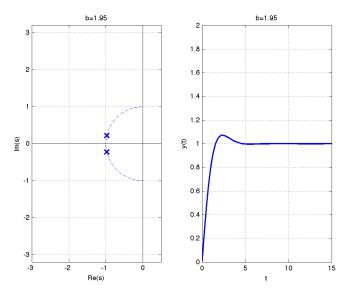
Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 61/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

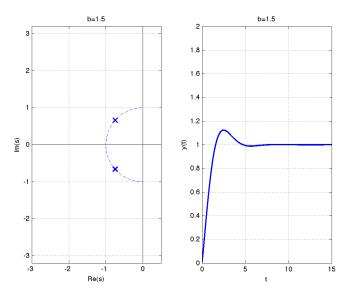
Tim Davidson

- Modelling physical systems
- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 63/97


Tim Davidson

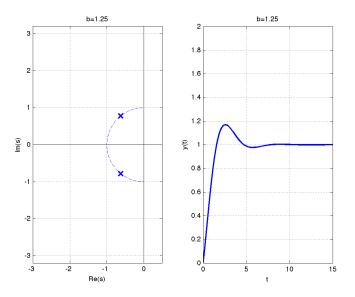
Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 64/97


Tim Davidson

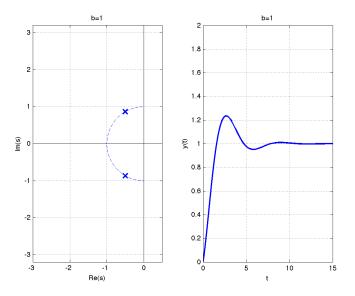
Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 65/97


Tim Davidson

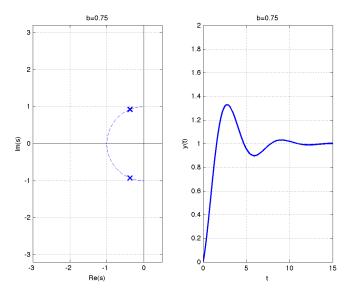
Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 66/97


Tim Davidson

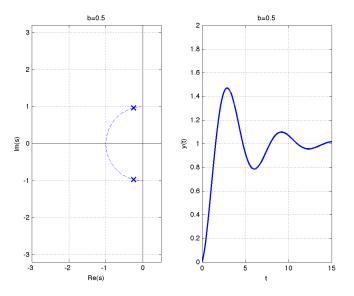
Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 67/97


Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

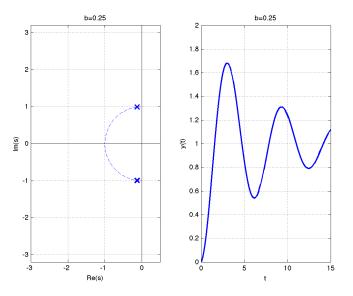
Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 68/97

Tim Davidson

Modelling physical systems


Trans. Newton. Mech. Rot. Newton. Mech.

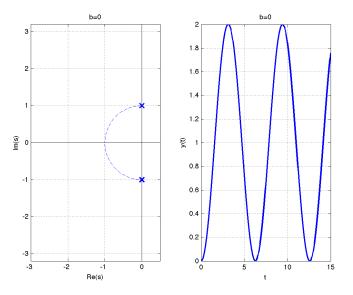
Linearization

- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 69/97


Tim Davidson

Modelling physical systems

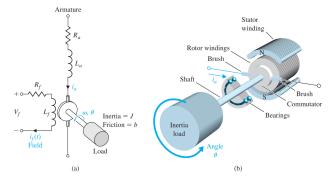
- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function

Step response

- Transfer fn o DC motor
- Our first model-based control system design
- Block diagram models Block dia. transform.

EE 3CL4, §2 71/97

Tim Davidson


Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

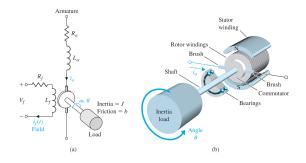
- We will consider linearized model for each component
- Flux in the air gap: $\phi(t) = K_f i_f(t)$ (Magnetic cct, 2CJ4)
- Torque: $T_m(t) = K_1 \phi(t) i_a(t) = K_1 K_f i_f(t) i_a(t)$.
- Is that linear?
- Only if one of $i_f(t)$ or $i_a(t)$ is constant
- We will consider "armature control": $i_f(t)$ constant

A DC motor

EE 3CL4, §2 72/97

Tim Davidson

Modelling physical systems


- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace ir action
- Transfer function
- Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Armature controlled DC motor

- $i_f(t)$ will be constant (to set up magnetic field), $i_f(t) = I_f$
- Torque: $T_m(t) = K_1 K_f I_f i_a(t) = K_m i_a(t)$
- Will control motor using armature voltage $V_a(t)$
- What is the transfer function from V_a(s) to angular position θ(s)?
- Origin?

EE 3CL4, §2 73/97

Tim Davidson

Modelling physical systems


- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Towards transfer function

- $T_m(t) = K_m i_a(t) \iff T_m(s) = K_m I_a(s)$
- KVL: $V_a(s) = (R_a + sL_a)I_a(s) + V_b(s)$
- V_b(s) is back-emf voltage, due to Faraday's Law
- $V_b(s) = K_b \omega(s)$, where $\omega(s) = s\theta(s)$ is rot. velocity
- · Remember: transfer function implies zero init. conds

EE 3CL4, §2 74/97

Tim Davidson

Modelling physical systems


- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace ir action
- Transfer function
- Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Towards transfer function

- Torque on load: $T_L(s) = T_m(s) T_d(s)$
- *T_d*(*s*): disturbance. Often small, unknown
- Load torque and load angle (Newton plus friction):

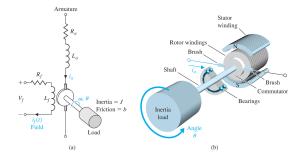
$$T_L(s) = Js^2 heta(s) + bs heta(s)$$

Now put it all together

EE 3CL4, §2 75/97

Tim Davidson

Modelling physical systems


- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace ir action
- Transfer function
- Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Towards transfer function

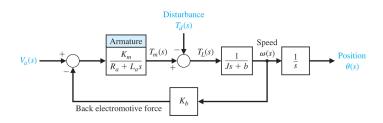
•
$$T_m(s) = K_m I_a(s) = K_m \Big(\frac{V_a(s) - V_b(s)}{R_a + sL_a} \Big)$$

- $V_b(s) = K_b \omega(s)$
- $T_L(s) = T_m(s) T_d(s)$
- $T_L(s) = Js^2\theta(s) + bs\theta(s) = Js\omega(s) + b\omega(s)$
- Hence ω(s) = T_L(s)/Js+b
 θ(s) = ω(s)/s

EE 3CL4, §2 76/97

Tim Davidson

Modelling physical systems


- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace ir action
- Transfer function
- Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Block diagram

•
$$T_m(s) = K_m I_a(s) = K_m \left(\frac{V_a(s) - V_b(s)}{R_a + sL_a} \right)$$

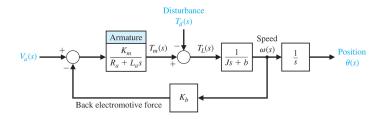
•
$$V_b(s) = K_b \omega(s)$$

•
$$T_L(s) = T_m(s) - T_d(s)$$

- $T_L(s) = Js^2\theta(s) + bs\theta(s) = Js\omega(s) + b\omega(s)$
- Hence $\omega(s) = \frac{T_L(s)}{Js+b}$
- $\theta(s) = \omega(s)/s$

EE 3CL4, §2 77/97

Tim Davidson


Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response

Transfer fn of DC motor

- Our first model-based control system design
- Block diagram models Block dia. transform.

Transfer function

• Set $T_d(s) = 0$ and solve (you MUST do this yourself)

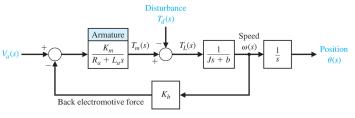
$$G(s) = \frac{\theta(s)}{V_a(s)} = \frac{K_m}{s[(R_a + sL_a)(Js + b) + K_bK_m]}$$
$$= \frac{K_m}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

• Third order :(

EE 3CL4, §2 78/97

Tim Davidson

Modelling physical systems


- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Second-order approximation

$$G(s) = rac{ heta(s)}{V_a(s)} = rac{ extsf{K}_m}{sig[(extsf{R}_a + s extsf{L}_a)(extsf{J}s + b) + extsf{K}_b extsf{K}_mig]}$$

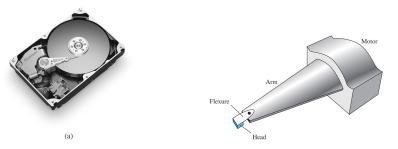
- Sometimes armature time constant, τ_a = L_a/R_a, is negligible
- Hence (you MUST derive this yourself)

$$G(s) pprox rac{K_m}{s[R_a(Js+b)+K_bK_m]} = rac{K_m/(R_ab+K_bK_m)}{s(au_1s+1)}$$

where $au_1 = R_a J/(R_ab+K_bK_m)$

EE 3CL4, §2 79/97

Tim Davidson


Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response

Transfer fn of DC motor

- Our first model-based control system design
- Block diagram models Block dia. transform.

Model for a disk drive read system

- Uses a permanent magnet DC motor
- Can be modelled using arm. contr. model with $K_b = 0$
- Hence, motor transfer function:

$$G(s) = rac{ heta(s)}{V_a(s)} = rac{K_m}{s(R_a+sL_a)(Js+b)}$$

Assume for now that the arm is stiff

EE 3CL4, §2 80/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Typical values

$$G(s) = rac{ heta(s)}{V_a(s)} = rac{K_m}{s(R_a + sL_a)(Js + b)}$$

Table 2.10 Typical Parameters for Disk Drive Reader		
Parameter	Symbol	Typical Value
Inertia of arm and read head	I	1 N m s ² /rad
Friction	b	20 N m s/rad
Amplifier Armature resistance	K_a R	10-1000 1 Ω
Motor constant Armature inductance	L^{K_m}	5 N m/A 1 mH

 $G(s) = \frac{5000}{s(s+20)(s+1000)}$

EE 3CL4, §2 81/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Time constants

Initial model

$$G(s) = \frac{5000}{s(s+20)(s+1000)}$$

- Motor time constant = 1/20 = 50ms
- Armature time constant = 1/1000 = 1ms
- Hence

$$G(s)pprox \hat{G}(s)=rac{5}{s(s+20)}$$

EE 3CL4, §2 83/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

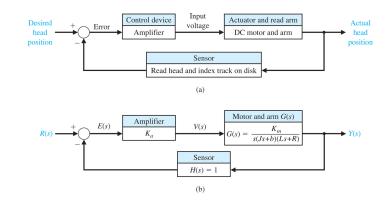
Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor


Our first model-based control system design

Block diagram models Block dia. transform.

A simple feedback controller

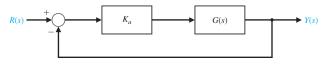
Now that we have a model, how to control?

Simple idea: Apply voltage to motor that is proportional to error between where we are and where we want to be.

Here, $V(s) = V_a(s)$ and $Y(s) = \theta(s)$.

EE 3CL4, §2 84/97

Tim Davidson


Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response
- Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Simplified block diagram

 What is the transfer function from command to position? Derive this yourself

$$\frac{Y(s)}{R(s)} = \frac{K_a G(s)}{1 + K_a G(s)}$$

• Using second-order approx. $G(s) \approx \hat{G}(s) = rac{5}{s(s+20)}$,

$$Y(s) pprox rac{5K_a}{s^2+20s+5K_a}\,R(s)$$

 For 0 < K_a < 20: overdamped; for K_a > 20: underdamped

Tim Davidson

Modelling physical systems

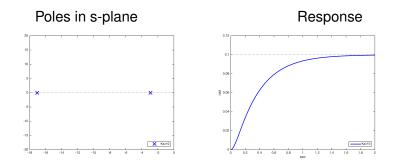
Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace ir action

Transfer function


Step response

Transfer fn o DC motor

Our first model-based control system design

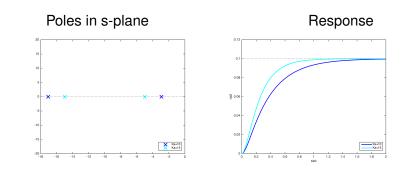
Block diagram models Block dia. transform.

Response to r(t) = 0.1u(t); $K_a = 10$

Slow. Slower than IBMs first drive from late 1950's. Disks in the 1970's had 25ms seek times; now < 10ms Perhaps increase K_a ?

That would result in a "bigger" input to the motor for a given error

EE 3CL4, §2 86/97


Tim Davidson

Modelling physical systems

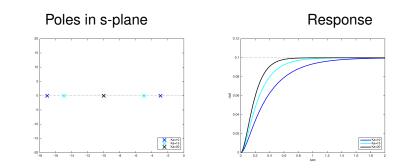
- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design

Block diagram models Block dia. transform.

Response to r(t) = 0.1u(t); $K_a = 10, 15$

Changing K_a changes the position of the closed-loop poles Hence, step response changes

EE 3CL4, §2 87/97


Tim Davidson

Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace ir action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design

Block diagram models Block dia. transform.

Response to r(t) = 0.1u(t); $K_a = 10, 15, 20$

Changing K_a changes the position of the closed-loop poles Hence, step response changes (now critically damped)

EE 3CL4, §2 88/97

Tim Davidson

Modelling physical systems

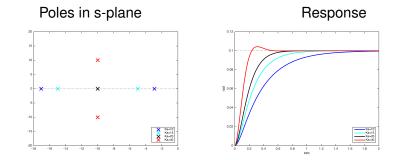
Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function


Step response

Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Response to r(t) = 0.1u(t); $K_a = 10, 15, 20, 40$

Changing K_a changes the position of the closed-loop poles Hence, step response changes (now underdamped)

EE 3CL4, §2 89/97

Tim Davidson

Modelling physical systems

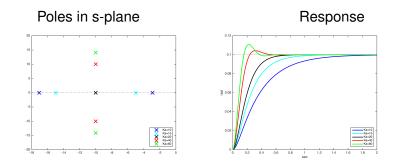
Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function


Step response

Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Response to r(t) = 0.1u(t); $K_a = 10, 15, 20, 40, 60$

Changing K_a changes the position of the closed-loop poles Hence, step response changes (now more underdamped)

EE 3CL4, §2 90/97

Tim Davidson

Modelling physical systems

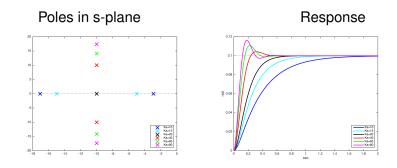
Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace ir action

Transfer function


Step response

Transfer fn o DC motor

Our first model-based control system design

Block diagram models Block dia. transform.

Response to r(t) = 0.1u(t); $K_a = 10, 15, 20, 40, 60, 80$

What is happening to the settling time of the underdamped cases?

Only just beats IBM's first drive What else could we do with the controller? Prediction?

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

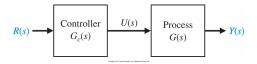
Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn o DC motor


Our first model-based control system design

Block diagram models

Block dia. transform.

Bock diagram models

• As we have just seen, a convenient way to represent a transfer function is via a block diagram

- In this case, $U(s) = G_c(s)R(s)$ and Y(s) = G(s)U(s)
- Hence, $Y(s) = G(s)G_c(s)R(s)$
- Consistent with the engineering procedure of breaking things up into little bits, studying the little bits, and then put them together

EE 3CL4, §2 93/97

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

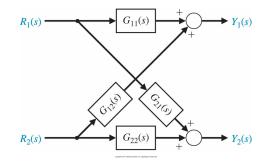
Linearization

Laplace transforms

Laplace in action

Transfer function

Step response


Transfer fn of DC motor

Our first model-based control system design

Block diagram models

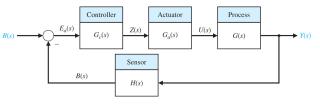
Block dia. transform.

Simple example

• $Y_1(s) = G_{11}(s)R_1(s) + G_{12}(s)R_2(s)$ • $Y_2(s) = G_{21}(s)R_1(s) + G_{22}(s)R_2(s)$

EE 3CL4, §2 94/97

Tim Davidson


Modelling physical systems

- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace ir action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design

Block diagram models

Block dia. transform.

Example: Loop transfer function

- $E_a(s) = R(s) B(s) = R(s) H(s)Y(s)$
- $Y(s) = G(s)U(s) = G(s)G_a(s)Z(s)$
- $Y(s) = G(s)G_a(s)G_c(s)E_a(s)$
- $Y(s) = G(s)G_a(s)G_c(s)\Big(R(s) H(s)Y(s)\Big)$ $rac{Y(s)}{R(s)} = rac{G(s)G_a(s)G_c(s)}{1 + G(s)G_a(s)G_c(s)H(s)}$
- Each transfer function is a ratio of polynomials in s
 What is *E_a(s)/R(s)*?

Tim Davidson

Modelling physical systems

Trans. Newton. Mech. Rot. Newton. Mech.

Linearization

Laplace transforms

Laplace in action

Transfer function

Step response

Transfer fn of DC motor

Our first model-based control system design

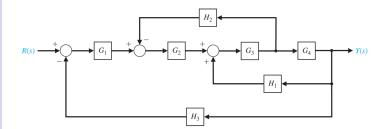
Block diagram models Block dia, transform,

Block diagram transformations

Transformation	Original Diagram	Equivalent Diagram
1. Combining blocks in cascade	$\xrightarrow{X_1} G_1(s) \xrightarrow{X_2} G_2(s) \xrightarrow{X_3}$	$X_1 \longrightarrow G_1G_2 X_3 \longrightarrow$ or $X_1 \longrightarrow X_3$
2. Moving a summing point behind a block	$\xrightarrow{X_1} + \bigcirc \qquad G \xrightarrow{X_3} \\ \stackrel{\pm}{\longrightarrow} \qquad G \xrightarrow{X_3}$	$\xrightarrow{X_1} G_2 G_1 \xrightarrow{X_3}$ $\xrightarrow{X_1} G \xrightarrow{+} \overbrace{C} \xrightarrow{X_2}$
 Moving a pickoff point ahead of a block 	X_1 G X_2 X_2	$\begin{array}{c} X_1 \\ \hline \\ X_2 \\ \hline \\ X_2 \\ \hline \\ \\ \end{array} \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \\ \\ \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \\ \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \\ \\ \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \\ \\ \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \\ \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \\ \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \hline \end{array} \xrightarrow{G} \begin{array}{c} X_2 \\ \end{array} \xrightarrow$
 Moving a pickoff point behind a block 	X_1 G X_2 X_1	$\begin{array}{c} X_1 \\ \hline \\ $
 Moving a summing point ahead of a block 	$\xrightarrow{X_1} G \xrightarrow{+} \bigcirc \xrightarrow{X_3} \\ \stackrel{\pm}{} \\ \xrightarrow{X_2}$	$\xrightarrow{X_1} \xrightarrow{+} G \xrightarrow{X_3}$
6. Eliminating a feedback loop	$X_1 + G \xrightarrow{X_2} G$	$\xrightarrow{X_1} \qquad \xrightarrow{G} \qquad \xrightarrow{X_2} \qquad \qquad$

EE 3CL4, §2 96/97

Tim Davidson

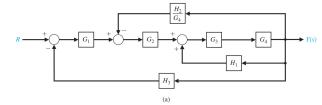

Modelling physical systems

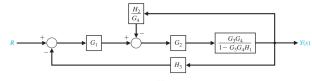
- Trans. Newton. Mech. Rot. Newton. Mech.
- Linearization
- Laplace transforms
- Laplace in action
- Transfer function
- Step response
- Transfer fn o DC motor
- Our first model-based control system design

Block diagram models

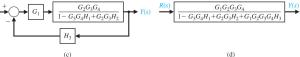
Block dia. transform.

Using block diagram transformations


EE 3CL4, §2 97/97


Tim Davidson

- Trans, Newton, Mech Rot. Newton. Mech.


- Block dia, transform,

Using block diagram transformations

