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Applications of MoM

• Example on static problems

• Example on 2D scattering problems

• Wire Antennas and scatterers
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A Charged Conducting Plate

• Find the charge distribution and capacitance of a metalic
plate of dimensions 2a×2a whose potential is Φ = Vo
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A Charged Conducting Plate (Cont’d)

• The potential and charge satisfy for the unbounded medium

•••• The well-known solution for this problem is

• As the plate is assumed to be in the xy plane we may also
write
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A Charged Conducting Plate (Cont’d)

• We divide the conducting plate into N square subsections
and define the subsectional basis function
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• We then expand the unknown surface charge density in
terms of the subsectional basis functions
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A Charged Conducting Plate (Cont’d)

• But as the nth basis function is nonzero only over the nth
subsection we may write
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• We utilize point matching by enforcing the above equation at
the centers of each subsection
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A Charged Conducting Plate (Cont’d)

• It follows that the coefficients αn are obtained by solving
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• Postprocessing: The capacitance of the conducting plate is
approximated by
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A Charged Conducting Plate (Cont’d)

The charge distribution along the width of the plate

Harrington, Field
Computation by
Moment Methods



9EE750, 2003, Dr. Mohamed Bakr

Scattering Problems

conductor

n
Ei

Es

• An incident wave generates surface currents that in turn
generate a scattered field such that

0=+× )( EEn si (zero total tangential electric field)

• In a scattering problem it is required to determine the surface
currents. Es is obtained as a byproduct
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Scattering by a Conducting Cylinder of a TM Wave

•••• Incident field has only z direction
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•••• Fields are dependent on x and y directions. It follows that we
can solve this problem as a 2D problem
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Scattering by a Conducting Cylinder (Cont’d)

•••• Starting with Maxwell’s equations
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Scattering by a Conducting Cylinder (Cont’d)

•••• For the problem at hand we must have for all
points on the surface of the cylinder
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The only unknown in this equation is Jz

•••• We expand Jz in terms of the subsectional basis functions
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Scattering by a Conducting Cylinder (Cont’d)

•••• It follows that we have
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(one equation in N unknowns)

•••• We utilize point matching to enforce the above equation at
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Scattering by a Conducting Cylinder (Cont’d)

For a uniform plane wave incident at an angle φi we have
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Harrington, Field
Computation by
Moment Methods
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Pocklington’s Integral Equation

•••• The target is to determine the current distribution and
consequently the scattered field due to an incident field for a
finite-diameter wire
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Pocklington’s Integral Equation (Cont’d)

•••• The main relation for this scatterer is
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•••• The equations governing the scattered field are
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Pocklington’s Integral Equation (Cont’d)

•••• If the wire is thin, Jz is not a function of φ
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•••• But as , we may write

Pocklington’s Integral Equation (Cont’d)

•••• But as Az has a φ symmetry, we may write
Az(ρ=a,z,φ) = Az(ρ=a,z,0)
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Pocklington’s integral equation (only Iz is not known)
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Solution of Pocklington’s Integral equation

∆

•••• Divide the wire into N non overlapping segments

•••• Expand the unknown current in terms of the
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Solution of Pocklington’s Equation (Cont’d)

•••• It follows that
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Solution of Pocklington’s Equation (Cont’d)

•••• Enforcing this equation at the center of each segment, we get

N equations in N unknowns

NmzGIzE mn

N

n
nm

i
z ,2,,1),()(

1
L=∑=

=



















=





































)(

)(

)(

)()()(

)()()(

)()()(

2

1

2

1

21

22221

11211

zE

zE

zE

I

I

I

zGzGzG

zGzGzG

zGzGzG

N
i
z

i
z

i
z

NNNNN

N

N

MMMMMM

L

L


