EE750
Advanced Engineering Electromagnetics
Lecture 14



Applications of MoM

e Example on static problems

e Example on 2D scattering problems

* Wire Antennas and scatterers
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A Charged Conducting Plate

 Find the charge distribution and capacitance of a metalic
plate of dimensions 2ax2a whose potential is @=V,
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A Charged Conducting Plate (Cont’d)

* The potential and charge satisfy for the unbounded medium

DZ@ = —%

£
e The well-known solution for this problem is

d(r) = ﬂjG(r,r') g, (r’)axdy'dz
0

d(r) = jj qev(r )dx’dy’dz’, R=

. Asthep atelsassumed to be in the xy plane we may also

write (r')
D(X,Y,2) = qus
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A Charged Conducting Plate (Cont’d)

* We divide the conducting plate into N sguare subsections
and define the subsectional basis function

{1 onAS,, thenth subsection
f =

n

0, otherwise

« We then expand the unknown surface charge density in
terms of the subsecti onal basis functions

2+ _ 1\2
_aa4 R (y=Y)
aa Zan n ﬂ aa
dx'd dx'd
£Ia 4T y Za Jf;l'[a y
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A Charged Conducting Plate (Cont’d)

« But as the nth basis function is nonzero only over the nth
subsection we may write

=2 an H

n Asn

* We utilize point matching by enforcing the above equation at
the centers of each subsection

dx'dy’ (one equationin N unknowns)

=S an [f AXdY’, Ry =y (xo=X)* + (Yp=X)*
n  As, ATTER,
m=12,---, N
-Alternatlvely Vo =2 Ima,, M=12,---,N
= dx'dy’
Ajsjn lTé‘Rm 4
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A Charged Conducting Plate (Cont’d)

» |t follows that the coefficients a,, are obtained by solving

ln |2 - Iin | s Vo
21 1z o lon || a2 Vo
_| N1 IN2 |NN__0’N_ Vo |

 Postprocessing: The capacitance of the conducting plate is
approximated by

N
> anAS,
C —_1t —n=l
Vo Vo
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A Charged Conducting Plate (Cont’d)

1
-_J___\__u___ﬂy___w‘“"#f’
Harrington, Field
B £ LA PR : . Computation by
- eMa L g S B Moment Methods

The charge distribution along the width of the plate
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Scattering Problems

* Anincident wave generates surface currents that in turn
generate a scattered field such that

nx(E;+E., =0 (zerototal tangential eectric field)

* |n ascattering problem it is required to determine the surface
currents. E, Is obtained as a byproduct
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Scattering by a Conducting Cylinder of a TM Wave
E:
@

* Incident field has only z direction E = E. g,

e Felds are dependent on x and y directions. |t follows that we
can solve this problem as a 2D problem
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Scattering by a Conducting Cylinder (Cont’d)

o Starting with Maxwell’ s equations
(OxE)=—jawuH, (OxH)=J+ jaweE

e For the case J=J, we have

1°E,+k*E,= jwiJ, (We consider only the zcomponent)
e The corresponding Green’s function is obtained by setting

J.=0(x=X)o(y-y) toobtain

G(p.p") =¥ H2(Klp - p)
e The scattered electric field is thus given by

E£(p) = |3, (¢) HEKp = pdC
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Scattering by a Conducting Cylinder (Cont’d)

e For the problem at hand we must have E, =—E; for all
points on the surface of the cylinder

e |t follows that we have

The only unknown in this equationis J,
« We expand J, in terms of the subsectional basis functions

1 onAC,, thenth subsection % f
f, = J:=2a
{ —) Jz=Lant;

0, otherwise
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Scattering by a Conducting Cylinder (Cont’d)

e |t follows that we have

' k N I I I
Ex(p) =", 2 an[f, H3(Kjp-p')dC', OpOC
n= o
[ — kl] N 2 r I ’
E.(p) ==X an [Hi(klp—p|)dC’, OpOC

4 n=1 ACq
(one equation in N unknowns)

e We utilize point matching to enforce the above eguation at
the centers of the subsections £, = (Xm, Y), M=12,---, N

i k N [ I
EL(p) =23 a [HE(K|p,—pdC, m=1,2,---,N

4 n=1 ACq
(N equation in N unknowns)
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Scattering by a Conducting Cylinder (Cont’d)

10—

Harrington, Field
e Computation by
on 15— Moment Methods

For a uniform plane wave incident at an angle ¢ we have
£, = /K(XCOSg + ysing) = gl
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Pocklington’s Integral Equation
- =

O

I

g
N4

/2

>/ 112

N/

24

e Thetarget isto determine the current distribution and
conseguently the scattered field due to an incident field for a
finite-diameter wire
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Pocklington’s I ntegral Equation (Cont’d)

 The main relation for this scatterer is
E:(p=a)=-E;(p=4)

e The eguations governing the scattered field are
E =-JaA-()/aue)(D(L.A))

e We need only the z component of thefield
= (”_c;:, (B, +2 %) E M= e +—)Az
e The z component of _the magnetl C vector potentl aIs

-] AR 112 2
A1) :%Tjsjaz(r')%ds' —%T ) £ 1,(Z, qd)—adqddz
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Pocklington’s Integral Equation (Cont’d)

o If thewireisthin, J, s not afunction of ¢

|/22 o1 2ne-j/3Rd o4
r) = a J,(Z Z
A4 | 22 342 9

\ - J

y

(2 Gn2)

e Thedistance Rin cylindrical coordinate is
R=/p*+a?-2pacos(p- @) +(z-2)°

 For observation points on the wire surface we have
R=2a%~2a*cos(g~¢f) + (z-2)’

U

R= \/4azsin2(¢_2¢) +(z-2)’
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Pocklington’s Integral Equation (Cont’d)

e But as A, hasa gsymmetry, we may write

Ap=az.9) = A(p=az0)

1l

A@D = [1.26@ 2, R= ad s (D) + -2y

/2

e The scattered field at Ehe wire surface is thus given by
I /2

£3(a,2) = ;’g (ﬁ2+a"’—zz) 11.(2)6(z 2)dz

-1 /2
e Butas E,(a,z) =-E:(a, z), we may write

Pocklington’s integral equation (only 1, is not known)
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Solution of Pocklington’s Integral equation

e Divide the wire into N non overlapping segments
o Expand the unknown cquent In terms of the
basis functions 1,(2) = X 1 wun(2)

n=1
e For pulse functions we have
11 Zn-1/2 <Z< Zn+1/2
Un —
0, otherwise

e For triangular functions we have
B2z,
A ’ Zn-l < V4 < Zn+1

Un =3

-0 otherwise
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Solution of Pocklington’s Equation (Cont’d)

e |t follows that

g D= | Slun@ L)ee e
-jweE,(8,2) = %ﬂ n_lllflz un(Z')(,B2+a—2)G(Z, Z)dz

ﬂ using apulsefunctlon
-ja)eE (a,2) = Z| j(,B +0_)G(Z z)dz

E:(2) = Zl Gn(2)
One eguationin N unknowns
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Solution of Pocklington’s Equation (Cont’d)

e Enforcing this equation at the center of each segment, we get
N equations in N unknowns

Eiz(zm) - %J nGn(Zm)1 m:l 21”'1 N

 Gu(z) Ga(z)
Gl(ZZ) Gz(Zz)

 Gi(zn) Ga(zn)
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Gn(z) |
Gn (Zz)

Gn (ZN)_

| 1

| -

| N

Ev(z)
Eiz(Zz)

_Eiz(ZN)_
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