EECE/CS 4353 Image Processing

Lecture Notes: Color Correction

Richard Alan Peters II
Department of Electrical and Computer Engineering
Fall Semester 2021

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Correction

is a global change in the coloration of an image to alter its tint, its hues, or the saturation of its colors with minimal changes to its luminant features.

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

original

David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands red $\gamma=2$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

original

David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

reduced red $=$ increased cyan

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

original

David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands
 green $\gamma=2$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

original

David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands green $\gamma=0.5$

reduced green $=$ incr. magenta

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

original

David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

blue $\gamma=2$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

original

David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

blue $\gamma=0.5$

reduced blue $=$ incr. yellow

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Gamma Adjustment of Color Bands

original

David Peters, producer, and representatives of the IA, The International Alliance of Theatrical Stage Employees, Moving Picture Technicians, Artists and Allied Crafts, on the set of Frozen Impact (PorchLight Entertainment, 2003).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

RGB to LHS: A Perceptual Transformation

EECE 4353 Image Processing

Vanderbilt University School of Engineering

HSV Color Representation

A Fast RGB to HSV Algorithm

Given color $\mathbf{p}=[R G B]^{\top}$ where $R, G, B \in\{0, \ldots, 255\}$, to compute [h s v] ${ }^{\top}$ where $\mathrm{s}, \mathrm{v} \in[0,1]$ and $\mathrm{h} \in[0,360$) the algorithm proceeds as follows:

```
1. Compute [r g b] = [R G B]/255.
2. Set m = min(r,g,b) , M = max (r,g,b).
3. Set v = M.
4. Compute C = M - m.
5. If C == 0 then s=0, h=0. Return [h s v [T.
6. s = C/M.
7. If M==r then h = ((g-b) /c) modulo 6.
8. else if M==g then h = 2 + (b-r)/c.
9. else h = 4 + (r-g)/c.
10.h = 60h.
```

Experiments with Matlab show this algorithm to be 3 times faster than Algorithm 1 and 1.13 faster than Algorithm 2 (EECE_4353_06_RGBandHSVColor). The numbers output by this one differ from the other two.

[^0]
EECE 4353 Image Processing

Vanderbilt University School of Engineering

HSV to RGB Conversion

The $x, y, \& z$ unit vectors in r, g, \& b coordinates are the columns of the rotation matrix:

Therefore, the rotation matrix is

$$
A=\frac{\sqrt{6}}{6}\left[\begin{array}{rrr}
2 & 0 & \sqrt{2} \\
-1 & \sqrt{3} & \sqrt{2} \\
-1 & -\sqrt{3} & \sqrt{2}
\end{array}\right] .
$$

Substitute that into the $2^{\text {nd }}$ equation on slide $\underline{94}$ to get:

$$
\begin{aligned}
{[\mathbf{s}]_{\mathrm{rgb}} } & =s \frac{\sqrt{6}}{6} \cos (h)\left[\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right]+s \frac{\sqrt{2}}{2} \sin (h)\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]+0 \frac{\sqrt{3}}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =s \frac{\sqrt{6}}{6} \cos (h)\left[\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right]+s \frac{\sqrt{2}}{2} \sin (h)\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

Finally, $[\mathbf{s}]_{\text {rgb }}$ must be translated to the value vector to obtain
 the rgb color of \mathbf{p}_{0} :

$$
\mathbf{p}_{0}=[\mathbf{p}]_{\mathrm{rgb}}=[\mathbf{s}]_{\mathrm{rgb}}+[\mathbf{v}]_{\mathrm{rgb}} \text {, where } \mathbf{s}_{0}=[\mathbf{s}]_{\mathrm{rgb}} \text { and }[\mathbf{v}]_{\mathrm{rgb}}=\mathbf{v}_{0} \text { as def'd. on slide } \underline{81} .
$$

A Fast HSV to RGB Algorithm

Given vector $\mathbf{h}^{\mathrm{T}}=[h s v]$ where $h \in[0,360), s \in[0,1]$, and $v \in[0,1]$, to compute $\mathbf{p}^{\mathrm{T}}=[r g b]$ where $r, g, b \in\{0, \ldots, 255\}$:

```
1. H = h/60.
2. C = v.s.
3. D = v-C.
4. X = C.(1 - | (H mod 2)-1|).
```



```
    else if 1 \leq H < 2 then [r g b] = [ X C 0}
    else if 2 \leq H < 3 then [r g b] = [0 C X]
    else if 3 \leq H < 4 then [r g b] = [0 X C]
    else if 4 \leq H < 5 then [r g b] = [X 0 C]
    else if 5 \leq H < 6 then [r g b] = [C O X]
    else [r g b] = [00 0 0]
6. [r g b] = 255*[r+D g+D b+D]
```

[^1]
EECE 4353 Image Processing

Vanderbilt University School of Engineering

Saturation Adjustment

original

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Saturation Adjustment

saturation $+50 \%$

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Saturation Adjustment

original

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Saturation Adjustment

saturation-50\%

The r, g, \& b histograms approach the value histogram as the color fades to grayscale.

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

original

Original Dave \& IA Image
${ }^{10000} \square \quad \begin{aligned} & \mathrm{B} \rightarrow \mathrm{B} \\ & \mathrm{M} \rightarrow \mathrm{M}\end{aligned}$
$8000-\square$

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

The effects of a hue shift are nonlinear. They difficult to characterize on the $r, g, \& b$ histograms

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Hue Shifting

... and the shift is circular since the hue is a circular function - it is defined on a circle.

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Hue Shifting

Linear Transformation of Color

EECE 4353 Image Processing

Vanderbilt University School of Engineering

EECE 4353 Image Processing

Color Correction via Linear Transformation

 is a point process; the transformation is applied to each pixel as a function of its color alone.$$
\mathbf{J}(r, c)=\Phi[\mathbf{I}(r, c)], \quad \forall(r, c) \in \operatorname{supp}(\mathbf{I}) .
$$

Each pixel is vector valued, therefore the transformation is a vector space operator.

$$
\mathbf{I}(r, c)=\left[\begin{array}{l}
\mathbf{R}_{\mathbf{1}}(r, c) \\
\mathbf{G}_{\mathbf{I}}(r, c) \\
\mathbf{B}_{\mathbf{I}}(r, c)
\end{array}\right], \mathbf{J}(r, c)=\left[\begin{array}{l}
\mathbf{R}_{\mathbf{J}}(r, c) \\
\mathbf{G}_{\mathbf{J}}(r, c) \\
\mathbf{B}_{\mathbf{J}}(r, c)
\end{array}\right]=\Phi\{\mathbf{I}(r, c)\}=\Phi\left\{\left[\begin{array}{l}
\mathbf{R}_{\mathbf{1}}(r, c) \\
\mathbf{G}_{\mathbf{I}}(r, c) \\
\mathbf{B}_{\mathbf{I}}(r, c)
\end{array}\right]\right\} .
$$

Color Vector Space Operators

Linear operators are matrix multiplications

$$
\left[\begin{array}{l}
r_{1} \\
g_{1} \\
b_{1}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
r_{0} \\
g_{0} \\
b_{0}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
r_{1} \\
g_{1} \\
b_{1}
\end{array}\right]=255 \cdot\left[\begin{array}{l}
\left(r_{0} / 255\right)^{1 / \gamma_{r}} \\
\left(g_{0} / 255\right)^{1 / /_{g}} \\
\left(b_{0} / 255\right)^{1 / \gamma_{b}}
\end{array}\right]
$$

Example of a nonlinear operator: gamma correction

Linear Transformation of Color

Linear Transformation of Color

$\left[\begin{array}{l}r_{0} \\ g_{1} \\ b_{0}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & g_{1} / g_{0} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}r_{0} \\ g_{0} \\ b_{0}\end{array}\right]$

Linear Transformation of Color

$\left[\begin{array}{c}r_{0} \\ g_{0} \\ b_{1}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b_{1} / b_{0}\end{array}\right]\left[\begin{array}{l}r_{0} \\ g_{0} \\ b_{0}\end{array}\right]$

Linear Transformation of Color

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Transformation

Assume \mathbf{J} is a discolored version of image \mathbf{I} such that $\mathbf{J}=\Phi[\mathbf{I}]$. If Φ is
linear then it is represented by a 3×3
matrix, \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Then $\mathbf{J}=\mathbf{A I}$ or, more accurately,
$\mathbf{J}(r, c)=\mathbf{A} \mathbf{I}(r, c)$ for all pixel locations
(r, c) in image $\mathbf{I} . \mathbf{I}(r, c) \in \mathbb{Z}^{3}$.

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Color Transformation

Each color in the output vector is a linear combination of the colors in the input vector.

If at pixel location (r, c),
$\operatorname{image} \mathbf{I}(r, c)=\left[\begin{array}{l}\rho_{\mathrm{I}} \\ \gamma_{\mathrm{I}} \\ \beta_{\mathrm{I}}\end{array}\right]$ and
$\operatorname{image} \mathbf{J}(r, c)=\left[\begin{array}{l}\rho_{\mathbf{J}} \\ \gamma_{\mathbf{J}} \\ \beta_{\mathbf{J}}\end{array}\right]$,
then $\mathbf{J}(r, c)=\mathbf{A}(r, c)$, or

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
\rho_{\mathbf{J}} \\
\gamma_{\mathbf{J}} \\
\beta_{\mathbf{J}}
\end{array}\right]} & =\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
\rho_{\mathbf{I}} \\
\gamma_{\mathbf{I}} \\
\beta_{\mathbf{I}}
\end{array}\right] \\
& =\left[\begin{array}{llll}
a_{11} \rho_{\mathbf{I}} & + & a_{12} \gamma_{\mathbf{I}} & + \\
a_{21} \rho_{\mathbf{I}} & + & a_{22} \gamma_{\mathbf{I}} & + \\
a_{31} \rho_{\mathbf{I}} & + & a_{32} \beta_{\mathbf{I}} & +
\end{array} a_{33} \beta_{\mathbf{I}}\right.
\end{array}\right] .
$$

EECE 4353 Image Processing

Color Transformation

The inverse transform Φ^{-1} (if it exists) maps the discolored image, \mathbf{J}, back into the correctly colored version, \mathbf{I}, i.e., $\mathbf{I}=\Phi^{-1}[\mathbf{J}]$. If Φ is linear then it is represented by the inverse of matrix \mathbf{A} :

$$
\begin{aligned}
\mathbf{A}^{-1}= & {\left[\begin{array}{ll}
a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}+ & \\
\text { A }^{-1} \text { may or } \\
\left.a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}\right]^{-1} & \\
& {\left[\begin{array}{lll}
a_{22} a_{33}-a_{23} a_{32} & a_{13} a_{32}-a_{12} a_{33} & a_{12} a_{23}-a_{13} a_{22} \\
a_{23} a_{31}-a_{21} a_{33} & a_{11} a_{33}-a_{13} a_{31} & a_{13} a_{21}-a_{11} a_{23} \\
a_{21} a_{32}-a_{22} a_{31} & a_{12} a_{31}-a_{11} a_{32} & a_{11} a_{22}-a_{12} a_{21}
\end{array}\right] .}
\end{array} .\right.}
\end{aligned}
$$

EECE 4353 Image Processing

Color Correction

Assume we know n colors in the discolored image, \mathbf{J}, that correspond to another set of n colors (that we also know) in the original image, \mathbf{I}.
$\left\{\left[\begin{array}{c}\rho_{\mathbf{J}, k} \\ \gamma_{\mathbf{J}, k} \\ \beta_{\mathbf{J}, k}\end{array}\right]\right\}_{k=1}^{n}$
known
wrong
colors

$$
\left[\begin{array}{c}
\rho_{\mathbf{J}, k} \\
\gamma_{\mathbf{J}, k} \\
\beta_{\mathbf{J}, k}
\end{array}\right] \leftrightarrow\left[\begin{array}{c}
\rho_{\mathbf{I}, k} \\
\gamma_{\mathbf{I}, k} \\
\beta_{\mathbf{I}, k}
\end{array}\right]
$$

for $k=1, \ldots, n$.
known
correspondence

known correct \dagger colors

Color Correction

To remap the discolored image so that the result matches the original image in a linearly optimal way, we need to find the matrix, \mathbf{A}, that minimizes

$$
\varepsilon^{2}=\sum_{k=1}^{n}\left\|\left[\begin{array}{c}
\rho_{\mathbf{I}, k} \\
\gamma_{\mathbf{I}, k} \\
\beta_{\mathbf{I}, k}
\end{array}\right]-\mathbf{A}^{-1}\left[\begin{array}{c}
\rho_{\mathbf{J}, k} \\
\gamma_{\mathbf{J}, k} \\
\beta_{\mathbf{J}, k}
\end{array}\right]\right\|^{2}
$$

EECE 4353 Image Processing

Color Correction

To find the solution of this problem, let

$$
\mathbf{Y}=\left[\left[\begin{array}{l}
\rho_{\mathbf{I}, 1} \\
\gamma_{\mathbf{1}, 1} \\
\beta_{\mathbf{I}, 1}
\end{array}\right] \cdots\left[\begin{array}{c}
\rho_{\mathbf{I}, n} \\
\gamma_{\mathbf{1}, n} \\
\beta_{\mathbf{I}, n}
\end{array}\right]\right] \text {, and } \mathbf{X}=\left[\left[\begin{array}{c}
\rho_{\mathbf{J}, 1} \\
\gamma_{\mathbf{J}, 1} \\
\beta_{\mathbf{J}, 1}
\end{array}\right] \ldots\left[\begin{array}{c}
\rho_{\mathbf{J}, n} \\
\gamma_{\mathbf{J}, n} \\
\beta_{\mathbf{J}, n}
\end{array}\right]\right] \text {. }
$$

Then \mathbf{X} and \mathbf{Y} are known $3 \times n$ matrices such that

$$
\mathbf{Y} \approx \mathbf{A}^{-1} \mathbf{X}
$$

where \mathbf{A} is the 3×3 matrix that we want to find.

EECE 4353 Image Processing

Color Correction

The linearly optimal solution is the least mean squared solution that is given by

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}
$$

where $\mathbf{X}^{\top}{ }_{n \times 3}$ represents the transpose of matrix $\mathbf{X}_{3 \times n}$.

Notes: 1. n, the number of color pairs, must be ≥ 3,
2. $\left[\mathbf{X X}^{\top}\right]_{3 \times 3}$ must be invertible, i.e., $\operatorname{rank}\left(\mathbf{X X}^{\top}\right)=3$,
3. If $n=3$, then $\mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}=\mathbf{X}^{-1}$. important

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Color Correction

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
$$

2. $\left[\mathbf{X X}^{\top}\right]_{3 \times 3}$ must be invertible, i.e., $\operatorname{rank}\left(\mathbf{X X}^{\top}\right)=3$,
3. If $n=3$, then $\mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}=\mathbf{X}^{-1}$.

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Color Correction

The linearly optimal soluti solution that is given by

2. $\left[\mathbf{X X}^{\top}\right]_{3 \times 3}$ must be invertible, i.e., $\operatorname{rank}\left(\mathbf{X X}^{\top}\right)=3$,
3. If $n=3$, then $\mathbf{X}^{\top}\left(\mathbf{X X}^{\top}\right)^{-1}=\mathbf{X}^{-1}$.

EECE 4353 Image Processing

Color Correction

Then the image is color corrected by performing

$$
\mathbf{I}(r, c)=\mathbf{B} \mathbf{J}(r, c), \text { for all }(r, c) \in \operatorname{supp}(\mathbf{J}) .
$$

In MatLab this is easily performed by
>> I = reshape(((B*(reshape(double(J), R*C,3))')'),R,C,3);
>> m = min(I(:));
>> M = max(I(:));
>> $I=$ uint8(255*(I-m)/(M-m));
where $\mathbf{B}=\mathbf{A}^{-1}$ is computed directly through the LMS formula on the previous page, and $R \& C$ are the number of rows and columns in the image.

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Color Correction

Then the image is color corrected bv performing The first reshape must be as $R^{*} C$ rows by 3 columns. Then it

$$
\left.\mathbf{I}(r, c)=\mathbf{B} \mathbf{J}(r, c) \begin{array}{l}
\text { must be transposed to be } \\
\text { premultiplied by B. If you }
\end{array}\right) \text {. }
$$

In Matlab this is easil reshape it directly into a 3 by
$R^{\star} C$ matrix, it will not work.
>> I = reshape((($\left.\left.\left.B^{*}\left(r e s h a p e\left(d o u b l e(J), R^{*} C, 3\right)\right)^{\prime}\right) '\right), R, C, 3\right) ;$
>> m = min(I(:));
>> M = max(I(:));
After the matrix multiply is
>> $\mathrm{I}=$ uint8($255^{*}(\mathrm{I}-\mathrm{m}) /\left(\mathrm{M}\right.$ - done, the result must be tres again to $\mathrm{R}^{\star} C$ rows
by 3 columns. Then it can be
where $\mathbf{B}=\mathbf{A}^{-1}$ is computed dir reshaped to R by C by 3 . mula on the previous page, and $R \& C$ are the number of rows and columns in the image.

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Color Correction

Then the image is color corrected by performing

$$
\mathbf{I}(r, c)=\mathbf{B} \mathbf{J}(r, c), \text { for all }(r, c) \in \operatorname{supp}(\mathbf{J}) .
$$

In MatLab this is easily performed by

```
>> I = reshape(((B*(reshape(double(J), R*C,3))')'),R,C,3);
>> m = min(I(:));
>> M = max(I(:));
>> I = uint8(255*(I-m)/(M-m));
```

Depending on the image, you
might get better results if you ted directly through the LMS formula directly convert I to uint8 rather than scaling it first. Try nd $R \& C$ are the number of rows and both, and select the version that looks best.

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Linear Color Correction

NASA Summer Faculty Fellows at Ellington Air Force Base, Houston, TX, July 2002. Airplane is a T-38.

Original Image

"Aged" Image

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Mapping 1

Original Image
"Aged" Image

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Mapping 2

Original Image
"Aged" Image

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Mapping 3

Original Image
"Aged" Image

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Mapping 4

Original Image
"Aged" Image

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Transformations

The aging process was a transformation, Φ, that mapped:

$$
\left[\begin{array}{c}
17 \\
122 \\
114
\end{array}\right]=\Phi\left\{\left[\begin{array}{c}
17 \\
121 \\
171
\end{array}\right]\right\}\left[\begin{array}{c}
222 \\
222 \\
185
\end{array}\right]=\Phi\left\{\left[\begin{array}{c}
222 \\
222 \\
218
\end{array}\right]\right\}\left[\begin{array}{c}
240 \\
171 \\
103
\end{array}\right]=\Phi\left\{\left[\begin{array}{c}
240 \\
171 \\
160
\end{array}\right]\right\}=\left[\begin{array}{l}
236 \\
227 \\
106
\end{array}\right]=\Phi\left\{\left[\begin{array}{l}
240 \\
230 \\
166
\end{array}\right]\right\}
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Color Transformations

To undo the process we need to find, Φ^{-1}, that maps:

$$
\left[\begin{array}{c}
17 \\
121 \\
171
\end{array}\right]=\Phi^{-1}\left\{\left[\begin{array}{c}
17 \\
122 \\
114
\end{array}\right]\right\} \quad\left[\begin{array}{l}
222 \\
222 \\
218
\end{array}\right]=\Phi^{-1}\left\{\left[\begin{array}{l}
222 \\
222 \\
185
\end{array}\right]\right\} \quad\left[\begin{array}{l}
240 \\
171 \\
160
\end{array}\right]=\Phi^{-1}\left\{\left[\begin{array}{l}
240 \\
171 \\
103
\end{array}\right]\right\} \quad\left[\begin{array}{l}
240 \\
230 \\
166
\end{array}\right]=\Phi^{-1}\left\{\left[\begin{array}{l}
236 \\
227 \\
106
\end{array}\right]\right\}
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Correction Using 3 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{-1}
$$

$$
\mathbf{X}=\left[\begin{array}{ccc}
222 & 17 & 240 \\
222 & 122 & 171 \\
185 & 114 & 103
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{ccc}
222 & 17 & 240 \\
222 & 121 & 171 \\
218 & 171 & 160
\end{array}\right]
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Correction Using 3 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{-1}
$$

$$
\mathbf{X}=\left[\begin{array}{ccc}
222 & 17 & 240 \\
222 & 122 & 171 \\
185 & 114 & 103
\end{array}\right]
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Another Correction Using 3 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{-1}
$$

$$
\mathbf{X}=\left[\begin{array}{ccc}
222 & 17 & 236 \\
222 & 122 & 227 \\
185 & 114 & 106
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{ccc}
222 & 17 & 240 \\
222 & 121 & 230 \\
218 & 171 & 166
\end{array}\right]
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Another Correction Using 3 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{-1}
$$

$$
\mathbf{X}=\left[\begin{array}{ccc}
222 & 17 & 236 \\
222 & 122 & 227 \\
185 & 114 & 106
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{ccc}
222 & 17 & 240 \\
222 & 121 & 230 \\
218 & 171 & 166
\end{array}\right]
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Correction Using All 4 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
$$

$$
\mathbf{X}=\left[\begin{array}{cccc}
222 & 17 & 236 & 240 \\
222 & 122 & 227 & 171 \\
185 & 114 & 106 & 103
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{cccc}
222 & 17 & 240 & 240 \\
222 & 121 & 230 & 171 \\
218 & 171 & 166 & 160
\end{array}\right]
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Correction Using All 4 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
$$

original
corrected

$$
\mathbf{X}=\left[\begin{array}{cccc}
222 & 17 & 236 & 240 \\
222 & 122 & 227 & 171 \\
185 & 114 & 106 & 103
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{cccc}
222 & 17 & 240 & 240 \\
222 & 121 & 230 & 171 \\
218 & 171 & 166 & 160
\end{array}\right]
$$

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Random Sampling of Color Values

$$
\begin{aligned}
& \text { >> rr = round(R*rand([1 n])); } \\
& \text { >> rc = round(C*rand([1 n])); } \\
& \text { >> idx = [rr;rc]; } \\
& \text { >> } Y(:, 1)=\operatorname{diag}(I(r r, r c, 1)) \text {; } \\
& \text { >> } Y(:, 2)=\operatorname{diag}(I(r r, r c, 2)) \text {; } \\
& \text { >> } Y(:, 3)=\operatorname{diag}(I(r r, r c, 3)) \text {; } \\
& \text { >> } X(:, 1)=\operatorname{diag}(J(r r, r c, 1)) \text {; } \\
& \gg X(:, 2)=\operatorname{diag}(J(r r, r c, 2)) \text {; } \\
& \text { >> } X(:, 3)=\operatorname{diag}(J(r r, r c, 3)) \text {; }
\end{aligned}
$$

$R=$ number of rows in image
$C=$ number of columns in image
$n=$ number of pixels to select
$\operatorname{rand}([1 n]): 1 \times n$ matrix
of random numbers between 0 and 1.
$\operatorname{diag}(I(r r, r c, 1)):$ vector from main diagonal of matrix I(rr,rc,1).

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Correction Using 128 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
$$

$$
\mathbf{X}=\left[\begin{array}{ccc}
111 & & 235 \\
103 & \cdots & 233 \\
22 & & 210
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{ccc}
111 & & 234 \\
102 & \cdots & 233 \\
71 & & 229
\end{array}\right]
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Correction Using 128 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
$$

EECE 4353 Image Processing
Vanderbilt University School of Engineering

Correction Using 128 Mappings

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
$$

original

$$
\mathbf{X}=\left[\begin{array}{ccc}
111 & & 235 \\
103 & \cdots & 233 \\
22 & & 210
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{ccc}
111 & & 234 \\
102 & \cdots & 233 \\
71 & & 229
\end{array}\right]
$$

EECE 4353 Image Processing

Vanderbilt University School of Engineering

Correction Using 4 Mappings

original

$$
\mathbf{B}=\mathbf{A}^{-1}=\mathbf{Y} \mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1}
$$

$$
\mathbf{X}=\left[\begin{array}{cccc}
222 & 17 & 236 & 240 \\
222 & 122 & 227 & 171 \\
185 & 114 & 106 & 103
\end{array}\right]
$$

$$
\mathbf{Y}=\left[\begin{array}{cccc}
222 & 17 & 240 & 240 \\
222 & 121 & 230 & 171 \\
218 & 171 & 166 & 160
\end{array}\right]
$$

EECE 4353 Image Processing

Matlab Linear Color Transformation Function

```
function J = LinTrans(I,B)
    [R C D] = size(I);
    if D ~= 3
    error('Image must have 3 bands');
    end
    I = double(I);
    J = reshape(((B*(reshape(I,R*C,3))')'),R,C,3);
```

end;

This function returns an image of class double. To get a good uint8 you may have to linearly scale the result as shown on slide 55 . Or not.

[^0]: Reference: HSL and HSV - Wikipedia, the free encyclopedia

[^1]: Reference: HSL and HSV - Wikipedia, the free encyclopedia

