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Lab 8 – Introduction to the PIC Microcontroller 

 
1.  Objective 
 
In this lab, you will learn about how to use your PIC Microcontroller.  This lab is the first 
lab for the digital component of the EE100 project.  The goal of the project is to simply 
display the strain gauge measurement from your Strain Gauge lab on the LCD display on 
your PICDEM 2 Plus demo board. 
 
2.  Equipment 

a. Breadboard 
b. Wire cutters 
c. Wires 
d. Oscilloscope 
e. Function Generator 
f.  Power supply 
g. PICDEM 2 Plus demo board 
h. MPLAB ICD 2 (Incircuit Debugger) 
i.  MPLAB IDE installed on lab computer1 
j.  Various connectors for power supply, function generator and oscilloscope. 
 

3.  Theory 
 
a.  Introduction to microcontrollers [1] 
 
You have all heard of the Intel and AMD microprocessors.  These little devices are the 
brains of your computers.  However, there is another very important CPU (Central 
Processing Unit) in the digital world: the microcontroller. 
 
Microcontroller differs from a microprocessor in many ways. First and the most 
important is functionality. In order for a microprocessor to be used, other components 
such as memory, or components for receiving and sending data must be added to it.  On 
the other hand, microcontroller is designed with most of the components above built-in.  
Very few external components are needed for its application.  Thus, we save the time and 
space needed to construct devices. 
 
You will learn in lecture how digital electronics and systems are a beautiful abstraction of 
the analog world.  You will also learn how you can construct computational circuits and 
memory units using digital electronics2.  In lab, you will learn how to use a very popular 
microcontroller – the PIC from Microchip corporation. 
  

                                                 
1 Note:  The microcontroller programming tools are installed in 140 Cory ONLY for ease of maintenance 
2 EE100 Summer 2007 lectures at the University of California, Berkeley 
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Be advised that we will view the microcontroller from a very high level perspective.  
That is, we will not go into the nitty-gritty details of designing microcontrollers because 
it is beyond the scope of this lab.  However, the aim of this lab (and the project) is to give 
you a working idea behind PIC microcontrollers so that you may build useful circuits and 
continue to explore the microcontroller world on your own.  We will explore the most 
important components of the microcontroller unit in this section.   
 
i. The CPU 
 
You will see how memory can be understood using the concept of digital feedback in the 
EE100 Summer 2007 lectures.  For now, an abstract view of memory will suffice, refer to 
Figure 1. 
 

 
 

Figure 1.  Simplified view of a memory unit 
 
You will also see how you can build simple circuits that add, subtract and compare:  the 
Arithmetic Logic Unit (ALU).  The CPU simply consists of the ALU along with 
internal memory locations called registers, refer to figure 2. 
 

 
 

Figure 2.  A simplified CPU 
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ii. The Bus 
 
We now have two independent entities (memory and CPU).  Thus any exchange of data 
is hindered, as well as its functionality. If, for example, we wish to add the contents of 
two memory locations and return the result again back to memory, we would need a 
connection between memory and CPU. Simply stated, we must have some "way" through 
data goes from one block to another.  Enter the concept of a bus. 
 
Physically, a bus represents a group of 8, 16, or more wires. 
There are two types of buses: address and data bus. The first one consists of as many 
lines as the amount of memory we wish to address and the other one is as wide as data, in 
our case 8 bits or the connection line. First one serves to transmit address from CPU 
memory, and the second to connect all blocks inside the microcontroller.  Figure 3 shows 
the new situation. 
 

 
 

Figure 3.  Connecting memory and CPU using instruction and data bus 
 
iii. Input Output unit 
 
As far as functionality, the situation has improved.  But a new problem has appeared: we 
have a unit that is capable of working by itself, but it does not have any contact with the 
outside world! In order to remove this deficiency, let's add a block which contains several 
memory locations.  One end of this block is connected to the data bus and the other has 
connection with the output lines on the microcontroller.  These output lines can be seen 
outside the microcontroller as output pins (just like the output pin of your op-amp).  Refer 
to figure 4. 
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Figure 4.  Example of a simplified input-output (I/O) unit that provides communication with the real-world 
 
A pin on the microcontroller chip that lets you talk to the outside world is called as a 
port.  There are several types of ports – input, output or bidirectional (input and output).  
When working with ports, it is necessary to choose which port we need to work with and 
then send data to or receive data from the port.  Notice also from figure 4 that working 
with a port is like reading and writing to a memory location.  This is accomplished using 
registers.  A register is a memory location mapped to a port.  When you write to or read 
from the register, you are reading or writing from the corresponding port. 
 
iv. Serial communication 
 
We can now communicate with the outside world, but what if we wanted to communicate 
kilobytes of data? Lets make a quick calculation on how many lines we would need.  1 
kilobyte = 1024 bytes.  1 byte = 8 bits.  Thus, we would need:  1024 bytes x 8 bits/byte = 
8192 bits.  If a port carries 1-bit of data, then we would need 8192 ports or 8192 pins!  
What if we wanted to carry a megabyte (1024 kilobytes) of data?  You would need 
8,388,608 lines!  Thus it is obvious that if you want to communicate large amounts of 
data with the outside world, a port is very inefficient.  Ports are useful only for carry a bit 
of data. 
 
In order to overcome this problem, we have to come up with a way to reduce the number 
of lines and not lose functionality. Suppose we are working with three lines only and one 
line is used for sending data, other for receiving, and the third is used as a reference line 
for both the input and the output. In order for this to work, we need to set a few rules for 
the exchange of data. These rules are called protocols.  
 
Let us suppose we have the following protocol: The logical unit "1" is set up on the 
transmitting line until transfer begins. Once the transfer starts, we lower the transmission 
line to logical "0" for a period of time (which we will designate as T), so the receiving 
side will know that it is receiving data.  Hence, the receiving side will activate its 
mechanism for reception.  
 
Now the transmitting side can start sending binary data.  Let each bit stay on the line for a 
time period which is equal to T.  In the end (after transmitting all the data) let us bring the 
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logical unit "1" back on the line.  The protocol we've just described is called in 
professional literature: NRZ (Non-Return to Zero).  Figure 5 illustrates this concept.  
Figure 6 shows a block diagram of the serial communication unit. 
 

 
Figure 5.  NRZ protocol.  Notice that there is a clock which tells us how long a logic 1 and logic 0 are.  We 

will discuss clocks in the next section 
 

 
 

Figure 6.  The Serial communication unit.   
 
v. Timer unit 
 
We have seen in the previous section that we need a clock signal as a reference.  You 
have seen how you can generate a square wave using a simple op-amp circuit.  Figure 7 
shows the capacitive square wave oscillator you are already familiar with. 
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Figure 7.  Square-wave generator.  Output Vo will oscillate between Vpp and Vnn. 
 
However, there are more efficient methods to generate oscillators.  We will not go into 
these techniques.  It is sufficient to understand that the basic unit of the timer block is a 
free running counter whose numeric value increments by one in even intervals.  
Therefore, if we read the value of this counter at T1 and then read it again at T2, the 
difference would indicate how much time has elapsed.   
 
vi. Watchdog Timer 
 
Unlike a regular PC, your microcontroller will be functioning in time critical applications 
(like aircraft control) and/or in remote in-accessible areas (like seismic sensors).  Hence, 
if your microcontroller crashes then there is probably no one to push the reset button 
(unlike a PC).   
 
To overcome this obstacle, designers introduced the concept of a “Watchdog Timer”.  
This block is in fact another free-run counter where our program will write a zero every 
time it executes correctly. If the program gets "stuck" due to some external condition, 
zero will not be written and the Watchdog timer will reset the microcontroller upon 
achieving its maximum value. This will result in executing the program again, and 
correctly this time around. The Watchdog timer is thus an important element of every 
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microcontroller.  It helps the system recover from errors without human supervision.  
Notice that the Watchdog timer is NOT a substitute for correct program functionality.  It 
is assumed that the program is functioning correctly.  Figure 8 shows a block diagram of 
the Watchdog timer. 
 

 
 

Figure 8.  The Watchdog timer 
 
vii. Analog to Digital (A/D) converter 
 
As external signals are usually substantially different from the ones that microcontroller 
can understand (zero and one), they have to be converted into a pattern which can be 
comprehended by a microcontroller. This task is performed by a block for analog to 
digital conversion or by an ADC.  Figure 9 shows a block diagram of the A/D. 
 

 
 

Figure 9.  Block diagram of the A/D 
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viii. The Microcontroller Block Diagram 
 
Now we are ready to assemble our microcontroller based on the building blocks 
discussed above.  Refer to figure 10. 
 

 
 

Figure 10.  Microcontroller block diagram 
 
ix. Programming a Microcontroller 
 
Now that we have the hardware in place, we need to program the microcontroller to 
accomplish a task.  First, we will write a simple program in pseudo-code.  By pseudo-
code we mean this program is not written using any programming language (like C).  
Refer to the code below. 
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START 
REGISTER 1 = MEMORY LOCATION A 
REGISTER 2 = MEMORY LOCATION B 
PORT A = REGISTER 1 + REGISTER 2  
END 
 
The program above simply adds two memory locations and puts their sum on port A.  
The first line of the program moves the contents of memory location A into a CPU 
register.  As we need the other data as well, we will move it into register 2.  The next 
instruction tells the CPU to add the contents of those registers and send it to port A, so 
the sum would be visible to the outside world. 
 
Of course we program in the real world using languages like “C”.  However, 
programming a microcontroller is more complex than programming on the PC.  This is 
because of the fundamental issue in microcontroller programming:  you are writing a 
program that is going to run on a completely different system.  This process is called 
cross-compiling.  Hence you need sophisticated tools (hardware and software) to help 
you program a microcontroller.  In the next section, we will deal with the hardware – the 
PICDEM 2 Plus development board.   
 
b. The PICDEM 2 Plus development board [2] 
 
In this section, we will give an overview of the PICDEM 2 plus development board, 
shown in figure 11. 
 

 
 

Figure 11.  The PICDEM 2 plus development board (PICDEM 2 plus demo board). 
 
This board has at its core a P18F4520 microcontroller.  The board also has a host of other 
peripherals to ease interfacing to the microcontroller and programming the 
microcontroller.  The most important of these are covered below. 
 
i. Board Hardware Features ([2], p. 10) 
 
The PICDEM 2 plus development board has the following hardware features (refer to 
figure 12): 
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1. 18, 28 and 40-pin DIP sockets.  Although three sockets are provided, only one device 
may be used at a time.  In your case you have a PIC18F4520 in the 40-pin DIP socket. 
2. On-board +5V regulator for direct input from 9V, 100 mA AC/DC wall adapter or 9V 
battery, or hooks for a +5V, 100 mA regulated DC supply. 
3. Serial (RS-232) socket and associated hardware for direct connection to an RS-232 
interface. 
4. In-Circuit Debugger (ICD) connector. 
5. 5 KΩ potentiometer for devices with analog inputs. 
6. Three push button switches for external stimulus and Reset. 
7. Power-on indicator LED. 
8. Four LEDs connected to PORTB. 
9. Jumper J6 to disconnect LEDs from PORTB. 
10. 4 MHz canned crystal oscillator. 
11. Unpopulated holes provided for crystal connection. 
12. 32.768 kHz crystal for Timer1 clock operation. 
13. Jumper J7 to disconnect on-board RC oscillator (approximately 2 MHz). 
14. 32K x 8 Serial EEPROM. 
15. LCD display. 
16. Piezo buzzer. 
17. Prototype area for user hardware. 
18. Microchip TC74 thermal sensor. 
 

 
 

Figure 12.  PICDEM 2 Plus hardware 
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You should relate the board components above to the high-level microcontroller blocks 
you learned about in section (a).  For example, the serial hardware on the board helps a 
computer interface to the microcontroller’s serial unit.  For a detailed description of the 
board hardware, refer to pp. 15 and 16 in [2]. 
 
Now that you have an idea of the hardware platform, it is time to play with the actual 
board. 
 
c.  Introduction to MPLAB IDE and  MPLAB C18 C Compiler 
 
In this section, you download the digital code to your microcontroller board.  You will 
use the ICD2 (In-Circuit Debugger) module to do so.  Note that since you do not cover 
digital systems etc. in great detail, we have designed all the code for you.  The digital 
portion of your project simply requires you to change a few bits to instruct the 
microcontroller to read from a different A/D – the goal of the final lab.  For now, you will 
just “burn” the code onto the PIC: 
 

1. Download the StrainGauge project folder from the EE100 labs homepage.  Save 
this to your U: (network) drive.  DO NOT SAVE THIS ONTO YOUR 
DESKTOP.  FILES SAVED ONTO YOUR DESKTOP ARE 
AUTOMATICALLY DELETED WHEN YOU LOG OFF!! 

2. Navigate to your folder and double-click on icon.  A 
window similar to figure 13 will pop up. 

 

 
Figure 13.  MPLAB IDE has opened your Strain Gauge project 
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3. Now, double click on main.c in the StrainGaugeInterface.mcw window.  The 
main program should pop up.  Look through it.  Find the line that displays 
VOLTMETER.  Replace VOLTMETER with EE100 ROCKS! 

4. You should debug the program before downloading it to the board.  To do this:  
Click on Debugger→Select Tool.  Make sure MPLAB ICD 2 is selected.  Refer to 
figure 14. 

 

 
 

Figure 14.  Make sure MPLAB ICD 2 is selected as the debugger 
 
5. The debugger should ask you to download an operating system to the board.  

Defaults are OK for everything.  Before you connect to the board, MAKE SURE 
THE BOARD IS POWERED ON AND CONNECTED TO THE ICD2 
DEBUGGER.  MAKE SURE THE DEBUGGER IS CONNECTED TO THE 
COMPUTER (check with a TA).  Next, connect to the board:  
Debugger→Connect.   

6. Build your program.  Select Project→Build All 
7. Program the board with your code:  Debugger→Program. 
8. Run the program: Debugger→Run. 
9. If all goes well you should see the LCD screen display “EE100 ROCKS!” and a 

voltage reading on the second line.  Use the pot (RA0) on the PICDEM 2 plus 
board to adjust the voltage value (from 0.00 to 5.01 V). 
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10. If you are satisfied that your program is working, you can “permanently” 
download code to EEPROM3.  First, halt debug mode:  Debugger→Halt. 

11. Select Debugger→Select Tool→None.  You cannot use the programmer and the 
debugger at the same time. 

12. You pretty much repeat the same process for programming as debugging:  Select 
Programmer→Select Tool→MPLAB ICD 2. 

13. Select Programmer→Connect 
14. Select Programmer→Program 
15. Select Programmer→Release from Reset. 
16. Power off the board and power-on again.  Your code will start running again. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
3 EEPROM:  Electrically Erasable Programmable Read Only Memory 
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4.  PRELAB              NAME:__________________________________/SECTION____ 
 
Please turn in INDIVIDUAL COPIES of the prelab.  They are due 10 MINUTES after 
start of lab, NO EXCEPTIONS! 
 
a. TASK 1: THOROUGHLY READ THIS DOCUMENT!  
(YES, THIS PRELAB IS A GIMME) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PRELAB COMPLETE: _________________________________ (TA CHECKOFF) 
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5.  REPORT        NAME(S):__________________________________/SECTION____ 
 
a. TASK 1:  PICDEM 2 Plus LCD displays EE100 ROCKS!     TA Checkoff:_______ 
 
b. TASK 2:  Program still functional after power cycle. TA Checkoff:_______ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TURN IN ONE REPORT PER GROUP AT THE END OF YOUR LAB SESSION.  
THERE IS NO TAKE HOME REPORT. 
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