

University of California
College of Engineering
Department of Electrical Engineering and Computer Sciences
E. Alon

Thursday, November 4, 2010
6:30-8:00pm

EECS 141: FALL 2010—MIDTERM 2

For all problems, you can assume that all transistors have a channel length of 100 nm and the following parameters (unless otherwise mentioned):

NMOS:
$V_{T n}=0.3 \mathrm{~V}, \mu_{\mathrm{n}}=400 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{oxn}}=1 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$
PMOS:
$\left|V_{T p}\right|=0.3 \mathrm{~V}, \mu_{\mathrm{p}}=200 \mathrm{~cm}^{2} /(\mathrm{V} \cdot \mathrm{s}), \mathrm{C}_{\mathrm{oxp}}=0.75 \mu \mathrm{~F} / \mathrm{cm}^{2}, v_{\mathrm{sat}}=1 \mathrm{e} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$

NAME	Last Solutions	First

GRAD/UNDERGRAD	

Problem 1: \qquad / 24

Problem 2: \qquad / 18

Problem 3: \qquad / 24

Total: \qquad / 66

PROBLEM 1. (24 pts) Wires, Delay, and Rationed Logic
For this problem, you should assume that all of the transistors are minimum channel length $(\mathrm{L}=0.1 \mu \mathrm{~m})$ and have the following characteristics: $\mathrm{C}_{\mathrm{G}}=\mathrm{C}_{\mathrm{D}}=2 \mathrm{fF} / \mu \mathrm{m}$ and $\mathrm{R}_{\text {sqn }}=$ $\mathrm{R}_{\mathrm{sqp}} / 2=10 \mathrm{k}^{\prime} \Omega / \square$. For the wires, you should assume that $\mathrm{C}_{\mathrm{wpp}}=0.05 \mathrm{fF} / \mu \mathrm{m}^{2}, \mathrm{C}_{\text {wfringe }}=$ $0.075 \mathrm{fF} / \mu \mathrm{m} /$ edge, and $\mathrm{R}_{\text {sqw }}=0.1$ ' Ω / \square

a) ($6 \mathbf{p t s}$) For the circuit shown above, size the PMOS pull-up transistor (ie., choose W_{p}) so that the pull-up resistance of the gate is equal to 4 times the worst-case pull-down resistance.
Pull-dw. R:

$$
\begin{aligned}
& R_{N}=R_{s q n} \cdot \frac{L}{W}=10 \mathrm{k} \Omega / D \cdot \frac{0.1 \mu m}{5 \mu m}=200 \Omega \\
& R_{w}=R_{s q w} \cdot \frac{L}{W}=0.1 \Omega / D \cdot \frac{200 \mu m}{0.2 \mu m}=100 \Omega
\end{aligned}
$$

$$
R_{p l}=R_{w}+2 R_{w}=400 \Omega
$$

$$
R_{p u}=4 R_{p l}=1.6 \mathrm{k} \Omega
$$

$$
\longrightarrow 1.6 k \Omega=R_{s q} \cdot \frac{L}{W}
$$

$$
W=1.25 \mu \mathrm{~m}
$$

b) (10 pts) Assuming that you found that $W_{p}=1.25 \mathrm{um}$ in order for the pull-up resistance to be 4 times larger than the worst-case pull-down resistance (as shown above - note that this may or may not be the right answer to part a)), what is the worst-case ramp delay of the circuit?

Since wive sized $R_{p u}$ to be $4 R_{p d}$, worst cause delay will actually be ow output rising transition leven despite drive fight).

RC model:

$R_{p u}=1.6 \mathrm{k} \Omega$
$C_{D P}=2 \mathrm{fF} / \mu \mathrm{m} \cdot 1.25 \mu \mathrm{~m}=2.5 \mathrm{fF}$
$C_{D N}=2 \mathrm{ff} / \mu \mathrm{m} \cdot 5 \mu \mathrm{~m}=10 \mathrm{ff}$
$t_{p}=R_{p u} \cdot\left(C_{D P}+2 C_{D w}+2 C_{w}\right)$
$=1.6 k \Omega(2.5 \mathrm{fF}+2 u \mathrm{fF}+64 \mathrm{ff})$
$t_{p}=138.4 \mathrm{ss}$

c) (8 pts) Assuming that every time you add another input to the circuit an additional 200um of wire is added as well (as shown above for 3 inputs), and that the pull-up transistor is always resized to make its resistance 4 times that of the worst-case pull-down resistance, what is the worst-case ramp delay of the circuit as a function of the number of inputs $\left(\mathrm{N}_{\mathrm{in}}\right)$?
Bused as previous result: $t_{p}=R_{P M} \cdot C_{D P}+R_{p u} \cdot N_{\text {ru }}\left(C_{\text {ont }}+(w)\right.$
$R_{p u} \cdot$ Cop is fixed and equal to $20 \mathrm{k} \Omega \cdot 0.1 \mu \mathrm{~m} \cdot 2 \mathrm{ff} / \mu \mathrm{mm}=4 \mathrm{ps}$
So we just ness to work on the second term.

$$
\begin{aligned}
& R_{p u}=4 R_{p d} \quad R_{p d}=R_{N}+N_{1 N} \cdot R_{W} \\
&=200 \Omega+N_{1 N} \cdot 100 \Omega \\
& \rightarrow R_{p u}=400 \Omega\left(2+N_{1 N}\right) \\
& R_{p u} \cdot N_{\text {iN }}\left(C_{\text {ON }}+C_{W}\right)=400 \Omega\left(2+N_{1 N}\right) \cdot N_{N N} \cdot(10 \mathrm{fF}+32 \mathrm{fF}) \\
&=16.8 \mathrm{Ps}\left(2+N_{1 N}\right) \cdot N_{1 N}
\end{aligned}
$$

$$
t_{p}=4 p s+16.8 p s N_{i N}\left(N_{1 N}+2\right)
$$

PROBLEM 2. (18 pts) Scaling and SRAM Design
Unless otherwise specified, you should assume that $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$ and use the velocity saturated model (with the parameters provided on the first page of the exam) throughout this problem.

a) ($6 \mathbf{p t s}$) Assuming that the $\mathrm{I}_{\mathrm{DSAT}}$ of the access transistor must be 1.5 times the $\mathrm{I}_{\mathrm{DSAT}}$ of the pull-up transistor (ie., $\mathrm{I}_{\text {DSAT_ac }}=1.5^{*} \mathrm{I}_{\text {DSAT_pu }}$) in order to ensure sufficient write margin, what should $\mathrm{W}_{\mathrm{pu}} / \mathrm{W}_{\mathrm{ac}}$ be in our 100 nm technology?

$$
\begin{aligned}
& v_{\text {sta }}=V_{\text {sup }}, V_{\text {TN }}=V_{\text {To }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{W_{p u}}{W_{a c}}=\frac{1}{1.5} \cdot \frac{1 \mu F / \mathrm{cn}^{2}}{0.75 \mu \mathrm{~F} / \mathrm{cm}^{2}} \cdot \frac{1.2 V-0.3 V+1 V}{1.2 V-0.3 V+0.5 V} \\
& \frac{w_{p u}}{w_{a c}} \approx 1.21
\end{aligned}
$$

b) ($\mathbf{8} \mathbf{~ p t s}$) If we scale to a 50 nm technology with fixed voltage scaling (ie., V_{DD} and V_{TH} fixed), recalculate the $\mathrm{W}_{\mathrm{ad}} / \mathrm{W}_{\mathrm{pu}}$ required to maintain the same write margin as part a).

$$
\begin{aligned}
& V_{D 0}, V_{T} \text { fired } \\
& \frac{\text { Cur }}{\text { Coup }} \text { also final } \\
& \varepsilon_{\text {iN }} L_{\text {anew }}=\varepsilon_{\text {iN }} L_{\text {nIM }} \cdot \frac{L_{\text {er }}}{L_{\text {Lad }}}=0.25 \mathrm{~V} \\
& \varepsilon_{\text {cplinew }}=0.5 \mathrm{~V} \\
& \frac{W_{p 4}}{W_{\text {ac }}}=\frac{1}{1.5} \cdot \frac{1}{0.75} \cdot \frac{0.9 \mathrm{~V}+0.5 \mathrm{~V}}{0.9 \mathrm{~V}+0.25 \mathrm{~V}} \\
& \frac{W_{p u}}{W_{a c}} \approx 1.08
\end{aligned}
$$

c) (4 pts) Given your answer to part b) and assuming that $W_{p d} / W_{a c}$ is set to 1.5 independent of technology and that the area of the SRAM cell is set by $\mathrm{W}_{\mathrm{ac}} * \mathrm{~L}+\mathrm{W}_{\mathrm{pu}} * \mathrm{~L}+\mathrm{W}_{\mathrm{pd}} * \mathrm{~L}$, how many times reduction in area is achieved by scaling the SRAM cell from the 100 nm technology to the 50 nm technology?

$$
\begin{aligned}
& A_{\text {ven, new }}=(1+1.08+1.5) \cdot W_{\text {acc, } 50 \mathrm{~mm}} \cdot L_{50 \mathrm{~mm}} \\
& \frac{\text { Ares, old }}{\text { Aren,new }}=\frac{1+1.21+1.5}{1+1.08+1.5} \cdot\left(\frac{100 \mathrm{~mm}}{50 \mathrm{Nm}}\right)^{2} \\
& \frac{\text { Ares, ald }}{\text { Ares, wow }} \approx 4.15
\end{aligned}
$$

PROBLEM 3. Power Consumption (24 points)

This problem will deal with the circuit shown below. Unless otherwise specified, throughout this problem you can assume that $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{THN}}=\left|\mathrm{V}_{\mathrm{THP}}\right|=0.3 \mathrm{~V}, \mathrm{C}_{\mathrm{D}}=0$, $\mathrm{C}_{\mathrm{G}}=2 \mathrm{fF} / \mu \mathrm{m}$, and $\mathrm{R}_{\text {sqn }}=2 * \mathrm{R}_{\text {sqq }}$. You can also assume that leakage current is modeled by $(W / L) I_{0} e^{\left(-V_{T H} / 38 m V\right)}$, where $\mathrm{I}_{0, \mathrm{NMOS}}=10 \mu \mathrm{~A}$ and $\mathrm{I}_{0, \mathrm{PMOS}}=5 \mu \mathrm{~A}$.

a) (8 pts) Assuming that the A input is high half of the time, the B input is high $1 / 8$ of the time, and that the circuit runs at a clock frequency of 400 MHz , how dynamic much power is consumed by the circuit shown above? Don't forget to include the power consumed by driving the A and B inputs.

$$
\begin{aligned}
& \text { A input: } P(A=1)=1 / 2 \text {, so } \alpha_{0 \rightarrow 1, A}=1 / 4 \\
& C_{50, A}=1 / 4 \cdot 2 \mathrm{fF} / \mu_{M} \cdot 3 \mu_{m}=1.5 \mathrm{fF} \\
& \text { Inverter dueswt modify action factor, so } \alpha_{0 \rightarrow 1, \bar{A}}=1 / 4 \\
& c_{s w, A}=114 \cdot 2 \mathrm{ff} / \mu \mathrm{m} \cdot 10 \mu \mathrm{~m}=5 \mathrm{ff} \\
& \text { B .rpt: } P(B=1)=1 / 8 \text {, so } \alpha_{0 \rightarrow 1, B}=1 / 8.7 / 8=7 / 64 \\
& C_{s w, B}=7 / 64 \cdot 2 \mathrm{ff} / \mu \mathrm{m} \cdot 10 \mu \mathrm{~m}=2.1875 \mathrm{fF} \\
& \text { Out: } P\left(v_{n} t=1\right)=P(A=0) \cdot P(B=0)=\frac{1}{2} \cdot \frac{7}{8}=\frac{7}{16} \quad \alpha_{v \rightarrow 1,0 u t}=\frac{7}{16} \cdot \frac{9}{16}=\frac{63}{256} \\
& c_{s w, o_{u}}=63 / 256.50 \mathrm{ff} \approx 12.305 \mathrm{ff}
\end{aligned}
$$

$$
\begin{aligned}
& P_{d_{1, ~}, i+t} \approx 12.1 \mu \mathrm{~W}
\end{aligned}
$$

b) ($\mathbf{8} \mathbf{~ p t s}$) Under the same conditions as part a), how much leakage power does the circuit consume?

Inverter: $\frac{I_{u, N}}{I_{U, P}}=\frac{W_{P}}{W_{N}}$, su lealcuge independent of state

$$
\begin{aligned}
& I_{1 k, \sim V}=\frac{1 \mu m}{0.1 \mu m} \cdot I_{\mu} A e^{-3 c u m V / 38 \mathrm{mV}}=37.27 \mathrm{NA} \\
& P_{1 k_{, ~ N V}}=V_{\Delta D} \cdot I_{1 k, 1 \sim v} \approx 44.72 \mathrm{NW}
\end{aligned}
$$

NOR gate:

If $\bar{A}=0, B=0:\left(P(\bar{A}=v) \cdot P(B=0)=\frac{7}{16}\right)$

$$
I_{k, v 0}=2 \cdot \frac{2 \mu \mathrm{~m}}{0.1 \mu \mathrm{~m}} \cdot 10 \mu A \cdot e^{-3 v 0_{m} v / 38 \mathrm{~m}} \mathrm{x} 149.1 \mathrm{~N} A
$$

If $\bar{A}=1, \quad B=1 \quad\left(P(\bar{A}=1) \cdot P(B=1)=\frac{1}{16}\right)$

$$
\begin{aligned}
& I_{1 k, 11}=\frac{8 \mu m}{2 \cdot 0.1 \mu_{m}} \cdot 5 \mu A \cdot e^{-300_{m} V / 38 m V} \approx 74.5 \sim A \\
& \bar{A}=1, B=0 \text { or } \bar{A}=0, B=1 \quad(P=1 / 2):
\end{aligned}
$$

$$
I_{1 k, 10}=\frac{8 \mu m}{0.1 \mu m} \cdot 5 \mu A \cdot e^{-36 u \sim V / 38 m V} \approx 149.1 N A
$$

$$
P_{\text {leuk,wCR }}=V_{D D} \cdot\left(\frac{7}{16} I_{\mid k, w}+\frac{1}{16} I_{\mid k, 11}+\frac{1}{2} I_{\mid k, 1 v}\right)
$$

$$
P_{\text {leal, Nu }} \approx 173.3 \mathrm{NW}
$$

$$
\text { Plank, tut } \approx 218 \mathrm{NW}
$$

c) ($\mathbf{8} \mathbf{~ p t s}$) Given your answers to parts a) and b), if you could change both the $V_{D D}$ and V_{TH} of the transistors in the circuit (but not any of the sizes), how would you change them in order to achieve lower total power consumption without increasing the delay? You do not need to provide any numerical answers - just an explanation of how you would change V_{DD} and V_{TH}, and why you would change them that particular way. However, the more specific your answer, the more credit you will receive. (Hint: You can use the $\mathrm{V}_{\mathrm{T}}{ }^{*}$ model to guide your answer when thinking about delay.)

Leakage is almost $100 x$ smaller thun dywamic purer with current chase of Vas and VTH. This implies that if we were tu reduce $V_{\text {TH }}$ and $V_{D S}$ at the same time so that $t_{p} \alpha \frac{V_{D D}}{I_{\text {DAT }}} \propto \frac{V_{D D}}{V_{D D}-V_{T}^{*}}$ is - Constant, we cum keep delay fixed and decrease total power because if the reduction ir $C V_{0}^{2} f$ f.

Fur example, if we were to reduce $V_{\neq h}$ by 100 nV (increasing the lenkaye power by a little bit mure. thur lux), we could reduce V_{00} to: $\left(V_{7}{ }^{*}=V_{7 H}+\varepsilon_{c L} / 4=425 \mathrm{mV}\right)$

$$
\begin{aligned}
& \frac{V_{\text {oD, NeW }}}{V_{\text {oD, New }}-0.325 \mathrm{~V}}=\frac{1.2 \mathrm{~V}}{1.2 \mathrm{~V}-0.425 \mathrm{~V}} \\
& V_{\text {oD, NeW }} \approx 918 \mathrm{mV}
\end{aligned}
$$

Therofure:

$$
\begin{aligned}
& P_{\text {dyN,NeW }}=\left(\frac{0.918}{1.2}\right)^{2} \cdot 12.1 \mu W \approx 7.08 \mu W \\
& P_{\text {Ik,NeW }}=\left(e^{-200 \mathrm{mV} / 38 \mathrm{mV}} / e^{-300 \mathrm{~N} / 38 \mathrm{mV}}\right) \cdot\left(\frac{0.918}{1.2}\right) \cdot 218 \mathrm{NW} \approx 2.32 \mu W \\
& P_{\text {tat, NeW }} \approx 9.4 \mu W \quad\left(P_{\text {tat,.ild }} \approx 12.3 \mu W\right)
\end{aligned}
$$

