
EECS 482
Introduction to Operating 

Systems

Winter 2018

Harsha V. Madhyastha



Recap: Page Replacement

● LRU ≈ OPT for realistic workloads
◆ Leverage temporal locality to reduce page faults

● Clock replacement is practical approx. of LRU

● OS can maintain resident, ref, and dirty bits
● Need MMU to only check protection bits
● Trigger faults only when bit changes from 0 to 1

February 21, 2018 EECS 482 – Lecture 14 2



Storing Page Tables
● Two options:

◆ In physical memory
◆ In kernel’s virtual address space

● Difference: Is PTBR a physical or virtual addr?

● Pros and cons?

● Project 3 uses second option
◆ Kernel’s address space managed by infrastructure

February 21, 2018 EECS 482 – Lecture 14 3



Kernel vs. user address spaces

● Can you evict the kernel’s virtual pages?
◆ Yes, except code for handling paging in/out is pinned

● How can kernel access specific physical 
memory addresses (e.g., to write to page table)?
◆ Kernel can issue untranslated address (bypass MMU)
◆ Kernel can map physical memory into a portion of its 

address space (e.g., vm_physmem in Project 3)

February 21, 2018 EECS 482 – Lecture 14 4



Accessing physical memory
● How does kernel access physical memory?

◆ Could map physical memory 1-to-1 into window in 
virtual address space

◆ vm_physmem[n]: nth byte of physical memory

February 21, 2018 EECS 482 – Lecture 14 5

vm_physmem

Physical Memory Kernel Virtual Memory



Kernel vs. user mode
● How are we protecting a process’s address 

space from other processes?
◆ Page table/MMU dynamic translation
◆ Must ensure only kernel can modify translation data

● How does CPU know kernel is running?
◆ Hardware support: Mode bit

● Recap of protection:
◆ Address space à Translation data à Mode bit

February 21, 2018 EECS 482 – Lecture 14 6



Kernel vs. user mode
● How are we protecting a process’s address 

space from other processes?
◆ Page table/MMU dynamic translation
◆ Must ensure only kernel can modify translation data

● How does CPU know kernel is running?
◆ Hardware support: Mode bit

● Recap of protection:
◆ Address space à Translation data à Mode bit

February 21, 2018 EECS 482 – Lecture 14 7

In what mode does a root user’s process run?

How can a root user reboot the machine?



Switching to kernel mode
● Faults and interrupts

◆ Timer interrupts
◆ Page faults
◆ Why are these safe to transfer control to kernel?

● System calls
◆ Process management: fork/exec
◆ I/O: open, close, read, write
◆ System management: reboot
◆ …

February 21, 2018 EECS 482 – Lecture 14 8



System calls
● When you call cin in your C++ program:

◆ cin calls read(), which executes assembly-
language instruction syscall

◆ syscall traps to kernel at pre-specified location
◆ kernel’s syscall handler calls kernel’s read()

● To handle trap to kernel, hardware atomically
◆ Sets mode bit to kernel
◆ Saves registers, PC, SP
◆ Changes SP to kernel stack
◆ Changes to kernel’s address space
◆ Jumps to exception handler

February 21, 2018 EECS 482 – Lecture 14 9



Arguments to system calls
● Two options:

◆ Store in registers
◆ Store in memory (in whose address space?)

● Kernel first checks validity of arguments
◆ e.g., read(int fd, void *buf, size_t size)

» Is fd valid descriptor for open file
» Are all addresses in [buf,buf+size) valid
» Are all addresses in [buf,buf+size) writable 

February 21, 2018 EECS 482 – Lecture 14 10



How does kernel access 
user’s address space?
● Kernel can manually translate a user virtual address to a 

physical address, then access the physical address

● Can map kernel address space into every process’s address 
space

◆ Trap to kernel doesn’t change address spaces; it just allows 
computer to access both OS and user parts of that address space

February 21, 2018 EECS 482 – Lecture 14 11

fffff
.
.
.
80000

operating system

7ffff
.
.
.
00000

user process



Protection summary
● Safe to switch from user to kernel mode because 

control only transferred to certain locations
◆ Where are these locations stored?

» Interrupt vector table

● Who can modify interrupt vector table?

● Why is it easier to control access to interrupt 
vector table than mode bit?

February 21, 2018 EECS 482 – Lecture 14 12



Address Space Protection
● How are address spaces protected?

◆ Separation of translation data
● How is translation data protected?

◆ Can update translation data only if mode bit set
● How is mode bit protected?

◆ Sets/reset mode bit when transitioning from user-
level to kernel-level code and back

◆ Transitions limited by interrupt vector table
● Protection boils down to init process which sets 

up interrupt vector table when system boots up
February 21, 2018 EECS 482 – Lecture 14 13



Project 3

● Memory management using paging
◆ Due March 21st

● By the end of this lecture, we will cover all the 
material you need to know to do the project

● Begin by drawing state machine for a virtual page
◆ Focus on swap-backed pages to start

February 21, 2018 EECS 482 – Lecture 14 14



Project 3
● Incremental development critical

◆ Swap-backed pages with a single process
◆ File-backed pages
◆ Fork

● Minimum amount of functionality to test
◆ vm_init
◆ vm_create (with parent process unknown)
◆ vm_map (with filename = NULL)
◆ vm_fault
◆ Getting this combination right = 21/75

February 21, 2018 EECS 482 – Lecture 14 15



Process creation
● Steps

◆ Allocate process control block
◆ Initialize translation data for new address space
◆ Read program image from executable into memory
◆ Initialize registers
◆ Set mode bit to “user”
◆ Jump to start of program

● Need hardware support for last few steps
◆ Similar to switching from kernel to user process 

after system call
February 21, 2018 EECS 482 – Lecture 14 16



Unix process creation
● System calls to start a process:

1. Fork() creates a copy of current process
2. Exec(program, args) replaces current address 

space with specified program

● Why first copy and then overwrite?
◆ Windows: CreateProcess(program, args)

● Any problems with child being an exact clone 
of parent?

February 21, 2018 EECS 482 – Lecture 14 17



Cloning

February 21, 2018 EECS 482 – Lecture 14 18



Fork and exec
● Fork uses return code to differentiate 

◆ Child gets return code 0
◆ Parent gets child’s unique process id (pid)

If (fork() == 0) {
exec (); /* child */

} else {
/* parent */

} 

February 21, 2018 EECS 482 – Lecture 14 19



Implementing a shell
while (1) {

print prompt
ask user for input (cin)
parse input //split into command and args
fork a copy of current process (the shell prog.)
if (child) {

redirect output to a file/pipe, if requested
exec new program with arguments

} else { //parent
wait for child to finish, or
run child in the background and ask for 

another command
}

}
February 21, 2018 EECS 482 – Lecture 14 20



Subtleties in handling fork
● Buggy code from autograder:

if (!fork()) {
exec(command);

}
while(child is alive) {

if (size of child address space > max) {
print "process took too much mem”;
kill child;
break;

}
}

● What is the race condition here?
February 21, 2018 EECS 482 – Lecture 14 21



● Go to lab section on Friday for run down on 
project 3

● Have a good spring break!

February 21, 2018 EECS 482 – Lecture 14 22


