D-AOB5 102 PENNSYLVANIA STATE UNIV UNIVERSITY PARK APPLIED RESE--ETC F/E 20/4 A MATER MODEL STUDY OF RECIRCULATING FLOW IN A SINELE INJECTOR -EETC(U) APR 80 S LAL, C H WOLGEMUTH ARL/PSU/TM-80-46

N00024-79=C-6043
UNCLASSIFIED
 NL

A WATER MODEL STUDY OF RECIRCULATING FLOW IN A SINGLE INJECTOR REACTOR

Sham Lat and Carl H. Wolgemuth

Technical Memorandum
 File No. TM 80-46
 April 1, 1980
 Contract No. N00024-79-C-6043
 Copy No.
 \qquad

C

The Pennsylvania State University Institute for Science and Engineering APPLIED RESEARCH LABORATORY
P. O. Box 30
State College, PA 16801.

DISTRIBUTION UNLIMITED

NAVY DEPARTMENT

naval sea systems command

$80 \quad 63023$

UNCLASSIFIED

Approved for Public Release. Distribution Unlimited.
Per NAVSEA - May 12, 1980.
17. OISTRIBUTION STATEMENT (Of the abstract entered in Block 20, If different from Report)

20. ABSTRACT (Cont'd)
${ }^{\prime}$ for the geometry of the model. Computer runs were made for different injector Reynolds numbers.

Conclusions were made regarding the mean and fluctuating nature of the flow field.

Subject: A Water Model Study of Recirculating Flow in a Single Injector Reactor

Abstract:

A cylindrical water model was used to visualize the flow field in a jet-stirred bath. The model was made of transparent plexiglass. A plane of light illuminated a cross section of the cylinder containing its axis and the point of injection; and thereby illuminating the small alumina particles suspended in the water. The flow field was photographed, and dye visualization studies were also conducted.

A simple modification to the TEACH computer code was made so as to account for the geometry of the model. Computer runs were made for different injector Reynolds numbers.

Conclusions were made regarding the mean and fluctuating nature of the flow field.

TABLE OF CONTENTS

Page
ABSTRACT i
LIST OF TABLES iv
LIST OF FIGURES v
NOMENCLATURE vii
i. Introduction 1
1.1 Statement of the Problem 1
1.2 Origin and Relevance of the Study 1
1.3 Previous Related Studies 2
1.4 Scope and Objective of this Study 7
II. THEORY AND ANALYSIS 8
2.1 Analog Technique 8
2.2 Analysis and Computer Code 9
III. EXPERIMENTAL PROCEDURE 15
3.1 Experimental Method 15
3. 2 Experimental Components 15
3.2.1 Model of SIR 18
3.2.2 Dye Bypass 26
3.2.5 Differential Manometer 26
3.2.4 Measuring and Receiving Tanks 26
3.2.5 Forced Circulation Pump 27
3.2 6 V'isualization Box 27
Page
3.3 Lighting Equipment 27
3.4 Photographic Equipment 28
3.5 Visualization Particles 31
3.6 Photography 31
IV. PRESENTATION AND INTERPRETATION OF RESULTS 33
4.1 Dye Visualization Experiments 33
4.1.1 Nozzle Dye Injection 33
4.1.2 Syringe Dye Injection 34
4.2 Particle Visualization Experiments 35
4.3 Results from Modified TEACH 41
V. SIMRMRY AND CONCLUSIONS 49
5.1 Summary 49
5.2 Results and Conclusions 50
5.3 Recommendations for Further Study 52
RIFERI:NCES 53
APPENDIX A 56
APPENDIS B 58
APMENIXC 61

LIST OF TABLES

Axial Velocities at Grid Points as Calculated by
Modified TEACH62

2 Radial Velocities at Grid Points as Calculated by
Modified TEACH64

LIST OF r.IGURES

TITLE

PAGE

Dead Ended Model Considered in Analysis 10
Flow in Duct with Sudden Enlargement as Considered in TEACH-T12
Schematic of the Water Loop 16
Picture of the Water Loop as Set up in the Lab 19
Visualization Cylinder for Dye Injection 20
Cross section of Dye Injection Fitting 21
Picture of Model 23
Schematic of Model Assembly 24
Perforated End Plate (front view) 25
Picture of the Lamp Housing on the Tripod and the Lamp
Control Unit 29
Cross section Showing the Relative Positioning of
Components for Particle Visualization 30
Typically Observed Flow Pattern 36
Picture of Flow Field at Reynolds Number 7057 (outflow on extrence end) 38
Picture of Flow Ficld at Reynolds Number 7057(outflow equally divided between both ends)39
Picture of Flow Field at Reynolds Number 705 ?
(outflow on injector cnd) 40

Picture of Flow Field at Reynolds Number 32315
(outflow on injector end)42

17 Picture of Flow Field at Reynolds Number 18095 (outflow on injector end)43

18 Comparison of Axial Velocity Profiles Downstream of the Injector when using different ways of Specifying the Out let Condition 45

Comparison of Axial Velocity Profiles at the same Axial Locations for the Original Teach program and
the Modified one 46
Velocity Vectors at Selected Grid Points using
Modified Computer Code 47
Nodal Configuration at the new Side Wall (extreme end) 57

NOMENCLATURE

Symbol

A_{E}	coefficient of finite difference equation
Ct	Craya-Curtet Number
d	injector diameter
D	cylinder diameter
${ }^{\text {e }}$	flux (defined in Appendix A)
k	turbulent kinetic energy
P	pressure
U	axial velocity
$\bar{U}_{\text {in }}$	mean injector velocity
V	radial velocity
Ax	axial grid spacing
,	density
ε	turbulence energy dissipation rate
\square	any variable (e.g. $k,(\mathrm{l}, \mathrm{l})$
5	exchange coefficient of \emptyset

April 1, 1980 SL/CHW:lcl

CIIAPTER I

INTRODICTION

1.1 Statement of the Problem

This study is aimed at obtaining an understanding of the recirculating flow field in a modified single injector reactor (SIR). This consisted of an injector stirred liquid bath in a cylinder modified to have outflow on both ends. The primary objective is to qualitatively obtain a picture of the flow structure as a function of the injector Remolds number and the ratio of outflow at the two ends of the model.

1.2 Origin and Relevance of the Study

The flow field and heat transfer characteristics of a jet stirred bath are of significant interest. Such a jet mixing process is employed in many combustion applications. An example of such a system is a boiler reactor. In this case, the fuel is a molten lithium bath and the oxidizer is iniected into the reactor. The reaction is exothermic, and the resulting heat generated is transferred to a boiler which provides steam to the nower evele. ihe jet induced mixing causes an augmented heat transfer rate to the water.

Work has heen done to obtain empirical relationships for the heat transfer coefficients (1), and to develon analytic models for the velocity distrihution and heat transfer coefficients. llowever, it was felt that in order to develon suitable predictor techniques for such situations, a more fundamental understandin! of the flow structure is essential.

1.3 Previous Related Studies

Mixing in ducted turbulent jets was examined by Becker, Hottel and Williams (2). They studied the effect of the Craya-Curtet similarity parameter on turbulent mixing patterns in axisymetric, constant density confined jet flows, in the regime in which recirculation occurred. Their experimental set-up consisted of a round jet discharging axially into a cylindrical duct fed by a uniform stream whose entrance momentum relative to that of the jet varied from zero to moderatcly high values. The fields of mean velocity and mean concentration were mapped and analyzed. They concluded that at small values of the Craya-Curtet number (Ct), the initial stream flow into the duct falls short of the entrainment needed by the jet. The deficiency is made up by fluid recirculated from downstream. They describe properties of the recirculation eddy and the post iet mixing zone downstream of reattachment. It should be noted that in the $S l l$ the initial stream velocity is zero and Ct approaches zero implying total recirculation.

Barchilon and Curtet (3) in attempting to improve the assumptions made in the approximate theory of confined jets $(4,5,6)$ made some interesting visualization studies. They detected unusually hish turbulence levels in the jet and recirculation regions. They found that the recirculation eddy whici initially appeared at a craya-curtet number of O.OTH extended itself as Ct diminished and at Ct $=0.0 .5$ it occupied. the complete duct. Low Craya-curtet numbers are indicative of high turbulence and larse eddies implyins hetter mixing. There have been many
other studies on recirculating flows in ducted jets, they have been well summarized in (1), (2) and (3).

Abramovich (7) developed a theory for predicting flow patterns in a dead ended channel stired by a submerged iniector, which is the situation existing in the SIR. Abramovich treated the flow region as two separate parts; the first in which the turbulent jet spreads through a counterflowing stream of fluid, and the second in which the streamlines turn in accordance with the laws of motion of an ideal fluid. Solutions for the velocity fields were obtained by solving the conservation equations in each area. Orily incompressible fluids were considered and corrections were anplied to these solutions to account for nonuniform exit velocity profile. Comparison with experimental results showed good agreement of the prediction in the first region hut very poor prediction in the second resion.

Some preliminary work at ARJ, analytically determined the velocity distribution and the wall heat transfer coefficient for a closed ended eylinder similar to the sik. The model divides the flow field into four parts: (i) det with core restion, (ii) beveloping or spreading jet resion, (iji) liscous dissipation region, and (iv) stannation region. The analys employs previous free iet (ib) and open ended confined jets (7,0) to develop equations which are solved numerically. A closed end effect is cenerated by incorporating a stabnation reyion. The fluid was assumed to he incomprossible and hoth local and overall heat transer calculations made. Son comparison to experimental data was made.

Kerney, et al. (10) and Neimer, et al. (11) studied the penetration characteristics of vapor jets submerged in subcooled baths. Experimental results hicre used to develop empirical relationships for the penetration length (10). Neimer, et al., using a variable density single fluid model for the two phase flow, with the turbulent mixing process treated by an entrainment law found good correlation with results of their experiments and those of earlier investigators over a wide range of operating conditions and injector geometries.

Avery (12) considered the case of a gaseous oxidizer jet discharging through an injector subjerged in a bath containing a liquid metal. The two phase turbulent combustion process was analyzed in a manner similar to conventional diffusion flames. A variable density single fluid model was used to renresent the two phase mixture in conjunction withan entrainment assumption ampropriate for systems with large density differences between the jet and ambient fluid. The theory provided a general relationship for estimating combustion and condensation lengths for turbulent, unconfined, forced iets hased on injector and ambient properties. Results indicate that mixins characteristics of gas-liguid jets when corrected for density variations are similar to single phase jets.

Thomson (1) studied the heat transfer for a jet induced mixing process in a cylindrical chamber. A heated fluid was iniectol contrally from one end of the chamber into a liquid bath. Both ends of the chamber were insulated so only heat transfer through the side wall was considered. bata was ohtained for water and ethylene glyenl.
varying the infector diameter, fluid temperature, jet momentum and chamber dimensions. An analysis assuming total jet momentum dissipation into shear stress along the chamber wall was develoned using the Reynold analogy to determine the characteristic parameters of the system. Good agreement between the analysis and data set was obtained. From the analysis, the data was correlated in terms of a Stanton number, Revnolds number, Prandtl number and chamber length to diameter ratio.

Cosman, et al. (13) present numerical solutions for seven different two dimensional turbulent elliptic flows. The solution procedure employed is that embodied in the TEACH computer program (14). The calculated properties of the seven flows were comnared with experimental results which validated the numerical procedure and the two equation turbulence model described by launder et al. (15). Of particular interest here is their incestisation of flow donnstrean of an axisymmetric, sudden enlargement in channel flow. The flow structure is only sliphtly different from that in the sid. They observe strong recirculation and their results compare well with the measurements of Back and Roschine (16).

There has also been a substantial amount of work on flow visualization in mixing vessels. Reyold (${ }^{* \prime}$) used a dre to visualize a jet directed into a water bath. Jet brahdown was ohscrued as a function of Revmolds number. Reynold observed five cateories of flows which he classified as going from lower Reyond mumers to hioher ones). shearing puffs, symetric condensation, simuous undulations, pedal
breakdown, and confused breakdown (at Reynold numbers higher than 300).
McNaughton and Sinclair (18) studied liquid-into-liquid jets in short cylindrical vessels using aqueous blue tracer solution in conjunction with transparent cylinder walls. Four main types of jets were observed: dissipated laminar jets (Revnold numbers less than 300), fully laminar jets (Reynold numbers between 300 and 1000), semi-turbulent (Reynold numbers between 1000 and 3000) and fully turbulent (Reynold number greater then 3000). The laminar length of sub-turbulent iets was investigated and correlated with the Reynolds number and geonetric parameters. Crow and Champagne (19) also used dyes to study the evolution of jet instahility with advancing Revnolds number. They also employed schlieren and light scattering visualization techniques to study the iet structure.

Back and Roschke (16) investigated the flow of water through an abrupt circular channel expansion. The shear laver between the central jet and reverse flow region along the wall downstream behaved differently in the observed regimes. Dye injection into the shear layer provided a means of ohserving the jet reattachment lengths in the various refimes from laminar to fully turbulert. The reattachment lengths were found to increase from laminar flow to reach a maximum and then decrease for highly turbulent flows.

White, et al. (20) used a particle visualization technique to study the recirculating flow of a submerged jet discharsing into a dead ended vessel. They used this to study the tanoential vorticity, and the visualization study was not extensive. A similar study was carried out hy thheian and lloult (2.4) to study the intake process in
an internal combustion engine.
Numerous other authors have done work similar to what has been discussed in this section. However no paper directs itself at obtaining an understanding of the overall flow structure in jet stirred baths.

1.4 Scope and Objective of this Study

From this discussion, it is evident that a better understandin? of the flow structure in the SIR is needed. The purpose of this investigation was to visualize the flow structure in the SIR in order to obtain such qualitative information.

In order to simulate the SIR, water was iniected axially into a cylinder which provided for a variable outflow at both ends at a low momentum flux. The flow was sceded with fine alumina particles, a high intensity light source with a condensing lens focused a thin blane of light onto a cylinder axis. A camera located perpendicularly ahove this illuminated plane recorded the flow pattern at various inlet momentuas and outflows (at the two ends). Dye visualization techniques were used both in the jet and in the shear layer, but with limited success.

An analysis was carried out using a modificd form of the TIACH comnuter prosram (15,14). Velocity, pressure, turbulent hinetic energy and dissipation profiles were obtained for the SIR geometry as a function of Reynold mumber. A comparison is made between experimental and analytic trends.

CHAPTER II

THEORY AND AVALYSIS

2.1 Analog Technique

A water model was employed to simulate the flow field in a SIR, so as to facilitate flow visualization. In order to conduct such an investigation with a water model, it is necessary to satisfy the similarity conditions (21).

Similarity can be classificd as follows:

1. Ceometric similarity
2. Kinematic similarity
3. Uynamic similarity
4. Thermal similarity

Ceometricsimilarity requires a single scale ratio between critical dimensions of the prototype and model. In the case of the SIR-model this scale ratio is taken as unity, hence satisfying geometric similarity.

Kincmatic similarity requires that the slopes of the streamlines are the same in the model and the prototype, implying that the corresponding flows are alihe. The assumption that the fluid in both cases are incompressible (assuming the compressibility effects in the gascous oxidizer are negligible) leads to the conclusion that the continuity equation and hence the stramlines are identical for the prototype and model (22).

Dynamic similarity requires that the forces acting on the finid elements have the same ratio to each other at any instant. In the SIR bath both inertia and viscous forces are of importance, and it would seem logical to conclude that the Reynolds numbers should be equal for the model and prototype. This would involve the problem of determining the Reynolds number for a two-phase system. This problem is avoided by considering that the inertia forces in the jet are of greater significance (high Reynolds numbers) than the viscous forces in the jet. The injector momentum flux for the model was taken as the same momentum flux that is present in the SIR. This established an injector velocity range for the model corresponding to the operating range of the SIR.

Thermal similarity is of no consequence in this study. It was concluded that with an injector velocity rance selected as in this similarity discussion, the velocity field in the model would relate well to that existing in the SIR. Hence, it seems to be worthwile to conduct an analog experiment with water injected into water.
2.2 Analysis and Computer Code

A special case of the SIR, where the inflow and outflow are on the same end of a dead ended cylinder was considered in this analysis. Figure 1 depiets the geometry. The analysis was carried out using a modified form of tixcm.

Than-t is a form of the more general roseram Thach and is used specifically for computation of flows in ducts with sudden enlargements.

Fig. 1 head Inded vodel considered in the Inalysis

Sodifications were made to TEACH-T to account for the geometry of the SIR. Refer to Gosman, et al. (15) for a more detailed description of TEACH-T.

In TEACH-T the geometry is as that of Figure 2, which shows the region of flow bounded by the duct walls, the axis of plane of symmetry, inlet and outlet boundaries. The inlet houndary is located in the plane of the step, where the conditions of the incoming fluid are presumed to be known; while the outlet boundary is positioned sufficiently enough downstream that the assumption of fully developed flow is fairly accurate.

The inflow is presumed to be steady and turbulent, with a mean velocity $\mathbb{U}_{i n}$. The diameters of the large and small ducts are desipnated by 11 and d respectively.

The predictions of the problem require the solution of the equations of motion for axial velocity u, radial velocity V , pressure P , together with the two equation model for turbulent closure involving turbulent hinetic energy, k, and dissipation, $と$.

The numerical technique and constants were retained in their entirety, slight changes were made in the grid size. The only major modifications made to deal with the model of Fipure 1 were changes in the houndary conditions. The following guidelines were used when makin!: chan!es in the boundary conditions:

1. Profiles for U, V, P, k and ε are supplicd at the inlet plane.
\therefore At the boundary walls, the calculation of the velocity component parallel to the wall, turbulent kinetic energy, and dissipation are made using a logarithmic law of the wall.

April 1, 1980 SL/CHW:ICl

.

April 1, 1980 SL/CHW:Icl
as in the original program.
3. At the axis of symmetry, the condition of vanishing normal flux is applied to all variables.
4. At the outlet Dlane, the normal velocities are deduced from the overall mass continuity requirements and specification of a fully developed velocity profile.

Basic changes to be made in the houndary conditions were twofold:

1. Introduction of an end wall at the desired location using the corresponding boundary conditions.
2. Removal of the boundary condition at the existing side wall and replacement with an outflow condition.

This called for changes in two parts of the nrogram Thach-T. Modifications were made in the main program to define the initial variable distributions to change geometry (examnle, ratio of do 1) and to define new variables and changes in format statemen's. Changes were also required in SUBROUTIN: PROMOD, responsible for the modification of the finite difference equation terms and coefficients at the boundaries. Changes in the individual sections of this subroutine are described as follows:

1. ENTR MoDU: responsible for modifications for calculation of the axial velocity. The conditions at the top wall and axis of symetry remain the same. The outlet boundary is rentacod with an end wall: as shown in Appendix A. the value
of the coefficient of the finite difference equation is calculated and introduced in this section. The existing side wall conditions are removed and replaced by an out flow condition. Two outflow conditions were tried. In one, it was assumed that the exit velocity profile was fully developed; in the other, an exit velocity profile was assumed at the outset.
2. EXTRY MOnv: responsible for modifications for calculation of the radial velocity. Side wall conditions were introduced in accordance with the law of the wall as shown in Appendix A.
3. EATRY YODTE: responsible for modification for calculation of turbulent kinetic energy. Side wall conditions were introduced in accordance with the law of the wall as in EXTRY MODK.
4. EXTRY MODID: responsible for modification for calculation of dissipation rate. Side wall conditions were introduced in accordance with the law of the wall as in EXTRY MOM.

All other parameters remained unchanged. A list of the modified statements is included in Appendix B.

Chapter 111
EXPERIMEXTAL PROCEDURI:

3.1 Experimental Method

Qualitative information on the flow structure in the model was obtained using a particle visualization technique similar to the one presented by Ekchian and Hoult (24). Their method utilized neutral dersity particles to study the flow structure in the water analog of an internal combustion engine. Allen and Yerman (25) found that neutral density particles do not alter the flow field; quantitative velocity predictions made from their technique were within five percent of pitot tube data. In this study alumina particles were used: which for small enough particle sizes can be expected to follow the flow as well as neutral density particles (20,27).

A two dimensional flow field was assumed, and a plane containing the axis of the model was assumed to be representative of the flow structure in the entire flow field. A plane so described was illuminated at a high intensity. The width of the illuminated zone was made small in comparison with other dimensions and it was assumed to be a plane. The particles (assumed to move along stramlines (26)) were photographically recorded as they passed through the illuminated plane, yielding a picture of the instantancous flow structure.

3.2 Fxperimental Components

Figure i is a schematic diagram of the water loop. The major

April 1, 1980
SL/CHIN: lcl

16

component of the apparatus was the horizontal cylindrical test chamber (model). The fluid jet was injected centrally from one end of the chamber, and fluid was continuously discharged through small holes on both ends. The other components included a measuring tank, receiving tank, dye bypass, cenirifugal pump, valves and a differential manometer.

The working fluid, water, was pumped through a strainer and an injector into the model. A mercury filled differential manometer used across the injector nozzle was calibrated to determine the injector velocity. When the line to the dee chamber was opened, water mixed with green dee (Merriam 0)-2930) and was injected into the clear bath save a nicture of the spreading jet.

Out low from the model could he controlled using the valves on either end of the model. Volumetric flow rate was measured using a sto! watch (least count of a hundredth of a second) and the measuring tank. When dye studies were performed, the colored water was drained out of the measuring tank, the water loop was onen. for the particle visualization studies, i.e. water in the receiving tank was secded with alumina particles and the tank was kept is i rred: water from the measurins tank was not drained, but let into the receivins tank instead.
dir in the model was renored hy opening the air purse valve on the manometer line. When this value was opened, the manometer was isolated from the rest of the syitem by shuting the manoneter control valve.

rigure 4 is a pieture of the water loop as set up. A more detailed descrintion of the individual components follows.

3.2.1 Model of SIR

The model was used in two basic configurations; the first one so as to enable dye injection with a syringe at various wall locations downstream of the injector plane, the second one for particle visualization.

The model consisted of a visualization cylinder cut out of a plexiglass tube (Cadco Acrylic). The tube had an outer diameter of 4.25 inches and an internal diameter of 3.5 inches. A 6 inch long eydindrical tube was used for the ('re studies and 15.25 inch lons one for particle visualization, giving length to diameter ratios of 1.71 and 3.50 respectively.

Fibure 5 shows a visualization eylinder as used for the dye visualization studies. A pressure tap was located 0.5 inches from the end on the top of the cylinder wall, and numerous other taps, fitted for syringe injection were located along the erlinder wall. The infection fit ins!s were made be adaptins standard fittings as show, in ligure 6. The slambe ensured that there was no leakage out of the model, the needle suide ensured that the needle (which was G inches lons) did not huehle when pushed throush the gland. Both ends of the visualization evinder were tapled axially for twelve equally spaced lo-iz serews. Only the pressure tan existad on the erlinder used for the particle visualization studies.

Fig. \bar{y} Visualization rylinder for We Infertion

lis. (r) ross Certion of lug lnicetion litting

The visualization cylinder was used in conjunction with end caps, perforated plates, rubber gaskets, visualization box end plates and a nozzle, assembled as shown in Figure 7 (picture). Figure 8 shows the schematic of the same.

The visualization box is used in the ase of particle visualization studies, when filled with water it removes most of the distortion in photographs caused by the curvature of the cylinder.

Figure 9 shows a perforated end plate, cut 0.25 inches thick from a 4.5 inch diameter plexiglass rod (Cadco Acrylic). The perforations are 0.125 inch in diameter, set out in a 0.5 inch $x 0.5$ inch matrix as shown. Aluminum rivets, either blank or with through holes fit into these perforations, allowing for control of the outward mass flux distribution. The diameters of the holes in the rivets were 0.016 inch, 0.025 inch, 0.0 .51 inch and 0.0 .55 inch.

The end cans cut from a 4.5 inch diameter plexiglass rod were machined to shape. They provided outlets for outflow to the measuring. tank.

The nozzle was machincd down from a 1 inch brass bar stock; it had a 0.5 inch outer diameter and a 0.0995 inch hole diameter. It was 5 inches long and was held in place using a teflon compression fitting screwed into the end cap.

The entire assembly was held together by two sets of $10-52$ serews, one set on each end.

Fig. - licture of Iodel

April 1, 1980
st./CHW: 1cl
vISUALIZATION

ris. is shematio of rodel dscombly

Fig. ! Perforated lad late (front view)

3.2.2 Dye Bypass

Figure 3 shows a dye bypass loop. It was used when dye injection through the nozzle was desired. It was possible to divert all the flow or a part of the flow through this bypass where it picked up the green dye on its way to the injector. The bypass had three control valves as shown in Figure 3 and a dye container which had to be recharged after each run.
3.2.3 Differential Manometer

A Meriam Instruments 60 inch mercury differential manometer was calibrated to give the injector velocity as a function of the pressure drop across the nozzle measured in inches of mercury.

3.2.4 Measuring and Receiving Tanks

A plastic measuring tank with dimensions 12 inches $x 12$ inches $\times 12$ inches was used with a stop watch to measure the volumetric flow rate in the water loop. It was possible to measure separately the water flow rate coming out of each end of the model. This tank emptied into the receivin!, tank for the particle visualization runs, for dye studies this tank was cut off from the receiving tank and all the water was drained out. The mean water temperature was found to be $70^{\circ} \mathrm{F}$.

The receiving tank was also made of plastic, slightly laryer in size, 20 inches $x 24$ inches $x 24$ inches and normally hel' 110 litres of water. Alumina particles were seeded into the water loop through this tank which was hept well stirred. A wire mesh at the tank outlet acted as a strainer, but let the small alumina particles throush.

3.2.5 Forced Circulation Pump

The water flow through the loop was driven by a pump located downstream of the receiving tank. The pump manufactured by the Allis Chalmers Corporation was a centrifugal pump with a maximum rpm of 3450 . It was driven by a 0.75 HP close coupled electric motor. It could provide a maximum flow rate of 1.76 litres per second. The flow rate through the system was controlled by means of a throttling valve on the pump discharge.
3.2.6 Visualisation Box

A rectangular plexiglass box of dimensions 5.5 inches $x 4.75$ inches $x 14$ inches was used to enclose the visualization cylinder when conducting particle visualization studies. The box was constructed from 0.25 inch thich plexiglass plates glued together and made watertight by using silicon sealant. The end plates of this box fitted into the model assembly between the perforated plate and the end plate as shown in Figure 8. This box had two ports on the top, one for water feed and the other for air escape. It had a drainage port on the botton. When filled with water, it removed most of the optical distortion caused by the curvature of the cylinder and enabled good photography. This hox was not used when doing dye vistalization studies.

3.3 lighting Iquipment

The light source consisted of a 115 b , 10 amp (iencral lifectrie mercury-arecapillary lamp, lamp housing, transformer and tripod. The lame emitted hish intensity ultravolet radiation. The lamp and housins, were both air cooled, using air throttled from the machine
shop air supply at 55 psi. The cooling was monitored by a lieneral Electric mercury lamp control unit which operated on $115!$, 400 K power supply, obtained using a brushless inductor/alternator made by the leach Co.

The lanp housing also contained a system of parallel slits and plano-convex condensing lenses, which enlarged, collinated and defined a thin light beam.

The light source and lenses in a single housing were mounted on a tripod as shown in the picture of Figure lo. This allowed for raising or lowering and swivel motion of the light housins.

The slits transformed the lipht into a plane containing the axis of the model. The 1 ight was shichded so as to prevent light leaving from anwhere olse except the slit.

B. 1 Photographic Equipment

A 55 m Canon Nat came was used to photograph the illuminated particles through the transparent visualization hox. The camera was used in confunction with a 12 mm livitar extension tube so as to allow undistorted close-up photography. The camera was mounted lo.l inches vertically ahowe the model axis and the focus was set at infinity to gite a sharn and clear picture. Provisions were made for lateral movement of the camera, so the ent ire flow fichl could he photographed using exposires at the different locations along the axis of the model. Figure 11 shows the camera position relative to the light source and visualization hox.
Fig. 10 Picture of the Lamp Housing on the Tripod and the lamp Control Unit

いと Components for larticle Vicmaliation.

In

B. 5 Vistalizavon barticles

To : one the flon in the model visible, small aidmina particles were used as we sed particle to he tod the alamiat nowder

 .0 to 10 microns.

 the particle and fluid density; it is imerse! y prometionat to the
 water is not too good, it is compensated for by using very small particle sizes. The residence time of a fluid element in the model is so small that sinhing is almost nom-existent. Thus, such particles are expected to map the flow well.

The traces of the particles as seen on the photographe were projections of their paths into a plane containing the axis of the model. The particles were seded into the waterloop through the receivin! tank which was hept stirred.

B. O Photorraphy

Opt imm: photopraphe was ohtaimed usint: a Kodah Tri x film (TX-13. -20) which was blach and white film exposed and dereloped at foo dSiA. The
optimum camera setting was obtained at a shutter speed of $1 / 15$ seconds and an aperture $f 8.0$ when the light slit was 8 to 10 mm wide.

The negatives were used to project an image on a screen using a film strip projector.

4.1 De Visualization Experiments

Two techniques were used for dye visualization studies in the model. In one case, adye-water mixturewas injected into a clear bath in the model, through the nozzle. In the second case, a syringe was used to inject pure dye into a clear bath in the model, through glands fitted to the model wall.

4.1.1 Nozzle nve Inicetion

Test muns weremade using inlet velocities ranging from $2 \mathrm{~m} / \mathrm{s}$ to $1 s \mathrm{~m} / \mathrm{s}$. These velocities corresmonded to those in the silk applying the similarity conditions of Chanter ll. The correspondin! inlet Reyolds number range was from 1170 to 10530 . According to Nowayhton and Sinclair (18), for inlet Rexnold numers greater than $300 n$ for liquid-liquid jets in short cylindrical vessels, fully turbulent jets are ohserved. Indeed, these dye visualization stadies did reveal a turbulont jet. comprised of a forward movine conical iet region and a slower movin! backflow resion which surrounded the iet. No laminar leneth was observed, and the jet mushroomed at the point of injection.

The dye used was neutral density and was assumed to follow the strambines. The technique however could not mrovide more detailed information in this case due to the diffusivity associated with turbulent flows. Hioh flow velocities caused the entire bath to clomb in a fraction of a second, further limitins the efrectiveness of the techniaue. These experiment: established that the iet was turbulent
and that recirculation was predominant.

4.1.2 Syringe Dye Injection

This technique was intended to help in gaining insight into the reattachment lengths of the turbulent jet. It was also hoped that this method would provide a means of isolating particular regions in the flow that were of interest. A similar technique was used by Back and Roschke (16), in which dee was bled into the shear layer between the jet and reverse flow region, through holes in a circular channel wall unstream of a sudden expansion. Their studies were limited to a Revnold munber range from 20 to 4200 .

Dee was injected into the bath at various locations downstream of the no:zle. The syringe was inserted to different depths and the dye released. By releasing dye at a given axial location, but varying radial locations, the shear layer was located at the point above which the dye moved in the reverse direction and below which the dye moved with the jet flow. When dye was injected into the shear laver, it was expected to follow it until it reattached at the cylinder wall at some downstream location. Infortunately, due to the high turbulence in rosity and fluctuating flow pattern such ohservation was not clear. At lower Reynolds numbers (about 5200 to 7000) it was possible to infer that the flow did not reattach to the cylinder walls: when it approached the end of the cylinder the dye seemed to turn and a part of it would flow back along the eylinder wall. It must he pointed out that due to the clondins of the dye at the end of the eybinder and due to the fluctuating location of the shear layer, such inferences are not
very obvious and could be questioned. These inferences however seem to be in agreement with Back and Roschke's predictions that reattachment occurs about 9 to 10 step heights downstream of injection for turbulent jets; in this case the cylinder was only 3.5 step heights long.

This technique established the fluctuating nature of the flow and that numerous eddies existed in the reverse flow regions. These eddies were isolated since they would contain dye injected into them for a small lençth of time until fluctuations caused the eddy to disappear. This time period was not long enough for detailed observation. The nced was felt for obtaining an overall picture of the flow structure and to observe how this overall structure fluctuated.
4.2 Particle Visualization Experiments

Illuminated alumina particles were used to $v i s u a l i z e$ the flow field in the model with a length to diameter ratio of 3.5. The experiment was run in the jet Reynolds number range similar to that an the dye experiments. Outflow at both ends of the model was varied.

Fisure 12 shows the typical flow pattern obscrved. The flow consisted of a spreading jet, a strong recirculating back flow near the wall, and nunerous eddies which appeared and disappeared in less than $1 / 10$ of a second. These eddies caused the jet flow to bend around then, their appearing and disappearing causing a side to side whiphing motion of the iet. It seemed that the iet whipped from one wall to amother in an almost regular mamer. This whipping was stronger for hisher Reymolds mumbers but was confined to a region near the extreme
end (away from the injector) of the cylinder. For small Reynolds numbers, the whipping was weaker but was prevalent in the entire flow field; in this case the jet would whip in a serpentine manner. These observations are not obvious from Figures 13,14 and 15 as these figures represent instantaneous flow pictures.

Figures 13,14 and 15 provide the contrast between varying outflow at either end. All three pictures represent an inlet Reynolds number of 7057 . The three frames in each picture represent three segments of the model each photographed separately and at different instants of time.

Figure 13 shows the case where all the outflow is on the extreme end of the model. The jet entrainment near the injector end can he seen. Recirculation is not very strong compared to the case of Figure 15, in which outflow is all on the injector end. Alumina particies tend to accumulate at the extreme end where they are discharged. One can observe a lot of eddy structure in the central segment. surrounding the high velocity jet core which is wrinkled and broken.

In Figure 15, not many particles are visible in the hackflow region along the walls due to the high velocities existing in this case which makes it difficult to record the particle motion at the given level of illumination. In this case a stagnation region is observed at the extreme end and particles can be seen to turn away from the direction of iet flow into the reverse flow region. In this case the number of eddies existins are not as many as in ligure 13 . Jet entrainment is evident.

Yis. 11 Picture of Flow fical at Romold Vamber -ns-
fout inm comally dibidad hetween hoth emdel

April 1, 1980

Fist. $1:$ Victure of Flow Ficld at Revolds Sumber ons-
(out flow on infector end)

Figure 14 shows the case where the outflow is equally divided between the two ends of the model. It does seem that this case is between those of Figures 13 and 15. Particle accumulation is absent at the extreme end and the reverse flow velocity near the wall becomes large only for the near injector region. Eddies and wrinkled jet structure are predominant in the central segment.

It is concluded that the outflow configuration is of major consequence in determining the flow structure in the model.

The effect of higher Reynolds numbers was studied. Figure 16 shows the picture of the flow structure for a Reynolds number of 32315, it is the case with all the outflow on the injector end and is compared with the similar case (Figure 15) for a Reynolds number of 7057. The higher Reynolds number case shows a highly turbulent jet with a high velocity backflow. There is high jet entrainment in the near nozzle region and a resulting high spreading rate of the jet. A lot of small eddy structure is visible in the extreme end region. This is in contrast with the lower Reynolds number cases where eddy structure was predominant throughout the length of the model. Figure 17 shows the same outflow configuration for a jet Reynolds mumber of 18095. The overall structure remains the same, small eddy structure is ovserved even in the central sepment.

4.3 Results from the Modified Thacl computer Code

TEACH was run for the model using a water analo: with out tow only on the ingector end, the extreme end was a reyion of starnation.

42

April 1, 1980 SL/CHW:lcl

Fis. ! 6 Picture of Plow Field at Rernolds Number 32.315 (out flow on injactor ent)

Fig. 17. Picture of Flow Field at Reymolds Numer lsogs (out flow on injector end)

April 1, 1980 SL/CHN: lel

The outlet velocity profile was specified in two ways:

1. Assumed a specified uniform exit velocity profile.
\therefore Assumes a fully developed velocity profile at the exit plane.
!igure 18 shows that regardless of how the exit velocity profile is specified, the corresponding axial velocity profiles are within $\pm 5^{\circ}$ of each other at an x / L of just 0.065 . As x / L increases the two profiles approach nach other more closely. It is concluded that despite such big differences in the specified exit velocity profile, the downstream velocity profiles are not very different: the choied of outlet condition is not too important as long as continuity is satisfied. This comparison was made for a case with an infector diameter one third the size of the eylinder diameter, it is assumed that the same trend continues for smaller infector diameters, such as that in the model.

In all subsequent runs, a fully leveloped velocity profile was assumed at the exit plane. This provided for a more contimuous variation in velocity profile from one anial location to the next.

Figure 19 shows the comparison hetween anial weocity profiles in the pipe step case and the modified ease for the model.

The residues from iteration to iteration show sood and stable
 and cont imity hecome very small, as does that for turnalene kiac:
 at a shower mote These runs were made usine the same amere :re wat.an

16
April 1, 1930 SI./CHV:1Cl

april 1. 1980
SL/CHN: l•1
residues were only slightly higher than in the original test case.
Figure 20 shows the velocity vectors at some of the grid points for the case where the injector Reynolds number 25590, comparable to that of Figure 16. Appendix C tabulates data for this case. The figure shows a strong jet core with slight entrainment. The backflow is strong near the wall and eddies anpear to exist, suc as in the stagnation region near the extreme end. Results obtained at both higher and lower Reynolds numbers show the same trend. Entrainment is very great in the injector vicinity as can be seen by the velocity vector \bar{E} in figure 20. Another interesting trend observed using the program at very high Reymolds number is the appearance of additional small eddies. It is important to realize that all eddies will not show $u p$ on the computer results since time averaging caluses some of the regularly fluctuating eddies to disappear.

CHAPTER V

SUMDIARY ANI CONCLUSIONS

5.1 Summary

The objective of this study was to investigate the fluid flow structure of a jet induced mixing process in a SIR, where the jet is directed along the cylinder axis.

A water model was constructed which satisfied the conditions of similarity. The analogy leads to the conclusions that the flow patern ohserved in the model is representative of that in the SlR and that the velocities in the model are related to those in the SIR.

The water model was a horizontal cylindrical vessel, containing a water hath at room temperature. A water iet was injected entrally from one end of the model and was continuously discharged through small holes on hoth ends. The water flowed in a closed loop for particle visualization studies and in an open loon for dye visualization. Runs were made at various inlet Reynolds numbers. The ouflow on both ends was also varied.

Two techniques were used for the dye visualization studies in the model. Noz=le dye injection was employed to study the spreadins behavior and the turbulent nature of the flow field. Syringe dye infection through glands in the model wall provided for a study of jet reattachment and eddy structure.

The particle visualization entailed photographing the sencrated flow patterns which weremade visible by illuminating small alumina
particles placed in the water loop. The particles were visually observed in the model when they passed through a narrow zone of high intensity illumination. The narrow zone of light approximated a plane, containing the cylinder axis and point of injection.

A modified form of the TEACH computer code was used to make analytic predictions of velocity, pressure, turbulent kinetic energy, and dissipation fields in the specific case of a dead ended model with all outflow in the plane of injection.

5.2 Results and Conclusions

For a jet induced mixing process in a SIR, the major observations and conclusions of this investigation are:

1. The flow consisted of a spreading turbulent jet with a strong region of reverse flow near the walls. Fiddy structure, predominant in the reverse flow region, indicated high turbulence intensity.
2. Fluctuatin!, eddies caused the jet core flow to bend around them, producing a side to side whipping motion of the jet. The flow structure was highly fluctuating.
3. The jet did not reattach to the cylinder walls.
4. At high ingector Reynolds numhers, the whipping was strong hut confined to the extrone end of the model. where eddy structure was concentrated. The reverse flow along the wall was strong. .Jet entrainment near the injector was high cansing a rapid spreading.

For lower Reynolds numbers, the whipping motion was weak. Eddies were prevalent throughout the flow field causing a serpentine whipping. The reverse flow was weaker and the entrainment (hence spreading) less.
5. Outflow configuration was felt to have a major effect on the flow structure. The effect of higher outflow on the injector end was to produce higher reverse flow velocities near the walls, eddy structure became less prevalent, and a region of stagnation began to form at the extreme end. Increased outflow at the extreme end caused smaller reverse flow velocities, eddy structure became predominant especially in the central segment of the cylinder length, the stagnation region at the extreme end disanpeared.
6. Results obtained using the modified form of Tlacll are time averaged flow ficld variables, for a case with no outflow on the extreme end. Results showed a strong turbulent jet with a high velocity reverse flow. A stagnation region was encountered at the extreme end, where the streamlines of the jet bend into the resion of reverse flow. liduy structure was indicated.
7. Comparison between $v i$ sual and amalytic trends was not
feasible. This was due to the fact that a time weraced
visual structure could not be construted.
5.3 Recommendations for Further Study

It would be of great value to record the flow patterns on movies or video tape. This would provide for a better understanding of the fluctuating structure and provide a base for time averaged visual observations.

Velocity measurements should be made to permit a thorough evaluation of the analytic model. The laser doppler velocimeter would seem to be the proper choice of instrument for such turbulent recirculating flow configurations.

The analytic model has potentiai for further modifications. It could be extended to account for outflow at both ends.

It is also suggested that a wider range of Reynolds number and length to diameter ratio be studied.

RI:FERE:CES

1. Thomson, F. X., "Investigation of a Jet-Induced Mixing Heat Transfer Process," M.S. Thesis, The Pennsylvania State University, 1974.
2. Becker, H. A., Hottel, H. C. and Williams, G. C., 'Mixing and Flow in Ducted Turbulent Jets," Ninth Symposium (International) on Combustion, Academic Press, London, 1963, pp. 7-20.
3. Barchion, M. and Curtet, R., "Some Details of the Structure of an Axisymmetric Confined Jet with Backflow," Transactions of the ASME, Journal of Basic Ingineering, December 1964, pp. 777-787.
4. Craya, A. and Curtet, R., "On the Spreading of a Confined Jet," (in French) Comptes-rendus Academie des Sciences, Paris, Vol. 241, 1955, pp. 621-622.
5. Curtet, R., "Confined Jets and Recirculation Phenomena with Cold Air," Combustion and Flame, London, Vol. 2, No. 4, December 1958.
6. Curtet, R., "On the Flow of an Finclosed Jet," Publications Seientifiques et Techniques du :linistere de l'dir, Paris, No. $359,160$.
7. Mramovich, G. N., The Theory of Turbulent lets. The M.I.T. Press, 1063.
S. Schlichting, H., Boundary Layer Theory, MeCraw-llill Co., lgos.
8. Hill, P. G., "lurbulent Jets in Ducted Streams," Journal of Flaid Mechanics, Vol. 22, Part 1,1905, pp. 161-186.
9. Kerney, P. J., Faeth, C. M. and Olson, I. R., 'Penctration Characteristics of a Submerged Steam Jet," NIChl .lournal, Vol. 18, No. 3, 19:2. pp. 548-554.
10. Weimer, J. C., Faeth, (; M. and Olson, I. R., "Penetration of Vapor Jets Submerged in Suhcooled Liquids," AIChl: Journal, Vol. 19, No. $3,1973, \mathrm{pp} .552-557$.
11. Avery, . F. and Facth, C. M. "Combustion of a Submerged liascous Oxidizer Jet in a liquid Metal." Fifteenth Symosium (International) on Combustion, Acaderic Press, dew York, 107.1, pr. 501-512.
12. Gosman, A. D., Khalil, E. E. and Whitelaw, J. H., "The Calculation of Two-Dimensional Turbulent Recirculating Flows," First International Symposium on Turbulent Shear Flows, Springer-Verlat Berlin Heidelberg, 1979, pp. 237-255.
13. Gosman, A. D., Khalil, E. E. and Launder, B. E., "Computation of Flow in Ducts with Sudden Enlargements," Turbulent Recirculating Flows Workshop, The Pennsylvania State University, July 1975.
14. Launder, B. E. and Spalding, D. B., Mathematical Models of Turbulence, Academic Press, London, 1972.
15. Back, L. H. and Roschke, E. J., "Shear-Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion," Journal of Applied Mechanics, Vol. 94, 1972, pp. 677-681.
16. Reynolds, A. J., "Observations of a liquid-1iquid jet," Journal of Fluid Mechanics, Vol. 14, 1962, pp. 552-556.
17. :IcNaughton, K. H. and Sinclair, C. G., "Submerged Jets in Short Cylindrical Flow Vessels," Journal of Fluid Mechanics, Vol. 25, 1966, pp. 367-375.
18. Crow, S. C. and Champagne, F. II., "Orderly Structure in Jet Turbulence," Journal of Fluid Mechanics, Vol. 48, 1971, pp. 547-591.
19. White, K. N., Darooka, D. K. and Sogin, H. N., "On Recirculating Flow in a Dead-End Vessel," Transactions of the ASME, Journal of Fluids Engineering, March 1975, pp. 119-120.
20. Nillis, D. A. and Meyer, H. E., " Λ Water Nodel Study of Swirling Flow in a Stratified Charge Engine," Department Report, Mechanical Engineering, The Pennsylvania State University, 1965.
21. Bird, R. B., Stewart, W. E. and lightfoot, E. N., Transport Phenomena, John Wiley and Sons Inc., 2nd edition, 1962.
22. Prandt1, L. and Tietjen, 0. J., Applied Hydro- and Aero-dynamics, Dover Puhlications Inc., 1957.
23. Bhehian, A. and Hoult, D. P., "Flow Visualization Study of the Intake Process of an Internal Combustion Engine," SNE Technical Paper Scries, lletroit, February 1979.
24. Allen, M. and Yerman, A. J., "'Voutral Density Beads for Flow Visualization," Section 1 , Symposium of Flow Visualization, presentation Sumaries, AShl Anmal leeting, Chapter $4,1960$.
25. Merzkirch, W., Flow Visualization, Academic Press, New York, 1974.
26. Wood, C. J., 'Visualization of an Incompressible Wake with Base Bleed," Journal of Fluid Mechanics, Vol. 29, 1967, pp. 259-272.
27. Fulmer, R. D. and Kirtz, D. P., 'Measurement of Individual Particle Velocities in Simulated Rocket Exhaust," AIAA Journal, Vol. 3 , No. 8, 1965, pp. 1506-1508.

Aprendix A

CALCULATION OF FINITI: DIFFERENCI RQUATION

COEFFICIENTS FOR NEN SIDE NALL

Refer to Figure 21 for the nodal configuration at the introduced extreme end wall. The hoomerangs show had data is stored.

Consider the node ($15, \mathrm{~J}$) where J can vary from 2 to 21 , the flux term (general) is defined as:

$$
\dot{u}_{c}=u a_{c} a_{c}-a_{a} \frac{\partial \phi_{0}}{\partial x}
$$

For the axial velocity momentum equation,

$$
i_{0}=\left.a\right|_{e^{u}}{ }_{0}-\Gamma_{u_{0}} \frac{\partial u}{\partial u_{0}}
$$

since "e is very small and negligithe in the near wall region

$$
\mathrm{i}_{\mathrm{e}}=0, \text { therefore } \mathrm{A}_{\mathrm{e}}^{u}=0
$$

Similarily for the 15 momentum:

$$
\begin{aligned}
y_{e} & =u_{e} v_{c}-\left.r_{c} \frac{\partial v}{\partial x}\right|_{c}=-r_{v} \frac{v_{w a l}-v(15)}{\lambda(15)} \\
& =\frac{r_{v}}{\lambda x(15)} v(15)
\end{aligned}
$$

therefore

$$
A_{c}^{\prime}=0, \text { and } S_{\Gamma}^{\prime}=S_{Y}-\frac{1}{\lambda x}
$$

these changes in the source temin S_{p} are made in aceordance with the law of the wall, as used in the original program. Similar treatment is used for $h=h_{\text {. }}$

April 1, 1990
sl/CHW:lel

APPESDIX B

MODIFICATIONS IN THE COMPUTER CODE

The following changes were made in the computer code:
Changes in the MAIN PROGRAM
CHAPTER I
new values were assigned in the following statements, as shown:
$\mathrm{N} . \mathrm{J}=22$
RLARGE $=0.0445$
ALTOL $=7.0$ * RLARCE
Statements numbered 43 and 44 were removed The following statements were added:
RAT $=$ RSSALL/RLARGE
UOUT $=-$ UIN*RAT**2/(1.0-RAT**2)
TEOUT $=$ TURBIN* UOUT**2
EnOUT $=$ TEOUT** $1.5 /($ ALAMDA*RLARGE $)$
Chapter II
The following statements were included:
no 201 J = JSTPI, Xisil
TE($1, \mathrm{~J}$) = TEOMT
U(2.J) = louT
$201 \mathrm{ED}(1, \mathrm{~J})=\mathrm{EDOHT}$
no $205 \mathrm{I}=2, \mathrm{Nim}$
20.3 YPLUS. (1) $=11.0$

Statement number 11 was replaced by:
DO 657 . $\mathrm{J}=2$, JSTES

Chanses in ©:GROUTINE PROMOD
ESTRY MODU
C …-. -TOP WALI.
No changes required.
C--...-. SlDE WALL
10 $21.5 \mathrm{~J}=2, \mathrm{NJML}$
$213 \mathrm{~N}:(\mathrm{N}[11, \mathrm{~J})=0.0$
C --..- STMMITRY AXIS
No chanses required.
(: ------ OUTIIIT
ARUCNT=0.0
Foch=0.0
no 20.4 $1=15 \mathrm{Tl} 1 . \mathrm{NiN}$

ARHCK $=$ MRDEXT + MRIEN

WIVC = (FLOWLN + FLOH)/ARHENT

DO 205 .J-JSTP1, X.JM1
(2, J) - U(.3,.J) -IINC RETUR.:

ESTRY MODV

C --...- SIDE WALL
CDTERM $=$ CMU** 0.25
$\mathrm{XP}=\mathrm{XU}(\mathrm{NI})-\mathrm{X}(\mathrm{XIML})$
$\mathrm{I}=\mathrm{NI} .91$
[10 $310 . J=2, \mathrm{~N} . \mathrm{MM}$
$\operatorname{SQRTK}=\operatorname{SQRT}\left(C .5^{*}(T E(I, J)+T E(I, J-I))\right)$
DEN: $=0.5^{*}(\mathrm{DEN}(\mathrm{I}, \mathrm{J})+\mathrm{DE} \mathrm{N}(\mathrm{I}, \mathrm{J}-1))$
XPLUSA $=0.5 *(X P L U S E(J)+$ XPLUSE $(J-1))$
If (XPLUSA. LE. 11.63) Co T0 311
TMUTT-MCH*CDTHRM*SQRTK*CAPPA/ALOG(ELOG*XPLUSA)
((0) 70 .3l2
inl Trut-viscos/ap
312 TMH $(T)=-$ TMULT $+1(1, J)$
SIU NE(I, J)=0.O
TMUE (1)-TAUE(2)

C----- TOP Wath.
\therefore changes required.
C.----- SBMITRY AXIS

Do change required.
RETHRN
EXTRY MOUP
RETIRR:
ENTRY : HOMT
RETURX:
EXTRY MODTE
C--... TOR WAL,
No chanees required
© --..-SIDE Wall.
$X P=X H(X I)-X(N M 1)$
$\mathrm{I}=\mathrm{XI} \mathrm{M} 1$
$10620 \quad 1=2, \mathrm{~N} \mathrm{MM}$
DESM= MA: (I , J)
SQRTK-SORTT TTE (1, , T))

 $+1(1-1,1)+(1-1, .1+1) / 4.0) /$ Sik(1)


```
    IF(XPIUSE(J).LE.11.6.3) 60 70 621
    OITYRM=|&N(I,J)* (CAU**0.75)*SQRTK*ALOG(ELOO*XPLUSE (.I))/ (CAPPA*XP)
    (0) T0 622
621 coNTINUE
    MITER!=[ON(1,.J)*(CMU**0.75)*SQRTK*XPLUSE (J)/XP
622 CONTINUE
    SU(I,J)=SU(I,J+SUKD)(I,J)+CEN(I,J)*VOL
    SP(I,J)=SP(I ,J)+SPKD(I,J)-[IITERM*VOL
620 NE(I,J)=0.0
    C ----- SYMm:TRY AXIS
    No changes required
    RETURN
    ENTRY MODED
    C ---- TOP NALL
    No shanges required
    C -.-.- SIDE: WMLL
    XP=XU(N1)-X(NIS1)
    I=NI:H
    TERM=(CSU**0.75)?(CAPMN*NP)
    NMR=NJ..2
    no 720 J=2,NMM2
    SU(1,J)=(GREAT*TERU*TE(I ,J)** 1.5
720 SP(I,J)=-CRENT
C---- S\MPIETRY AXIS
No changes required.
RI:TURN
F:N!
```

PROGRIY CORRESPONIING TO A REYNOLDS NUABER OF 25590.

TAble I
AYIAL VELOCITIES AT GRID POINTS AS CAICULATED BY MODIFIED TEACH

I	2	3	i	5	6	7	8
J							
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	－4．255－01	－4．02E－01	－3．981：－01	－．3．951－01	－3．951－01	－．5．99E－01	－4．08E：－01
20	－4．25E－01	－4．201：－01	－4．15E－01	－4．11E－01	－4．08E－01	－4．09E－01	－4．14E－01
19	－4．19E－01	－4．14E－01	－4．09E－01	－4．04E－01	－4．01E－01	－7．01E－01	－4．05E－01
18	－4．00E－01	－3．96E－01	－3．92E：－01	－3．88E－01	－3．85E－01	－3．85E－01	－5．88E－01
17	－3．72E－01	－3．69E－01	－3．661：－01	－3．631：－01	－3．01E－01	－3．62E－01	－3．62E－01
16	－3．35E－01	－3． $33 \mathrm{~F}-01$	－．3．32E－01	－3．31E－01	－3．31E－01	－3．321－01	－3．35E－01
15	－2．901：01	－2．91E－01	－2．921：－01	－2．93E－01	－2．95E－01	－2．9－E－01	－5．01E－01
1.4	－2．40E－01	－2．451：－01	－2．471：－01	－2．50E－01	－2．541－01	－2．585：－01	－2．63E－01
1.3	－1．8－1：－01	－1．921：－01	－1．981：－01	－2．03E－01	－2．085－01	－2．15E－01	－2．22F－01
12	－1．351：－01	－1．40E：01	－1．471－01	－1．52E－01	－1．598．－01	－1．6si－01	－1．$-8 E-01$
11	－8．218－02	－8．03E－02	－9．3．41：－02	－9． － $015-02^{\text {－}}$	－1．061：－01	－1．181：－01	－1．51E－01
10	－2．251：－02	－2．251：－02	－3．101：－02	－5．501\％－02	－4．561：－022	－6．011：－02	$-7.561:-02$
9	1．091：－01	9．92『－02	7．651：－02	$5.301:-02$	5．581：－02	1．891：－02	3．901：－03
8	2．45E－01	2．42E－01	2．301：－01	2．0フロ－01	1．821：01	1．705－01	1． $25 \mathrm{SE}-01$
7	4．87E－01	4．88E－01	4．90E－01	4．971：－01	$5.121:-11$	5．4．41：－01	6．03E－01
6	1．05E＋00	1．0515＋00	$1.07 \mathrm{E}+00$	1．128＋00	1．10F＋00	1．305：＋00	1．421：+00
5	$2.40 \mathrm{E}+00$	$2.40 \mathrm{E}+100$	$2.41\left[\begin{array}{l}\text {＋} \\ \text { 0）}\end{array}\right.$	2． $4411+00$	$2.511:+10$	2． $02 \mathrm{E}+00$	2． $\mathrm{SE} \mathrm{E}+00$
4	$5.50 \mathrm{E}+00$	$5.5015+100$	$5.19 \mathrm{E}+00$	5．171：＋00	$5.4 .515+00$	$5.371+00$	$5.311+00$
S	$9.901:+00$	$9.901 \%+100$	$9.89 \mathrm{E}+00$	$9.881:+00$	9． $8.51+00$	$9.791+00$	$9.681 .+00$
2	$9.901+00$	$9.90 \mathrm{E}+00$	$9.901+00$	9.900500	$9.901:+00$	$9.901:+00$	$9,90 \mathrm{C}+00$
$x=$	0.0	0.006	0.012	0.02	0.020	0.040	0.1554

1ABLE 1 （cont．）

	\square	11	11	12	15	14	15	16
．J								
22	0.0	0.0	0.0	0.0	0.0	0.0	$0.1)$	0.1
21	－4．231：－01	－4．641：－01	－4．79E－01	－5．29f－01	－6．071－01	－－．－－ $1-01$	－1．1－1．＋00	0.1
20	－4．241：－01	－4．41E－01	－4．66E－01	－5．04E－01	－5．621：－01	－6．97E－01	$-1.08 \mathrm{E}+00$	0.1
19	－4．1．3t：$=-1$	－4．26E：01	－4．45E－01	－4．75E－01	－5．191－01	－6．30［－0］	－9．98E－01	0.1
18	－5．911：－01	－4．051：－01	－4．19E－01	－4．42E－01	－4．71E－01	－5．50L－01	－8．8．3E－01	0.1
17	－3．$-0 ¢-01$	－5．－81：－01	－3．89E－01	－4．06E－01	－4．191－01	－4．－2「－01	－8．41E－01	0.1
16	－3．30［－01	－3．48i：－01	－3．55E－01	－3．67E－01	－3．6．41：－01	－3．831：－01	－5．70E－01	0.1
15		－5．131：－01	－3．18E：－01	－3．25E－01	－5．051－0］	－2．90I：01	－3．72E－01	0.
1.4	－ 2 －－01－01	$-2.76 \mathrm{E}-01$	$-2.78 \mathrm{E}-01$	$-2.85 \mathrm{E}-01$	－2．45E－01	－1．98I：－01	－1．47E－n1	0.
15	－2． $305-01$	－2． $\mathrm{BraF}_{5}-01$	－2．306－01	－2．40t－01	－1．8．41－01	－1．08s－01	1．05E－01	
12	－1．s－L－91	$-1.951-91$	－1．921－01	－1．95t－91	－1．221－01	－1．s．E－02	S．81E－01	0.
11	－1．12F－n1	－1．501－111	－1．1：10－01	－1．451－01	－5．571：02	T．18E－02	$6.48 \mathrm{E}-01$	0
10	－8．72：－02	－9．5ごー11？	－8． 3 31－012	－－581－02	5.2015	1．721：－0］	1．02E +00	0.
9	－3．921：－03	$-1 .-11-10.3$	2．32\％－112	6．6－1．－1）2	1． 2 2l：－01	3．06E－01	$1.39 \mathrm{E}+00$	
8	1．94：－01	2．101．01	2．91E－01	1．211．－01	4．081：－01	5．451：－01	$1.82 \mathrm{E}+00$	0.
7	6．831：－01	$8.031-01$	（1．0sl－al	1．101：00	1．08I +00	1．09E＋00	$2.311 \%+00$	0.
6	$1.581:+00$	1． $711+00$	1．891．000	$2.098+00$	2．07l：＋00	2． 285100	$2.89 E+00$	0.
5	2． $95 \mathrm{E}+00$	3． $1315+00$	3． $2851+00$	3．431＋00	3．4．21 +00	3． $851 \mathrm{l}+00$	3．55E＋0．0	0.
4	5． $26 \mathrm{~F}+000$	5． $2515+00$	5． $2615+00$	$5.291+00$	5． $241:+00$	$5.661:+00$	$4.251 \%+00$	0.1
3	$9.49 \mathrm{C}+00$	9．2．3i：＋100	$8.911+00$	8．5．11i＋00	$8.131 \mathrm{t}+00$	$8.10 \mathrm{E}+00$	4． $94 \mathrm{EF}+00$	0.
2	9．901：+00	$9.8811+00$	$9.8515+00$	9．771：＋00	9．6．3E＋00	$9.5712+00$	$5.39 \mathrm{E}+00$	0.
$x=$	0.069	0.089	0.112	0.139	0.172	0.212	0.260	0.51

April 1, 1980 SL/CHW:1cl

TABLE 11
RADIAL IELOCITIES AT GRID POINTS AS CNCULATED BY MODIFIED TIACH

I	2	3	4	5	6	7	8
.							
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	1.36E-03	1.19E-03	7.17E-04	4. 15E-05	-7.18E:-04	-1.50E-0.	-2.201:-03
20	3. 25E-03	3.12E-03	2.04E-03	$6.39 \mathrm{E}-04$	-8.97E-04	-2.45E-03	-3.84E-03
19	5. 26E-03	5.23E-03	3.49E-0.3	1.38E-03	-9.02E-04	-3.19E-03	-5.22E-03
18	-.10E-03	7.23E-0.3	$4.848-0.3$	2.08E-03	-8.89E-04	-3.87E-03	-6.49E-03
17	8. -9\%-03	8.91E-03	5.93E-03	2.61E-03	-9.805-04	-4.595-03	-7.73r.-05
16	$9.9-1: 03$	1.00E-02	$6.581:-0.3$	2.84E-03	-1.291:-03	-5.475:-0.3	-9.05E-0.5
15	1.006:-02	1.04E-02	$6.69 \mathrm{E}-03$	2.67E-03	-1.92I-03	-6.59E-0.3	-1.051:-02
1.1	1.0.4E-02	9.841:-0.5	$6.20 E-03$	2.021:-05	-2.908-0.	-8.091:-0.3	-1.23E-02
15	9. 2 SE-0.	8.511:-03	5.21E-03	8.391:-04	-4.05E-0.3	-1.01E-02	-1.45E-02
12	7.401:-03	$6.95 \mathrm{E}-0.5$	4.08E-03	-8.851:-04	$-7.041:-0.3$	-1.291:02	-1.73E-02
11	5.311:-03	6.185-03	3. 24E-03	-3.131:-03	-1.04E-02	-1.605-012	-2.081:-02
10	3.1.5\%-0.5	$6.235-03$	2.195-03	-6.13I:-03	-1.48E-02	-2.14E-02	-2.521:-02
9	-4.25E-04	-1.42E-03	-4.65E-0.3	-1.161:02	-2.05E-02	-2. $22 \mathrm{E}-02$	-3.001:-02
8	-1.761:-0.5	-6.13E-0.3	-1.28E-02	-2.001:-02	-2.67E-02	-3.111:-02	-3.198-02
7	-1.771:-03	-6.56E-0.3	- 1.351:-02	-2.011:-02	-2.48E-02	-2.661:-02	-2.531:-02
6	2.09\%-04	-6.56E-05	-1.741:-0.3	-4.871:-0.5	-7.931:-03	-9.0@E-0.5	-7.941:-0.3
5	8.45E-04	3. 47E-03	7. 20f:-0.	1.201:-02	1.61E-02	1.82E-02	1.80E-02
4	1.47E-0.3	1.721:-0.3	2.5.4i:-0.3	$4.811:-0.3$	$8.951:-0.3$	1.45E-02	1.971:-02
3	3.35E-05	1.591-04	1.111:-0.4	2.41E-05	-3.781:-05	-1.08E-05	1.96E-0.4
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{X}=$	0.005	0.000	0.016	0.02 .4	0.03 .4	0.046	0.061

TABLE II (cont.)

NavSEA, Mr. M. F. Murphy, SEA 63R-32, Copy No. 1
NavSeA, Mr. F. J. Romano, SEA 63R-3, Copy No. 2
NavSEA, Mr. C. D. Smith, SEA 63R, Copy No. 3
NAVSEA, Library, SEA-9961, Copies No. 4 and 5
NUSC, Dr. R. S. Lazar, 3642 , Copy No. 6
NUSC, Mr. T. J. Black, Copy No. 7
DTIC, Copies 8 through 19

