EEL 6814
Neural Networks for Signal Processing
Homework 1-Adaptive Linear Systems

Time embedded Data

|. PROBLEM 1

The first problem is system identification of a nonlinea
plant using a linear model. In some cases a linear model ¢
capture the characteristics of a nonlinear plant; howeter,
depends on how well a projection from the input space ci
map to the desired system. 1-f oa

The system model given is

n
y(n+1) = (% + 1) sin?(u(n)). 1)

The input is defined as independent samples from a stand
normal distribution, i.e. the most convenient input defifed
system identification in linear systems.

The difficulty in modeling this as a non-linear system i - .
two-fold: first, the output is a product of the input and thu..us )
previous output, meaning the impulse response is always zer _ .
and thesin2(u(n)) term cannot be approximated by a lineaf'd- 1+ The outpuy(n + 1) given the input.
solution. Between (-1,1), where 68% of the input values fal!
it may be approximated by the:(n)| which the best linear
approximation is a constant. The trigonometric functiogoal
bounds the output to at most 1.5, see Fig. 1. As mention
the impulse response is always zero, but the response
constant inputs of various amplitudes readily convergés, F
2. However, as the input is centered around zero, the out
is constantly driven low, with few walks above the mear
The mean of the output was found empirically to be nei
0.5667, the output was zero-centered before attemptstainsys
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identification, since the input had no mean a filter without s osf /N / \ /
additional bias term performed worse since they were net at £ Zj . = . . -
to even capture the mean. : o2l // \ / /\ / \ n-2
g o |/ \ 7 =
A. Wiener Filter Solution e \ / \ / \ )
As a result of the nature of the this system, the best FI % = = 0 2 s s

u(n), O n - Input Amplitude

linear solution was the trivial solution of all zero weighBoth
the Wiener and LMS readily converged to this value.
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Fig. 2. The transient response to constant input valuesavange of input.

B. LMS Solution
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Fig. 3. The outputy(n + 1) given the previous input.

Time embedded Data

y(n+1)

y_n_n+1.ig

Fig. 4. The outputy(n + 1) is dependent on the previous outpy(tz) but
not in a linear fashion.

Time embedded Data

y(n+1)

y(n)

x(n)

y_x_n_n+1iig

Fig. 5. A time embedding space with the input and previousiesl
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Fig. 6. Realization with mean.
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Fig. 7. Realization with mean removed.

MSE for single Wiener filter of order 1
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Fig. 8. Performance with mean, notice huge DC term in error.
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MSE for single Wiener filter of order 1
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Fig. 9. Performance without mean.

Distribution of MSE for Wiener filters
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Fig. 10.
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Fig. 11.

Performance

with mean with order 1.

Distribution of weights for Wiener Filter
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Single tap weight distribution
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Fig. 13. Performance of 2 tap with stepsize of 0.0001.
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Fig. 14.
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LMS Weight track of 2 tap with stepsize of 0.0001.
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Weight Track forn=0.5
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Fig. 15. Performance of 2 tap LMS filter with stepsize of 0.1. Fig. 18. Weight track of 2 tap with stepsize of 0.5. Divergast remains
near zero.
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Fig. 16. LMS Weight track of 2 tap with stepsize of 0.1. Fig. 19. Performance of 5 tap with stepsize of 0.01.
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Fig. 20. Weight track of 5 tap with stepsize of 0.01 from ramdmitial

Fig. 17. Divergence of 2 tap with stepsize of 0.5. weights. Rattles around trivial solution.
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Fig. 21. Divergence of 5 tap with stepsize of 0.2.
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Fig. 22. Weight track of 5 tap with stepsize of 0.2. Lack of wwengence,
but centered around zero.
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Fig. 23. Training set performance for both Least SquaresBatdh LMS.

Il. PART 2-LINEAR REGRESSION

The goal of this part was to fit a linear model for &
13-dimension input space to a scalar value pertaining
body fat measurements. No preprocessing of the data v
performed,and a least squares fit was performed with a b
term added. For the training set the LS fit had a correlatic
coefficient of 0.857, Fig. 23. Then the solution for the thagn
set was found again by iterative least squares (LMS)
batch mode. Due, to the eigenvalues ranging from 56
1.85 x 107 the eigenvalue spread is abow@® and there
needed to be many epochs of training to converge to t
least squares solutions and a stepsize of @iyx 1075 (a
much more liberal value than the theoretical stability tur
of 1 x1077), Fig. 24. However, the LMS converged to within
the misadjustment of the LS, see Fig. 25 for weights and Fi
26 for bias. The training set performance had a correlatis
coefficient of 0.847, Fig. 23.

The test set performance was not as successful, pointingglﬁl)ﬂ

overfitting, Fig. 27.
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Fig. 24. Weight tracks for multiple training epochs of the EMolution.
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Fig. 26. Weights including DC bias for least squares and Lidi&t®n.
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