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EEL 6814
Neural Networks for Signal Processing
Homework 1-Adaptive Linear Systems

I. PROBLEM 1

The first problem is system identification of a nonlinear
plant using a linear model. In some cases a linear model can
capture the characteristics of a nonlinear plant; however,it
depends on how well a projection from the input space can
map to the desired system.

The system model given is

y(n+ 1) =

(

y(n)

1 + y2(n)
+ 1

)

sin2(u(n)). (1)

The input is defined as independent samples from a standard
normal distribution, i.e. the most convenient input definedfor
system identification in linear systems.

The difficulty in modeling this as a non-linear system is
two-fold: first, the output is a product of the input and the
previous output, meaning the impulse response is always zero,
and thesin2(u(n)) term cannot be approximated by a linear
solution. Between (-1,1), where 68% of the input values fall,
it may be approximated by the|u(n)| which the best linear
approximation is a constant. The trigonometric function also
bounds the output to at most 1.5, see Fig. 1. As mentioned
the impulse response is always zero, but the response to
constant inputs of various amplitudes readily converges, Fig.
2. However, as the input is centered around zero, the output
is constantly driven low, with few walks above the mean.
The mean of the output was found empirically to be near
0.5667, the output was zero-centered before attempts at system
identification, since the input had no mean a filter without an
additional bias term performed worse since they were not able
to even capture the mean.

A. Wiener Filter Solution

As a result of the nature of the this system, the best FIR
linear solution was the trivial solution of all zero weights. Both
the Wiener and LMS readily converged to this value.
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Fig. 1. The outputy(n + 1) given the input.
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Fig. 2. The transient response to constant input values overa range of input.

B. LMS Solution
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Fig. 3. The outputy(n+ 1) given the previous input.
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Fig. 4. The outputy(n + 1) is dependent on the previous outputy(n) but
not in a linear fashion.
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Fig. 5. A time embedding space with the input and previous values.
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System (mean−removed) and Model Output for single Wiener realization
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Fig. 6. Realization with mean.
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Fig. 7. Realization with mean removed.
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Fig. 8. Performance with mean, notice huge DC term in error.
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Fig. 9. Performance without mean.
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Fig. 10. Performance without mean with order 1.
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Fig. 11. Performance with mean with order 1.
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Fig. 12. Single tap weight distribution
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Fig. 13. Performance of 2 tap with stepsize of 0.0001.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3 Weight Track for η=0.0001

 

 
w(1)
w(2)

lms_weights_2_0.0001.fig

Fig. 14. LMS Weight track of 2 tap with stepsize of 0.0001.
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Fig. 15. Performance of 2 tap LMS filter with stepsize of 0.1.
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Fig. 16. LMS Weight track of 2 tap with stepsize of 0.1.
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Fig. 17. Divergence of 2 tap with stepsize of 0.5.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−50

−40

−30

−20

−10

0

10

20

30

40

50
Weight Track for η=0.5

 

 
w(1)
w(2)

lms_weights_2_0.5.fig

Fig. 18. Weight track of 2 tap with stepsize of 0.5. Diverges,but remains
near zero.
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Fig. 19. Performance of 5 tap with stepsize of 0.01.
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Fig. 20. Weight track of 5 tap with stepsize of 0.01 from random initial
weights. Rattles around trivial solution.
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Fig. 21. Divergence of 5 tap with stepsize of 0.2.
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Fig. 22. Weight track of 5 tap with stepsize of 0.2. Lack of convergence,
but centered around zero.
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Fig. 23. Training set performance for both Least Squares andBatch LMS.

II. PART 2-LINEAR REGRESSION

The goal of this part was to fit a linear model for a
13-dimension input space to a scalar value pertaining to
body fat measurements. No preprocessing of the data was
performed,and a least squares fit was performed with a bias
term added. For the training set the LS fit had a correlation
coefficient of 0.857, Fig. 23. Then the solution for the training
set was found again by iterative least squares (LMS) in
batch mode. Due, to the eigenvalues ranging from 56 to
1.85 × 107 the eigenvalue spread is above105 and there
needed to be many epochs of training to converge to the
least squares solutions and a stepsize of only2.6 × 10−5 (a
much more liberal value than the theoretical stability bound
of 1×10−7), Fig. 24. However, the LMS converged to within
the misadjustment of the LS, see Fig. 25 for weights and Fig.
26 for bias. The training set performance had a correlation
coefficient of 0.847, Fig. 23.

The test set performance was not as successful, pointing to
overfitting, Fig. 27.
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Fig. 24. Weight tracks for multiple training epochs of the LMS solution.
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Fig. 25. Final weights (excluding DC bias) for least squaresand LMS
solution.
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Fig. 26. Weights including DC bias for least squares and LMS solution.
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Fig. 27. Test set performance for Least Squares and LMS solution.


