
University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Serial Communication Christopher Crary, Instructor
Page 1/9 Revision 0 Wesley Piard, Instructor

OBJECTIVES
• Understand general concepts regarding synchronous serial communication.
• Become familiar with the Serial Peripheral Interface (SPI) communication protocol and how to apply it with the ATxmega128A1U.
• Interface with an external inertial measurement unit (IMU) sensor package, by way of the SPI communication protocol.
• Stream and plot real-time 3D (XYZ) acceleration data using the SPI and USART systems of the ATxmega128A1U.

INTRODUCTION
In general, systems that use synchronous serial communication utilize a common clock signal to determine when to send, receive, or
sample data. In fact, all synchronous communication is dependent on such a signal. In contrast, for devices communicating with an
asynchronous serial communication protocol, there exists no synchronization signal. Instead, a common transfer rate must be upheld by
the systems, or else, data received could be interpreted incorrectly, or even entirely missed.

Synchronous serial communication is normally preferred over asynchronous serial communication because higher data transfer rates can
generally be achieved. The main reason for this is that asynchronous serial systems must normally include within all data transmissions
some bits for synchronization and “error-checking”, which effectively reduces any possible rate of data transfer.

One popular synchronous serial communication protocol is Serial Peripheral Interface (SPI). With SPI, full-duplex communication is
possible between two or more devices, although only one device may act as a controlling master – every other connected device must act
as a responding slave. Although there may be only one master, it is possible that the role of master be assigned dynamically. However,
for this to be done properly, some form of “handshaking” is required.

When communication is to occur between some master and slave(s), the master device is always responsible for initiating the
communication. Normally, before some communication may occur, a slave must be enabled by way of a chip select (CS), or slave select
(SS), signal. In general, such a signal is either controlled by the master or is always driven true. To start communication once some set of
slaves is enabled, the master generates a clock signal, often referred to as the serial clock (SCK, SPC). Upon some edge of each generated
clock pulse, either the rising edge or falling edge, each of the master and slave(s) will shift out a single bit of data from an internal shift
register, where each has their own. Furthermore, each device is to “sample” some bit of data on the opposite edge of the same clock pulse.
Any data shifted into a slave from some master is transmitted via a signal most commonly referred to as Master-Output-Slave-Input
(MOSI), and any data shifted into a master from some slave is transmitted via a signal most commonly referred to as
Master-Input-Slave-Output (MISO). In general, either or both of some MOSI/MISO signals can be used; in other words, it is possible for
[1] a master to transmit to, but not receive from, some slave(s), [2] a master to receive from, but not transmit to, some slave(s), and
[3] a master to both transmit to and receive from some slave(s). For both [2] and [3], it must be ensured that no two slave devices share
a chip select signal, for else there would be bus contention.

Although SPI is a very common synchronous serial communication protocol, there exist many others; some others include Inter-
Integrated Circuit (IIC, or more commonly, I2C), Universal Serial Bus (USB), and Controller Area Network (CAN). Moreover, the
synchronous mode within the USART system of the ATxmega128A1U, the ‘S’ of “USART”, provides access to another synchronous
serial communication protocol, which is very similar to SPI.

LAB STRUCTURE
In this lab, you will utilize synchronous serial communication by way of the SPI protocol. More specifically, you will learn how to
configure and use the SPI system of the ATxmega128A1U, for the purpose of communicating with an LSM6DSL inertial measurement
unit (IMU) chip, located on the OOTB Robotics Backpack. The LSM6DSL contains a Micro-Electro-Mechanical System (MEMS)
3D digital accelerometer and a MEMS 3D digital gyroscope1. Once SPI communication with the IMU is properly established, you will
generate real-time plots of linear acceleration on your computer, by streaming IMU sensor data to a data visualization program, SerialPlot,
via the relevant USART module.

REQUIRED MATERIALS
• Atmel ATxmega128A1U AU Manual (doc8331)
• LSM6DSL Datasheet
• Relevant skeleton code files (.c and .h): lab6_files.zip
• OOTB µPAD, with USB A/B cable
• OOTB Robotics Backpack, with accompanying schematic
• Digital Analog Discovery (DAD) kit, with WaveForms

SUPPLEMENTAL MATERIALS

• Atmel ATxmega128A1U Manual (doc8385)
• Setup and Use of the SPI (doc2585)

1 An accelerometer is a device used to measure acceleration, e.g., static accelerations like gravity, or dynamic accelerations such as vibrations or movements in the X, Y,
or Z coordinate axes. A gyroscope is a device that measures angular velocity and uses gravity to help determine orientation.

https://mil.ufl.edu/3744/docs/XMEGA/doc8331_%20XMEGA_AU_Manual.pdf
https://mil.ufl.edu/3744/docs/uPAD2p0/LSM6DSL%20(Accel,%20Gyro).pdf
https://mil.ufl.edu/3744/labs/lab6_lsmdsl_f20/lab6_files.zip
https://mil.ufl.edu/3744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/3744/docs/XMEGA/Atmel-2585-Setup-and-Use-of-the-SPI_ApplicationNote_AVR151.pdf

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Serial Communication Christopher Crary, Instructor
Page 2/9 Revision 0 Wesley Piard, Instructor

PRE-LAB PROCEDURE
REMINDER OF LAB POLICY
You must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.

1. INTRODUCTION TO SPI AND THE LSM6DSL
In this section, you will begin to become familiar with the SPI
protocol, the SPI system available within the ATxmega128A1U,
and the LSM6DSL inertial measurement unit (IMU). When
proceeding, keep the following in mind:

 The SPI serial communication protocol, like any other digital
communication protocol, is just a predefined system of rules
for performing data transfer between multiple components
via a set of digital signals.

 The SPI system within the ATxmega128A1U was designed to
simplify the procedure of emulating the SPI protocol.

 From the perspective of the microcontroller, the LSM6DSL
IMU is an external peripheral.

1.1. Carefully read § 22 (SPI – Serial Peripheral Interface) of the
8331 manual.

Generally, for design simplicity, many devices (especially
peripherals) are built to only support a subset of possible SPI
configurations. Fortunately, the SPI system within the
ATxmega128A1U was built to support most of the possible SPI
configurations, and thus, is able to communicate with many types
of components. However, because of this flexibility, there are
several considerations to make when utilizing this SPI system
(and often when using the SPI protocol in general):

 Which device(s) should be given the role of master and which
device(s) should be given the role of slave?

 How will the slave device(s) be enabled? If a slave select is
utilized, rather than just have the device(s) be permanently
enabled, which pin(s) will be used?

 What is the order of data transmission? Is the MSb or LSb
transmitted first?

 In regard to the relevant clock signal, should data be latched
on a rising edge or on a falling edge?

 What is the maximum serial clock frequency that can be
utilized by the relevant devices?

Throughout this lab, you will utilize the SPI protocol to
communicate with an LSM6DSL IMU peripheral chip located on

the OOTB Robotics Backpack, for the purposes of interfacing with
a MEMS 3D digital accelerometer and, optionally, a MEMS 3D
digital gyroscope.

Like with the ATxmega128A1U, the LSM6DSL utilizes
memory-mapped registers to store data relevant to its internal
components. However, instead of utilizing a parallel address bus
and parallel data bus to access these memory-mapped registers,
like the ATxmega128A1U, the LSM6DSL utilizes the SPI (or I2C)
protocol.

It is important to recognize that the LSM6DSL component located
on the OOTB Robotics Backpack was designed to utilize specific
I/O pins on the ATxmega128A1U. Additionally, to allow the
potential for both SPI and I2C communication, certain signals
were designed to be multiplexed with a digital switch (more
specifically, an analog, bidirectional, 2-input multiplexer) on the
OOTB Robotics Backpack. Thus, there are additional signals
within the OOTB Robotics Backpack that must be directly
controlled by the microcontroller (with I/O port assignments, just
like in previous labs), before attempting to configure the
LSM6DSL.

Below, you will begin to become familiar with the LSM6DSL
component and understand how it was designed to connect to your
microcontroller.

1.2. Read through the LSM6DSL datasheet. Pay extra attention to
§§ 2, 4, 6.2, 7, and 8, as well as to Table 2 (focus on the SPI
function of each pin), Table 6, and Table 9.

1.3. Determine which signals from the ATxmega128A1U will be
utilized to communicate with the LSM6DSL chip on the
OOTB Robotics Backpack. Refer to the appropriate
schematic(s) and manual(s).

PRE-LAB EXERCISES
i. In regard to SPI communication that is to exist between the

relevant ATxmega128A1U and LSM6DSL chips, answer each
of the questions within the previously given bulleted list.

2. COMMUNICATING WITH SPI
Throughout the next few sections, you will incrementally create
several routines with the “C” programming language, for the
purpose of communicating with the LSM6DSL device.
Additionally, you will perform experiments when appropriate,
to verify your work.

First and foremost, you will design “C” functions to utilize the
SPI system within the ATxmega128A1U. The functions that you
will create should allow for a somewhat generic use of the SPI
system and should follow the provided spi.h and spi.c files.

2.1. Within the provided spi.c file, complete the “C” function,
void spi_init(void), to initialize the appropriate SPI module
within the ATxmega128A1U as well as the appropriate
control signals on the µPAD, for the purpose of
communicating with the relevant LSM6DSL.

2.1.1. Make sure that you select the bit transmission order
(MSb or LSb) expected by the LSM6DSL, and that you
do not choose a SPI clock frequency that is too fast for
the LSM6DSL. For more details, refer to § 22.3
(Master Mode) of the 8331 manual, § 33.2 (Alternate

https://mil.ufl.edu/3744/admin/lab_rules_and_policies.pdf
https://mil.ufl.edu/3744/docs/uPAD2p0/LSM6DSL%20(Accel,%20Gyro).pdf

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Serial Communication Christopher Crary, Instructor
Page 3/9 Revision 0 Wesley Piard, Instructor

Pin Functions) of the 8385 manual, and any relevant
schematics.

2.2. Write a second “C” function, void spi_write(uint8_t data),
to transmit a single byte of data from the master device (the
ATxmega128A1U), and then wait for the SPI transmission
to be complete.

2.2.1. To wait for the transmission to be complete, you
should poll a specific flag in the relevant SPI status
register. Interrupts should not be used for this purpose,
as it inhibits portable code. (Note that more advanced
programming techniques, which are outside the scope
of this course, could be used to circumvent such a
portability issue.) After the SPI transmission is
complete, your function should terminate. Do not
enable or disable any slave devices within this
function, as multiple sequential calls to the function
are possible, rendering the use of multiple
enables/disables inefficient. Such enabling and
disabling should be handled within a separate routine,
which is discussed later on.

2.3. Write a third “C” function, uint8_t spi_read(void), to read
a single byte of data from a connected slave device.

2.3.1. This function should write some arbitrary byte of data
to the SPI data register, to trigger an exchange of data
between your microcontroller and the LSM6DSL, and
then after the transmission is complete, have the
function return the contents of the data register.
Remember that, with SPI communication, data is
shifted in from a slave device at the same time that data
is shifted out from the master device. To be able to
read in a byte of data, you must send out a byte of data.
The byte of data that you choose to transmit in order
to accomplish this task is arbitrary, e.g., it could be
0xFF, 0x37, etc. (The slave device will know to not
save any data being received from the master during
this time.) Just as with the spi_write routine above, do
not enable or disable any slave devices within this
function.

Now, you will create a “C” program and utilize your DAD to
verify transmit functionality for the relevant SPI module.

NOTE: The following method could also be used to verify
receive functionality, although a different, more intuitive
technique will be used to test such functionality, in the following
section of this lab.

2.4. Write a simple “C” program, lab6_2.c, to initialize the
relevant SPI module and to continually transmit 0x25 from
this same module. Utilize the relevant “C” functions
previously written by yourself. Also, to simulate the
LSM6DSL slave device being enabled/disabled, assert an
available I/O port pin low before each transmission (i.e.,
simulate the process of enabling the device), and de-assert
the same pin after each transmission (i.e., set the relevant
pin high, or simulate the process of disabling the device).

To verify that the SPI module is correctly transmitting 0x25, you
will view all appropriate SPI signals with the SPI digital bus
analyzer function of the Logic (LSA) feature within Waveforms.
See the left image of Figure 1 to determine where this feature
may be accessed from within the Logic feature.

As shown in the right image of Figure 1, the SPI function can be
used to view the three relevant SPI signals: Select (the signal
used to enable a slave device, usually denoted as chip select [CS]
or slave select [SS]), Clock (the clock signal used to synchronize
any SPI connected devices, usually denoted as serial clock
[SCK], or something similar, such as serial port clock [SPC] in
the LSM6DSL datasheet), and Data (the signal used to transmit
data to or receive data from a slave device, which can
represented by several common names, e.g., Master-Out-Slave-
In [MOSI], Master-In-Slave-Out [MISO], Slave Data In [SDI],
and Slave Data Out [SDO]).

2.5. Within the Logic feature of Waveforms, select SPI from the
“Click to Add channel” dropdown menu, depicted in the
left image of Figure 1. You will be prompted with the Add
SPI menu, an example of which is depicted in the right
image of Figure 1. Configure the relevant settings. Refer to
the relevant schematics, if necessary.

2.6. Use the program created above, lab6_2.c, along with
the SPI digital bus analyzer function of your DAD, to
verify that your microcontroller is correctly transmitting
0x25. To be able to probe the relevant pins, you may either
[1] remove any backpack connected to the µPAD or [2]
utilize the J2 header of the OOTB Robotics Backpack. The
chosen DIO pin on the DAD for SPI data should connect
to the appropriate MOSI signal. You may wish to use the
slave select signal as a falling-edge trigger source within
the Logic feature. You can also use a “protocol trigger” to
trigger the LSA when an SPI transmission starts.

2.7. Take a screenshot of the LSA measuring a single, full byte
of data being transmitted. Include all relevant signals.
Make sure that you choose an appropriate time base such
that a single transmission is clearly visible.

Figure 1. (left) Accessing the SPI function within the

Logic feature; (right) the Add SPI menu.

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Serial Communication Christopher Crary, Instructor
Page 4/9 Revision 0 Wesley Piard, Instructor

3. COMMUNICATING WITH THE LSM6DSL
In this section, you will verify receive functionality by
interfacing with the external LSM6DSL IMU. To accomplish
this, you will create a new “C” program, lab6_3.c, to read
from an accelerometer register within the LSM6DSL. However,
before writing this program, you will first design two “C”
functions to allow you to read from or write to any register
within the LSM6DSL.

Overall, the LSM6DSL has a plethora of configuration registers
for its internal accelerometer (and gyroscope), just like our
microcontroller does for its internal peripherals. However,
unlike when accessing a register within the ATxmega128A1U,
where parallel busses are utilized to communicate address and
data values, SPI (or I2C) must be used when reading from or
writing to some register within the LSM6DSL.

3.1. Re-read and understand the sections of the LSM6DSL
datasheet that concern configuration registers and how they
are to be accessed.

NOTE: Any LSM6DSL register that has a name suffixed with
“_XL” is associated with the built-in accelerometer. Any register
that has a name suffixed with “_G” is associated with the built-
in gyroscope.

As stated above, you will design two “C” functions to allow you
to read from or write to any register within the LSM6DSL. These
functions are described below.

void LSM6DSL_write(uint8_t reg_addr, uint8_t data) – Writes
a single byte of data, `data`, to the address `reg_addr`, which is
meant to be associated with an LSM6DSL register.

uint8_t LSM6DSL_read(uint8_t reg_addr) – Returns a single
byte of data from an LSM6DSL register associated with the
address `reg_addr`.

When writing code to configure or utilize the LSM6DSL, it is
highly recommended that you download and utilize the relevant
skeleton files provided for this lab. The given `LSM6DSL.h`
header file is primarily meant to provide declarations for the
above two functions (as well as another that we will be written
in the following section of this lab), whereas the given
`LSM6DSL.c` file is primarily meant to provide definitions for
these two functions (and the third that has yet to be discussed).
Separately, the `LSM6DSL_registers.h` header file is primarily
meant to provide some useful symbols for address values
associated with memory-mapped registers located within the
LSM6DSL, somewhat similar to the AVR include file
`ATxmega128A1Udef.inc`. See Figure 2 for a few examples of
the symbols provided within this file. Recall that you can define
your own set of constants, or condense certain aspects of “C”
code, with macros. (In “C”, a macro is defined with the ̀ #define`
preprocessor directive.)

Following this, to create the necessary “C” functions to write to
or read from any register within the LSM6DSL, here are the order
of events that should occur:

 Enable the LSM6DSL via the relevant chip select signal.
(Refer to how the OOTB Robotics Backpack is designed.)

 Send the appropriate amount of data to the LSM6DSL, based
on the timing diagram given in the LSM6DSL datasheet.

 Disable the LSM6DSL via the relevant chip select signal.

3.2. Create a “C” function to be able to write to any of the
registers within the LSM6DSL, void
LSM6DSL_write(uint8_t reg_addr, uint8_t data), as well
as another “C” function to be able to read from any of the
available registers, uint8_t LSM6DSL_read(uint8_t
reg_addr). Whenever appropriate, utilize other “C”
functions previously written by yourself.

Now, we will verify receive functionality of the relevant SPI
module. Within the LSM6DSL, there exists a predefined register
to identify the device ID. This register, denoted by WHO_AM_I
(refer to § 9.12 in the LSM6DSL datasheet), returns the default
value of 0x6A. If you are able to create a program that
successfully reads from the WHO_AM_I register, you should be
able to reason that your SPI interface is appropriately designed.

3.3. Create a “C” program, lab6_3.c, to read from the
WHO_AM_I register within the LSM6DSL and store the
read value into some temporary variable, so that the read
value may be verified through the relevant debug
window(s) of Atmel Studio.

3.4. Connect the OOTB Robotics Backpack to the µPAD, if
necessary. Test the receive functionality of your system by
debugging your program within Atmel Studio. Determine
whether or not the expected value was read by your SPI
system by any appropriate means, e.g., by way of a Watch
window within Atmel Studio, etc. If you do not receive the
expected data, use the LSA on your DAD board to debug
the system. Probe the relevant pins via the J2 header of the
OOTB Robotics Backpack, and compare measurements
received from the LSA to the relevant timing diagrams
provided within the LSM6DSL datasheet.

4. CONFIGURING THE LSM6DSL ACCELEROMETER
Now that you have a set of functions that allow you to configure
accelerometer registers within the LSM6DSL, you need to
actually configure the accelerometer! However, before
attempting to do so, read through the following comments,
questions, and requirements:

 Before the accelerometer is configured or utilized at all, it is
recommended that you first perform a software reset of the
entire LSM6DSL device. Refer to information regarding the
CTRL3_C register.

Figure 2. Some code segment taken

from `lsm6dsl_registers.h`

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Serial Communication Christopher Crary, Instructor
Page 5/9 Revision 0 Wesley Piard, Instructor

 For this lab, you must have the accelerometer acquire
acceleration forces from each of the X, Y, and Z coordinate
directions simultaneously. How do you specify that the
accelerometer should do so? Refer to information regarding
the CTRL9_XL register.

 What should the full-scale selection be for the
accelerometer? Overall, this criterion dictates the limits of
acceleration force that the accelerometer can measure, and,
in turn, dictates how precise an accelerometer measurement
can be. As an example, of those full-scale settings provided
by the LSM6DSL, “±2g” would provide the lowest limits,
but would, in turn, provide the highest precision. A setting
of “±2g” would likely not work well for fighter jets, but it
likely would for the contexts of our course. Refer to
information regarding the CTRL1_XL register.

 What should the output data rate be for the accelerometer?
Overall, this criterion dictates how fast the accelerometer
will output all of the relevant data. When deciding this rate,
the relevant serial communication rate(s) and
microcontroller system clock frequency should be taken
into account. For our purposes, 208 Hz would likely be
good, but some other rate, either faster or slower, might be
more appropriate. Refer to information regarding the
CTRL1_XL register.

 The LSM6DSL is designed to be able to generate an interrupt
signal upon the accelerometer completing an acceleration
measurement, which can be used to signal that data is ready

to be read from the accelerometer. In this lab, such an
interrupt signal must be used to trigger an I/O interrupt on
your microcontroller, instead of this signal being manually
polled. Refer to information regarding the INT1_CTRL
register, as well as the relevant schematics. Which input
sense configuration should be utilized by the relevant I/O
pin of your microcontroller?

Overall, for this lab, you must do the following when initializing
the LSM6DSL accelerometer:

i. Perform a software reset of the LSM6DSL, via the CTRL3_C
register.

ii. Configure the CTRL1_XL, CTRL9_XL, and INT1_CTRL
registers, in some appropriate manner.

iii. Configure an I/O port interrupt to trigger upon the
accelerometer completing a measurement.

4.1. Create a “C” function, void LSM6DSL_init(void), to
initialize the LSM6DSL as described above.

In the next section of this lab, we will begin to utilize
measurements being made by the accelerometer. To do so, you
must first understand how to access accelerometer data for each
of the three coordinate directions X, Y, and Z.

4.2. Determine how to access accelerometer data from the
LSM6DSL. Refer to the LSM6DSL datasheet.

5. PLOTTING REAL-TIME ACCELEROMETER DATA
In this section of the lab, you will create a “C” program,
lab6_5.c, to plot accelerometer data for each of the three
coordinate directions X, Y, and Z in real-time, using SerialPlot.

SerialPlot is a very simple open source tool that can be used to
visualize serial data. In this course, we will utilize the USART
system of the XMEGA, which is automatically translated to the
USB protocol, to send data to the SerialPlot application on our
computer. This will allow us to visualize many different
“channels” of data very easily. For the purposes of this lab, each
channel will represent one of the X, Y, or Z axes data from the
LSM6DSL.

So, to simply communicate with SerialPlot, UART must be used
to allow communication between your computer and your
microcontroller, via the USB connection on your µPAD. Then,
to plot accelerometer data from your IMU, all you must do is
output the data via UART in the correct sequence of “frames”
for it to be interpreted and displayed properly by SerialPlot.

SerialPlot allows for a few different ways input data can be
formatted. The first, most simple format is depicted in Figure 3.
This format is known as “Simple Binary” in SerialPlot. There
are a few things to note about this figure, and about the Simple
Binary” format in general:

 SerialPlot can plot up to 32 channels, so you must specify
how many to use for your application. In Figure 3, three
channels are used. This means in one “frame” of data, you
must output three channels worth of data for it to work
correctly.

 SerialPlot can interpret most simple data types such as 8,
16, and 32-bit signed and unsigned integers, as well as
floats. Figure 3 is an example of what 16-bit data would look
like in this format. You can choose whether it is plotted as
signed or unsigned.

 SerialPlot can also support both little-endian and big-endian
data formats.

For the same example given in Figure 3, assuming that three
channels of signed 16-bit data in the little-endian data format
were expected, the following three values should be supplied to
SerialPlot in the same order given: 0x4305, 0x0020, and
0x3744. When outputting this data with UART, you would
output the data in the order shown in Figure 3: 0x05, 0x43, 0x20,
etc. After all six bytes have been sent to SerialPlot via USB, the
plot will update with the three new values corresponding to each
channel.

If you were using five channels of 8-bit unsigned data, you
would only need to output five bytes, starting with the data that
should correspond to channel one and ending with the data for
channel five.

5.1. Download and install SerialPlot. Once installed, open the

program and initialize each tab as follows:

Figure 3. Example SerialPlot Simple Binary Data

Format

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Communication Christopher Crary, Instructor
Page 6/9 Revision 0 Wesley Piard, Instructor

5.2. For the Port tab, make sure your µPAD is connected to
your computer and select the corresponding COM port. It
should have “EDBG” in the name. Click the refresh button
next to the “Port” field if it does not show up automatically.
Choose the highest baud rate you can use for your given
system clock frequency. Leave everything else as default,
e.g., no parity, 8-bit data, 1 stop bit, no flow control. Wait
to click Open until your program is running.

5.3. For the Data Format tab, choose Simple Binary, three
channels, int16 number type, and little-endian endianness.

5.4. For the Plot tab, make sure that all three channels are
visible, choose 1000 for the buffer size and plot width,
make sure both check boxes are selected for “Index as X
Axis” and “Auto Scale Y Axis”, and choose “Signed 16
bits” for the range preset.

Each of the three channels will be used to represent one of the
X, Y, and Z axes measured by the accelerometer. For the
purposes of this lab, make channel one display the X axis data,
channel two display the Y axis data, and channel three
display the Z axis data.

NOTE: Don’t forget to send the data in little-endian format (like
you should have configured SerialPlot to accept), and that the
data you are working with (from the accelerometer) is in a signed
16-bit format. This means that for every channel/axis, you need
to output two bytes.

If you ever need to use the accelerometer data for arithmetic or
logical comparisons, you should store it into int16_t variables,
one per axis! This may be necessary for lab quizzes or hardware
exams, so make sure you understand how to accomplish this.

5.5. Create a “C” file, lab6_5.c. Write a “C” function to
transmit a stream of sensor data via your USB Serial Port,
in the correct order according to the Simple Binary format,
following the pattern in Figure 3 and as described above.
Make sure that your function transmits the correct number
of bytes, in the right order. Your function should also
utilize other functions (or macros) that you have already
created, such as usartd0_out_char(). Be careful to not use
usartd0_out_string(), since this routine expects a
null-terminated string, which your data will likely not be!
Instead, it is advised that you create a function, similar to
usartd0_out_string(), that outputs a specific number of
bytes via the relevant USART module, rather than
continually output until a null character is encountered.

Now, recall that the LSM6DSL will be configured to interrupt
your microcontroller, upon completing an acceleration
measurement. The routine that you will create below must
only output data for SerialPlot when new data from the
accelerometer becomes available, since we only care to plot
new data. (There is no point in outputting the same data
repeatedly.)

Moreover, as always, your program should spend as little time
as possible within the respective interrupt service routine. In
other words, your program must not output any data to
SerialPlot within an ISR. Instead, a global flag (e.g., volatile
uint8_t accel_flag) should be asserted to alert your main
program that new accelerometer data is ready to be output.

5.6. Create a main routine within your “C” file, lab6_5.c, to
plot accelerometer data for all three coordinate directions
(X, Y, and Z) via the Data Streamer, as described above.
Remember to only transmit new accelerometer data. As
mentioned previously, configure the relevant USART
module with the highest baud rate possible for your system
clock frequency.

After your program is running, and after you have selected the
appropriate COM port that corresponds to your µPAD within
SerialPlot, click Open either [1] in the Plot tab or [2] at the top
of the SerialPlot window.

NOTE: Recognize that Earth’s gravitational force vector
(perpendicular to the ground) will continuously act on the
accelerometer axes that are partially aligned with the gravity
vector.

5.7. Using SerialPlot, plot all three axes of accelerometer data,
in real-time. Take a screenshot of your graph, including all
three waveforms.

PRE-LAB EXERCISES
ii. Why is it a better idea to modify global flag variables inside

of ISRs instead of doing everything inside of them?
iii. To output two unsigned 32-bit values 0x12345678 [CH1]

and 0x9A34F211 [CH2] to SerialPlot, list all the bytes in
the order you would send them via UART.

iv. What is the most positive value that can be received from
the accelerometer (in decimal)? What about the most
negative?

EXTRA CREDIT
For 10% extra credit, implement the same functionality for the gyroscope as you did for the accelerometer. There will be no PI help for
extra credit.

PRE-LAB PROCEDURE SUMMARY
1) Answer all pre-lab exercises, when appropriate.
2) In § 1, create “C” functions to configure/utilize the SPI module that will connect to the LSM6DSL IMU.
3) In §§ 2 and 3, test the SPI “C” functions that you wrote in § 1, and create “C” functions to communicate with the LSM6DSL IMU.

Take a relevant screenshot of the LSA, as described in § 2.7.
4) In § 4, create a “C” function that initializes the built-in accelerometer within the LSM6DSL.

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Communication Christopher Crary, Instructor
Page 7/9 Revision 0 Wesley Piard, Instructor

5) In § 5, create a “C” program to plot accelerometer data for all three coordinate directions (X, Y, and Z), using SerialPlot. Take a
screenshot of your plot, as described in § 5.7.

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Communication Christopher Crary, Instructor
Page 8/9 Revision 0 Wesley Piard, Instructor

APPENDIXES
A. USING THE PROVIDED LSM6DSL C FILES

Three files have been provided for you: LSM6DSL.c,
LSM6DSL.h, and LSM6DSL_registers.h.

The LSM6DSL_registers.h file contains very useful definitions
which give labels to the addresses and bitfields of the LSM6DSL
internal registers, as shown in Figure 2.

The LSM6DSL.c file is blank and may be used as a place to
define the LSM6DSL-related functions as described in § 3.

The LSM6DSL.h file is more interesting. First and foremost, it
will serve as a place to put the declarations of the functions you
defined in LSM6DSL.c. Additionally, it contains several type
definitions which are provided for you to use. You are not
required to use any of these type definitions; however, they will
likely make your life a lot easier when it comes to managing the
inertial data from the LSM6DSL. The following typedefs are
provided:

LSM6DSL_module_t – An enumeration that can be used to
specify a device (accelerometer or gyroscope) if you ever need
to. An example would be a function that could act on either the
accelerometer or the gyro. This enumerated type could be used
as one of the argument types to the function.

LSM6DSL_data_raw_t – This type is a structure that can be used
to store the data when read from the IMU. It supports both the
accelerometer and the gyro, but you can use it exclusively for
the accelerometer if you don’t choose to get the gyroscope
working.

LSM6DSL_data_full_t – This type is a structure that can be used
to access the full X, Y, or Z axis data in a signed 16-bit format.
This is used in the following typedef.

LSM6DSL_data_t – This type is a union that will allow you to
access the data read from the LSM6DSL in a much easier way.
You will need to declare an instantiation of this union in your
code, like so:

LSM6DSL_data_t lsm_data;

You are creating a variable of the LSM6DSL_data_t type, which
is a union. You can choose the name of the variable; it doesn’t
necessarily have to be `lsm_data`. Now, you should be able to
store the LSM6DSL data directly into this union by accessing the
“LSM6DSL_data_raw_t” member. Here is an example:

lsm_data.byte.accel_x_low = /* ̀ LSM6DSL_read` call*/

After you read the rest of the accelerometer data in this fashion,
you then have it all in a contiguous section of memory. Now,
you can access either the bytes individually, or the full words
that correspond to each axis’ data. For example, if you wanted
to access the accelerometer’s Y-axis data, you would type the
following:

lsm_data.word.accel_y

Notice the difference between this and the previous snippet. The
same union (`lsm_data`), but different structure, is accessed.
Because it is a union, these two structs share the same memory.
When you loaded the individual bytes with all the IMU data, you
filled the section of memory that corresponds to the union. This
gives you the ability to either access the bytes individually, or
the entire words!

Understanding how exactly unions and structures work isn’t
necessarily in the scope of this class, especially if this is the first
time you have used “C”. If you are interested in learning more,
there is plenty of information online about these topics that you
can learn more from.

Again, you do not have to use these constructs. They are just
provided to introduce you to some more advanced functionality
of “C”.

University of Florida EEL3744C – Fall 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. Lab 6: Synchronous Communication Christopher Crary, Instructor
Page 9/9 Revision 0 Wesley Piard, Instructor

B. TROUBLESHOOTING SERIAL PLOT
The goal of this section is to help you with some of the issues students typically have with the serial plot software.

Problem #1 (Flipped Low & High Bytes)

 Many students run into an issue where their data seems to fluctuate rapidly through a large range of values. This typically happens
when the data from your µPAD is flipped. SerialPlot is taking in your low byte as a high byte and your high byte as the low byte. The
simplest way to fix this is to restart you program and ensure that Serial Plot is running before you start the program on your µPAD.

Problem #2 (Baud Rate)

 If you are getting junk data from your µPAD on SerialPlot, this usually indicates that the Baud Rate is incorrectly input into SerialPlot.
Check both your code and SerialPlot values to ensure that they match.

Problem #3 (PuTTY)

 If you are getting no data from your µPAD, ensure that you do not have PuTTY running. Only one program can have control over a
serial connection of your µPAD, and PuTTY and SerialPlot don’t get along, so only use one at a time.

C. OPTIMIZATION LEVELS
When using the “C” programming language within our course,
you are required, unless told otherwise, to turn off the compiler
optimization tool utilized by Atmel Studio. To do so, perform the
following within Atmel Studio.

1. Navigate to “Project | <project_name> Properties”.
2. Select “Toolchain”.

3. Select the “Optimization” listing, located under `AVR/GNU
“C” Compiler` section.

4. Set “Optimization Level” to “None (-O0)”.

For more details, read the last page of the document called
Create, Simulate, and Emulate a Project on the Software/Docs
page of our class website.

https://mil.ufl.edu/3744/docs/Create_Simulate_Emulate_Atmel.pdf

	Objectives
	Introduction
	Lab structure
	REQUIRED MATERIALS
	pre-lab procedure
	reminder of lab policy
	You must re-read the Lab Rules and Policies before submitting any pre-lab assignment and before attending any lab.
	1. introduction to Spi and the LSM6DSL
	1.1. Carefully read § 22 (SPI – Serial Peripheral Interface) of the 8331 manual.
	1.2. Read through the LSM6DSL datasheet. Pay extra attention to §§ 2, 4, 6.2, 7, and 8, as well as to Table 2 (focus on the SPI function of each pin), Table 6, and Table 9.
	1.3. Determine which signals from the ATxmega128A1U will be utilized to communicate with the LSM6DSL chip on the OOTB Robotics Backpack. Refer to the appropriate schematic(s) and manual(s).
	pre-lab exercises

	2. Communicating with spi
	2.1. Within the provided spi.c file, complete the “C” function, void spi_init(void), to initialize the appropriate SPI module within the ATxmega128A1U as well as the appropriate control signals on the µPAD, for the purpose of communicating with the re...
	2.1.1. Make sure that you select the bit transmission order (MSb or LSb) expected by the LSM6DSL, and that you do not choose a SPI clock frequency that is too fast for the LSM6DSL. For more details, refer to § 22.3 (Master Mode) of the 8331 manual, § ...
	2.2. Write a second “C” function, void spi_write(uint8_t data), to transmit a single byte of data from the master device (the ATxmega128A1U), and then wait for the SPI transmission to be complete.
	2.2.1. To wait for the transmission to be complete, you should poll a specific flag in the relevant SPI status register. Interrupts should not be used for this purpose, as it inhibits portable code. (Note that more advanced programming techniques, whi...
	2.3. Write a third “C” function, uint8_t spi_read(void), to read a single byte of data from a connected slave device.
	2.3.1. This function should write some arbitrary byte of data to the SPI data register, to trigger an exchange of data between your microcontroller and the LSM6DSL, and then after the transmission is complete, have the function return the contents of ...
	2.4. Write a simple “C” program, lab6_2.c, to initialize the relevant SPI module and to continually transmit 0x25 from this same module. Utilize the relevant “C” functions previously written by yourself. Also, to simulate the LSM6DSL slave device bein...
	To verify that the SPI module is correctly transmitting 0x25, you will view all appropriate SPI signals with the SPI digital bus analyzer function of the Logic (LSA) feature within Waveforms. See the left image of Figure 1 to determine where this feat...
	2.5. Within the Logic feature of Waveforms, select SPI from the “Click to Add channel” dropdown menu, depicted in the left image of Figure 1. You will be prompted with the Add SPI menu, an example of which is depicted in the right image of Figure 1. C...
	2.6. Use the program created above, lab6_2.c, along with the SPI digital bus analyzer function of your DAD, to verify that your microcontroller is correctly transmitting 0x25. To be able to probe the relevant pins, you may either [1] remove any backpa...
	2.7. Take a screenshot of the LSA measuring a single, full byte of data being transmitted. Include all relevant signals. Make sure that you choose an appropriate time base such that a single transmission is clearly visible.
	3. communicating with the LSM6DSL
	3.1. Re-read and understand the sections of the LSM6DSL datasheet that concern configuration registers and how they are to be accessed.
	3.2. Create a “C” function to be able to write to any of the registers within the LSM6DSL, void LSM6DSL_write(uint8_t reg_addr, uint8_t data), as well as another “C” function to be able to read from any of the available registers, uint8_t LSM6DSL_read...
	3.3. Create a “C” program, lab6_3.c, to read from the WHO_AM_I register within the LSM6DSL and store the read value into some temporary variable, so that the read value may be verified through the relevant debug window(s) of Atmel Studio.
	3.4. Connect the OOTB Robotics Backpack to the µPAD, if necessary. Test the receive functionality of your system by debugging your program within Atmel Studio. Determine whether or not the expected value was read by your SPI system by any appropriate ...
	4. configuring the LSM6DSL accelerometer
	4.1. Create a “C” function, void LSM6DSL_init(void), to initialize the LSM6DSL as described above.
	4.2. Determine how to access accelerometer data from the LSM6DSL. Refer to the LSM6DSL datasheet.
	5. plotting real-time accelerometer data
	5.1. Download and install SerialPlot. Once installed, open the program and initialize each tab as follows:
	5.2. For the Port tab, make sure your µPAD is connected to your computer and select the corresponding COM port. It should have “EDBG” in the name. Click the refresh button next to the “Port” field if it does not show up automatically. Choose the highe...
	5.3. For the Data Format tab, choose Simple Binary, three channels, int16 number type, and little-endian endianness.
	5.4. For the Plot tab, make sure that all three channels are visible, choose 1000 for the buffer size and plot width, make sure both check boxes are selected for “Index as X Axis” and “Auto Scale Y Axis”, and choose “Signed 16 bits” for the range pres...
	5.5. Create a “C” file, lab6_5.c. Write a “C” function to transmit a stream of sensor data via your USB Serial Port, in the correct order according to the Simple Binary format, following the pattern in Figure 3 and as described above. Make sure that y...
	5.6. Create a main routine within your “C” file, lab6_5.c, to plot accelerometer data for all three coordinate directions (X, Y, and Z) via the Data Streamer, as described above. Remember to only transmit new accelerometer data. As mentioned previousl...
	5.7. Using SerialPlot, plot all three axes of accelerometer data, in real-time. Take a screenshot of your graph, including all three waveforms.
	pre-lab exercises

	EXtra credit
	pre-lab procedure summary

	APPENDIXES
	A. using the provided LSM6DSL c files
	B. Troubleshooting Serial Plot
	C. OPTIMIZATION LEVELS

