
Efficient Management of Last-level Caches in
Graphics Processors for 3D Scene Rendering Workloads

Jayesh Gaur† Raghuram Srinivasan‡
∗

Sreenivas Subramoney† Mainak Chaudhuri]

† Intel Architecture Group, Bangalore 560103, INDIA
‡ The Ohio State University, Columbus, OH 43210, USA
] Indian Institute of Technology, Kanpur 208016, INDIA

ABSTRACT
Three-dimensional (3D) scene rendering is implemented in the
form of a pipeline in graphics processing units (GPUs). In
different stages of the pipeline, different types of data get ac-
cessed. These include, for instance, vertex, depth, stencil, ren-
der target (same as pixel color), and texture sampler data. The
GPUs traditionally include small caches for vertex, render tar-
get, depth, and stencil data as well as multi-level caches for the
texture sampler units. Recent introduction of reasonably large
last-level caches (LLCs) shared among these data streams in
discrete as well as integrated graphics hardware architectures
has opened up new opportunities for improving 3D rendering.
The GPUs equipped with such large LLCs can enjoy far-flung
intra- and inter-stream reuses. However, there is no comprehen-
sive study that can help graphics cache architects understand
how to effectively manage a large multi-megabyte LLC shared
between different 3D graphics streams.

In this paper, we characterize the intra-stream and inter-
stream reuses in 52 frames captured from eight DirectX game
titles and four DirectX benchmark applications spanning three
different frame resolutions. Based on this characterization, we
propose graphics stream-aware probabilistic caching (GSPC)
that dynamically learns the reuse probabilities and accordingly
manages the LLC of the GPU. Our detailed trace-driven simu-
lation of a typical GPU equipped with 768 shader thread con-
texts, twelve fixed-function texture samplers, and an 8 MB 16-
way LLC shows that GSPC saves up to 29.6% and on average
13.1% LLC misses across 52 frames compared to the baseline
state-of-the-art two-bit dynamic re-reference interval predic-
tion (DRRIP) policy. These savings in the LLC misses result
in a speedup of up to 18.2% and on average 8.0%. On a 16 MB
LLC, the average speedup achieved by GSPC further improves
to 11.8% compared to DRRIP.

Categories and Subject Descriptors
B.3 [Memory Structures]: Design Styles

∗Contributed to this work as an intern at Intel India.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO ’46, December 7-11, 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2638-4/13/12 ...$15.00.
http://dx.doi.org/10.1145/2540708.2540742.

General Terms
Algorithms, design, measurement, performance

Keywords
Caches, graphics processing units, 3D scene rendering

1. INTRODUCTION
High-quality and high-performance 3D scene rendering is

central to the success of several important graphics applica-
tions. A general 3D rendering pipeline found in a typical GPU
consists of a front-end that processes the input geometry by
transforming the vertices of each primitive polygon from the
local co-ordinates to the perspective view co-ordinates. The
back-end of the pipeline assigns color to each pixel within each
transformed primitive by possibly blending multiple render tar-
gets in the screen-space frame buffer (also known as the back
buffer in DirectX1), applies texture maps to each pixel to bring
realism to the scene, and resolves the visible pixels in the frame
buffer through a depth test. Today’s GPUs routinely carry out
hierarchical depth tests and early depth tests to reduce depth
buffer bandwidth and eliminate shading of pixels belonging to
the occluded parts of a surface [12, 35, 36, 37]. Also, these
processors incorporate stencil tests to apply per-pixel masks
for realizing sophisticated control over the set of retained or
discarded pixels in the rendering pipeline. The stencil buffer
stores these masks and is often used together with the depth
buffer. In summary, a 3D rendering pipeline generates access
streams to different data structures such as vertices of the ge-
ometry primitives, hierarchical depth buffer (HiZ buffer), reg-
ular depth buffer (Z buffer), render targets (the pixel colors of
the surfaces being rendered), texture maps, and stencil buffer.

Traditionally, the GPUs have included small independent on-
die caches for each access stream type. For example, a single
level of vertex and vertex index cache, Z cache, render tar-
get cache (also known as the color cache), stencil cache, HiZ
cache, and multiple levels of texture caches can be found in
any typical GPU. We will refer to these caches collectively as
render caches. While these small render caches (few tens to few
hundreds of KB) improve performance by exploiting near-term
temporal locality, they fail to offer much in terms of exploit-
ing far-flung reuses even within a frame of animation. Recent
discrete and integrated graphics hardware architectures from

1Rendering takes place in the back buffer. A color or texture
surface that needs to be rendered is referred to as a render
target. When a frame is completely rendered and ready for
presentation, the back buffer is swapped with the front buffer
and the front buffer pixels get displayed.

Nvidia, AMD, and Intel have included reasonably large last-
level caches that can be shared by all the data streams. For ex-
ample, the Fermi and Kepler architectures from Nvidia respec-
tively include 768 KB and up to 1.5 MB of shared L2 cache [34,
49]. The GPUs used in the AMD Radeon 7900, 7800, and 7700
series (Tahiti, Pitcairn, and Cape Verde of the Southern Is-
lands family) designed based on the AMD Graphics Core Next
architecture have 64 KB to 128 KB of shared read/write L2
cache attached to each memory controller channel [32]. Finally,
Intel’s integrated GPUs found in Sandy Bridge, Ivy Bridge,
and Haswell share a large multi-megabyte LLC with the CPU
cores [9, 21, 22, 39, 44, 52].

Data from different 3D graphics streams can co-exist in such
a large shared graphics LLC. An efficiently-managed LLC can
offer far-flung intra-stream reuses and significantly accelerate
inter-stream reuses, which was impossible in the architectures
with an independent cache hierarchy for each different stream.
Efficient management of LLC shared among the 3D graphics
streams is the central focus of this paper. This is the first
study that characterizes the reuse profile of 3D scene rendering
workloads and exploits the reuse behavior of different graphics
data to design policies for the LLC of a GPU.

0

0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9

1
1.1
1.2
1.3

N
o

rm
a

li
z
e

d
 L

L
C

 m
is

s
 c

o
u

n
t NRU

Belady
DirectX 10 DirectX 11

3DM
ark

VAG
T1

3DM
ark

VAG
T2

Assn C
re

ed

Bio
Shock

DM
C

Civ
ili

za
tio

n
Dirt

HAW
X

Heaven

Lost P
la

net

Sta
lk

er C
O

P

Unig
in

e

Fra
m

e A
VG

Figure 1: Number of LLC misses in twelve DirectX ap-

plications for NRU and Belady’s optimal policy normal-

ized to two-bit DRRIP in an 8 MB 16-way LLC.

To understand the potential of improving the LLC perfor-
mance for 3D graphics workloads, Figure 1 shows the num-
ber of LLC misses for two different LLC replacement policies,
namely, single-bit not-recently-used (NRU) and Belady’s op-
timal [2, 33] normalized to the baseline two-bit dynamic re-
reference interval prediction (DRRIP) policy [19]. The exper-
iments are conducted on a non-inclusive/non-exclusive 8 MB
16-way LLC shared by all the graphics streams. The results are
generated in an offline cache simulator, which takes as input the
sequence of load/store accesses to the LLC in a typical GPU
with 768 shader thread contexts (96 shader cores×8 threads
per core) and twelve fixed-function (i.e., hardwired) texture
samplers (one for every eight shader cores). The 3D graphics
workloads consist of 52 discrete frames selected from eight Di-
rectX games and four DirectX benchmark applications (details
of the applications will be discussed in Section 2). The two-bit
DRRIP policy inserts every cache block into the LLC with a
re-reference prediction value (RRPV) of two or three signifying
the possibility of a reuse in intermediate-future or no reuse in
near-future, respectively. The choice between these two pos-
sible insertion RRPVs is made through a dynamic set-dueling
technique [40]. On a hit, the RRPV of the block is made zero
signifying a possibility of a reuse in immediate-future. A block
with RRPV three is selected for victimization. Such a block
is predicted to have no reuse in immediate- or intermediate-
future. If no such block exists, the RRPV of all the blocks in
the target set are incremented in steps of one until a block with
RRPV three is found. Ties are broken by selecting the block
with the minimum physical way id.

As shown in Figure 1, the NRU policy performs worse than
DRRIP in several applications and increases the LLC miss

count by 6.2% on average. Belady’s optimal policy saves 36.6%
of LLC misses averaged over all the frames compared to the
baseline DRRIP policy pointing to the large opportunity of
saving LLC misses, DRAM traffic, and system bandwidth.

Inspired by the data in Figure 1, we characterize the reuses
observed within each graphics data stream as well as across
different streams (Section 2). This characterization shows that
Belady’s optimal policy benefits from both intra-stream and
inter-stream reuses. The inter-stream reuses primarily stem
from the process of dynamic texture mapping where the dy-
namically produced render targets (i.e., color surfaces) get con-
sumed by the texture samplers and reused for texturing other
surfaces [14]. Based on this detailed characterization, we sys-
tematically derive our proposal of graphics stream-aware prob-
abilistic caching (GSPC), which dynamically learns the reuse
probability of a block belonging to a 3D graphics stream and
accordingly modulates the RRPV of the block (Section 3). Our
detailed trace-driven simulation results (Sections 4 and 5) show
that GSPC saves 13.1% LLC misses averaged over 52 discrete
frames drawn from twelve DirectX 3D rendering workloads
compared to the baseline DRRIP policy. The LLC miss sav-
ings achieved by our proposal lead to an average speedup of
8.0% compared to the baseline. For a 16 MB 16-way LLC, the
speedup further improves to 11.8%.

1.1 Related Work
In this section, we review the contributions on the manage-

ment of LLCs in general-purpose processors and studies explor-
ing memory management in 3D rendering hardware.

1.1.1 General-purpose LLC Management
We focus on three classes of the general-purpose LLC man-

agement algorithms that most closely relate to our proposal.
We discuss algorithms for deciding the age of a block on inser-
tion and subsequent hits in the LLC, algorithms for predicting
dead blocks, and algorithms for dynamically partitioning the
LLC among multiple independent threads in a multi-core set-
ting to meet certain performance, fairness, or quality goals.

Dynamic insertion policy (DIP) adaptively inserts a block
into the LLC at the least recently used (LRU) or the most
recently used (MRU) position of the access recency stack de-
pending on the outcome of a set-sampling-based duel between
LRU insertion and MRU insertion policies [40]. On a cache hit,
a block is always upgraded to the MRU position. The replace-
ment policy always victimizes the block at the LRU position.
This algorithm tries to eliminate the single-use blocks from the
LLC as early as possible without disturbing the rest of the
contents of the LLC. A subsequent proposal has shown how to
employ this policy in a shared LLC of a multi-core processor
so that each thread can choose the best insertion policy [20].

In a more recent work, the notions of re-reference interval
prediction and re-reference prediction value (RRPV) have been
proposed [19]. The age of a block in the LLC is determined
based on its RRPV. If n bits are used to store the RRPV, the
static re-reference interval prediction (SRRIP) algorithm stat-
ically assigns an RRPV of 2n − 2 to a block on insertion into
the LLC. On a hit, the RRPV of the block is updated to zero.
A block with RRPV 2n − 1 is selected as the victim. If there
is no such block in the target set, the RRPV of each block in
the set is incremented until the RRPV of at least one block
attains a value of 2n − 1. The dynamic re-reference interval
prediction (DRRIP) algorithm dynamically chooses between
two insertion RRPVs, namely, 2n − 2 and 2n − 1 based on the
outcome of a set-dueling. Thread-aware DRRIP (TA-DRRIP)

applies the technique proposed in [20] to allow multiple inde-
pendent threads to execute DRRIP in a multi-core shared LLC.
Recent proposals exploit signature-based hit prediction (SHiP)
to improve the RRIP policies by using the program counters,
memory addresses, or code path signatures of the load/store in-
structions [50] or extend the RRIP policies to the LLCs shared
between CPU cores and a GPU running traditional GPGPU-
style scientific computation workloads [28]. In contrast to these
algorithms, our proposal deals with 3D scene rendering work-
loads and dynamically modulates the RRPV of a cache block
based on the observed reuse probability of the 3D graphics
stream the block belongs to. Our policy takes into account the
reuse probability within and across the 3D graphics streams.

The dead block prediction algorithms correlate the program
counters of the load/store instructions with the death of the
cache blocks that these instructions touch [15, 23, 24, 25, 27,
29]. These algorithms victimize the predicted dead blocks early
to make room for more useful blocks in the LLC. Probabilistic
escape LIFO is a light-weight dead block prediction technique
that does not require the program counter signature and relies
only on the fill order of the cache blocks within a cache set [5].
Simple measures of dynamic reuse probability in conjunction
with a clever partitioning of the address space have also been
used to effectively identify the dead and live LLC blocks [4,
11]. In this paper, we apply the concept of dynamic reuse
probability-based LLC management to the domain of GPUs
running 3D scene rendering workloads.

Algorithms have been proposed to explicitly partition the
shared LLC among the competing threads of a multi-core pro-
cessor. The utility-based cache partitioning (UCP) algorithm
carries out a coarse-grain partitioning of the LLC by dynam-
ically assigning a number of ways to each thread [41]. The
UCP algorithm has been extended to LLCs shared between
CPU cores and a GPU where the graphics processor is em-
ployed to execute GPGPU-style workloads [28]. The promo-
tion/insertion pseudo-partitioning (PIPP) policy improves UCP
by designing smart insertion and promotion policies for cache
blocks within each partition [51]. Subsequent proposals such as
Vantage [42] and PriSM [31] eliminate the limitations of way-
grain partitioning and allow each thread to have an arbitrary
fine-grained partition. Our proposal does not carry out any ex-
plicit partitioning of the LLC among the 3D graphics streams.
In fact, since the existing cache partitioning techniques do not
take into account cross-thread sharing and treat the threads as
independent, these techniques cannot be applied directly to the
3D graphics streams, which have significant inter-stream data
sharing. We induce implicit fine-grain partitions among the
streams by efficiently managing the RRPVs of the cache blocks
based on the intra- and inter-stream reuses and propose for the
first time an effective way of improving the LLC performance
of the 3D graphics applications.

1.1.2 Memory Management in 3D Rendering
The GPUs have traditionally incorporated caching of poly-

gon vertices (vertex cache), depth buffer (depth cache), frame
or color buffer (color or render target cache), and texture (tex-
ture or sampler cache). Among these, texture caches [10] have
drawn significant attention of the designers due to the high
memory bandwidth consumed by the texture mapping pro-
cess [3]. Texture caching is an attractive solution to reduce the
texture memory bandwidth demand. The bilinear, trilinear,
and anisotropic filters applied to texture stored in the form of
a MIP map pyramid [48] offer significant amount of spatial and
temporal locality. This observation has inspired a large number

of studies on texture cache architectures including single-level
texture caches [13], two-level texture caches [7], texture caches
in parallel renderers [16, 47], prefetching into texture caches
with deep FIFO structures [1, 17, 26, 45], victim caching [6],
four-dimensional and six-dimensional tiling of texture data [13],
and customized DRAM architectures for fast texture access [8,
43]. A texture cache architecture with on-the-fly decompression
of texture data from a second level compressed texture cache
has also been explored [45]. Reordering of ray-object intersec-
tion tests to enhance the locality of geometry and texture has
been explored for a ray-tracing-based rendering engine [38].

All these studies have explored optimizations of the 3D graph-
ics workloads and hardware to improve data locality that can
be exploited by the individual render caches attached to the dif-
ferent 3D graphics pipeline stages. However, it is not clear how
these workloads can extract the full potential of a large LLC
shared between the different pipeline stages generating differ-
ent streams of accesses with possibly disparate patterns. We
explore solutions to this problem by understanding the mem-
ory behavior of 3D graphics workloads and incorporating this
learning to develop efficient LLC management algorithms.

2. REUSE PROFILE OF 3D RENDERING
WORKLOADS

In this section, we present a detailed characterization of the
LLC behavior of 52 3D frame rendering jobs drawn from twelve
DirectX applications. In the process, we identify the access
patterns that can be potentially exploited to improve the effi-
ciency of caching in the LLC. The details of the DirectX ap-
plications are presented in Table 1. The first column lists the
applications along with the abbreviated names, if any, within
parentheses. Among these, four are benchmark applications,
namely, 3D Mark Vantage Graphics Tests 1 and 2 (3DMark-
VAGT1 and 3DMarkVAGT2) [53], Unigine Heaven 2.1 and the
Unigine 3D engine [46]. The remaining eight applications are
3D games. The second column shows the DirectX version of
the applications. The last column lists the frame resolution
for each application. In this paper, we consider graphics work-
loads built with the DirectX APIs (the Direct3D APIs within
DirectX) only, since a large number of Windows PC games are
designed using the DirectX APIs and these games are routinely
used to benchmark the performance of the commercial GPUs.

Table 1: Details of the DirectX applications

Application DirectX Resolution

3D Mark Vantage GT1 10 1920×1200

(3DMarkVAGT1)

3D Mark Vantage GT2 10 1920×1200

(3DMarkVAGT2)

Assassin’s Creed (Assn Creed) 10 1680×1050

BioShock 10 1920×1200

Devil May Cry 4 (DMC) 10 1680×1050

Civilization V (Civilization) 11 1920×1200

Dirt 2 (Dirt) 11 1680×1050

HAWX 2 (HAWX) 11 1920×1200

Unigine Heaven 2.1 (Heaven) 11 2560×1600

Lost Planet 2 (Lost Planet) 11 1920×1200

Stalker COP 11 1680×1050

Unigine 3D engine (Unigine) 11 1920×1200

We trace the DirectX calls generated while rendering each
application frame and replay this trace of calls through a de-
tailed in-house simulator modeling a high-end GPU. The GPU
has a non-inclusive/non-exclusive 8 MB 16-way set-associative
LLC shared by all the data streams. This LLC configuration

corresponds to an integrated GPU of today or a futuristic dis-
crete GPU with a large read/write cache shared by all the
graphics data to reduce the bandwidth demand on the DRAM
system. A miss in the LLC always fills the requested block into
the LLC and the requesting render cache. An eviction from the
LLC does not send invalidation to the internal render caches
of the GPU. All the results presented in this section are gen-
erated by an offline cache simulator, which has been validated
against the LLC of the detailed GPU simulator. The offline
model digests the LLC load/store access trace collected from
the detailed simulator for each frame.

2.1 DirectX Rendering Pipeline
We begin our analysis by understanding the anatomy of the

DirectX rendering pipeline and how it interacts with the graph-
ics cache hierarchy. Figure 2 shows the organization of the Di-
rectX 10 rendering pipeline and Figure 3 shows a high-level
view of how various render caches interface with the rendering
pipeline and the LLC of the GPU. The input assembler stage
reads the scene geometry data such as the vertices and vertex
indices from memory (through the LLC and the vertex and
vertex index caches) and uses them to assemble the geomet-
ric primitives such as triangles, lines, etc.. The vertex (VTX)
and vertex index (VTX index) cache misses constitute the ver-
tex stream to the LLC. The vertex shader stage uses the pro-
grammable shader thread contexts to transform each vertex
from the local co-ordinates to the world co-ordinates, from the
world co-ordinates to the view space (also known as the cam-
era or eye space) co-ordinates, and finally from the view space
to the perspective projection space, which projects each vertex
of the input geometry onto a projection plane within the view
pyramid of the camera. The optional geometry shader stage
takes the assembled primitives in the perspective projection
space, creates or destroys primitives, and writes the newly cre-
ated vertices to the memory hierarchy through the stream-out
stage for later consumption. Since none of the rendered frames
considered in this paper uses this stage, we show the vertex
stream as a read-only stream to the LLC.

INPUT

ASSEMBLER

VERTEX

SHADER

GEOMETRY

SHADER

RASTERIZER
PIXEL

SHADER

OUTPUT

MERGER

STREAM

OUTPUT

Figure 2: DirectX 10 rendering pipeline.

VTX

CACHE

HIZ

CACHE CACHE

Z

CACHE

STC

CACHE

VERTEX

STREAM

STREAM

HIZ

STREAM
STREAM

Z

STENCIL

STREAM

TEXTURE

TO/FROM DRAM BANKS

RT

STREAM

TARGET

RENDER

CACHES

TEXTURE

GRAPHICS PROCESSOR LLC

RENDERING PIPELINE

CACHE

INDEX

VTX

Figure 3: Graphics streams and the LLC interface.

The rasterization stage clips the primitives and the portions
of the primitives that fall outside the view frustum, transforms
each perspective image point to a pixel co-ordinate in the screen
space or the back buffer (known as viewport transform), dis-
cards back-facing primitives (known as back-face culling), and
interpolates the vertex attributes (color, normals, texture co-
ordinates, depth value, etc.) of a primitive to calculate the at-
tribute values for each pixel covering the primitive. Also, this
is the stage where hierarchical and early depth tests, if enabled,
are carried out to discard some of the hidden surfaces. These

tests use the HiZ and Z caches and these cache misses consti-
tute the HiZ and Z streams to the LLC. The early depth test is
disabled for those render targets, pixels of which may undergo
modifications to their depth values in the pixel shader.

The pixel shader stage uses the programmable shader threads
to compute the color of each pixel in a render target. This
is also the stage where the texture data get sampled through
specific commands indicating the type of sampling (e.g., point,
bilinear, trilinear, anisotropic, etc.) issued to the fixed-function
texture sampler units. Certain texturing techniques such as dis-
placement mapping (used to render realistic bumps, crevices,
water waves, etc.) may require the vertex shader stage to in-
voke the texture sampler units. All sampler accesses go through
the texture cache hierarchy and the texture cache misses con-
stitute the read-only texture sampler stream to the LLC.

The output merger stage carries out the late depth test and
stencil test to decide the final set of visible pixels. The sten-
cil buffer accesses go through the stencil (STC) cache and the
stencil cache misses constitute the stencil stream to the LLC.
The output merger stage also blends the corresponding pixels of
multiple non-opaque render targets to generate the final color
of the pixels in the back buffer. The render target cache (RT
cache) is used to hold the pixel colors of the render targets dur-
ing creation, before blending, and after blending. DirectX 10
allows eight render targets to be simultaneously bound to the
output merger stage and each can have blending enabled or
disabled if the application needs. The RT cache misses consti-
tute the render target stream to the LLC. The final displayable
pixel color values written to the back buffer constitute the dis-
playable color stream to the LLC.

The rendering of one complete frame may require multiple
passes through this pipeline. For example, certain blended ren-
der targets can be later accessed by the samplers to use them
as textures for certain surfaces within the same frame. Us-
ing a render target as a shader resource for texture sampling
is usually known as render to texture [30] or dynamic tex-
turing [14] and constitutes the primary source of inter-stream
reuses (from render target production to sampler consumption)
in the frames that we consider. Also, the depth buffer con-
tents (when rendered from the light source view) can be con-
sumed by the texture sampler during shadow mapping. How-
ever, this particular type of inter-stream reuse is not observed
much in the frames that we consider. Shadow can also be im-
plemented by creating a render target holding the depth values
of the pixels viewed from each light source and reusing the ren-
der target as a texture sampler input (as in render to texture).

The DirectX 11 pipeline introduces three new stages between
the vertex shader and the geometry shader to carry out hard-
wired tessellation of the geometry primitives. These stages are
hull shader, tessellator, and domain shader.

2.2 Graphics Data Streams
This section analyzes the 3D graphics data streams and iden-

tifies the ones that have the biggest impact on the overall LLC
performance. Figure 4 shows the stream-wise distribution of
the accesses to the LLC. Across the board, the major fraction
of the LLC traffic is contributed by the render target and tex-
ture sampler accesses. On average, these two streams consti-
tute 40% and 34% LLC accesses, respectively. The only other
stream that contributes at least 10% to the LLC accesses on
average is the Z stream. The vertex and HiZ streams have 4%
and 7% LLC accesses on average, respectively. The remaining
5% of the LLC accesses come from stencil, display, and other
accesses such as shader code, constants, etc.. Based on this

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
L
L
C

 a
c
c
e
s
s
e
s

STC+Display+Others
Texture sampler
Render targets
Z
HiZ
VTX

3D
M

ar
kV

A
G
T1

3D
M

ar
kV

A
G
T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

Figure 4: Stream-wise distribution of the LLC accesses

in an 8 MB 16-way LLC.

distribution, in the remainder of this section, we analyze the
texture sampler, render target, and Z accesses in greater detail.
The display stream is the end-result of rendering of a frame, is
consumed by the display driver, and does not enjoy any reuse.
In Section 5, we will explore the performance benefit of not
caching this stream in the LLC.

0

20

40

60

80

100

T
e
xt

u
re

 h
it

ra
te

 (
%

)

Belady
DRRIP
NRU

0

20

40

60

80

100

R
e
n
d
e
r

ta
rg

e
t
h

it
ra

te
 (

%
)

Belady
DRRIP
NRU

0

20

40

60

80

100

Z
 h

it
ra

te
 (

%
)

Belady
DRRIP
NRU

Fra
m

e
A
VG

U
nig

in
e

Sta
lk

er
 C

O
P

Lost
 P

la
net

3D
M

ar
kV

A
G

T1

3D
M

ar
kV

A
G

T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Figure 5: Hit rates for the texture sampler, render tar-

get, and Z accesses in an 8 MB 16-way LLC.

Figure 5 presents the LLC hit rates enjoyed by the texture
sampler (topmost panel), render target (middle panel), and
Z (bottom panel) accesses for three different policies, namely,
Belady’s optimal policy, DRRIP, and NRU. For the texture
sampler stream, Belady’s optimal policy experiences an average
hit rate of 53.4%. Across the board, DRRIP and NRU deliver
significantly lower hit rates averaging at 22.0% and 18.4%, re-
spectively. On the other hand, for the render target accesses,
DRRIP delivers an average hit rate (50.1%) that is within 10%
of Belady’s optimal (59.8% average). In this case, however,
NRU lags significantly and delivers an average hit rate of only
41.5%. For the Z accesses, DRRIP and NRU perform similarly
on average exhibiting a hit rate of about 58%, while Belady’s
optimal policy achieves a hit rate of 77.1%. From these results,
it is clear that a properly managed large LLC can significantly
reduce the volume of DRAM accesses in the GPUs. The largest
performance improvement can come from optimizing the tex-
ture sampler accesses. In the next section, we delve deeper into
the analysis of reuses enjoyed by these three streams within
each frame and identify the avenues for improvement.

2.3 Inter- and Intra-stream Reuse Analysis
We first explore the nature of the reuses enjoyed by the tex-

ture sampler accesses to the LLC. Textures are either created
a priori and not modified during rendering (static texture) or
created during rendering as render targets and possibly up-
dated in every frame (dynamic texture). Dynamic texture is
the primary source of the inter-stream reuses seen in the texture
sampler accesses to the LLC (from render target production to
texture sampler consumption). To identify these reuses, we tag
every render target block in the LLC with an RT bit. When
such a block gets consumed by the texture sampler stream from
the LLC, the bit is reset and the LLC hit is counted toward
an inter-stream reuse. The RT bit is also reset when a render
target block gets evicted from the LLC (we are not interested
in tracking render target to texture reuses that do not happen
in the LLC). Apart from these inter-stream reuses, both static
and dynamic texture can undergo intra-stream reuses i.e., a
block that does not have the RT bit set may get reused from
the LLC by the texture samplers before it gets evicted.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o
rm

a
liz

e
d
 t
e
xt

u
re

 s
a
m

p
le

r
h
its

Intra−stream
Inter−stream

0

10

20

30

40

50

60

70

80

90

100

R
e
n
d
e
r

ta
rg

e
ts

 c
o
n
su

m
e
d
 b

y
sa

m
p
le

r
(%

)

Belady
DRRIP
NRU

Belady DRRIP

NRU

3D
M

ar
kV

A
G

T1

3D
M

ar
kV

A
G

T1

3D
M

ar
kV

A
G

T2

3D
M

ar
kV

A
G

T2

A
ss

n C
re

ed

A
ss

n C
re

ed

B
io

Shock

B
io

Shock

D
M

C

D
M

C

C
iv

ili
za

tio
n

C
iv

ili
za

tio
n

D
irt

D
irt

H
A
W

X

H
A
W

X

H
ea

ve
n

H
ea

ve
n

Lost
 P

la
net

Lost
 P

la
net

Sta
lk

er
 C

O
P

Sta
lk

er
 C

O
P

U
nig

in
e

U
nig

in
e

Fra
m

e
A
VG

Fra
m

e
A
VG

Figure 6: Upper panel: classification of the texture sam-

pler reuses into inter-stream and intra-stream. Lower

panel: percentage of the render targets consumed by

the texture sampler stream through LLC hits.

The upper panel of Figure 6 shows the texture sampler hits in
the LLC classified into inter- and intra-stream hits for Belady’s
optimal policy, DRRIP, and NRU normalized to the number of
texture sampler hits enjoyed by Belady’s optimal policy. On
average, 55% of all texture sampler hits enjoyed by Belady’s
optimal policy come from inter-stream reuses, while DRRIP
and NRU fall significantly short across the board. The lower
panel of Figure 6 further explores these inter-stream reuses by
presenting the percentage of blocks with the RT bit set that are
consumed by the texture sampler from the LLC. On average,
51% of all render target blocks are consumed by the texture
samplers for Belady’s optimal policy, while DRRIP and NRU
achieve only 16% and 13%, respectively. In Assassin’s Creed,
the potential render target to texture consumption rate is as
high as 90%, but only a small portion of it materializes in DR-
RIP and NRU (21% and 15%, respectively). In summary, DR-
RIP and NRU are not very efficient in facilitating render target
to texture consumption through the LLC. A good policy should
manage the render target blocks in such a way that maximizes
the texture reuses. Without specific hints from the driver, it is
not possible to know which render targets will get consumed as
textures in future. Therefore, our proposal will treat all render
targets as potential texture sources and manage them based on
the observed probability of inter-stream consumption.

Next, we analyze the intra-stream reuses in the texture sam-
pler accesses. We divide the life of a cache block in the LLC
from the time it is filled to the time it is evicted into epochs de-
marcated by the LLC hits the block enjoys. The epoch between
hit counts k and k + 1 will be denoted by Ek. The first epoch
is E0, which a block enters after it is filled into the LLC. Also,
if a block with the RT bit set gets consumed by the texture
sampler, the block becomes a texture block and enters E0. A
block currently in Ek gets promoted to Ek+1 on observing an
LLC hit. Naturally, the set of blocks in Ek is a subset of those
in Ek−1 for all k ≥ 1. The death ratio of epoch Ek is defined as
(|Ek| − |Ek+1|)/|Ek|. This is the fraction of blocks in Ek that
get evicted from the LLC and fail to make it to Ek+1. The
ratio |Ek+1|/|Ek| will be referred to as the reuse probability of
Ek. The goal of a good LLC management policy would be to
assign high victimization priority to the blocks belonging to the
epochs with high death ratios. In the following, we explore the
death ratio of the epochs within the texture sampler stream.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o

n
 o

f
in

tr
a

−
s
tr

e
a

m
 t

e
x
tu

re
 h

it
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

x
tu

re
 s

tr
e

a
m

 d
e

a
th

 r
a

ti
o

Epoch=0
Epoch=1
Epoch=2

Epoch>=3
Epoch=2
Epoch=1
Epoch=0

3DM
ark

VAG
T1

3DM
ark

VAG
T2

3DM
ark

VAG
T1

3DM
ark

VAG
T2

Assn C
re

ed

Assn C
re

ed

Bio
Shock

Bio
Shock

DM
C

DM
C

Civ
ili

za
tio

n

Civ
ili

za
tio

n

Dirt

Dirt

HAW
X

HAW
X

Heaven

Heaven

Lost P
la

net

Lost P
la

net

Sta
lk

er C
O

P

Sta
lk

er C
O

P

Unig
in

e

Unig
in

e

Fra
m

e A
VG

Fra
m

e A
VG

Figure 7: Upper panel: epoch-wise distribution of the

intra-stream texture sampler hits. Lower panel: death

ratio of each epoch of the texture blocks. The LLC exe-

cutes Belady’s optimal policy.

The upper panel of Figure 7 shows the epoch-wise distribu-
tion of the intra-stream texture hits when the LLC executes
Belady’s optimal policy. Across the board, most of the intra-
stream texture sampler hits come from E0 averaging at 79% of
all texture sampler hits. A much smaller fraction (15%) of hits
come from the E1 blocks. For the E2 and E≥3 blocks, this frac-
tion is 4% and 2%, respectively. Since this is the behavior of
the optimal policy, we conclude that it is enough to keep track
of the first three epochs (0, 1, and 2) of the texture blocks.
These data, however, do not offer any information about the
reuse probability or death ratio of the individual epochs.

The lower panel of Figure 7 presents the death ratio of each
of the first three epochs of the texture blocks in the presence of
Belady’s optimal policy. Even though we have seen that most
texture sampler hits come from the E0 blocks, the death ratio of
E0 is extremely high averaging at 0.81. This essentially means
that the reuse probability of an E0 texture block is only 0.19.
Across the board, we find that the E0 texture blocks have very
low (at most 0.3) reuse probability. The death ratio of the E1

blocks is only slightly lower than that of the E0 blocks averaging
at 0.73. This means that the E0 blocks that enjoy hits and
move to E1 are highly likely to get evicted before enjoying any
further hits. For Assassin’s Creed, BioShock, DMC, HAWX,
and Lost Planet, the death ratio of the E1 blocks is, in fact,
higher than that of the E0 blocks. Only the E2 blocks show a

reasonably high reuse probability (nearly half) with an average
death ratio of 0.53 meaning that a randomly picked texture
block from E2 is almost equally likely to enjoy at least one
more hit or get evicted from the LLC. In several applications,
the reuse probability of the E2 blocks is higher than half. In
summary, a good policy must differentiate between the E0 and
E1 texture blocks and handle them differently than the blocks
belonging to the higher epochs. While we can assume the E2

blocks to be mostly live, the reuse probabilities of the E0 and
E1 texture partitions should be learned dynamically, since they
vary widely across the applications, E1 in particular.

To further understand the low texture hit rate of two-bit
DRRIP, Figure 8 presents the percentage of the render tar-
get blocks and texture blocks filled by DRRIP into the LLC
with RRPV equal to three. These blocks are predicted to have
no reuses in the intermediate- or near-future. While DRRIP
correctly learns that the texture blocks have high death ratios
and inserts, on average, 36% of these blocks with RRPV=3, our
analysis shows that this percentage needs to be much higher to
prevent the texture blocks from thrashing the LLC. Also, on a
hit to a texture block, DRRIP promotes it to RRPV zero ex-
pecting a reuse in the near-future. However, our analysis shows
that the E1 texture blocks have very low optimal reuse prob-
ability (0.27 on average). Turning to the render target blocks,
we find that about one quarter of these are filled with RRPV
equal to three. This may be detrimental to the inter-stream
reuses because the render targets that have the potential to be
consumed by the samplers may get evicted from the LLC early.
Our analysis shows that under the optimal policy about half
of the render targets are consumed by the sampler on average
and in a few applications this fraction is much higher (lower
panel of Figure 6). The render targets should be offered high
protection when there is a high probability of render target
consumption from the LLC by the texture samplers.

0

10

20

30

40

50

R
T

 o
r

te
xt

u
re

 f
ill

s
w

ith
 R

R
P

V
=

3
 (

%
)

Render targets
Texture sampler

3D
M

ar
kV

A
G

T1

3D
M

ar
kV

A
G

T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

Figure 8: Percentage of the render target and texture

fills with RRPV=3 in two-bit DRRIP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
 s

tr
e
a
m

 d
e
a
th

 r
a
ti
o

Epoch=0
Epoch=1
Epoch=2

3D
M

ar
kV

A
G
T1

3D
M

ar
kV

A
G
T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

Figure 9: Death ratio of each epoch of the Z stream

blocks with Belady’s optimal policy.

Before closing this section, we present the epoch-wise death
ratios for the Z stream blocks under Belady’s optimal policy in
Figure 9. The trend in the death ratio of Z blocks differs sig-
nificantly from that of the texture blocks. The death ratios of
the E0, E1, and E2 blocks are 0.61, 0.38, and 0.26, respectively.
Since only the E0 Z blocks have relatively high death ratio, we
do not keep track of the epochs for the Z stream. Instead, we

maintain the collective reuse probability experienced by all the
Z blocks and use it to decide their insertion RRPV.

3. STREAM-AWARE LLC MANAGEMENT
In this section, we progressively incorporate the observations

from the last section to derive three increasingly better LLC
management policies for 3D graphics. We partition the LLC
accesses into four streams, namely, Z, texture sampler, render
targets, and the rest. Each LLC access is tagged with the iden-
tity of the source cache (Z, texture, render target, or otherwise),
but we do not need to store the stream identity of any block (ex-
cept the render targets) in the LLC. All our policies dedicate
sixteen sets in every 1024 LLC sets to learn various reuse prob-
abilities pertaining to the streams. These sets are identified by
simple Boolean functions on the LLC index bits. We will refer
to these sets as samples. The samples always execute the two-
bit static re-reference interval prediction (SRRIP) policy for all
the streams. In other words, a block is filled into a sample with
RRPV equal to two. On a hit to a block in a sample, the RRPV
of the block is updated to zero. A block with RRPV three is se-
lected as victim with ties broken by victimizing the block with
the least physical way id. In fact, in all our policies, the victim
selection algorithm is the same as this. Since the samples exe-
cute the SRRIP policy, they are expected to experience reuse
probabilities that are much lower than what Belady’s optimal
policy could have experienced. These small reuse probabilities
detected in the samples must be amplified in the non-samples
by controlling the RRPV of the non-sample blocks. Different
reuse probability amplification techniques form the crux of our
policy proposals, which we discuss next. Table 2 summarizes
the activities of the LLC sample sets.

Table 2: Activities of the LLC sample sets

Updates RRPV and selects victims based on the SRRIP policy.

Learns the reuse probabilities of different graphics streams by

updating a few counters on fills and hits to the sample sets.

These probabilities are amplified by our policy proposals in the

non-sample sets of the LLC.

Our first policy proposal incorporates rudimentary proba-
bilistic caching for Z and texture sampler streams. Each LLC
block is assumed to have an RT bit to identify the render target
blocks. This bit is set on a render target access or fill and reset
on a texture sampler consumption or LLC eviction. We asso-
ciate four eight-bit saturating counters with each LLC bank.
These will be referred to as FILL(Z), HIT (Z), FILL(TEX),
and HIT (TEX). As the names suggest, the FILL(Z) counter
counts the number of Z stream fills into the samples. The
HIT (Z) counter counts the number of Z stream hits enjoyed
by the samples. Similarly, we define the FILL(TEX) and
HIT (TEX) counters. The FILL(TEX) counter is also incre-
mented when a texture sampler access gets satisfied from the
LLC by a block with the RT bit set. The HIT (TEX) counter is
incremented when a texture sampler access gets satisfied from
the LLC by a block with the RT bit reset. There is a separate
seven-bit counter ACC(ALL) that counts all accesses to the
samples. Whenever this counter saturates, the FILL and HIT

counters of the Z and texture sampler streams are halved and
the ACC(ALL) counter is reset.

When filling a new Z block into a non-sample set of an
LLC bank, the reuse probability of the Z stream is checked
in that bank. If this probability is below a threshold 1

t+1
i.e.,

FILL(Z) > t.HIT (Z), the new block is filled with RRPV of
three; otherwise it is filled with RRPV of two. Similarly, when
filling a texture block in a non-sample set if FILL(TEX) >

t.HIT (TEX), the block is inserted with RRPV of three; other-
wise the texture block is filled with RRPV zero because filling
it with RRPV two hurts performance. All render target blocks
are filled into non-samples with RRPV zero to give them the
highest possible protection so that the render target to texture
sampler reuses can happen through the LLC. All other blocks
are filled with RRPV two. On a hit, the RRPV of the block
is updated to zero irrespective of the stream. We will refer to
this policy as graphics stream-aware probabilistic Z and texture
caching (GSPZTC). Table 3 summarizes all the actions of the
LLC controller (except halving of the counters) relevant to this
policy. We discuss the influence of the parameter t in Section 5.
Since we choose t to be a power of two, the RRPV computation
requires only a left-shift by a constant amount followed by a
comparison and a two-to-one multiplexing.

Table 3: LLC actions in the GSPZTC policy

Event Action

Sample sets

Z fill RRPV ← 2, FILL(Z)++, ACC(ALL)++

Z hit RRPV ← 0, HIT (Z)++, ACC(ALL)++

TEX fill RRPV ← 2, FILL(TEX)++, ACC(ALL)++

RT → TEX hit RRPV ← 0, FILL(TEX)++, ACC(ALL)++

TEX hit RRPV ← 0, HIT (TEX)++, ACC(ALL)++

Other fill RRPV ← 2, ACC(ALL)++

Other hit RRPV ← 0, ACC(ALL)++

Non-sample sets

Z fill RRPV ← (FILL(Z) > t.HIT (Z)) ? 3 : 2

TEX fill RRPV ← (FILL(TEX) > t.HIT (TEX)) ?

3 : 0

RT fill RRPV ← 0

Other fill RRPV ← 2

Any hit RRPV ← 0

To compare with this policy, we derive a graphics stream-
aware DRRIP (GS-DRRIP) policy from the thread-aware DR-
RIP policy [19], which uses set-dueling to decide between the
insertion RRPVs of two and three for each of the four streams.

Render
target

11

fill

Texture sampler hit

10

Texture
sampler
fill

00

Texture
sampler hit

01
Texture sampler hit

(Render to texture)

Texture sampler hit

Render target hit (blend operation)

Figure 10: Two additional state bits per LLC block.

Our second policy proposal refines GSPZTC by incorporat-
ing the texture sampler epochs, while keeping everything else
unchanged. To keep track of the E0, E1, and E≥2 epochs, we
incorporate two state bits with each LLC block. The epochs
E0, E1, and E≥2 are denoted by the states 00, 01, and 10.
The state 11 replaces the RT bit i.e., a render target block is
identified by the state 11. When a texture sampler access gets
satisfied by a render target block in the LLC, its state changes
from 11 to 00. Also, when a texture sampler access misses the
LLC, the newly filled block is installed with state 00. Every
subsequent texture sampler hit to such a block increases the
state by one (done through simple logic as opposed to an incre-
menter) until the state reaches 10, which remains unchanged
until the block is evicted from the LLC. The transitions be-
tween these states are shown in Figure 10. In a few cases, the
LLC may receive a render target access to a block in the state
00, 01, or 10. Such a situation may arise if an existing render
target object is reused by the DirectX application for produc-
ing a new render target. In these cases, the block transitions to

the state 11 and its RRPV is updated according to the RRPV
update rule for a render target hit (same as shown in Table 3).
These transitions are omitted from Figure 10 for brevity.

We replace the FILL(TEX) and HIT (TEX) counters by
four saturating counters per LLC bank: FILL(E, TEX) and
HIT (E, TEX) each of size eight bits, where E denotes the
epoch and can take values zero and one (as already discussed,
we maintain the reuse probabilities of the first two epochs
only). The FILL(E, TEX) counter is incremented when a tex-
ture sampler request to an LLC sample set causes the accessed
block to enter the state 00 or 01 denoting epoch E = 0 or 1,
respectively. The HIT (E, TEX) counter is incremented when
a texture sampler request to an LLC sample set is satisfied by
a block in the LLC currently in the state 00 or 01 denoting
epoch E = 0 or 1, respectively.

When a texture sampler access to a non-sample set of a par-
ticular LLC bank causes the accessed block to enter the state
00 (happens on a texture fill or render target to texture hit),
the RRPV of the block is set to three if FILL(0, TEX) >

t.HIT (0, TEX) in that bank; otherwise the RRPV is set to
zero. If the accessed block enters the state 01 (happens only
on a texture sampler hit in the state 00), the RRPV of the block
is set to three if FILL(1, TEX) > t.HIT (1, TEX); otherwise
the RRPV is set to zero. In all other cases, a texture sampler
hit updates the RRPV of the block to zero. We will refer to
this policy as graphics stream-aware probabilistic Z and texture
caching with texture sampler epochs (GSPZTC+TSE). Table 4
summarizes the additional LLC controller actions relevant to
this policy on top of the GSPZTC policy. In this table, we have
shortened FILL(E, TEX) and HIT (E, TEX) to FILL(E) and
HIT (E), respectively. The primary difference of this policy
from DRRIP or GS-DRRIP (other than not resorting to set-
dueling) is that on a texture sampler hit, it does not always
update the RRPV to zero, but deduces the new RRPV based
on the reuse probability of the new epoch.

Table 4: LLC actions for the texture sampler epochs

Event Action

Sample sets

RT fill/RT hit state ← 11

TEX fill FILL(0)++, state ← 00

RT → TEX hit FILL(0)++, state ← 00

TEX hit If state is 00 { HIT (0)++, FILL(1)++,

state ← 01 }
Else if state is 01 { HIT (1)++, state ← 10 }
Else { state ← 10 }

Non-sample sets

RT fill/RT hit RRPV updated as in Table 3, state ← 11

TEX fill RRPV ← (FILL(0) > t.HIT (0)) ? 3 : 0,

state ← 00

RT → TEX hit RRPV ← (FILL(0) > t.HIT (0)) ? 3 : 0,

state ← 00

TEX hit If state is 00 {
RRPV ← (FILL(1) > t.HIT (1)) ? 3 : 0,

state ← 01 }
Else { RRPV ← 0, state ← 10 }

The GSPZTC and GSPZTC+TSE policies fill the render tar-
get blocks with RRPV zero. This is done to facilitate render
target to texture sampler reuses through the LLC. However,
such a static policy unnecessarily increases the effective cache
occupancy of the render target blocks in situations where such
inter-stream reuses are unlikely. Our third policy incorporates
a dynamic mechanism to manage the render target blocks on
top of GSPZTC+TSE by observing the probability of consum-
ing render targets as textures. We associate two new eight-bit

saturating counters PROD and CONS with each LLC bank.
The PROD counter is incremented when a render target block
is filled into an LLC sample set. The CONS counter is incre-
mented when a texture sampler access to an LLC sample set
hits a block in the state 11 (recall that this state identifies a
render target block). At this time the state of the block changes
to 00, as already discussed in Table 4. The CONS/PROD ra-
tio is an estimate of the probability that a render target block
is consumed by the texture sampler from the LLC. The PROD

and CONS counters are halved together with the FILL and
HIT counters within each LLC bank.

When a render target block is filled into a non-sample set
of a particular LLC bank, the inter-stream reuse probability
in that bank is consulted. The new block is filled with RRPV
three if PROD > 16.CONS i.e., if the inter-stream reuse prob-
ability is below 1/16. The new block is filled with RRPV two if
16.CONS ≥ PROD > 8.CONS; otherwise if the render target
to texture reuse probability is at least 1/8, the block is filled
with RRPV zero. On a hit to a render target block from a
render target access (due to blending operations), the RRPV
of the block is always updated to zero.

The reuse probability thresholds (i.e., 1/16 and 1/8) need to
be small because we detect these reuse probabilities from the
LLC samples which execute SRRIP. The lower panel of Figure 6
shows that even DRRIP, which is expected to be better than
SRRIP, has an average inter-stream reuse probability of 0.16.
If our policy detects a reuse probability as small as 1/8 in the
samples, it tries to amplify this probability in the non-samples
by offering the highest possible protection to the render target
blocks. If the detected reuse probability is smaller, our policy
offers a lower level of protection to the render target blocks. We
will refer to this policy as graphics stream-aware probabilistic
caching (GSPC). Table 5 summarizes the new LLC controller
actions (except halving of the PROD and CONS counters)
relevant to this policy. On top of two-bit DRRIP, this policy
requires two state bits per LLC block and eight eight-bit and
one seven-bit saturating counters per LLC bank (two for Z,
four for texture sampler, two for render target to texture, and
one to count all accesses to the LLC sample sets).

Table 5: Additional LLC actions for the GSPC policy

Event Action

Sample sets

RT fill state ← 11, PROD++

RT hit (blending) state ← 11

RT → TEX hit state ← 00, CONS++

Non-sample sets

RT fill state ← 11

If PROD > 16.CONS then RRPV ← 3

Else if 16.CONS ≥ PROD > 8.CONS

then RRPV ← 2

Else RRPV ← 0

RT hit (blending) state ← 11, RRPV ← 0

RT → TEX hit state ← 00, RRPV updated as in Table 4

4. SIMULATION ENVIRONMENT
We evaluate our proposal on 52 discrete frames captured

from eight DirectX game titles and four DirectX benchmark
applications. The details of these applications were presented
in Table 1. We simulate the rendering of each frame entirely
capturing several distinct phase changes that occur as rendering
progresses. The DirectX calls generated while rendering each
of these frames are replayed through a detailed GPU simulator.

In this paper, we focus on the GPU architectures that dedi-
cate the entire LLC capacity to cache different graphics data, as

found in the discrete GPUs. We simulate a high-end GPU with
96 shader cores clocked at 1.6 GHz. Each core has eight thread
contexts. Every cycle one SIMD instruction each from two se-
lected threads are issued to two parallel ALU pipelines within
each core. Each pipeline can execute four-wide single-precision
SIMD operations including multiply-accumulates. Each core
has a peak throughput of sixteen single-precision floating-point
operations every cycle leading to an aggregate peak throughput
of nearly 2.5 TFLOPS across 96 shader cores. The microarchi-
tecture of each shader core resembles that of the Gen7 core used
in the Intel’s Ivy Bridge GPU [21], but we configure our sim-
ulated GPU such that the aggregate peak shader throughput
either exceeds or closely matches that of the recent commercial
discrete GPUs.2 The shader cores share twelve texture sam-
plers clocked at 1.6 GHz. Each sampler has a throughput of
four 32-bit texels per cycle leading to a peak texture fill rate of
76.8 GTexels/second. We model a three-level texture cache hi-
erarchy with the third level texture cache being 384 KB 48-way
set-associative with 64-byte blocks. In addition to the texture
cache hierarchy, we model a 1 KB 16-way vertex index cache,
a 16 KB 128-way vertex cache, a 12 KB 24-way HiZ cache,
a 16 KB 16-way stencil cache, a 24 KB 24-way render target
cache, and a 32 KB 32-way Z cache.

The GPU has a non-inclusive/non-exclusive 8 MB 16-way
set-associative LLC. This LLC capacity corresponds to a fu-
turistic discrete GPU with a large read/write cache shared
by all graphics data. We expect the LLC capacity of the
GPUs to increase in future as the LLC is usually more power
and bandwidth-efficient up to a certain capacity compared to
the GDDRx DRAM.3 Our default LLC configuration allows
caching of all graphics data. We will also explore the impact
of not caching the final displayable color data. The LLC has a
block size of 64 bytes and runs at 4 GHz clock rate (modeled
after the 3.9 GHz LLC of the Intel Core i7-3770 processor [18]).
The round-trip load-to-use latency of an LLC bank (2 MB per
bank) is minimum twenty cycles. The large, fast, banked LLC
helps absorb a significant amount of DRAM bandwidth de-
mand. We model a dual channel DDR3-1600 memory system.
The DRAM part is 8-way banked with a burst length of eight
and 15-15-15 (tCAS-tRCD-tRP) latency parameters.

For a four-way banked 8 MB 16-way set-associative LLC with
64-byte blocks, our GSPC policy incurs an additional overhead
of 32 KB in two state bits per LLC block and 284 bits in sat-
urating counters (see Section 3) on top of the baseline DRRIP
policy. This is less than 0.5% of the LLC data array bits.

5. SIMULATION RESULTS
We evaluate our proposal in this section. First, we present

a detailed performance and hardware overhead analysis in Sec-
tions 5.1, 5.2, and 5.3. Next, we evaluate our best proposal
on different memory system and GPU configurations in Sec-
tion 5.4 to understand its sensitivity to changed environments.

5.1 Analysis of LLC Misses
Our policy proposals have a threshold parameter t that must

be fixed first. As we have already mentioned in Section 3, we

2The aggregate peak shader throughput of our simulated GPU
exceeds that of the GeForce GTX 760 and closely matches that
of the GeForce GTX 780M, both based on the GK104 Kepler
architecture from Nvidia.
3Nvidia has doubled the shared L2 cache capacity in the
highest-end Kepler GPUs compared to the Fermi GPU.

−5

−4

−3

−2

−1

0

1

2

3

4

5

C
h
a
n
g
e
 i
n
 L

L
C

 m
is

s
 c

o
u
n
t
w

.r
.t
 t
=

1
6
 (

%
)

t=2
t=4
t=8

3D
M

ar
kV

A
G

T1

3D
M

ar
kV

A
G

T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

Figure 11: Sensitivity to parameter t.

expect 1
t+1

to be small because this probability is detected from
the SRRIP samples. Figure 11 shows the percent change in the
number of LLC misses relative to t = 16 as t is varied. We only
consider power-of-two values of t to keep the implementation
simple. These data are collected for the GSPZTC policy. A
positive (negative) change indicates more (less) LLC misses.
While on average the four values of t experience almost the
same number of LLC misses, there are visible losses in a few
applications for t = 2 and t = 4. For t = 2, 3D Mark Van-
tage GT1, Dirt, HAWX, and Unigine suffer from at least 2%
additional LLC misses relative to t = 16. For t = 4, Dirt and
Unigine suffer from at least 1% additional LLC misses. On the
other hand, Assassin’s Creed delivers the best performance for
t = 2 saving more than 4% LLC misses relative to t = 16. We
use t = 8 in this paper, since it offers the most robust perfor-
mance across the board.

Table 6: Evaluated policies

Policy Description

DRRIP Dynamic re-reference interval prediction

NRU Single-bit not-recently-used

SHiP-mem Memory signature-based hit prediction

GS-DRRIP Graphics stream-aware DRRIP

GSPZTC Graphics stream-aware probabilistic Z and

texture caching

GSPZTC+TSE GSPZTC with texture sampler epochs

GSPC Graphics stream-aware probabilistic caching

GSPC+UCD GSPC with uncached displayable color

DRRIP+UCD DRRIP with uncached displayable color

Figure 12 presents the LLC miss count for several policies
normalized to two-bit DRRIP. In addition to NRU, GS-DRRIP,
and our proposals (GSPZTC, GSPZTC+TSE, GSPC), we eval-
uate SHiP-mem [50] and the impact of not caching the final
displayable color data (GSPC+UCD and DRRIP+UCD). Ta-
ble 6 summarizes all the evaluated policies. Signature-based
hit prediction (SHiP) infers, at the time of filling a block in the
LLC, whether the block is likely to experience future reuses.
Accordingly, the newly filled block is assigned an RRPV of
three (no near-future reuse) or two (possible future reuses).
This inference about future reuses is carried out by learning
the reuse counts observed by different types of signature as-
sociated with the cache block, e.g., program counter of the
instruction that fills the block in the LLC (SHiP-PC), instruc-
tion sequence leading to the instruction that fills the block in
the LLC (SHiP-Iseq), and the memory region containing the
block (SHiP-mem). For graphics data, it is not possible to
associate a program counter or an instruction sequence with
every LLC fill because a large number of accesses come from
the fixed-function hardware such as the texture samplers as
well as the render target blending units and the depth test
units. Therefore, we can only evaluate SHiP-mem from this
family of policies. In SHiP-mem, as proposed originally, we
divide the physical address space into contiguous 16 KB re-
gions. For each region, we learn the count of reuses by hashing
a 14-bit region identifier (address bits [27:14]) into a 16K-entry

table (per LLC bank) of three-bit saturating counters. On an
LLC hit to a block belonging to a particular region, the cor-
responding region counter is incremented by one. If a block
gets evicted from the LLC without experiencing any reuse, the
corresponding region counter is decremented by one. A newly
filled block is assigned an RRPV of three, if the corresponding
region counter is zero; otherwise the block is inserted with an
RRPV of two.

In Figure 12, for each application, we evaluate eight poli-
cies: NRU, SHiP-mem, GS-DRRIP, GSPZTC, GSPZTC+TSE,
GSPC, GSPC+UCD, and DRRIP+UCD (from left to right).
All bars are normalized to two-bit DRRIP. NRU suffers from
an average increase of 6.2% in the LLC misses compared to
DRRIP. SHiP-mem saves visible amounts of LLC misses in
BioShock (3.8%), DMC (6.4%), Lost Planet (1.1%), and Stalker
COP (2%), but, on average, experiences the same volume of
LLC misses as DRRIP. In most applications, a 16 KB con-
tiguous physical address region contains blocks from different
streams and as a result, it is not possible to decipher the correct
behavior of a stream by observing the collective reuse behavior
of a region, as done by SHiP-mem. GS-DRRIP is able to save
moderate to large amount of LLC misses with Assassin’s Creed
and BioShock being the biggest beneficiaries enjoying 8.5% and
5.1% less LLC misses compared to DRRIP, respectively. On av-
erage, GS-DRRIP saves 2.9% LLC misses compared to DRRIP.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
o
rm

a
li
z
e
d

 L
L
C

 m
is

s
 c

o
u
n
t

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
o
rm

a
li
z
e
d
 L

L
C

 m
is

s
 c

o
u
n
t 3D

M
ar

kV
A
G

T1

3D
M

ar
kV

A
G

T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

NRU SHiP−mem GS−DRRIP GSPZTC GSPZTC+TSE

GSPC GSPC+UCD DRRIP+UCD

NRU GSPZTC+TSE GSPZTC GS−DRRIP SHiP−mem

GSPC GSPC+UCD DRRIP+UCD

Figure 12: LLC miss count normalized to DRRIP.

Turning to our policy proposals, we observe that GSPZTC
is highly effective across the board (except for DMC and Dirt)
saving 4.8% LLC misses compared to DRRIP, on average. The
applications that enjoy more than 5% savings in LLC misses
compared to DRRIP are 3D Mark Vantage GT1 (7.6%), As-
sassin’s Creed (15.3%), and Civilization (5.1%). There are two
reasons why GSPZTC performs better than GS-DRRIP across
the board (except in BioShock, Dirt, and Lost Planet). First,
GSPZTC offers better protection to the render targets by filling
all render target blocks with RRPV zero. Second, GS-DRRIP
often fails to converge to the global optimum due to the nature
of the feedback-based dueling that it uses [19, 20]. In certain
situations, the dueling algorithm gets stuck in a local optimum.

Inclusion of the texture sampler epochs further saves LLC
misses significantly across the board (see the GSPZTC+TSE
bar). Compared to GSPZTC, the most remarkable gains are
enjoyed by 3D Mark Vantage GT1 and GT2, Assassin’s Creed,
DMC, and Lost Planet. The applications enjoying more than
10% savings in the LLC misses with GSPZTC+TSE compared
to DRRIP are 3D Mark Vantage GT1 (11.8%), 3D Mark Van-
tage GT2 (10%), Assassin’s Creed (31.3%), DMC (16.6%), and

Lost Planet (11.9%). On average, 11.5% LLC misses are saved
by the GSPZTC+TSE policy compared to DRRIP.

Our final policy, GSPC, incorporates a dynamic caching al-
gorithm for the render targets. This optimization offers less
protection to the render targets in the phases where the prob-
ability of render target to texture reuses is low. However, since
all of our applications heavily exploit render target to texture
uses (see Figure 6), it is unlikely that this optimization will
bring much benefit to this set of applications. As shown in
Figure 12, a few applications benefit from this optimization,
DMC and Dirt in particular (see the GSPC bar). Dirt was suf-
fering from an increase in the LLC misses with GSPZTC+TSE,
which we are able to eliminate in GSPC. In GSPC, there is no
application that suffers from additional LLC misses compared
to DRRIP. Assassin’s Creed and DMC enjoy more than 20%
savings in the LLC misses compared to DRRIP. On average,
GSPC saves 11.8% LLC misses.

Uncached displayable color further improves GSPC (see the
GSPC+UCD bar) saving additional LLC misses across the
board, the most notable being HAWX and Stalker COP. On
average, this policy saves 13.1% LLC misses compared to DR-
RIP. The individual application-wise savings range from 1.7%
in Dirt to 29.6% in Assassin’s Creed. We note that these im-
pressive savings in the LLC misses come with a negligible book-
keeping overhead that is less than 0.5% of the total data ar-
ray capacity of the LLC. Not caching the displayable color in
DRRIP does not lead to any significant benefits, however (see
the DRRIP+UCD bar). Only a few applications enjoy ad-
ditional savings in LLC misses. These are BioShock (4.2%),
DMC (6.7%), Lost Planet (1.1%), and Stalker COP (2%). On
average, DRRIP with uncached displayable color experiences
the same number of LLC misses as the baseline DRRIP. The
primary reason why DRRIP is less sensitive to uncached dis-
playable color is that it already inserts these blocks with RRPV
three, while GSPC often fails to learn this and ends up offering
the same level of protection to the display target blocks as the
other render target blocks (displayable color is a render target).

Texture hit rate RT to texture RT hit rate Z hit rate
0

10
20
30
40
50
60
70
80
90

100

P
e

rc
e

n
ta

g
e

DRRIP

NRU

SHiP−mem

GS−DRRIP

GSPZTC

GSPZTC+TSE

GSPC

GSPC+UCD

DRRIP+UCD

Figure 13: Texture sampler hit rate, render target pro-

duction to texture consumption rate, render target hit

rate, and Z hit rate.

Figure 13 further analyzes the policies in terms of the texture
sampler access hit rate, percentage of the render target blocks
consumed by the texture samplers from the LLC, hit rate of the
render target accesses due to blending, and Z hit rate. These
results are averaged over 52 frames. The texture sampler hit
rate and render target to texture consumption rate gradually
increase in GSPZTC and GSPZTC+TSE, as expected. Slight
drops in these two dimensions are observed in GSPC due to the
introduction of probabilistic render target insertion, which, due
to its statistical nature, victimizes some render targets before
they could be consumed by the texture samplers. However, this
is compensated by uncaching the displayable color data. The
render target hit rate (LLC hits enjoyed by the render target ac-
cesses originating from blending operations) increases through
GSPZTC+TSE and GSPC, since these two policies gradually
create more space in the LLC by eliminating the less useful

texture and render target blocks early. In fact, the average
render target hit rate achieved by GSPC (57.7%) comes very
close to what Belady’s optimal policy achieves (59.8% as was
shown in Figure 5). The Z hit rate drops visibly in GSPZTC
and GSPZTC+TSE compared to GS-DRRIP due to unneces-
sarily high LLC occupancy of some of the render target blocks
in these two policies leading to premature eviction of the Z
blocks. GSPC is able to address this drawback to a great ex-
tent by evicting the less useful render targets early. GS-DRRIP,
however, achieves the best Z hit rate among all the policies.

5.2 Analysis of Hardware Overhead
The GSPC policy requires four replacement state bits (two

new bits in addition to the two existing RRPV bits) per LLC
block. Figure 14 compares the LLC miss counts for four poli-
cies with identical replacement state bit overhead. The results
are normalized to two-bit DRRIP. In the LRU, four-bit DRRIP,
and four-bit GS-DRRIP policies, a block, after experiencing a
hit, may take a long time to become eligible for replacement.
Further, the LRU policy inserts all blocks with the highest pos-
sible protection. This particularly hurts texture management.
On average, LRU suffers from a 7.2% increase in the LLC miss
count compared to two-bit DRRIP. Four-bit DRRIP is only
slightly better than two-bit DRRIP (0.4% on average), while
four-bit GS-DRRIP saves 1.7% LLC misses compared to the
two-bit DRRIP baseline. GSPC saves 11.8% LLC misses com-
pared to the baseline, on average. These results clearly bring
out the fact that GSPC makes efficient use of the additional
two state bits and saves an impressive volume of LLC misses
with small logic and storage overhead (less than 0.5% addi-
tional overhead per LLC block on top of baseline).

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

N
o

rm
a

li
z
e

d
 L

L
C

 m
is

s
 c

o
u

n
t

3D
M

ar
kV

A
G
T1

A
ss

n C
re

ed

B
io

S
hock

D
M

C

C
iv

ili
za

tio
n

D
ir
t

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

S
ta

lk
er

 C
O
P

U
nig

in
e

Fra
m

e
A
V
G

LRU

4−bit DRRIP

4−bit GS−DRRIP

GSPC

3D
M

ar
kV

A
G
T2

Figure 14: Comparison between iso-overhead policies.

In all our subsequent analyses, we will continue to use two-bit
DRRIP and two-bit GS-DRRIP, since they offer much better
cost-performance compared to their four-bit counterparts. We
will also disable caching of displayable color in the LLC, but
will not mention it explicitly in the policy names i.e., NRU,
GS-DRRIP, GSPC, and DRRIP will stand for NRU+UCD, GS-
DRRIP+UCD, GSPC+UCD, and DRRIP+UCD, respectively.

5.3 Performance Analysis
An increase in the volume of the LLC hits saves latency as

well as improves the average delivered bandwidth of the mem-
ory subsystem, since the LLC is more bandwidth-efficient than
the DRAM modules. In this section, we explore how the LLC
miss savings translate to performance improvement. We mea-
sure the performance of each application in terms of the number
of frames rendered per second. Figure 15 evaluates the perfor-
mance of NRU, GS-DRRIP, and GSPC relative to DRRIP on
our baseline 8 MB 16-way LLC. On average, NRU delivers 7%
worse performance compared to DRRIP. GS-DRRIP fails to
convert most of its LLC miss savings into performance gains.
On average, GS-DRRIP improves performance by only 0.8%
compared to DRRIP. It is important to note that the GPUs
traditionally exploit fast thread switching to partially hide the

latency of memory accesses. As a result, it is necessary to save
a significantly large volume of LLC misses to achieve reasonable
performance improvements in graphics applications.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

P
e
rf

o
rm

a
n
c
e
 n

o
rm

a
li
z
e
d
 t
o
 D

R
R

IP

NRU
GS−DRRIP
GSPC

3D
M

ar
kV

A
G

T1

3D
M

ar
kV

A
G

T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

Figure 15: Normalized perf. on an 8 MB 16-way LLC.

GSPC improves performance across the board with gains
ranging from 1.8% in Heaven to 18.2% in Assassin’s Creed com-
pared to DRRIP. On average, GSPC improves performance by
8% compared to DRRIP and by 16% compared to NRU. Av-
eraged over all frames, GSPC delivers 26.1 frames per second.

0.8

0.9

1

1.1

1.2

1.3

P
e
rf

o
rm

a
n
c
e
 n

o
rm

a
li
z
e
d
 t
o
 D

R
R

IP

NRU
GS−DRRIP
GSPC

3D
M

ar
kV

A
G

T1

3D
M

ar
kV

A
G

T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n D

irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

Figure 16: Normalized perf. on a 16 MB 16-way LLC.

To understand how our GSPC proposal scales to a bigger
LLC, Figure 16 shows the performance of NRU, GS-DRRIP,
and GSPC relative to DRRIP on a 16 MB 16-way LLC. The
trends are similar to those observed in an 8 MB LLC. NRU
loses 3% performance on average compared to DRRIP. It fails
to offer any visible gain in any of the applications. GS-DRRIP
improves performance by 4% on average compared to DRRIP.
However, DMC loses by 11.2% with GS-DRRIP compared to
DRRIP. Across the board, GSPC achieves impressive perfor-
mance improvements compared to DRRIP. While DMC is the
only application that suffers from a loss in performance (by
3.5%), some of the significant gainers are Assassin’s Creed (by
27%), Lost Planet (by 17.3%), and Stalker COP (by 17.5%).
On average, GSPC improves performance by 11.8% compared
to DRRIP and by 15.2% compared to NRU. In absolute terms,
GSPC delivers an average frame rate of 32.4 frames per sec-
ond, which translates to a 24.1% improvement over its own
performance on an 8 MB LLC.

5.4 Sensitivity Studies
In this section, we evaluate GSPC in two different environ-

ments, one with a faster DRAM system and another with a less
aggressive GPU. In both the studies, the GPU is equipped with
an 8 MB 16-way LLC. The upper panel of Figure 17 shows the
performance of NRU and GSPC normalized to DRRIP for an
architecture with a dual-channel eight-way banked DDR3-1867
10-10-10 DRAM system. While NRU suffers from an average
performance loss of 7%, GSPC continues to improve perfor-
mance across the board achieving an average speedup of 7.1%
compared to DRRIP. The gains are slightly smaller compared
to the slower baseline DRAM model, as expected.

The lower panel of Figure 17 presents the performance of
NRU and GSPC normalized to DRRIP for a GPU with 512
shader thread contexts (64 cores× 8 threads per core) and

0.7

0.8

0.9

1

1.1

1.2

1.3

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

3D
M

ar
kV

A
G
T1

3D
M

ar
kV

A
G
T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

NRU

GSPC

0.7

0.8

0.9

1

1.1

1.2

1.3

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

3D
M

ar
kV

A
G
T1

3D
M

ar
kV

A
G
T2

A
ss

n C
re

ed

B
io

Shock

D
M

C

C
iv

ili
za

tio
n

D
irt

H
A
W

X

H
ea

ve
n

Lost
 P

la
net

Sta
lk

er
 C

O
P

U
nig

in
e

Fra
m

e
A
VG

NRU

GSPC

Figure 17: Perf. normalized to DRRIP for a DDR3-

1867 DRAM system (upper panel) and for a less aggres-

sive GPU (lower panel), using an 8 MB 16-way LLC.

eight texture samplers. Everything else, including the dual-
channel eight-way banked DDR3-1600 15-15-15 DRAM system,
is left unchanged as our baseline GPU. On this less aggressive
graphics processor, NRU suffers from 5.3% loss in performance
compared to DRRIP. GSPC continues to improve performance
across the board achieving an average speedup of 5.9% com-
pared to DRRIP. The less aggressive GPU has internal bot-
tlenecks and therefore, rendering performance is expected to
have less sensitivity toward memory subsystem optimizations.
Overall, these sensitivity studies clearly show that GSPC is a
robust algorithm that continues to deliver significant perfor-
mance improvements even when the DRAM systems are made
faster or in scenarios where the GPU is not very efficient. In
addition to these sensitivity results, the last section has already
explored the sensitivity of GSPC to the LLC capacity.

6. SUMMARY
We have presented a family of reuse probability-based last-

level caching schemes for 3D graphics. This is the first study
to explore caching opportunities of 3D graphics workloads in
the context of multi-megabyte last-level caches. We present a
detailed characterization of the rendering of 52 DirectX frames
drawn from eight game applications and four benchmark ap-
plications, spanning three different resolutions and two differ-
ent versions of DirectX. The characterization results show that
the depth buffer values, render target colors, and texture sam-
pling requests are the primary contributors to the last-level
cache access traffic. Our proposal systematically incorporates
optimizations in the caching policies to improve the volume
of the last-level cache reuses enjoyed by these access streams.
Our best graphics stream-aware probabilistic caching proposal
achieves an average performance improvement of 8% compared
to two-bit DRRIP on an 8 MB 16-way last-level cache while
incurring a negligible book-keeping overhead that is less than
0.5% of the total data array capacity of the LLC. On a 16 MB
16-way last-level cache, the speedup improves further to 11.8%.

7. ACKNOWLEDGMENTS
The authors thank Rakesh Ramesh and Suresh Srinivasan for

their help during the early phases of this work, and Aravindh
Anantaraman, Ajay Joshi, and Supratik Majumder for useful
discussions. This research effort is funded by Intel Corporation.

8. REFERENCES
[1] B. Anderson et al. Accommodating Memory Latency in a

Low-cost Rasterizer. In Proceedings of the

SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pages 97–101, August 1997.

[2] L. A. Belady. A Study of Replacement Algorithms for a
Virtual-storage Computer. In IBM Systems Journal ,
5(2): 78–101, 1966.

[3] E. Catmull. A Subdivision Algorithm for Computer
Display of Curved Surface. PhD thesis, University of
Utah, 1974.

[4] M. Chaudhuri et al. Introducing Hierarchy-awareness in
Replacement and Bypass Algorithms for Last-level
Caches. In Proceedings of the 21st International
Conference on Parallel Architecture and Compilation
Techniques, pages 293–304, September 2012.

[5] M. Chaudhuri. Pseudo-LIFO: The Foundation of a New
Family of Replacement Policies for Last-level Caches. In
Proceedings of the 42nd International Symposium on
Microarchitecture, pages 401–412, December 2009.

[6] C. J. Choi et al. Performance Comparison of Various
Cache Systems for Texture Mapping. In Proceedings of
the 4th International Conf. on High Perf. Computing in
Asia-Pacific Region, pages 374–379, May 2000.

[7] M. Cox, N. Bhandari, and M. Shantz. Multi-level
Texture Caching for 3D Graphics Hardware. In
Proceedings of the 25th International Symposium on
Computer Architecture, pages 86–97, June/July 1998.

[8] M. F. Deering, S. A. Schlapp, and M. G. Lavelle.
FBRAM: A New Form of Memory Optimized for 3D
Graphics. In Proceedings of the 21st SIGGRAPH Annual
Conference on Computer Graphics and Interactive
Techniques, pages 167–174, July 1994.

[9] M. Demler. Iris Pro Takes On Discrete GPUs. In
Microprocessor Report , September 9, 2013.

[10] M. Doggett. Texture Caches. In IEEE Micro, 32(3):
136–141, May/June 2012.

[11] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and
Insertion Algorithms for Exclusive Last-level Caches. In
Proceedings of the 38th International Symposium on
Computer Architecture, pages 81–92, June 2011.

[12] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer
Visibility. In Proceedings of the 20th SIGGRAPH Annual
Conference on Computer Graphics and Interactive
Techniques, pages 231–238, August 1993.

[13] Z. S. Hakura and A. Gupta. The Design and Analysis of
a Cache Architecture for Texture Mapping. In
Proceedings of the 24th International Symposium on
Computer Architecture, pages 108–120, May 1997.

[14] M. Harris. Dynamic Texturing. Available at
http://developer.download.nvidia.com/assets/gamedev/docs/
DynamicTexturing.pdf.

[15] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the
Memory System: Predicting and Optimizing Memory
Behavior. In Proceedings of the 29th International
Symposium on Computer Architecture, pages 209–220,
May 2002.

[16] H. Igehy, M. Eldridge, and P. Hanrahan. Parallel Texture
Caching. In Proceedings of the
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pages 95–106, August 1999.

[17] H. Igehy, M. Eldridge, and K. Proudfoot. Prefetching in
a Texture Cache Architecture. In Proceedings of the
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pages 133–142, August/September 1998.

[18] Intel Core i7-3770 Processor.
http://ark.intel.com/products/65719/.

[19] A. Jaleel et al. High Performance Cache Replacement
using Re-reference Interval Prediction (RRIP). In
Proceedings of the 37th International Symposium on
Computer Architecture, pages 60–71, June 2010.

[20] A. Jaleel et al. Adaptive Insertion Policies for Managing
Shared Caches. In Proceedings of the 17th International
Conference on Parallel Architecture and Compilation
Techniques, pages 208–219, October 2008.

[21] D. Kanter. Intel’s Ivy Bridge Graphics Architecture.
April 2012. Available at
http://www.realworldtech.com/ivy-bridge-gpu/.

[22] D. Kanter. Intel’s Sandy Bridge Graphics Architecture.
August 2011. Available at
http://www.realworldtech.com/sandy-bridge-gpu/.

[23] S. Khan, Y. Tian, and D. A. Jimènez. Dead Block
Replacement and Bypass with a Sampling Predictor. In
Proceedings of the 43rd International Symposium on
Microarchitecture, pages 175–186, December 2010.

[24] S. Khan et al. Using Dead Blocks as a Virtual Victim
Cache. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation
Techniques, pages 489–500, September 2010.

[25] M. Kharbutli and Y. Solihin. Counter-based Cache
Replacement and Bypassing Algorithms. In IEEE
Transactions on Computers, 57(4): 433–447, April 2008.

[26] M. J. Kilgard. Realizing OpenGL: Two Implementations
of One Architecture. In Proceedings of the
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, pages 45–56, August 1997.

[27] A-C. Lai, C. Fide, and B. Falsafi. Dead-block Prediction
& Dead-block Correlating Prefetchers. In Proceedings of
the 28th International Symposium on Computer
Architecture, pages 144–154, June/July 2001.

[28] J. Lee and H. Kim. TAP: A TLP-aware Cache
Management Policy for a CPU-GPU Heterogeneous
Architecture. In Proceedings of the 18th International
Symposium on High Performance Computer
Architecture, pages 91–102, February 2012.

[29] H. Liu et al. Cache Bursts: A New Approach for
Eliminating Dead Blocks and Increasing Cache Efficiency.
In Proceedings of the 41st International Symposium on
Microarchitecture, pages 222–233, November 2008.

[30] F. D. Luna. Introduction to 3D Game Programming with
DirectX 10 . Wordware Publishing Inc..

[31] R. Manikantan, K. Rajan, and R. Govindarajan.
Probabilistic Shared Cache Management (PriSM). In
Proceedings of the 39th International Symposium on
Computer Architecture, pages 428–439, June 2012.

[32] M. Mantor and M. Houston. AMD Graphic Core Next:
Low Power High Performance Graphics & Parallel
Compute. In Symposium on High-Performance Graphics,
August 2011.

[33] R. L. Mattson et al. Evaluation Techniques for Storage
Hierarchies. In IBM Systems Journal , 9(2): 78–117,
1970.

[34] S. Molner. Design Tradeoffs in the Kepler Architecture.
In Symposium on High-Perf. Graphics, August 2012.

[35] S. Morein. ATI Radeon HyperZ Technology. In
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, August 2000.

[36] D. Nehab, J. Barczak, and P. V. Sander. Triangle Order
Optimization for Graphics Hardware Computation
Culling. In Proceedings of the Symposium on Interactive
3D Graphics and Games, pages 207–211, March 2006.

[37] E. Persson. Depth In-depth. Available at
http://developer.amd.com/media/gpu assets/Depth in-
depth.pdf.

[38] M. Pharr et al. Rendering Complex Scenes with
Memory-coherent Ray Tracing. In Proceedings of the 24th
SIGGRAPH Annual Conference on Computer Graphics
and Interactive Techniques, pages 101–108, August 1997.

[39] T. Piazza. Intel Processor Graphics. In Symposium on
High-Performance Graphics, August 2012.

[40] M. K. Qureshi et al. Adaptive Insertion Policies for High
Performance Caching. In Proceedings of the 34th
International Symposium on Computer Architecture,
pages 381–391, June 2007.

[41] M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance,
Runtime Mechanism to Partition Shared Caches. In
Proceedings of the 39th International Symposium on
Microarchitecture, pages 423–432, December 2006.

[42] D. Sanchez and C. Kozyrakis. Vantage: Scalable and
Efficient Fine-grain Cache Partitioning. In Proceedings of
the 38th International Symposium on Computer
Architecture, pages 57–68, June 2011.

[43] A. Schilling, G. Knittel, and W. Strasser. Texram: A
Smart Memory for Texturing. In IEEE Computer
Graphics and Applications, 16(3): 32–41, May 1996.

[44] A. L. Shimpi. Intel Iris Pro 5200 Graphics Review: Core
i7-4950HQ Tested. June 2013. Available at
http://www.anandtech.com/show/6993/intel-iris-pro-
5200-graphics-review-core-i74950hq-tested.

[45] J. Torborg and J. Kajiya. Talisman: Commodity
Real-time 3D Graphics for the PC. In Proceedings of the
23rd SIGGRAPH Annual Conference on Computer
Graphics and Interactive Techniques, pages 353–363,
August 1996.

[46] Unigine: Real-time 3D Engine. http://unigine.com.

[47] A. Vartanian, J-L. Bechennec, and N. Drach-Temam.
Evaluation of High Performance Multicache Parallel
Texture Mapping. In Proceedings of the 12th
International Conference on Supercomputing, pages
289–296, July 1998.

[48] L. Williams. Pyramidal Parametrics. In Proceedings of
the 10th SIGGRAPH Conference on Computer Graphics
and Interactive Techniques, pages 1–11, July 1983.

[49] C. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi
GF100 GPU Architecture. In IEEE Micro, 31(2): 50–59,
March/April 2011.

[50] C-J. Wu et al. SHiP: Signature-Based Hit Predictor for
High Performance Caching. In Proceedings of the 44th
International Symposium on Microarchitecture, pages
430–441, December 2011.

[51] Y. Xie and G. H. Loh. PIPP: Promotion/Insertion
Pseudo-partitioning of Multi-core Shared Caches. In
Proceedings of the 36th International Symposium on
Computer Architecture, pages 174–183, June 2009.

[52] M. Yuffe et al. A Fully Integrated Multi-CPU, GPU, and
Memory Controller 32 nm Processor. In Proceedings of
the International Solid-State Circuits Conference, pages
264–266, February 2011.

[53] 3D Mark Benchmark. http://www.3dmark.com/.

