
Efficient Multi-Core AUTOSAR-Platform based on
an Input/Output Gateway Core

Moisés Urbina and Roman Obermaisser
Institute of Embedded Systems - University of Siegen

Email:{moises.urbina, roman.obermaisser}@uni-siegen.de

Abstract—The AUTOSAR standard provides support for mul-
ticore systems since version 4. However, this AUTOSAR multicore
version focuses on inter-core communication with a shared
memory approach. In contrast, the paradigm of message-based
network-on-chips provides multiples advantages for real-time
embedded systems such as automotive electronics including better
temporal predictability, fault containment and energy efficiency.
In this paper we propose an efficient multicore architecture
for AUTOSAR based on time-triggered network-on-chips and
dedicated input/output cores. Additionally, a health monitoring
service is integrated into the AUTOSAR ECU architecture in
order to provide recovery actions in case of failures of the
automotive application or the hardware of a specific core in the
multiprocessor.

The results demonstrate how the operating system overhead
decreases considerably when using the defined input/output cores
that serve as hardware accelerators for the AUTOSAR software.
Also, the reliability of the system is improved significantly due
to the implemented health monitoring service.

Index Terms—AUTOSAR μECU; Proxy Module; Health Moni-
toring

I. INTRODUCTION

Multi-Processor System-on-a-Chips (MPSoCs) have be-

come a suitable option for the development of real-time

embedded systems. Specifically in the automotive domain the

AUTomotive Open System ARchitecture (AUTOSAR) stan-

dard describes a multicore version of the AUTOSAR operating

system [1] for the implementation of automotive systems.

In previous work a TIme-triggered MEssage-based multi-

core for AUTOSAR (TIMEA) [2] was presented, which uses

a Time-Triggered Network-on-a-Chip (TTNoC) for the com-

munication between the cores. This architecture introduces

application cores configured based on the AUTOSAR ECU

architecture playing the role of AUTOSAR Micro-Electronic

Control Units (μECUs) on the same MPSoC. Thus, the

benefits of TTNoC architectures in the context of temporal pre-

dictability and fault isolation are merged with the AUTOSAR

system.

In this attempt we extend the AUTOSAR Basic Software

(BSW) on the μECUs with a proxy module to connect

them with a dedicated input/output core that serves as a

hardware accelerator to the AUTOSAR application running

on the μECUs. Additionally, a health monitoring service is

integrated which provides recovery actions to the AUTOSAR

software.

A simulation environment for message-based AUTOSAR

multicore processors serves for the implementation of the

input/output cores and the extended BSW modules. A realistic

automotive use case demonstrates how the operating system

overhead on the AUTOSAR μECUs decreases significantly

when replacing I/O BSW functionalities with dedicated in-

put/output cores. Additionally, the reliability of the AUTOSAR

multicore system is improved by the introduction of the health

monitoring service.

The remainder of this paper is organized as follows. In

Section II we present an overview of related work in the area

of I/O multicore solutions. The time-triggered multicore archi-

tecture for AUTOSAR is presented in Section III. Section IV

describes the extended proxy modules and health monitoring

service. The implementation using a simulation environment

is the focus of Section V. Section VI is dedicated to the

presentation of an experimental use case. The paper finishes

with a discussion and a conclusion in Section VII.

II. RELATED WORK

In the last years I/O management in combination with multi-

core processors has been investigated. The description and

discussion of existing I/O multi-core solutions is presented

in this section. Additionally, the ARINC health monitoring

service of the avionic domain is summarized.

A. I/O Multi-Core Solutions

A review of different solutions for maintaining coherency

between caches and the data generated or consumed by I/O

devices is presented in [3]. This work compares different

approaches for data and I/O coherence with solutions trading

off hardware versus software complexity depending on the

application and the system characteristics.

A high performance multicore I/O manager for the Glasgow

Haskell Compiler (GHC) is introduced in [4]. The so-called

Mio manager eliminates the bottlenecks originating from a

typical GHC I/O manager when implemented on a multi-

core processor. In [5] a virtual regionalized Network-on-Chip

(NoC) is used to optimize the performance of the peripheral

devices. This work presents an architecture consisting of a

NoC with a mesh topology wherein the network is divided into

several virtual regions taking advantage of the characteristics

of the applications and their communication patterns to adapt

to the I/O communication requirements.

A heterogeneous multicore embedded system with virtual-

ization to improve security and isolation among virtualized

environments is presented in [6]. This multicore embedded

architecture consists of an I/O management unit that enables

the virtualization and provides support for a global coherent

address space, flow isolation, security, resource management

and runtime monitoring. In [7] a partition scheduler providing

conflict-free I/O for multicore avionic systems is introduced.

This work proposes a heuristic algorithm that prevents con-

flicts among I/O transactions from applications running in

different cores.

B. ARINC 653 Health Monitoring

ARINC 653 [8] is an avionic standard for Integrated Mod-

ular Avionics (IMA) which defines an execution environment

based on time partitioning for safety-critical avionics Real-

Time Operating Systems (RTOS). It describes a general pur-

pose application interface between the operating system and

the application software.

This standard introduces a health monitoring service [9]

which provides a framework to raise and handle alarms in

a system consisting of three levels in a hierarchical fashion:

process level, partition level and module level. A system

health monitoring table defines the level of an error (module,

partition, process) based on the error and the state of the

system. Additionally, fault responses and recovery actions are

defined depending on the error level.

Recovery actions for process level errors are defined by

the application programmer, while recovery actions for the

partition and module level are specified in the health moni-

toring configuration tables. The partitions can have separated

configuration tables or share a common table.

C. Research Gap

The state-of-the-art does not provide I/O management as

part of an AUTOSAR message-based multi-core platform.

Additionally, the support for remapping between input/output

cores and application cores (AUTOSAR μECUs) is required

for the integration of the health monitoring service and recov-

ery actions to the AUTOSAR multi-core system.

III. MESSAGE-BASED MULTI-CORE ARCHITECTURE FOR

AUTOSAR

The TIMEA platform [2] introduces a multi-core architec-

ture for AUTOSAR based on a TTNoC for the inter-core

communication, supporting fault isolation and temporal pre-

dictability. Application cores, so-called AUTOSAR μECUs,

are in charge of performing the specific automotive application

functionality while a TTNoC [10] serves for the exchange of

messages.

A TTNoC supports bandwidths of several Gbps and pro-

vides communication plans with precise phase positions of

messages in the range of a few ns. Since most of the

functionalities realized by the AUTOSAR BSW are designed

for latency requirements with orders of magnitude no lower

than 1ms, a TTNoC for inter-core communication allows

the introduction of dedicated input/output cores for replacing

tasks originally handled by the BSW modules in the μECUs.

In this paper we present an I/O abstraction core as an in-

put/output core dedicated to the I/O functionalities specified

by the AUTOSAR standard (e.g., PWM modulation, ADC

functionality, etc). Such an input/output core provides multiple

benefits to the AUTOSAR system, e.g., lower latency, higher

throughput and less overhead of the AUTOSAR operating

system. Using the TTNoC, Software Components (SWCs) that

require access to sensors or actuators and that are located in

different AUTOSAR μECUs can share the I/O abstraction

core for accessing I/O functionalities. In the rest of this paper

we use the term sensor/actuator SWC [11] to name these kind

of AUTOSAR SWCs.
Figure 1 presents an efficient message-based multi-core

architecture for AUTOSAR based on input/output cores. Addi-

tionally, complex driver functionalities can also be accelerated

using input/output cores. In Figure 1, for instance a Fast-

Fourier Transform (FFT) service is available to the μECUs as

a dedicated input/output core instead of being present in the

BSW of each μECU through the complex driver abstraction

layer.
The proposed architecture improves the performance of

the AUTOSAR application by reducing the operating system

overhead on the μECUs. The architecture leads to a simplified

implementation of the AUTOSAR BSW delegating costly I/O

functionalities and complex driver functionalities to dedicated

input/output cores. Also, the implementation of a complex

driver as a dedicated input/output core leads to a significant

reduction of the resource requirements in the AUTOSAR layer

model which increases the efficiency of the driver functional-

ity.
Based on the defined input/output cores and the extension

of new BSW modules, the AUTOSAR application is improved

by the following aspects:

• Lightweight AUTOSAR operating system. Expensive

BSW functionalities are delegated to dedicated input/out-

put cores and realized in hardware. Thus, μECU re-

sources can be focused on the AUTOSAR application

with a minimum impact on the operating system overhead

caused by the proxy service modules.

• Efficient implementation of drivers. An input/output core

dedicated exclusively to a device driver leads to a more

efficient implementation of the driver, in particular for

complex drivers with stringent timing requirements. The

defined I/O abstraction core and an input/output core for

a complex device driver serve as hardware accelerators

for the μECUs.

• Recovery action at the μECU level. The integration of a

health monitoring service allows to implement recovery

actions in case of the failure of a sensor/actuator SWC.

The presented health monitoring functionality can resume

AUTOSAR runnables that replace a sensor/actuator SWC

which accesses any I/O functionality.

• Recovery action at the MPSoC level. The input/out-

put core remains operational despite the failure of a

μECU , which hosts a SWC that uses the service of the

input/output core. Furthermore, another μECU hosts a

NoC

AUTOSAR
μ ECU

I/O
Abstraction

Core

TTNI

Virtualization
Layer

Fast-Fourier Transform
Core

TTNI

Virtualization
Layer

AUTOSAR
μ ECU

AUTOSAR
μ ECU

MPSoC

RTE

SWC SWC SWC SWC

Application Layer

COM services

SWC SWC SWC SWC

Application Layer

I/O
Proxy

FFT
Proxy

System Services

AUTOSAR
Operating

System

COM services

COM

PDU
Router

COM HW AbstractionMemory
HW Abstraction

Memory
Services

Peripherals Services

Memory
Drivers TTNI

Health Monitoring

Fig. 1: AUTOSAR Multicore Architecture

standby SWC which takes over by interacting with the

input/output core.

A. Time-Triggered Network-on-Chip

In the TIMEA platform we use a time-triggered NoC

in the architecture such as AEthereal [12] or TTNoC [10]

with inherent fault isolation and temporal predictability. A

Time-Triggered Network Interface (TTNI) is available to each

μECU and the input/output cores for accessing the TTNoC.

The on-chip network gives support for different topologies

(e.g., mesh, ring) and offers temporally predictable commu-

nication.

The communication between SWCs on different μECUs

and ECU signals [13] sent between the dedicated input/output

cores and the μECUs are mapped to time-triggered messages

by the corresponding TTNIs of the cores. These messages are

sent through the NoC according to a pre-configured time-

triggered communication schedule, where each message is

assigned to a specific time slot with respect to a global time

base.

The communication between μECUs and dedicated in-

put/output cores is supported with temporal predictability

based on time-triggered channels. These time-triggered chan-

nels are used to establish a link between the senders and the

receivers cores according to the configuration parameters of

the NoC. The configuration parameters depend on the actual

NoC. In case of TTNoC, the source-based routing paths need

to be defined (e.g., periods, phases, etc), while in case of

Aethereal, the routing configuration of the on-chip routers has

to be defined.

B. AUTOSAR Micro-ECUs

The μECUs are application cores that are configured ac-

cording to the AUTOSAR ECU architecture [14]. Each one of

them is provided with an application layer consisting of AU-

TOSAR SWCs and a Run-Time Environment (RTE) to abstract

in the automotive application from the BSW functionalities. As

defined by AUTOSAR, the RTE serves as a unique interface

for the SWCs to make them independent from the underlying

hardware platform, in this case, a multi-core platform based

on NoCs.

In the TIMEA platform, the BSW of the μECUs is

extended with new BSW modules in order to support

TTNoC communication. Special communication service mod-

ules (COM module, PDU Router) [2] serve as the interface

between the RTE and the TTNI for connecting the μECU to

the network. Thus, μECUs are able to use the TTNoC for the

communication between each other.

In this paper we propose an efficient implementation of

the I/O drivers by replacing the original AUTOSAR-defined

BSW modules of the I/O abstraction layer by an input/output

core (I/O abstraction core in Figure 1) dedicated to these

functionalities. Instead of having an implementation of the

whole I/O abstraction layer in the BSW of each AUTOSAR

μECU , an I/O proxy module is defined. The I/O proxy serves

to forward data prototypes [11] (sender/receiver interface)

or argument prototypes [11] (client/server interface) sent by

the sensor/actuator SWCs to the PDU router and thus, to

the input/output core through the TTNoC. Additionally, ECU

signals captured by the input/output core can be received by

the μECUs and forwarded to the sensor/actuator SWCs using

this I/O proxy module.

Moreover, an efficient implementation of a complex driver

with a dedicated input/output core realization is possible.

External peripherals requiring stringent time constraints that

would need a complex driver realization in the BSW of the

μECU can be accelerated by delegating the device driver to a

dedicated core. In this case, a proxy module for matching ECU

signals of the specific input/output core with the data/argument

prototypes of their related sensor/actuator SWCs must be

integrated into the BSW of the μECUs that require this

service. As illustrated in Figure 1, a FFT proxy service module

allows the interaction of a μECU with an input/output core

dedicated to the FFT functionality. Also, the decision whether

a device driver is accelerated by hardware is kept transparent

to the RTE and the AUTOSAR application.

Furthermore, a Health Monitoring module is added to the

BSW in the μECUs. This new module provides recovery ac-

tions to the AUTOSAR BSW by monitoring the data handled

by the sensor/actuator SWCs. In case a sensor/actuator SWC

fails, the health monitoring service can activate a replicated

SWC located in the same μECU which replaces the failed

SWC. If there is no replica available in the same μECU ,

the health monitoring service makes aware the proxy module

to send a notification message to the specific input/output

core (e.g., I/O abstraction core) in order to indicate that a

replica of the failed SWC located on another μECU must

take over the access to the I/O functionality. The realization

of the proxy modules and the health monitoring within the

AUTOSAR architecture are explained in details in section IV.

C. Input/Output Cores for Hardware Acceleration

These input/output cores replace the functions normally

provided by the I/O BSW abstraction layer [13] and the

complex driver abstraction layer of AUTOSAR. The input/out-

put cores support bidirectional communication via the TTNI

that connects the core to the network-on-chip. Additionally, a

virtualization layer abstracts the I/O functionalities from their

underlying AUTOSAR μECUs and sensor/actuator SWCs

that control the I/O ports. This layer uses the input port

and output port provided by the corresponding TTNI for the

exchange of data with the network supporting fault isolation.

ECU signals handled by the I/O ports (e.g., ADC converter)

are mapped to time-triggered messages as part of the pre-

configured time schedule of the network. The virtualization

layer injects input signals via time-triggered buffers with a pre-

defined time slot in order to be sent by the TTNI through the

TTNoC. Additionally, each message received from the TTNI

by the virtualization layer is matched to an output signal of a

specific driver device, for example an output pin connected to

a light switch.

Additionally, in case multiple μECUs need to access the

same service provided by an input/output core dedicated to a

complex driver (for example the FFT core of Figure 1), the

virtualization layer also supports the sharing of the core among

different μECUs based on static priorities defined at compile

time. For example, if μECU 1 and μECU 2 want to trigger a

FFT of an ECU signal during a certain time period, based on

the priorities assigned to the service requests, the virtualization

layer will forward them to the FFT service in a specific order.

Hence, the FFT of the μECU signal with the highest priority

finishes first.

D. Failure Assumptions

We define sensor/actuator SWCs and the μECUs as possi-

ble units of failures, i.e. Fault Containment Regions (FCRs).

Based on this, we assume the following failure modes:

• Omission Failures. An omission failure is a transient

failure where an FCR fails to send a message to the

respective receiver, or where the receiver fails to receive

a successfully sent message. This kind of failure can

remain undetected by the system, if there is no a priori

knowledge about the message periods or the maximum

message interarrival times. An example of an omission

failure would be a μECU that fails sending a message

in its respective time slot through the TTNoC.

• Crash failures. This kind of failure represents an FCR

which does not produce any outputs. An example would

be a μECU that stops sending messages through the

TTNoC. In contrast to the omission failures, a crash

failure is a permanent failure.

• Value Failures. It represents an arbitrary value message

failure which occurs in case the content of a transmitted

message does not comply with the specification. An

example would be a data prototype sent by a SWC which

does not comply with its data constraint element. The

data constraint element [11] is an AUTOSAR system

specification used to restrict the range of possible values

for the data handled by a SWC.

The virtualization layer of the input/output cores allows the

use of redundancy for sensor/actuator SWCs at the MPSoC

level. A threshold parameter ρ is configured in the virtualiza-

tion layer, which is used to distinguish between omission fail-

ures (transient) and crash failures (permanent). The detection

of a crash failure is defined by N > ρ, where N represents

the actual number of consecutive omission failures detected

by the virtualization layer, while ρ is the maximum number

of omission failures detected before assuming that a crash

failure occurred. Additionally, if a μECU sends a notification

message indicating a value failure of a sensor/actuator SWC,

the same expression is used by the virtualization layer to

determine whether it is a transient failure or a permanent

failure. The definition of the threshold parameter ρ depends

on the specific design and the technology.

In case a permanent value failure is detected by the virtual-

ization layer, this layer must provide access to another μECU
hosting a replica of the sensor/actuator SWC which takes over

interacting with the specific I/O functionality.

IV. AUTOSAR BSW EXTENSION

This section provides a detailed description of the proxy

service modules and the health monitoring functionality with

the integration into the AUTOSAR ECU architecture. Figure 2

illustrates the communication flow between the BSW modules.

A. Proxy Functionality

In the AUTOSAR standard [13] the RTE is in charge of

the communication between sensor/actuator SWCs and the

BSW modules of the I/O hardware abstraction layer. The I/O

abstraction layer consists of BSW SWCs with ports hosting

AUTOSAR interfaces (sender/receiver or client/server). Thus,

sensor/actuator SWC ports and I/O BSW SWC ports are

connected though the RTE layer.

In order to make the application layer and the RTE indepen-

dent from the acceleration of a device driver, the integration

of a proxy module is realized as a BSW SWC, which also

implements AUTOSAR interfaces to interact with the appli-

cation layer. For instance, figure 2 shows an actuator SWC that

is connected with a proxy SWC using a client/server interface.

RTE

Actuator
SWC

Application Layer
Atomic Software Component

R-Port Prototype

Client-Server Interface

Signal
Abstraction

R1

Proxy
Functionality

R2
Proxy SWC

PDU
ROUTER

Error Detection

Recovery Action

Signal
Abstraction

Replicated
Actuator

SWC

R1'

Health Monitoring

Fig. 2: BSW Modification

In this way, the decision whether a device driver is accelerated

or not is kept transparent to the RTE and the application layer.

The internal behavior of the proxy SWC consists of two

AUTOSAR runnables. One runnable (R1 in figure 2) is used

for the signal abstraction. The aim of this runnable is to

abstract in the data handled by the SWC ports from the

physical layer values, mapping the proxy SWC ports to ECU

signals. Thus, application designers do not have to be aware

about implementation details of the device driver APIs and the

units of the physical layer values. Thereafter, ECU signals are

forwarded to the second runnable of the proxy SWC (R2 in

figure 2).

The second runnable matches the ECU signals to Protocol

Data Units (PDUs), and invokes the error detection service

of the health monitoring module before forwarding the PDU

signal to the PDU router. In case this function indicates that

a value failure occurred, a recovery function of the health

monitoring service is called. Thereafter, the two following

scenarios are possible:

• In case a replicated actuator SWC depending on the same

I/O functionality is located in the same μECU , the proxy

function selects this ECU signal (coming from runnable

R1’ in figure 2) to be packed into the PDU instead of the

original one.

• If no redundancy is available on the same μECU , the

proxy functionality configures the PDU with a notifica-

tion message to indicate to the input/output core that the

specific μECU is not able any more to control the I/O

functionality.

Additionally, the PDU router defined in [2] is extended with

new routing tables to forward PDUs from the proxy module

to the TTNI and vice versa.

B. Health Monitoring

The health monitoring module enables recovery actions

based on redundancy of actuator SWCs at the μECU level.

Figure 2 illustrates how the health monitoring module is

integrated into the AUTOSAR architecture and shows its

internal structure.

The error detection block provides a detection mechanism

based on the data constraint elements associated to the ECU

signals in order to detect value failures of the sensor/actuator

SWCs. An example is an argument data prototype that exceeds

the range of allowed values defined by its data constraint

element. This block provides an error detection function,

which is used by the proxy functionality as described earlier.

In case a failure is detected, the error detection block invokes

a recovery action.

The recovery action block hosts health monitoring tables

mapping possible software errors to recovery actions. In this

work we propose as the only recovery solution the activation of

a replicated actuator SWC located in the μECU as mentioned

previously. For this, callback functions are used to resume

operating system tasks (at run time) that host the runnables

which represent the replicated actuator SWC. As defined by

AUTOSAR [1], callback functions provide the capability to

trigger SWCs that are outside of the AUTOSAR BSW. Thus,

a replica of the actuator SWC does not increase the operating

system overhead, since the tasks are set up in suspended state

[1] as defined at compile time.

V. IMPLEMENTATION USING A SIMULATION

ENVIRONMENT

The realization of the TIMEA platform with the extended

BSW modules for the μECUs and the dedicated input/output

cores is presented in this section. The co-simulation envi-

ronment introduced in [15] is used in the implementation.

This environment consists of the dSpace VEOS simulator

for the AUTOSAR software simulation, and SystemC/TLM

for the simulation of the TTNoC [16] and the input/output

cores. The coordination technique presented in [17] is used to

accurately coordinate both simulation tools. Figure 4 illustrates

an architecture picture of the co-simulation environment and

its components.

The previously mentioned tools are used for the following

reasons:

• VEOS Simulator. This environment is the dSpace soft-

ware tool for the simulation of AUTOSAR Electronic

Control Units (ECUs) (so-called virtual ECUs) in the

automotive industry. Additionally, VEOS allows the sim-

ulation of environment models representing the physical

environment that interacts with the virtual ECUs during a

simulation scenario. Both, virtual ECUs and environment

models, are represented by VEOS as Virtual Processing

Units (VPUs) [15] which can be connected to each

other (see figure 3). During a VEOS simulation, an

AUTOSAR Operating System (OS) is emulated for a PC-

based simulation, which is in charge of invoking the OS

VECU

VECU

VEVEEEEEEVEVEVEEVEVEEEEEEVEEEEEEVEEEEEEEVEEV CCCCCUCCUCUCUUCCCCCCCCCCCCCUUCCCCCUUUUC

VEEEEEVEVEVEEEEEEEEEVEEEEEEEEVVEEV CCCUCUCCCUCCCCCCCCUCCCUUCCCUUUUC

VPU

VECUVEVEVEEEEEEVEVEEVEVVEEEEEEVEVEEEEEEEEEVEVEEECCCCUCUCCCUCCCUUCCCCCCCCCCCCCCCCUUUCUCUCUC

VEOS

VPU

VPU

VPU Port

VPU
Environment

Virtual
ECU

Virtual
ECU

Virtual
ECU

Fig. 3: VEOS Environment

tasks and function calls. Using an experimental tool such

as ControlDesk the VEOS simulator can be accessed in

order to test the virtual ECUs.

• SystemC Simulation Tool. SystemC is a system-level

description language based on C++, which is widely

used for event-timing modeling [18] [19]. In systemC

the timing accuracy is ranging from untimed to cycle-

accurate where precise temporal specifications and Sys-

temC modules can be simulated to validate the behavior

of the platform. Furthermore, for the development of sim-

ulation frameworks SystemC provides transaction level

models (TLMs) to enhance the overall simulation speed.

The ability and accuracy that SystemC/TLM provides,

have inspired researchers in the development of multiples

simulation frameworks in the last years (e.g. [20], [21]

and [22]).

The dSpace tools SystemDesk and TargetLink are used

for the development of the AUTOSAR application, and the

configuration and generation of the μECUs with the inte-

grated proxy module and the health service module. Also, a

Functional Mock-up Unit (FMU) [23] and a local coordinator

are used for the synchronization and the exchange of data

between the two simulation systems.

A. Implementation of the Input/Output Cores

The simulation framework presented in [16] serves for the

implementation of the defined input/output cores (i.e., I/O

abstraction core and any complex driver dedicated input/output

core). Input/output cores are developed as SystemC-based

cores that run together with the TTNoC on the same SystemC

simulation. For instance figure 4 introduces the I/O abstraction

core as a SystemC-based core in the TTNoC simulation.

The framework allows the configuration of the on-chip

communication through a pre-defined schedule (CSV file),

wherein the period and the phase of each message are set. In

this work we extend the on-chip schedule in order to provide

information about the priorities of the μECUs that try to

access a service of an input/output core (as explained in the

last section). Additionally, in order to provide redundancy at

VEOS
VECU FMUEnvironment

Model

TTNoC

Network
Interface

Network
Interface

I/O
Abstraction

Core

SystemC
Model

VECU

TCP Connection

VEVEEEVEEEEEVVEEEEEVVEEEEVEEEEEVEEEEEEEEEEEEEVEEEVV CCCUCCCCCUUUCUCCUCCCCCCCCCCCCCCCCCCCCUUCCCCCUUU VEVEEEEVEEEEVEEVEEEEEEEVEEEEEEEEEEEEEVEEEEEEEEEEEEEEVEEEVV CCUCCCCCUUCUCUCCCCCCCCCCCCUCCCCCUUCCCCUUU

Local
Coordinator

Data Flow

Run Permission

μVECU μECU

Periodic
1us

Periodic
1us

Fig. 4: Co-simulation Environment

the MPSoC level, new time-triggered messages are included

in the on-chip schedule to support this specific functionality

as well as the configuration of the error threshold parameter

ρ defined in the previous section.

The virtualization layer is developed on top of the corre-

sponding TTNI of the input/output core in order to abstract

in the driver functionality from the NoC-based multicore

platform implementation. Thus, this layer provides variables

that map the receiving port of the TTNI directly to ECU

signals handled by the input ports of the core (e.g. analog

input, ADC, etc), while the data handled by the sending port

of the TTNI is mapped to the ECU signals handled by the

output ports of the core (e.g. PWM, analog output, etc). Since

the extended on-chip schedule provides information about

the messages used for supporting redundancy on a different

μECU , the virtualization layer allows the mapping of multiple

time-triggered messages to a single ECU output-signal. Thus,

in case of a crash failure on the μECU responsible of the

first assigned time-triggered message, the virtualization layer

automatically switches to the second time-triggered message

from the μECU wherein redundancy is provided.

Furthermore, the priorities assigned to the μECUs are used

by the virtualization layer in order to provide the μECU
holding the highest priority a faster access to an input/output

core service.

B. Implementation of the Micro-ECUs

The AUTOSAR architecture tool SystemDesk is used for

the configuration and the generation of the μECUs in the sim-

ulation using the VEOS environment. A complete description

<<source>>
I/O_Proxy_<ComponentName>.h

<<source>>
I/O_Proxy_<ComponentName>.c

<<source>>
FFT_Proxy_<ComponentName>.h

<<source>>
FFT_Proxy_<ComponentName>.c

<<source>>
RTE_<ComponentName>.h

<<source>>
SchM_Proxy_<ComponentName>.h

<<source>>
SchM.c

<<source>>
Sd_Types.h

<<source>>
Proxy_<ComponentName>.h

<<source>>
Proxy_<ComponentName>_Cfg.h

<<source>>
Proxy_<ComponentName>_Types.h

include include
include

include

include

include

include

Fig. 5: File Structure of Proxy integration

<<source>>
RTE_<ComponentName>.h

<<source>>
SchM_Proxy_<ComponentName>.h

<<source>>
Sd_Types.h

<<source>>
HM_<ComponentName>.c

<<source>>
HM_<ComponentName>.h

include

include

<<source>>
HM_<ComponentName>_error_table.h

<<source>>
HM_<ComponentName>_RA_table.h

include include

include
include

Fig. 6: File Structure for the integration of the Health Moni-

toring module

of the development process of an AUTOSAR system based on

μECUs is presented in [15]. In this section we focus on the

integration of the proxy module and health monitoring module

into the BSW of the μECUs.

The SystemDesk tool allows the definition of an AUTOSAR

system consisting of AUTOSAR SWCs and the interaction

between each other implementing AUTOSAR interfaces (i.e.,

client/server or sender/receiver). Additionally, the internal be-

havior of these SWCs is modelled using the dSpace code

generator tool TargetLink in combination with Simulink.

Additionally, using SystemDesk simulated ECUs can be

defined and the AUTOSAR SWCs can be allocated to these

simulated ECUs. These simulated ECUs play the role of the

μECUs in our simulation of the AUTOSAR MPSoC platform.

The simulated μECUs are configured based on the software

architecture picture depicted in figure 1. A single reduced

ECU configuration without off-chip network communications,

external memory access and special complex driver support,

is selected for the configuration of each μECU . Additionally,

an empty I/O hardware abstraction layer (without c-code

implementation) is added to each ECU configuration. Thus,

BSW SWCs are generated automatically together with their

interfaces that connect them to the sensor/actuator SWCs at

the application layer. This allows us to develop manually the

internal behavior (C-code) of these BSW SWCs to implement

the proxy modules as defined in the last section.

The OS of each μECU is configured and consists of OS

tasks for hosting the SWC runnables that are located in the

μECU . Also, OS tasks for hosting the proxy runnables are

defined. Moreover, for completing the configuration OS events,

OS alarms, OS application modes and OS counters are set up.

Furthermore, based on the application SWCs and the BSW

configuration of the μECUs the RTE is automatically gener-

ated. This generated RTE interconnects SWCs and connects

the application layer with the generated BSW SWCs and the

AUTOSAR OS.

Before the generation of the simulated μECUs, the COM

service modules (i.e. COM module, PDU router), an NoC

interface module, the health monitoring service module and

the implementation of the proxy SWCs are integrated into the

BSW of the μECUs. The mentioned NoC interface module is

a specific simulation module for connecting the μECU with

the corresponding TTNIs of the SystemC simulation.

The generated RTE implementation is modified in order to

integrate the COM module, PDU router, NoC interface, the

proxy modules and the health monitoring service. A detailed

description of the integration of the COM service modules and

the NoC interface module1 can be found in [15].

The runnables representing the internal behavior of the

proxy SWCs are allocated to their specific tasks (defined pre-

viously) in the RTE implementation. Additionally, the initial-

ization functions of the proxy implementations are allocated

to the start function of the ECU State Manager [24]. Figure

5 presents the file structure including the dependencies of the

proxy implementation with the other BSW modules.

In the implementation of the health monitoring service,

the callback functions are used for the recovery actions.

These recovery actions are implemented according to the

Rte_Call_ < p > _ < o > API [25] of the RTE in order

to enable safe configuration of the AUTOSAR services as

specified by the standard [13]. The initialization function of

the health monitoring module is allocated to the Rte_Start
task provided by the RTE implementation. This task is in

1The NoC interface hosts a TCP client for the exchange of data with the
TTNoC simulation

charge of allocating and initializing system resources and

communication resources used by the RTE. Figure 6 depicts

the file structure presenting the dependencies of the health

monitoring implementation with the other BSW modules.

After this, the ECU configurations are built, generating the

simulated μECUs, which are integrated to a single simulation

system for being run in VEOS.

C. Co-simulation Coordination

As mentioned previously, the simulation technique pre-

sented in [17] is used for the simualtion coordination of both

simulation systems. This work introduces a local coordinator

and an FMU for the co-simulation and synchronization of

the simulation steps of the AUTOSAR simulation running in

VEOS with the SystemC simulation (see figure 4). TCP/IP

serves for the communication between each other. In the

VEOS simulation TCP clients of the μECUs, environment

models and the FMU serve for the exchange of data with the

SystemC simulation wherein the local coordinator provides a

TCP server.

Based on the Functional Mock-up Interface (FMI) standard

[23], the FMU is configured as an FMU wrapper with a fixed

communication step size (hci = κ) according to the minimum

interrupt detection latency. Since the VEOS simulation can

just react to an event occurring in the TTNoC simulation

within the interrupt detection latency, we use the minimum

interrupt detection latency as the communication step size

parameter defined by the FMI standard. hci = 1μs is assumed

as the minimum interrupt detection latency in the experimental

evaluation. In [17] this parameter selection is explained in

more detail.

Two types of messages are used for the communciation

between the two simulation systems:

• Data Message. It represents a message sent from the

VEOS simulation to the SystemC local coordinator and

vice versa. It is used for the exchange of data between

the μECUs and their TTNIs in the TTNoC simulation,

and the data exchange between the environment models

and the input/output cores (e.g. I/O abstraction core).

• Synchronization Message. It serves for the synchro-

nization of both simulation systems. It is used by the

FMU wrapper and the local coordinator to coordinate the

simulation steps on both simulation systems according to

the fixed communication step size.

VI. USECASE & EVALUATION

A. Use Case

For the evaluation, we define a use case consisting of a

TIMEA platform of 8 cores as depicted in figure 7. An ABS

functionality is distributed over three AUTOSAR μECUs,

two of them hosting 2 SWCs and one of them hosting just

one. The μECU1 has a sensor SWC which interacts with the

I/O abstraction core receiving an ECU signal from the velocity

sensor through an ADC input port. Also, μECU3 hosts an

actuator SWC responsible for computing the control signal of

the ABS functionality (PWM Controller in Figure 7), which is

TTNoC

μECU 1
V/S

μECU 2 μECU 3
μECU 4

ABS Functionality Breaking Light

PWM Controller PWM Controller’

Output BL

I/O Abstraction
Core FFT Core

V/S

I PWM O

BL

μECU 5 μECU 6

Fig. 7: USE CASE

sent by the NoC to the I/O abstraction core. We inject a fault

in the error detection block which consists of an unexpected

value for the ABS control signal exceeding the limits assigned

by the data constraint element. As a recovery action the

health monitoring service in μECU3 must resume tasks for

activating a replica of the actuator SWC that is located in

the same μECU in order to use redundancy at the μECU
level. Additionally, a braking light indicator functionality is

performed by one SWC hosted by the μECU4. In order

to provide redundancy at the MPSoC level, a replica of the

actuator SWC for the ABS control signal is also allocated to

μECU4.

Furthermore, μECUs 5 and 6 represent automotive func-

tionalities which require an FFT service each for a certain

time, which is made available to the μECUs through a

dedicated input/output core (FFT core in figure 7). The

FFT application is based on [26], which performs a 16-

point FFT computation of the input signal. Different priorities

are assigned to each μECU in order to avoid conflicts in

accessing the FFT core. μECU6 possesses a higher priority

than μECU5, which is pre-configured at compile time in the

virtualization layer of the FFT core as explained in section III.

Thus, the values obtained from a specific μECU are queued

by the virtualization layer in a 16 point buffer before passing

them to the FFT application. The virtualization layer forwards

the buffer that corresponds to the higher priority in case two

μECUs require the FFT service at the same time.

As shown in figure 7, the I/O abstraction core provides

one ADC input pin for receiving the velocity sensor signal, a

PWM pin for forwarding the ABS control signal and an output

pin connected to the braking light (BL). We configure the

parameter ρ (defined in section III) in the virtualization layer

of the I/O abstraction core with a granularity of ρ = 3. This

seems to be a reasonable selection of ρ since the minimum

task period in the presented use case is 5ms.

In our simulation scenario, a hard braking is implemented

by the driver with an initial speed of 88km/h. For this,

a Simulink model is used to simulate the human braking

behavior, the road characteristics, the physical wheel and

Period Phase SenderCoreID ReceiverCoreIDs Latency
1ms 2ns I/O Core μECU1 50ns
1ms 54ns μECU1 μECU2 50ns
1ms 106ns μECU2 μECU3 50ns
1ms 158ns μECU2 μECU4 50ns
1ms 210ns μECU3 I/O Core 50ns
1ms 262ns μECU4 I/O Core 50ns
1ms 314ns μECU4 I/O Core 50ns
1ms 366ns μECU5 FFT Core 50ns
1ms 418ns μECU6 FFT Core 50ns

TABLE I: NoC configuration

the dynamics of the brake system hydraulic component. The

simulation time was 18s.

B. Results and Discussion

The NoC configuration implemented for the TIMEA plat-

form is presented in table I. Also, this table provides the

resulting latencies for each message sent through the TTNoC.

The simulated TTNoC does not accept the sending of simul-

taneous messages at the same time through the NoC, having

a processing time of 50ns from sender core to receiver core.

For this, phases were selected with a difference of more than

50ns to avoid delays because of contention in the network.

RTE interventions serve to access the RTE internal com-

munication of sender receiver and client server interfaces in

order to read and to modify the data elements and operation

arguments transmitted between the interfaces. Also, the status

return values of RTE API functions can be modified using RTE

interventions. During a simulation, ports can be stimulated or

error states can be injected to test the behavior of the SWCs.

We use RTE interventions to perform fault injections in order

to change the values of the data prototypes handled by the

AUTOSAR SWC ports. Thus, the recovery solutions provided

by the health monitoring service can be tested.

Figure 8 compares the behavior of the vehicular speed,

while figure 9 illustrates the braking distance behavior. In both

figures, curve 1 shows the braking behavior of the car when

no fault is injected. Curve 2 shows the braking behavior when

using fault injection on the μECU3 to test the recovery action,

while curve 3 represents the braking behavior when turning off

the μECU3, which means requesting the virtualization layer

of the I/O abstraction core to take the ABS control signal from

another core where redundancy is provided (μECU4 in this

case). As shown in figure 2, the ABS performance in curve 2

and 3 has decreased by 1.3% and 4% respectively compared

with curve 1 but still offering a significant difference of the

braking distance in comparison with curve 4 when no ABS

functionality is provided.

In order to measure the impact of the OS overhead resulting

from the implementation of the I/O abstraction core we also

run our simulation scenario keeping the I/O functionalities on

the BSW of each μECU . Table II compares the number of

task invocations realized by the OS with and without a dedi-

14 14.1 14.23 16.70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

Ca
r S

pe
ed

 (r
ad

/se
c)

Curve 1 - with ABS
Curve 2 - using Fault Injection
Curve 3 - μECU3 turned off
Curve 4 - without ABS

Fig. 8: Car Speed

Fig. 9: Braking Distance

cated input/output core. As shown in table II, in μECU1 the

OS overhead decreases by 27.82% when the I/O abstraction

core is implemented, while μECU3 and μECU4 exhibit an

overhead reduction of 18.77% and 41.02% respectively. In

μECU3 the integrated health monitoring service represents

9.84% of the OS overhead, which can be justified since the

reliability of the system has being improved significantly.

Furthermore, μECU5 and μECU6 require the service

provided by the FFT core at three different times during

our simulation scenario. Table III presents the latency results

obtained by the interaction between the μECUs and the FFT

core. Both μECUs access the FFT core using the TTNoC at

their pre-defined time slots. The results presented in table III

demonstrate how the μECU6 with the highest priority always

needs the minimum time (17ms) for processing the FFT.

 Task Invocations

Core With I/O Core Without I/O Core
Health Monitoring

Service
 μECU1 4377 7450 ----------------
 μECU3 7576 9327 897
 μECU4 7346 12456 ----------------

TABLE II: Task invocations

Core FFT initial
Request Time (μs)

Proccessing
Time (μs)

Ending Time (μs)

μECU5 5000366 32000 5032366
μECU6 5000418 17000 5017418
μECU5 10000366 17000 10017366
μECU6 11000418 17000 11017418
μECU5 15010366 22000 15032366
μECU6 15000418 17000 15017418

TABLE III: FFT timing accesses

VII. DISCUSSION AND CONCLUSION

In this work we presented an efficient time-triggered multi-

core architecture for AUTOSAR (called TIMEA) based on in-

put/output cores. Costly I/O functionalities of the AUTOSAR

BSW I/O abstraction layer are delegated to a dedicated in-

put/output core (I/O abstraction core) which is made available

to the AUTOSAR μECUs through a NoC. Additionally,

complex driver functionalities can also be accelerated with

a dedicated input/output core. In this work an FFT core was

used as an example for a complex driver input/output core.

A new proxy BSW module is introduced in order to make

the μECUs able to access the input/output cores. This proxy

module maps ECU signals handled by the sensor/actuator

SWCs to PDUs, which are sent and received using the

TTNoC and the COM modules of the NoC communication.

Furthermore, the BSW in the μECUs is also extended with

health monitoring which provides recovery actions based on

SWC redundancy in case of faults affecting the application

core functionality.

A simulation environment for the message-based AU-

TOSAR multi-core platform was used in the implementa-

tion. The results demonstrate how the OS overhead of the

μECUs is reduced significantly when the I/O functionalities

are delegated to dedicated input/output cores. Additionally, the

integrated health monitoring service was tested using an ABS

use case. The presented simulation scenario shows how the

performance of the ABS functionality is preserved under fault

occurrences due to the implemented health monitoring service.

ACKNOWLEDGMENT

This work has been supported in part by the European

FP7 project DREAMS under grant agreement 610640. Fur-

thermore, we would like to thank the dSpace Company for

their software support.

REFERENCES

[1] AUTOSAR Operating System, AUTOSAR Release 4.1, AUTOSAR, 2014.
[2] M. Urbina and R. Obermaisser, “Multi-Core Architecture for AUTOSAR

based on Virtual Electronic Control Units,” in Emerging Technologies
and Factory Automation ETFA 2015. IEEE Conference on.

[3] T. B. Berg, “Maintaining i/o data coherence in embedded multicore
systems,” IEEE Micro, vol. 29, no. 3, pp. 10–19, May 2009.

[4] A. R. Voellmy, J. Wang, P. Hudak, and K. Yamamoto, “Mio: A
high-performance multicore io manager for ghc,” SIGPLAN Not.,
vol. 48, no. 12, pp. 129–140, Sep. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2578854.2503790

[5] C. Jian, J. Guanjun, L. Jingwei, W. Chao, and C. Tianzhou, “Opti-
mistic peripheral devices performance by virtual regionalized network-
on-chip,” in Scalable Computing and Communications; Eighth In-
ternational Conference on Embedded Computing, 2009. SCALCOM-
EMBEDDEDCOM’09. International Conference on, Sept 2009, pp.
650–655.

[6] G. Kornaros, M. D. Grammatikakis, and M. Coppola, “Towards full
virtualization of heterogeneous noc-based multicore embedded architec-
tures,” in Computational Science and Engineering (CSE), 2012 IEEE
15th International Conference on, Dec 2012, pp. 345–352.

[7] J. E. Kim, M. K. Yoon, R. Bradford, and L. Sha, “Integrated modular
avionics (ima) partition scheduling with conflict-free i/o for multicore
avionics systems,” in Computer Software and Applications Conference
(COMPSAC), 2014 IEEE 38th Annual, July 2014, pp. 321–331.

[8] ARINC, Specification 651: Design Guide for Integrated Modular Avion-
ics, Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, Maryland
21401, 1991.

[9] H. Zhang, S. Wang et al., “Testing method of integrated modular
avionics health monitoring,” in CHEMICAL ENGINEERING TRANS-
ACTIONS CET, AIDIC publication, 2013.

[10] R. Obermaisser, C. E. Salloum, B. Huber, and H. Kopetz, “The time-
triggered system-on-a-chip architecture,” in IEEE Int. Symp. on Indus-
trial Electronics, 2008, talk: IEEE Int. Symp. on Industrial Electronics.

[11] AUTOSAR Software Component Template, AUTOSAR Release 4.1, AU-
TOSAR, 2014.

[12] K. Goossens, J. Dielissen, and A. Radulescu, “Aethereal network on
chip: concepts, architectures, and implementations,” vol. 22, no. 5, Sept
2005, pp. 414–421.

[13] AUTOSAR Specification of I/O Hardware Abstraction, AUTOSAR Re-
lease 4.1, AUTOSAR, 2014.

[14] AUTOSAR Architecture Overview, AUTOSAR Release 4.1, AUTOSAR
Consortium, 2014.

[15] M. Urbina, Z. Owda, and R. Obermaisser, “Simulation environment
based on systemc and veos for multi-core processors with virtual autosar
ecus,” in Computer and Information Technology; Ubiquitous Computing
and Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015
IEEE International Conference on.

[16] Z. Owda and R. Obermaisser, “Trace-based simulation framework
combining message-based and shared-memory interactions in a time-
triggered platform,” in IEEE First International Conference on Event-
Based Control, Communication, and Signal Processing, ser. EBCCSP
’15. Krakow: IEEE, June 2015.

[17] M. Urbina, H. Ahmadian, and R. Obermaisser, “Co-simulation frame-
work for autosar multi-core processors with message-based network-
on-chips,” in Industrial Informatics INDIN, 2016 IEEE International
Conference on.

[18] R. Obermaisser and P. Gutwenger, “Model-based development of mp-
socs with support for early validation,” in Proceedings of Industrial
Electronics, 2009. IECON ’09. 35th Annual Conference of IEEE, 2009,
pp. 2867 – 2873.

[19] “NOXIM : The NoC Simulator.” [Online]. Available: www.noxim.org
[20] M. Becker, U. Kiffmeier, and W. Mueller, “Heroes: Virtual platform

driven integration of heterogeneous software components for multi-core
real-time architectures,” in Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2013 IEEE 16th International
Symposium on, June 2013, pp. 1–8.

[21] K. Nakajima, T. Hieda, I. Taniguchi, H. Tomiyama, and H. Takada, “A
Fast Network-on-Chip Simulator with QEMU and SystemC,” in Net-
working and Computing (ICNC), 2012 Third International Conference
on, Dec 2012, pp. 298–301.

[22] P. Wehner and D. Gohringer, “Parallel and distributed simulation of
networked multi-core systems,” in System-on-Chip (SoC), 2014 Inter-
national Symposium on, Oct 2014, pp. 1–5.

[23] T. Blochwitz, M. Otter et al., “The Functional Mockup Interface for
Tool independent Exchange of Simulation Models,” in In Proceedings
of the 8th International Modelica Conference, 2011.

[24] AUTOSAR Specification of ECU state manager, AUTOSAR Release 4.1,
AUTOSAR, 2014.

[25] AUTOSAR Specification of Run Time Environment, AUTOSAR Release
4.1, AUTOSAR, 2014.

[26] “Fast Fourier Transform based on SystemC.” [Online]. Available:
https://github.com/systemc/systemc-2.2.0/tree/master/examples/sysc/fft

