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Abstract— Segmentation is an important step in many per-
ception tasks, such as object detection and recognition. We
present an approach to organized point cloud segmentation and
its application to plane segmentation, and euclidean clustering
for tabletop object detection. The proposed approach is efficient
and enables real-time plane segmentation for VGA resolution
RGB-D data. Timing results are provided for indoor datasets,
and applications to tabletop object segmentation and mapping
with planar landmarks are discussed.

I. INTRODUCTION

Segmentation is an important step in many perception
tasks, such as some approaches to object detection and
recognition. Segmentation of images has been widely studied
in the computer vision community, and point cloud segmen-
tation has also been of interest. Planar segmentation of point
cloud data has been of particular interest, as this can be
helpful for a variety of tasks. Detection of tabletop objects by
extracting contiguous clusters of points above planar surfaces
such as tables was proposed by Rusu et. al [9]. Segmented
planar surfaces have also been used as landmarks for feature-
based SLAM [12] and semantic mapping applications [13].

In this paper, we describe an efficient method for seg-
menting organized point cloud data. The image-like structure
of organized point clouds enables us to apply approaches
from computer vision, including graph-based or connected-
component segmentation approaches. However, in addition
to RGB data as would be available in an image, we also
make use of the 3D coordinates of each pixel / point, as
well as surface normal information.

The paper is structured as follows: Section II describes
selected related works from both image segmentation and
point cloud segmentation. Section III describes our approach
to segmentation, including a detailed description of our algo-
rithm and applications to several tasks. Section IV describes
and open source implementation of our approach, while
Section V includes a discussion as well as run time results.

II. RELATED WORK

Segmentation of images, range images, and point clouds
have all been widely studied in the literature. Several of the
most closely related works will be highlighted here.

Felzenszwalb and Huttenlocher [2] proposed a graph-
based approach to image segmentation that shares some
similarities with our approach. A graph structure is imposed
on the image, such as a 4-connected grid, and various
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Fig. 1. An example of a segmented tabletop scene. Planar surfaces are
outlined in color, with large red arrows indicating the segmented plane’s
normal. Euclidean clusters are indicated by colored points.

predicates are used to compute edge weights. Different graph
structures and predicates can be used to segment in different
ways. Our approach defines predicates in a similar way to
operate on our image and point cloud data, but uses a fixed
4-connected graph structure.

Several approaches to planar segmentation of point cloud
data have also been proposed. Many RANSAC-based ap-
proaches such as in [8] can be used to accurately segment
planar surfaces, but these approaches were designed for
unorganized point clouds as are produced by 3D laser scans,
and so are much slower than approaches that can exploit
organized data. Other approaches to unorganized point cloud
segmentation have been surveyed in [14]. Some RANSAC-
based approaches have been extended to exploit organized
structure, such as the approach of Biswas and Veloso [1],
which enables real-time performance.

Organized point cloud and range image segmentation has
also been investigated. Poppinga et. al [7] proposed a region-
growing based approach that selects a random point, and
grows a region around it to the nearest neighbors that are
nearby in plane space, incrementally updating the centroid
and covariance matrix as points are added. Holz et. al extend
this approach by pre-computing surface normals for the
cloud, and incrementally update the plane’s normal equation,
which further reduces the computational cost [4] [3].

In contrast to these methods, our approach does not utilize
seed points for region growing, but instead process each point
sequentially. Additionally, we do not incrementally compute



any statistics per region, instead delaying plane fitting until
the image has been fully segmented, so that processing need
only be performed for segments with a sufficient number of
inlying points.

Hulik et. al evaluate several approaches to depth im-
age segmentation, including a connected-component-like ap-
proach that operates on edge images [6]. This was reported
to be quite efficient, but less accurate than some alternative
methods such as RANSAC, for the datasets used in their
testing.

III. APPROACH

A. Connected Component Algorithm

We propose a connected component based approach to
segmentation which operates on organized point cloud data.
An organized point cloud is a point cloud that has an image-
like grid structure. We will denote an organized point cloud
as P (x, y), indicating the x and y coordinates of the point
in the image-like structure. As in an image, given a point
P (x, y), neighboring points such as P (x−1, y) and P (x, y−
1) are easily accessible in constant time thanks to the cloud’s
ordering. This organization is exploited by our segmentation
approach, enabling us to skip the costly neighborhood step
common to many segmentation approaches.

Different segmentation tasks may require different point
representations, which may include RGB data as would be
present in a color image, points in euclidean space as are
commonly used in point clouds, as well as information like
surface normals. Some types of information may not be avail-
able for each point in the organized structure. For example,
RGB-D sensors often return invalid depth measurements, so
no euclidean point is available. In these cases, a value such
as NaN is used to signify that there is invalid data while
maintaining the organized structure. For the purposes of
segmentation, if required information such as a depth value
or surface normal is not available for a point, the point will
not be added to any segment.

The algorithm works by partitioning an organized point
cloud P into a set of segments S. This is done by creating
an integer label L for each point in the point cloud. This
can be thought of as a label image. The label for a point at
P (x, y) will be denoted as L(x, y). Points that have missing
or invalid data can be excluded by using an invalid label
such as NaN or maxint. Points that are members of the
same segment will be assigned the same label. That is, if
P (x1, y1) ∈ Si and P (x2, y2) ∈ Si, then L(x1, y1) =
L(x2, y2). Points are compared using a comparison function
or predicate. The exact comparison function will vary for
different segmentation tasks, but it is of the form:

C(P (x1, y1), P (x2, y2)) =

{
true if similar

false otherwise

If C(P (x1, y1), P (x2, y2)) = true, then L(x2, y2) =
L(x1, y1), else L(x2, y2) 6= L(x1, y1). In the latter case,
a new label is created by incrementing the largest assigned

label by one. The exact comparison function C will vary
based on the segmentation task, and several such functions
will be described below.

The connected component labeling algorithm we use is
similar to the two-pass binary image labeling algorithm
described in [10], but has been modified to label point cloud
data with continuous values based on some predicate, as
in [2]. The algorithm begins by assigning the first point in
the cloud with valid data with label 0. The first row and
column of the cloud are then compared with the specified
comparator C, to assign labels. The remainder of the points
are treated by examining their neighboring points P (x−1, y)
and P (x, y− 1), as in a 4-connected grid. If both neighbors
(above and to the left) have different labels, these labels must
be merged with that of the current pixel, as these should be
part of the same segment. An example of such a situation
is shown in Figure 2, where a segment on the current row
and previous row must be merged. We use the union-find
algorithm to do this efficiently, as in [10]. Once the label
image has been created, a second pass is performed to merge
labels, assigning the lowest applicable label to the region,
and producing the final connected-component label image
L(x, y).

Fig. 2. An example where two labels must be merged, if the pixel
highlighted in blue matches both the neighbor above and to the left, shown in
green. Merging is performed in a second pass using the union-find algorithm.

Many tasks can benefit from the boundary points of a
segment. Given a segment, it is straightforward to compute
the boundary by tracing the outer contour. Such an approach
is also included in our implementation.

B. Planar Segmentation

Our planar segmentation approach segments the scene to
detect large connected components corresponding to planar
surfaces, including walls, the ground, tables, etc. We use
the hessian-normal form to represent planes, which uses the
well known equation ax + by + cz + d = 0. Our approach
to planar segmentation begins by computing such a planar
equation for each point in Euclidean space that has a valid
surface normal.

Surface normals can be computed for the cloud using a
variety of techniques. In this work, we use the integral image
normal estimation method of Holzer et. al [5], which can
compute normals in real-time for VGA RGB-D point clouds.
After computing unit-length normals {nx, ny, nz} for each
point, a point p can be represented as:



p = {x, y, z, nx, ny, nz}

Additionally, given such a Euclidean point with its normal,
we compute the perpendicular distance to this point with
normal (the d variable of the plane equation), giving us a
coordinate in plane space. This can be computed by the dot
product:

nd = {x, y, z} · {nx, ny, nz}

Augmenting our point representation with this information
yields a point with a full plane equation:

p = {x, y, z, nx, ny, nz, nd}

Given this point representation, we then define distance
metrics for both the normal direction and perpendicular
distance components between two points. The distance in the
range or d components of the plane equations is straight-
forward, as these are distances. The angular difference
distnormal between the normal directions is given by the
dot product.

distnormal(p1, p2) = p1n · p2n

distrange(p1, p2) = |p1nd
− p2nd

|

We can then proceed with the connected component
algorithm as described above, using a comparison function
designed for planar segmentation. We first detect surfaces
with smoothly changing surface normals, by requiring that
surface normals of neighboring points are similar, within a
threshold threshnormal. Note that to avoid computing an
inverse cosine for each point, we instead define the threshold
threshnormal as the cosine of the desired angular threshold
in radians.

C(p1, p2) =


true if((distnormal < threshnormal)

&& (distrange < threshrange))

false otherwise

Using this comparison function with the above algorithm
results in a set of labeled segments L(x, y) corresponding
to connected components in plane space. A visualization of
such a label image is shown in Figure 8. Note that at this
point, we have only examined local information, meaning
that our segments may be only locally planar. The approach
so far can be thought of as “smooth surface” segmentation
rather than planar segmentation.

Next, we attempt a least squares plane fit for each segment
with more than min inliers points, resulting in a plane
equation for each large segment. To ensure that the resulting
segments are actually planar, the curvature is also computed,
and a threshold max curvature is used to filter out seg-
ments that are smooth but not planar.

C. Planar Refinement Algorithm
One shortcoming of the above approach is that it requires

accurate surface normals, which are not always available. In
particular, points / pixels near object boundaries and image
boundaries tend to have noisy surface normals or no surface
normals, which leads to segmented planar regions that end
before the edge of the actual planar surface, as can be seen
in Figure 3.

Fig. 3. An example scene with noisy surface normals near object
boundaries.

This can be addressed by performing additional passes of
the connected component algorithm with a new comparator
that extends existing planar segments to include adjacent
points (in a 4-connected sense) that have a point-to-plane
distance under a given threshold to the adjacent segment’s
planar equation. Given a point with normal p = {x, y, z}
and a plane equation eqn = {nx, ny, nz, nd}, the point-to-to
plane distance is given by:

distptp(p, eqn) = | nx ∗ x+ ny ∗ y + nz ∗ z + nd |
The input to this comparison function requires the output

labels L of our previous plane segmentation approach, as
well as a set of labels refine labels = {l1, ..., ln} which
should be considered for refinement. Also required are the
plane equations eqns = {eqn1, ..., eqnn} corresponding to
each segment label to be refined. Our planar refinement
comparator works as follows:

C(p1, p2) =


false if (p1 6∈ refine labels

&& p2 6∈ refine labels)

|| distptp(p1, eqn(p2)) > threshptp

true otherwise

As this comparison only extends regions in one direction,
two additional passes are required for refinement: a pass to
extend planar regions “up and left”, and a pass to extend
“down and right”. This is illustrated in Figure 5. While these
additional passes do require computation, most points require
very little process



Fig. 4. Top: a scene segmented without using the planar refinement
approach described in Section III-C. Bottom: a similar scene segmented
with the planar refinement approach.

Fig. 5. Planar refinement requires two additional passes over the image,
one that extends regions “down and right”, and one that extends regions
“up and left”.

D. Euclidean Clustering

Similar to the algorithm described in [9], we take a greedy
approach to euclidean clustering. The comparison function
used is based on euclidean distance deuclidean, given by the
well known function.

To be useful for some tasks such as tabletop object
detection, this approach also needs to be able to take an
image mask. For computational reasons, we instead use a
label image L from a previous step, as well as a set of labels
exclude labels to be included in the mask. For the purpose
of tabletop object detection, we first segment planar surfaces,

and use the planar regions as our mask – the corresponding
labels are used as exclude labels. One could also construct
a binary mask by making a label image with one label set as
part of the mask. We can then define a comparison function
as:

C(P1, P2) =


false if (L(P1) ∈ exclude labels

|| L(P2) ∈ exclude labels

|| deuclidean(P1, P2) > dthresh)

true otherwise

E. Planar Segmentation with Color

The segmentation approaches described above have only
made use of depth information and surface normals. How-
ever, the approach can be extended to also consider color
information in addition to other features. To segment pla-
nar regions of similar color, a new comparison function
can be defined that is identical to the planar segmentation
comparison function, but additionally requires that points
have a distance in color space dcolor below some threshold
threshcolor. While perhaps not the best distance metric in
color space, we used euclidean distance in RGB space to
demonstrate this approach. An example scene is shown in
Figure 6.

Fig. 6. An example scene segmented for planes of similar color. The sheets
of paper on the desk are segmented as separate planar regions, as their color
does not match the desk.

IV. IMPLEMENTATION

The above described approach is available in the Point
Cloud Library (PCL) [8] as the Organized Connected Com-
ponent Segmentation module. This class performs the seg-
mentation algorithm described in Section III given some
comparison function, such as the one described in Section
III-B. To use a different comparison function, different com-
parator classes are used. A comparator contains a compare
function that takes two points as parameters, and returns
a boolean true if the points should be members of the
same segment, and false otherwise. The class may contain
additional information such as thresholds or a mask, as
used in the clustering approach described in Section III-D.
Detailed documentation for all classes is available on the
PCL web site (www.pointclouds.org).



To achieve efficient performance, we have parallelized this
approach. The planar segmentation approach requires surface
normals to have been computed for a given point cloud, so
this is performed for the most recent cloud received from
the sensor. In parallel with this, planes are segmented for
the previous frame, for which normals have already been
computed. A system diagram illustrating this processing
pipeline is shown in Figure 7.

Fig. 7. A system diagram demonstrating our planar segmentation pro-
cessing pipeline. The normal estimation and plane segmentation operations
occur in parallel, enabling real-time performance.

V. DISCUSSION & EVALUATION

Our segmentation approach has been applied to several
applications, including tabletop object segmentation mapping
with planar landmarks. We present quantitative runtime re-
sults for several datasets, as well as a qualitative discussion
of applications to tabletop object segmentation and SLAM.

A. Runtime Evaluation

The runtime of our approach was evaluated on Kinect
data available from the TUM RGB-D Dataset [11] at
http://vision.in.tum.de/data/datasets/
rgbd-dataset. We selected three datasets from this
repository with various kinds of scenes. The “freiburg1
desk” dataset contains close-range scenes of an office
desktop environment. The “freiburg1 floor” dataset contains
scenes of a floor in an indoor environment, so a large
plane is present in all frames. The “freiburg2 pioneer slam”
dataset includes scenes from a forward-looking RGB-D
camera mounted on a mobile robot moving through a
large room, as in a SLAM scenario. These datasets were
converted to PCD format, and replayed from files at a rate
of 30Hz. These experiments were performed on a 2.6 GHz
Intel Core i7 CPU. A multi-threaded evaluation tool using
the tools described in PCL implementation from Section IV
was designed for this application.

Table I presents runtimes for planar segmentation, as well
as the individual steps of normal estimation and planar seg-
mentation. Normal estimation and plane segmentation were
run in parallel, which is necessary for real-time performance.
However, these steps can also be run sequentially if only a

single core is available, at the expense of frame rate. The
frame callback timings are the average time elapsed since
the previous frame was fully processed.

Fig. 8. An example image from the desk1 dataset, with a colorized
representation of the label image superimposed on top. The displayed
label image was generated using the planar segmentation approach with
refinement.

B. Tabletop Object Segmentation Discussion

The approach described above has been used for tabletop
object segmentation from RGB-D camera. An example scene
is shown in Figure 1, and a video example is available
on YouTube at http://www.youtube.com/watch?
v=Izgy99WHFBs. Segmented planar surfaces are displayed
with colored boundary points, and large red arrows indicating
their normal direction. Segmented objects are shown as
colored point clouds.

As can be seen, well-separated objects above a planar
surface can be segmented in close-range scenes. Highly
cluttered scenes pose a challenge, as these tend to be under-
segmented. The key to this approach is that using the planar
surface as a mask enables the clustering to separate the
objects, rather than connecting them via the tabletop surface.
In our experience, using the planar refinement step produces
a much better mask, leading to a better segmentation.

C. Mapping Discussion

Our segmentation approach has also been used in the
context of a 3D mapping task, in which planar surfaces were
segmented from an RGB-D camera mounted on a mobile
robot moving through an indoor environment. Multiple ob-
servations of each surface were merged to create a map such
as the one shown in Figure 9. This is similar to the approach
using in our previous planar mapping work [12], which
was based on RANSAC segmented planes. Qualitatively, we
found the planes segmented by the proposed approach to be
preferable to the previously used RANSAC based approach.
RANSAC necessitated downsampling the data to achieve
reasonable performance, which degrades the quality of the
planar region boundaries. Additionally, with the RANSAC-
based approach, we computed either a convex hull or alpha

http://vision.in.tum.de/data/datasets/rgbd-dataset
http://vision.in.tum.de/data/datasets/rgbd-dataset
http://www.youtube.com/watch?v=Izgy99WHFBs
http://www.youtube.com/watch?v=Izgy99WHFBs


fr1 desk fr1 floor fr2 pioneer slam
Normal Estimation 21.56± 2.07ms 22.98± 1.93ms 21.97± 3.91ms
Plane Segmentation 26.13± 3.19ms 21.28± 3.09ms 23.17± 5.62ms

Frame Callback 33.51± 3.13ms 33.62± 2.71ms 33.98± 4.03ms
Callback Rate 29.83 Hz 29.73 Hz 29.42 Hz

TABLE I
AVERAGE RUNNING TIMES FOR NORMAL ESTIMATION AND PLANE SEGMENTATION WITHOUT PLANAR REFINEMENT.

fr1 desk fr1 floor fr2 pioneer slam
Normal Estimation 21.91± 2.36ms 23.99± 2.57ms 22.00± 3.86ms

Plane Segmentation+Refinement 32.55± 3.29ms 29.83± 3.38ms 29.53± 6.34ms
Frame Callback 35.79± 3.20ms 34.08± 3.23ms 35.74± 4.35ms
Callback Rate 27.93 Hz 29.34 Hz 27.97 Hz

TABLE II
AVERAGE RUNNING TIMES FOR NORMAL ESTIMATION AND PLANE SEGMENTATION WITH PLANAR REFINEMENT.

shape to represent the boundary, which does not always
accurately represent the true shape of the region. In contrast,
this approach produces the exact boundary points from
the image, producing a better representation of the planar
boundary.

Fig. 9. An example of an indoor mapping tasks using planar landmarks.
The colored points represent boundaries of planar surfaces segmented from
RGB-D data, and merged from multiple observations.
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