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ABSTRACT

The ability to handle large scale graph data is crucial to an increas-

ing number of applications. Much work has been dedicated to sup-

porting basic graph operations such as subgraph matching, reach-

ability, regular expression matching, etc. In many cases, graph in-

dices are employed to speed up query processing. Typically, most

indices require either super-linear indexing time or super-linear in-

dexing space. Unfortunately, for very large graphs, super-linear

approaches are almost always infeasible. In this paper, we study

the problem of subgraph matching on billion-node graphs. We

present a novel algorithm that supports efficient subgraph match-

ing for graphs deployed on a distributed memory store. Instead of

relying on super-linear indices, we use efficient graph exploration

and massive parallel computing for query processing. Our exper-

imental results demonstrate the feasibility of performing subgraph

matching on web-scale graph data.

1. INTRODUCTION
Graphs serve as important data structures in many applications,

including social network, web, and bioinformatics applications. An

increasing number of applications work with web-scale graphs. For

example, currently Facebook has 800 millions of vertices and the

average degree of each vertex is 130 [2]. In 2000, the web graph

already had 2.1 billion vertices and 15 billion edges [21]. Today,

major search engines are laying out new infrastructure to support

a web graph of 1 trillion vertices. In genome sequencing, recent

work [31] attempts to solve the genome assembly problem by con-

structing, simplifying, and traversing the de Brujin graph of the

read sequence. Each vertex in the de Brujin graph represents a k-

mer, and the entire graph can contain as many as 4k vertices where

k is at least 20.

Although a lot of efforts have been devoted to efficient graph

query processing, few existing methods are designed for very large

∗This work was done while the authors visited Microsoft Research
Asia.

graphs, for example, billion-node graphs. To understand the chal-

lenge, consider various kinds of indices that have been developed

to support graph query processing. Typically, indexing graphs is

more complex than indexing relational data. State-of-the-art ap-

proaches employ indices of super-linear space and/or super-linear

construction time. For example, the R-Join approach [9] for sub-

graph matching is based on the 2-hop index. The time complexity

of building such an index is O(n4), where n is the number of ver-

tices. It is obvious that in large graphs where the value of n is on

the scale of 1 billion (109), any super-linear approach will become

unrealistic, let alone an algorithm of complexity O(n4).

1.1 Subgraph Matching
In this paper, we focus on subgraph matching to highlight the

critical situation we mentioned above, namely, many existing ap-

proaches for graph query processing do not work for very large

graphs or billion-node graphs.

The subgraph matching problem is defined as follows: For a data

graph G and a query graph Q, retrieve all subgraphs of G that are

isomorphic to Q. Subgraph matching is one of the most funda-

mental operators in many applications that handle graphs, including

protein-protein interaction networks [15, 36], knowledge bases [19,

27], and program analysis [34, 33]. In the following, we categorize

representative graph matching approaches [26, 11, 13, 15, 9, 32,

36, 34] into 4 groups, and summarize their performance in Table 1.

1. No index. Some early methods perform graph-matching-like

tasks without using index. The corresponding algorithms [26,

11] have super-linear complexity, and they only work for

“toy” graphs, that is, graphs whose sizes (number of vertices)

are on the scale of 1K.

2. Edge index. To support SPARQL queries on RDF data,

RDF-3X [23], BitMat [5] and many other approaches cre-

ate index on distinct edges. A SPARQL query is disassem-

bled into a set of edges, and final answers are produced by

multi-way joins. The problems with this approach are i) the

excessive use of costly join operations, and ii) SPARQL can

only express a subset of subgraph queries.

3. Frequent subgraph index. To avoid excessive joins, an-

other approach is to find frequent subgraphs, or frequently

queried subgraphs, and index these frequent structures [28].

A recent work in this direction is SpiderMine [35]. The prob-

lems with these approaches are i) finding frequent subgraphs

is very costly, ii) a large number of frequent subgraphs lead

to large index size, and iii) queries that do not contain fre-

quent subgraphs are not very well supported.
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Algorithms Index Size Index Time Update Cost Size of graphs Index Size Index Time Query Time

in experiments for Facebook for Facebook on Facebook (s)

1 Ullmann [26], VF2 [11] - - - 4,484 - - >1000

2
RDF-3X [23] O(m) O(m) O(d) 33M 1T >20 days >48

BitMat [5] O(m) O(m) O(m) 361M 2.4T >20 days >269

3
Subdue [16] - Exponential O(m) 10K - > 67 years -

SpiderMine [35] - Exponential O(m) 40K - > 3 years -

4

R-Join [9] O(nm
1/2) O(n4) O(n) 1M >175T > 1015 years >200

Distance-Join [36] O(nm
1/2) O(n4) O(n) 387K >175T > 1015 years >4000

GraphQL [15] O(m + nd
r) O(m + nd

r) O(dr) 320K >13T(r=2) > 600 years >2000

Zhao [34] O(nd
r) O(nd

r) O(dL) 2M >12T(r=2) > 600 years >600

GADDI [32] O(nd
L) O(nd

L) O(dL) 10K > 2× 105T (L=4) > 4× 105 years >400

STwig
O(n) O(n) O(1) 1B 6G 33s <20

(our approach)

Table 1: Existing Subgraph Matching Methods (n and m are the number of nodes and edges in a graph, and d is the average degree

of a node).

4. Reachability/Neighborhood index. Recent work [9, 36, 34,

15, 32, 9, 36, 7] indexes information such as global or lo-

cal reachability in the graph. For example, R-Join [9] and

Distance-Join [36] use 2-hop labeling schemes for their in-

dex structures. For a graph with n vertices and m edges,

the optimal size of a 2-hop labeling scheme is O(nm1/2) [9]

and index time complexity is O(n4). For each vertex v,

GraphQL [15] indexes the subgraph within radius r of v. In

the same spirit, Zhao et. al. [34] encode the labels of ver-

tices within distance r of v into a signature, and then index

the signature. The space requirement of such approaches is

O(ndr), where d is the average degree of each vertex. To

support efficient filtering of the vertices based on the 2-hop

scheme, the value of r needs to be at least 2. The worst case

space requirement is O(n2) and the time complexity of index

construction is O(nm) [34]. Another approach, known as

GADDI [32], creates index for every two nodes within dis-

tance L and satisfying a proposed inequality property. The

value of the smallest L suggested by the author is 4.

In Table 1, we compare the above approaches in terms of space

and time complexity, the size of the data used in the original work,

and their performance on the Facebook graph (800 million nodes

and 100 billion edges1). First, we can see that except for RDF,

most graphs used in their experimental studies are small. RDF ap-

proaches can handle relatively larger data because SPARQL queries

have less expressive power than general subgraph matching, and

they rely on excessive use of joins, which reduces runtime perfor-

mance. Second, indexing has super-linear space and time com-

plexity. Third, index update is also very costly. For R-Join [9] and

Distance-Join [36], which are based on the 2-hop labeling scheme [7],

the index update time is O(n). For GraphQL [15] and Zhao et. al.’s

approach [34], updating a vertex will result in the rebuilding of the

signature index of all vertices with distance r to the vertex. Fi-

nally, for web-scale graphs (Facebook), none of these approaches

is feasible even if massive parallelism is employed.

We also show the performance of our approach (STwig) in Ta-

ble 1. In our approach, no graph structure index is needed, and the

only index we use is for mapping text labels to graph node IDs,

and the index has linear size and linear construction time. Even

for graphs as large as the Facebook, the index performance is su-

perior. In the experimental study, we will also show the query per-

formance. Typically, the response time of subgraph matching on

billion node graphs is less than a few seconds.

1Here we assume the data is hosted in one machine and the com-
putation is also carried out in one machine.

1.2 Challenges
It is important to understand the new challenges presented by

billion-node graphs. A billion-node graph usually cannot reside

in the memory of a single machine. This creates problems for effi-

cient data access on graphs, since one distinguishing characteristics

of graphs is that graph accesses have no locality: As we explore a

graph, we invoke random, instead of sequential data accesses, no

matter how the graph is stored. In other words, any non-trivial

graph query will have poor performance if the locality issue is not

properly addressed. For example, although relational models or

key/value stores can be used to manage graph data, they do not

provide efficient query support, because graph exploration (random

accesses) is achieved through (multi-way) joins, and to support the

joins, indices must be used. This becomes a performance bottle-

neck. Indeed, some considers a native graph database to be one

that allows the access of a vertex’s neighbors without the use of

any (disk-based) index [1].

Thus, in order to support efficient online query processing, we

provide techniques to address the locality issue and support effi-

cient graph exploration. Current solutions fall short of this require-

ment. Several distributed and parallel data processing systems,

including Pregel [22] and InfiniteGraph [3], have been proposed.

However, they are designed for offline graph analytics, instead of

online query processing. Other systems, including Neo4j [1] and

HyperGraphDB [17], are not for web-scale graphs and have only

primitive support for basic graph operations.

Moreover, locality is not the only issue for online query pro-

cessing on billion-node graphs. Existing graph algorithms, includ-

ing those listed in Table 1, assume that the graphs are stored in

memory, which means locality is not an issue. However, even if a

billion-node graph is memory resident, existing algorithms are still

insufficient for supporting basic graph operators such as subgraph

matching. The reason is that, as shown in Table 1, they rely on

indices with time and space complexity for billion-node graphs be-

yond our reach. In light of this, to support web-scale graphs, we

cannot assume we can rely on sophisticated, super-linear indices.

Only light-weight indices (linear or sublinear) that are easy to con-

struct or maintain are feasible.

Then, how do we support efficient graph query processing when

a web-scale graph cannot fit in the memory of a single machine,

and no graph indices, or only lightweight index, is available? To

our knowledge, this is a challenge that has not been addressed in

previous research. In this paper, we present a solution.

1.3 Our Contributions
We use efficient in-memory graph exploration, instead of expen-

sive joins, to support subgraph matching on large graphs deployed
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on a memory cloud that comprises a cluster of commodity ma-

chines. To our knowledge, this is the first system that can perform

online subgraph matching on billion-node graphs.

Unlike previous work that relies on sophisticated indices, we per-

form subgraph matching without using index (except a “string” in-

dex that maps text labels to vertex IDs). This ensures the scalability

of our algorithm for billion-node graphs, which are not indexable,

both in terms of index space and index time. To make up for the

performance loss due to lack of indexing support, we use intel-

ligent graph exploration to replace expensive join operations. In

our work, the basic graph exploration mechanism is provided by

the Trinity [24, 25] memory cloud. A large graph is divided into

multiple partitions and each partition is stored in the memory of

a commodity machine. Trinity provides a transparent interface so

that users can operate on the entire graph as if it were in a single

memory space.

Given a query, we split it into a set of subquery graphs that can

be efficiently processed via in-memory graph exploration. We per-

form join operations only if they are not avoidable (when there is

a cycle in the query graph). This dramatically reduces query pro-

cessing cost, which is usually dominated by joins. Furthermore, we

assure that our method produces no duplicate results in the cluster,

which means that deduplication is unnecessary when merging re-

sults returned from different machines.

In summary, the contributions of this paper are the following:

1. We propose a subgraph matching method suitable for web

scale graphs. In particular, our approach does not use graph

index, and thus we do not need to worry about index space

or index update cost.

2. We present query optimization strategies for query partition-

ing to avoid expensive join operations. In this paper, we as-

sume we have no information about data statistics, although

such statistics can be used directly to further improve the op-

timization strategy.

3. Our query processing mechanism consumes very little mem-

ory, which is important for computing in the memory cloud

environment.

1.4 Paper Outline
The remaining part of this paper is organized as follows. We

define the problem and describe the graph database system in Sec-

tion 2. Section 3 discusses the strategies for subgraph matching.

We present the overview of our method in Section 4. Section 5

proposes the query optimization for our method. We perform an

experimental study in Section 6. Related work are summarized in

Section 7. Section 8 draws the conclusions.

2. BACKGROUND
In this section, we discuss the background of the subgraph match-

ing problem, and we introduce the Trinity infrastructure used to

store very large graphs.

2.1 Subgraph Matching
We perform subgraph matching on a labeled graph. Let G=(V ,

E, T ) be a graph, where V is the set of vertices, E is the set of

edges, and T : V → Σ∗ is a labeling function that assigns a label to

each vertex in V . Intuitively, the goal of subgraph pattern matching

is to find all occurrences of a graph pattern in a large graph. More

formally, we define the subgraph query, and the subgraph matching

problem as follows.

a

d

b c

a

b

1 2

1

1
1 2

(a) Data graph G

d a

cb

(b) A query q

Figure 1: The Example for Subgraph Matching

DEFINITION 1 (SUBGRAPH QUERY). We denote a subgraph

query as q=(Vq , Eq , Tq), where Tq: V → Σ∗ represents the label

constraint for each vertex in Vq .

DEFINITION 2 (THE PROBLEM OF SUBGRAPH MATCHING).

For a graph G and a subgraph query q, the goal of subgraph match-

ing is to find every subgraph g = (Vg, Eg) in G such that there

exists a bijection f : Vq → Vg that satisfies ∀v ∈ Vq, Tq(v) =
TG(f(v)) and ∀e = (u, v) ∈ Eq, (f(u), f(v)) ∈ Eg , where

TG(f(v)) represents the label of the vertex f(v) in G.

We use an example to illustrate subgraph matching. The data

graph G is shown in Figure 1(a), where each vertex has one label.

In order to differentiate nodes with the same label, we append a

suffix to the node. Thus, ai denotes the i-th node with label a. A

subgraph query is shown in Figure 1(b). The results of the query

are (a1, b1, c1, d1) and (a2, b1, c1, d1).

2.2 The Trinity Memory Cloud
As mentioned earlier, graph accesses have no locality. No mat-

ter how the graph is stored, we are likely to invoke random instead

of sequential data accesses when we explore a graph. To ensure

efficient random accesses, we can store the graph in RAM. How-

ever, very large graphs, such as the Facebook network and the Web,

usually cannot fit in the RAM of a single machine.

We deploy graphs on Trinity [24]. Trinity is a memory cloud

that comprises the RAM of one, dozens, or hundreds of machines.

From users’ perspective, Trinity provides a unified address space,

as if a large graph is stored in the memory of one machine. Specif-

ically, users explore the graph through APIs provided by Trinity.

Issues related to storage, graph partitionings, and message passing

are transparent to the user.

Memory cloud is consists of two core components: memory stor-

age and network communication.

For storage, we use flat memory blob to store graph data instead

of storing runtime objects on heap. Each runtime object on heap

has non-neglectable meta data. In the extreme case, the meta data

of a runtime object may even be larger than the payload data itself

for small objects. The storage overhead of these meta data becomes

very significant when many small objects exist in the system. For

example, in one of our tests, 50 million 35-byte small objects takes

3.9 GB memory on CLR heap but only 1.6 GB in Trinity memory

trunk. Concurrency control mechanisms are also carefully designed

in Trinity. To boost system throughput, Trinity adopts a lock-free

memory allocation mechanism [24]. Concurrent operations on a

cell are coordinated using fine-grained cell spinning lock.

For network communication, Trinity adopts general network op-

timization principals such as message merging and batch transmis-

sion as well as techniques for minimizing message copy. On the

sending side, message buffer and transmission buffer are reused

when possible. On the receiving side, it is not easy to choose a

proper buffer size since message sizes vary greatly. Trinity uses

an extendable receiving buffer to minimize the overhead of buffer

expansion and buffer shrinking.
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Trinity provides very efficient support for graph exploration. In

one experiment, we deployed a synthetic, power-law graph in a 15-

machine cluster managed by Trinity. The graph has Facebook-like

size and distribution (800 million nodes, 100 billion edges, with

each node having on average 130 edges). We found that exploring

the entire 3-hop neighborhood of any node in the graph takes less

than 100 milliseconds on average. In other words, Trinity is able

to explore 130 + 1302 + 1303 ≈ 2.2 million edges via RAM and

network access in one tenth of a second. This lays the foundation

for subgraph matching without using any structure index.
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Figure 2: Architecture Sketch

The architecture of our subgraph matching system is sketched

in Figure 2. First, a user submits a query. Then, we generate a

query plan by decomposing the query. We send the query plan to

the query proxy of the Trinity cloud. The proxy delivers the query

plan to the Trinity slaves where the query plan is executed. The

proxy coordinates the exchange of intermediate results, and sends

back the results to the client after aggregating the results. Note that

our algorithms ensure that the results sent back by different Trinity

slaves are not overlapping, so the proxy does not need to perform

deduplication.

3. EXPLORATION VS. JOINS
In this section, we discuss the alternative approach of using graph

exploration, instead of substructure joins, to answer subgraph match-

ing queries. The most significant benefits of graph exploration are:

i) No structural index is needed; ii) Almost no join operation is re-

quired; and iii) We may reduce the size of intermediary results.

These benefits are attractive for query processing on web scale

graphs, where building and maintaining index is often an infeasible

practice.

However, graph exploration is far from a carefree approach. In

the following, we analyze the pros and cons of using join and graph

exploration to answer subgraph matching queries.

Using join operations for subgraph matching

The standard approach for subgraph matching usually proceeds as

follows [4]. For a query graph q, we first decompose it into a set of

smaller queries q1, · · · , qk. Then we send the decomposed queries

to the graph engine, which returns the results for each query. Fi-

nally, we join their results to answer the original query q. The

rationale is that the decomposed queries can be answered by the

graph engine directly. This is the case when the graph engine has

an index entry that corresponds to each decomposed query. For ex-

ample, assume we have indexed every unique edge in the graph.

We will decompose a query into multiple edges.

However, the approach can be quite costly for the following two

reasons: First, join operations are expensive. Second, a lot of inter-

mediary results may be produced in vain. For example, the query

in Figure 3(a) will be decomposed into two queries (a, b) and (b, c)
and processed individually. Assume we perform this query on the

graph in Figure 3(b). Using b as the key, edges (b1, c1) and (b1,

c2) are joined with (a1, b1) to produce the correct results, but edges

(b2, c2), (b3, c2), · · · , (bk, c2) are also generated and processed. It

is obvious that if the query contains more edges, the problem will

become more pronounced.

Using graph exploration for subgraph matching

Now consider an alternative approach: We answer the query by

graph exploration. Starting from query node a, we find a1 through

a simple index that maps labels to node IDs. We explore the graph

to reach b1, satisfying the partial query (a, b). Then, from b1 we

explore the graph to reach c1 and c2, satisfying the partial query

(b, c). At this point, we have obtained the results without generat-

ing and joining large intermediary results. Certainly, if we start our

exploration on nodes labeled b or c, we might still get some useless

intermediary results. But generally speaking, we will not generate

as many of them unless it is in the worst case, and most important

of all, join operations are avoided.

However, the graph exploration approach also has problems. First

of all, it is not necessarily less costly. If the graph is stored in a re-

lational database or a key/value store, then graph exploration itself

requires join operations. In this paper, we perform graph explo-

ration on the Trinity memory cloud to avoid this problem. Second,

in some cases, naive graph exploration may be even more expen-

sive than join operations. Consider the graph in Figure 3(c). Here,

every (ai, bj) and (bj , ck) are part of the answer. The benefit of

using join operations to answer this query is that with proper hash

and merge strategies, the substructures can be joined in batch. With

naive graph exploration, we need to traverse each path individually

to produce the same set of results. Third, not all queries can be

answered by graph exploration without using joins. To see this,

consider the query in Figure 3(d). Assume we explore from node

a to b, then c and d. At node d, we need to check if the next a we

see was the a we started with. This is equivalent to a join opera-

tion. Furthermore, there are cases where both the join approach and

the graph exploration approach perform badly. Consider perform-

ing query q2 on graph G3 in Figure 3(e). Here the only solution

is (a1, b1, c1, dm). However, the join operation will produce a lot

of useless intermediary results, and the graph exploration approach

will traverse many unfruitful paths.

Weighting the pros and cons

Although the naive graph exploration method has many issues, its

potential benefit – answering subgraph queries without using struc-

ture index – is attractive for query processing on web scale data. In

this paper, we develop a novel graph exploration method that max-

imize the benefits of both the join approach and the naive graph

exploration approach and avoid their disadvantages. Specifically,

our method uses the join approach as the skeleton for query plan,

and uses the exploration approach to avoid useless candidates dur-

ing the join.

4. FRAMEWORK OF OUR APPROACH
In this section, we propose the framework for subgraph matching

on billion-node graphs without using indexing the graph structure.

For a subgraph query, we decompose it into a set of basic query

units called STwigs. First, we show that STwig queries can be an-

swered very efficiently in the memory cloud. Then, we describe

791



a

b

c

(a) q1

a

b b

c c

b ... b

1

1 2 3 k

1 2

(b) G1

a a ... a

b b ... b

c c ... c

1

1

1

2

2

2

m

n

k

(c) G2

a

b c

d

(d) q2

db

b

c

d

d

......

b

a a
1 2

1
1

2

n
1

2

m

(e) G3

Figure 3: Examples for Discussions

the main steps of answering subgraph queries through STwig-based

graph exploration and joining. Finally, we show how these steps are

carried out in a distributed, parallel graph computing environment

based on the Trinity memory cloud.

4.1 Basic unit of graph access: STwig
With graphs stored in the memory cloud, and a string index map-

ping node labels to node IDs, the system provides the following

atomic graph operators:

• Cloud.Load(id): Locate the node whose ID is id. It also

returns the IDs of the neighbors of the node.

• Index.getID(label): Return the IDs of nodes with a

given label.

• Index.hasLabel(id, label): Return TRUE if the node

whose ID is id has a given label.

With the above basic operators, we implement a MatchSTwig()

function. Specifically, an STwig is a two level tree structure. We

use q=(r, L) to denote an STwig query, where r is the label of the

root node and L is the set of labels of its child nodes (which means

the tree has only two levels). For example, in Figure 4(b), we have

q1 = (a, {b, c}), where “a”, “b”, “c” are labels.

Given q, Algorithm 1 finds matching STwigs in the graph in three

steps: (1) Find the set of root nodes by calling Index.getID(r);

(2) For each root node, find its child nodes using Cloud.Load();

and (3) Find its child nodes that match the labels in L by calling

Index.hasLabel(). The function returns a set of STwigs that

match the query. As an example, if we query q1 against the data

graph in Figure 5, the results are:

G(q1) = { (a1, b1, c1), (a1, b4, c1), (a2, b1, c1), (a2, b1, c2),

(a2, b1, c3), (a2, b2, c1), (a2, b2, c2), (a2, b2, c3),

(a3, b2, c2), (a3, b2, c3)}

The above function can be implemented very efficiently in the

memory cloud. Now, given a subgraph query, if we decompose it

into a set of STwigs, and use MatchSTwig to find matches to each

STwig, then we can join their results to find the final solution. The

approach can be extremely costly because each STwig is a very

small structure, thus, each MatchSTwig may generate a large

number of results. This also leads to a large number of joins, and

Algorithm 1 MatchSTwig(q) where q = (r, L)

Sr ← Index.getID(r)

R ← ∅

for each n in Sr do

c ← Cloud.Load(n)

for each li in L do

Sli ← {m|m ∈ c.children and Index.hasLabel(m, l)}
R= R ∪ {{n} × Sl1 × Sl2 × · · · × Slk}

Return R

a
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c

d
e

f

(a) The Query

a
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Figure 4: A query and its 2 possible decompositions

very large amount of intermediary results. Traditional approaches

try to break the original query into larger query units, which means

we need to have structure index for these query units. As we men-

tioned, we cannot afford structure index for billion-node graphs.

On the other hand, since our graph is memory-based, graph explo-

ration is very fast. Thus, we implement a graph exploration based

solution by searching in the neighborhood of matched STwigs to

avoid the cost of joining many large set of results.

4.2 Subgraph Matching
Using STwig as the unit of query processing, our method per-

forms subgraph matching in three steps.

1. Query Decomposition and STwig Ordering

We decompose a query into a set of STwigs. We use an example

to illustrate query partition. To process the query in Figure 4(a),

we decompose it into the STwigs as shown in Figure 4(b). Another

possible decomposition is shown in Figure 4(c), which contains

only 3 STwigs. Clearly, different decompositions will incur differ-

ent query processing cost. We discuss the decomposition strategy

in Section 5.1.

Instead of finding matches for each STwig independently and

join their results, we use graph exploration to perform the query.

Thus, we create a linear order of the STwigs: q1, q2, · · · qk. The

exploration will be conducted in this order. Clearly, the ordering

has impact on the cost of query processing. We discuss the ordering

strategy in Section 5.2 and 5.3.

2. Exploration

We process an ordered list of STwigs one by one. Take the query in

Figure 4(a) against the data graph in Figure 5 as example. Assume

the query has been decomposed into the set of STwigs shown in

Figure 4(b), and assume q1 is the first STwig in the order produced

in the previous step.

We process q1 first, and we get result G(q1) in Eq 1. Next, we

extract binding information from G(q1). For presentation simplic-

ity, we assume nodes in the query graph are uniquely labeled. This

allows us to use a label to address a unique query node. Thus, we

do not need to involve node IDs in the following discussion.

792



a

b c

d
e

a

f

M

c
b

a
de

fb

M

c

M

f

M

d

e

b

e

f

c

1

1

1 1

1

1

1
2

2

2

2

2
2

2

3

3

3

3

3

3

4

4

4

3

4

4

Figure 5: A data graph partitioned over 4 machines:

M1, · · · , M4.

For node (labeled) a in q1, let Ha denote the binding infor-

mation for a, that is, the set of nodes that match a. We have

Ha = {a1, a2, a3}. Similarly, we have Hb = {b1, b2, b3, b4},

Hc = {c1, c2, c3}. The other nodes in query Figure 4(a) are not

bound. That is, Hd contains the set of all nodes in the data graph

that match d. The binding information is only used to tell which

nodes are eligible for the next queries. They cannot produce an-

swers on their own, that is, G(q1) 6= Ha × Hb × Hc.

Then, we process the next query in the predefined order. There

are two cases. In the first case, suppose the next query in the prede-

fined order is q2. The root of q2, which is labeled d, is not bound by

the previous query q1. So we need to invoke Index.getID(d) to

find all nodes labeled d. However, the child nodes of these nodes

are bound by Hb and Hc. Thus, only nodes in Hb and Hc are

eligible as their child nodes. Let G(q2) be the result of q2. We

update the binding information by incorporating the new bindings

introduced by q2.

In the second case, suppose the next query after q1 is q3. Here,

the root of q3 is already bound by Hb. Thus, instead of invok-

ing Index.getID(b), we use nodes in Hb as the root nodes, and

from there, we find their child nodes labeled e and f . Let G(q3)
be the result of q3. We update the binding information accordingly.

It is clear that the order of STwigs has impact on query efficiency.

In particular, for a STwig q, if its root is bound by previous STwigs

(the 2nd case above), fewer nodes need to be loaded. We will dis-

cuss STwig ordering in Section 5.2.

We process all STwigs in this manner until all of the nodes in

the query are bound. The process generates a sequence of re-

sults G(q1), G(q2), · · · , G(qk), which will be further processed

(joined) in step 3.

3. Join

The previous step produces G(q1), · · · , G(qk), a sequence of in-

termediary results, one for each STwig. In this step, we join these

results to produce the final answer. Clearly, each G(qi) is already

much smaller than MatchSTwig(qi), since a lot of filtering and

pruning is performed during exploration.

In this step, we perform two optimizations: join order selection

and pipeline join. One question is why not join G(q1), · · · , G(qk)
one by one as we produce them in the previous step, but instead,

we postpone the join to the next step. The answer is that if we

join the results in the predetermined order, it may generate unnec-

essarily large intermediate results. If the join is performed after all

results of STwigs are generated (In a distributed environment, each

machine also needs to fetch intermediary results produced by other

machines. See Section 4.3 for a detailed discussion.), we can se-

lect a join order that minimizes the intermediary results. We apply

sample-based join cost estimation method and cost-based join order

selection method [14] to select the join order on each computer.

Even after all of the above optimizations, for certain queries, the

size of intermediary results may still be quite big, which affects the

online response time. This poses a significant challenge because

our system is memory-based. To address this problem, we perform

“block-based” pipelined join so that partial results are produced be-

fore the entire multi-way join is completed. Specifically, we divide

the join into multiple rounds and in each round for each STwig,

only a subset of its results (a block) participates the join. We use

available memory to control the block size.

4.3 Distributed, Parallel Subgraph Matching
Our approach can be easily parallelized. The data graph is parti-

tioned across multiple machines. In our work, we do not rely on any

particular graph partitioning mechanism. In fact, our performance

results are obtained in the setting where the graph is randomly par-

titioned (each node in the data graph is assigned to a machine by

a hashing function). The string index in each machine only maps

node labels to IDs of local nodes.

To parallel subgraph matching, we need to parallelize the 3 steps

we outlined above. It is easy to handle the the first and second

steps.

1. Query Decomposition and STwig Ordering. We do not par-

allelize this step. The proxy server decomposes the query

graph and orders the STwigs, and then it broadcasts the re-

sults to all of the machines in the cluster.

2. Exploration. Each machine performs Algorithm 1 for STwig

matching in parallel. Note that Index.getID(r) as well

as Cloud.Load(r) only load data in the local machine.

However, when checking the label of a child node m by in-

voking Index.hasLabel(m,l), we may incur network

communication, because the child node may reside on a dif-

ferent machine. The memory cloud handles the memory and

network access for these functions.

The parallelization of the 3rd step (join) is not trivial, and it is

the focus of our discussion. After STwig matching, each machine

k produces Gk(q1), · · · , Gk(qn) for STwigs q1, · · · , qn. We can-

not just join them by themselves, instead, they need to join with re-

sults produced on other machines. Assume for STwig qi, machine

k obtains multiple results from other machines and union them to-

gether:

Rk(qi) =
⋃

k′∈Fk,i∪{k}

Gk′(qi)

where Fk,i is the set of remote machines that machine k need to

access for their matches of qi. We call Fk,i the load set. Then,

machine k performs join on the obtained partial results:

Rk = Rk(qi1) ⊲⊳ Rk(qi2) ⊲⊳ · · · ⊲⊳ Rk(qin)

where qi1 , · · · , qin is a reordering of q1, · · · , qn determined by

join order selection based on the statistics of the partial results. Fi-

nally, the results from different machines are unioned together to
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produce the answer to the subgraph matching query:
⋃

k∈cluster

Rk (1)

The question is, how do we decide load set Fk,i, that is, what other

machines should machine k access for their matches of STwig qi?

The choice of Fk,i has two criteria. First, it is preferable that Rk’s

are disjoint, that is, Rk∩R′
k = ∅ for k 6= k′ so that when we com-

pute the union we do not need to perform deduplication. Second, it

is preferable that each Fk,i is as small as possible, so that network

communication is reduced.

The first criterion (disjointness) is easy to satisfy. We can pick

a particular STwig (say qh), which we call the head STwig, and

set Fk,h = ∅ for every machine k. In Section 5.3, we show that

the choice of head STwig has impact on query performance, and

we will discuss in detail how to choose the most preferable head

STwig. Here, we focus on showing how to ensure disjointness in

answers. Since Fk,h = ∅, we have Rk(qh) = Gk(qh), that is, the

matching results on each machine for STwig qh, which are to be

joined with matching results of other STwigs, are the local results.

Since the data graph is disjointly partitioned among the machines in

the cluster, we know the local results are disjoint, that is, Gk(qh)∩
G′

k(qh) = ∅ for k 6= k′. This guarantees that Rk’s are disjoint,

since for two answers that come from two different machines, the

subgraphs in the answers that match qh are different (in this work,

homomorphic answers are considered as different answers).

The next question is, for STwig qi other than the head STwig,

what should load set Fk,i be? To answer this question, consider a

more specific question: Is there a simple way to find out that the

matches of qi in machine k will never join with matches of qi′ in

machine k′? Although the matches of a STwig may be all different,

their root nodes have the same label. If a constraint between the

root node of STwig qi and the root node of STwig qi′ in the query

is not satisfied, then we know for sure that their matches will not

join. This is demonstrated by the following example.

EXAMPLE 1. Consider the STwigs in Figure 4(c) and the data

graph in Figure 5. Will matches of STwig q′1 in M1 join with

matches of STwig q′3 in M3? The answer is no. This is because all

matches of STwig q′1 have a root node labeled b, and all matches

of STwig q′3 have a root node labeled f . In the query graph Fig-

ure 4(a), there is an edge between b and f . Thus, in order for their

matches in M1 and M3 to join, there must be some edges between

b nodes in M1 and f nodes in M3. However, no such edges exist.

Clearly, knowing the matches of qi in machine k will never join

with matches of qi′ in machine k′ will help us determine Fk,i. We

discuss in detail how load sets are decided in Section 5.3.

5. QUERY OPTIMIZATION
As mentioned in Section 4, we perform query optimization in

3 aspects: i) query decomposition, ii) order selection for STwig

matching, and iii) head STwig and load set selection.

5.1 Query Decomposition
It is clear that the number of STwigs determines the number of

join operations. When performing the join operation, each machine

needs to obtain intermediary results from other machines, which

means processing more STwigs will incur more communication

cost. On the other hand, loading an STwig with root node r by

Cloud.Load(r) has insignificant cost whether the STwig is big

or small. Hence, the objective function of query decomposition is

to minimize the number of components, that is, STwigs.
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Figure 6: STwig Order Selection

PROBLEM 1. Let G be a query graph. Let S={T1,· · · , Tn} be

a set of STwigs such that any edge of G belongs to one and only

one Ti ∈ S. We call S an STwig cover of G. The problem is to find

the minimum STwig cover of G.

The following Theorem shows the hardness of finding the mini-

mum STwig cover.

THEOREM 1. The minimum STwig cover problem is polyno-

mial equivalent to the minimum vertex cover problem.

PROOF. Let S be a minimum STwig cover of G. Let V be the

set of the root nodes of the STwigs. It is clear that |V | = |S| and

V is a vertex cover of G, that is, any edge of G is incident to at

least one node in V . Next, we show V is a minimum vertex cover.

Assume there exists another vertex cover V ′ such that |V ′| < |V |.
We construct an STwig cover S′ from V ′ as follows. For each

vertex v ∈ V ′, we form an STwig which consists of v and all edges

incident to v. Then, we randomly delete edges in the STwigs until

each edge belongs to one STwig. Let S′ be the set of STwigs that

have at least one edge. Clearly, |S′| 6 |V ′| < |V | = |S|, which

means S is not a minimum STwig cover.

It is well-known that the minimum vertex cover problem is NP-

hard. According to Theorem 1, the minimum STwig cover problem

is also NP-hard. In the proof of Theorem 1, we showed that we

can construct an STwig cover from a vertex cover in polynomial

steps. There exists an 2-approximate algorithm [12] for the vertex

cover problem. The algorithm works as follows. In each step, it

randomly chooses an edge (u, v), adds u and v in the result, and

remove all edges incident to u or v. It repeats the process until

all of the edges are removed. We can use the same mechanism to

create a 2-approximate STwig cover.

In our approach, we also need to find an optimal STwig process-

ing order (Section 5.2). We will revise the query decomposition

algorithm to ensure that the STwigs generated by the algorithm can

lead to a more favorable STwigs processing order.

5.2 STwig Order Selection
Recall that the order of STwig processing may have significant

impact on query efficiency (Section 4.2). Let q be be the subgraph

query as shown in Figure 6(a), and let Figure 6(b) be a possible

decomposition of q. Now, consider the following two execution

orders: 〈q1, q2, q3〉, and 〈q2, q1, q3〉. As we have made clear in our

previous discussion, 〈q1, q2, q3〉 is a better order than 〈q2, q1, q3〉,
because in the first order, when q2 and q3 are being processed, their

root nodes (c and b) are bound by the results of q1, while in the

second order, when q1 is being processed, its root node (d) is not

bound by the results of q2.

It seems that given a set of STwigs produced by the decomposi-

tion step, we can simply choose an order that ensures, as much as
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possible, the root node of an STwig is bound by the results of previ-

ously processed STwigs. This approach, however, will not always

lead to the optimal solution. Consider the two possible decompo-

sitions as shown in Figure 6(b) and 6(c). The two decompositions

are of the same size, which means they are equally good. How-

ever, no matter how we re-order the STwigs for query processing,

there always exist some STwigs whose root nodes are not bound

by previously processed STwigs. For example, in 〈q′1, q
′
2, q

′
3〉 or

〈q′1, q
′
3, q

′
2〉, node c of q′2 is not bound. Similarly, in 〈q′2, q

′
1, q

′
3〉

or 〈q′2, q
′
3, q

′
1〉, node b of q′1 is not bound. Thus, the re-ordering

mechanism cannot find an optimal order. But, such order exists,

for example, 〈q1, q2, q3〉, which comes out of the decomposition of

Figure 6(b).

Thus, in order to obtain a good STwig processing order, we

revise the algorithm of query decomposition to generate decom-

positions that are more likely to produce good processing orders.

Specifically, the revised 2-approximate algorithm ensures, except

for the first STwig, the root of each STwig is a leaf node of at least

one of the processed STwigs.

In the original approximate algorithm described in Section 5.1,

edges are selected randomly. We revise the algorithm by adding

two rules to guide edge selection.

1. Select edges that already connect to previously selected edges.

2. Select edges incident to nodes with high selectivity.

The first rule ensures that the root nodes of the STwigs are bound

by previous STwigs. The second rule favors generating STwigs of

higher selectivity in order to reduce the size of intermediary join

results. The selectivity of an STwig is determined by two factors:

i) the more popular its root node label, the lower selectivity the

STwig has; and ii) the more child nodes its root rode has, the higher

selectivity the STwig has. Hence, for each node v in the query

graph, we use f(v)=
deg(v)

freq(v.label)
(called the f -value of v) to rank

v, where freq(l) is the number of nodes in the data graph that has

label l.

Algorithm 2 STwig-Order-Selection(q)

1: S = ∅

2: T = ∅

3: while q has more edges do

4: if S = ∅ then

5: pick an edge (v, u) such that f(u) + f(v) is the largest

6: else

7: pick an edge (v, u) such that v ∈ S and f(u) + f(v) is

the largest

8: Tv ← the STwig rooted at v

9: add Tv to T

10: S ← S∪ neighbor(v)

11: remove edges in Tv from q

12: if deg(u) > 0 then

13: Tu ← the STwig rooted at u

14: append Tu to T

15: remove all edges in Tu from q

16: S ← S∪ neighbor(u)

17: remove u, v and all nodes with degree 0 from S

18: return T

Algorithm 2 outlines the method that combines query decompo-

sition and STwig order selection. We use an example to demon-

strate the algorithm. Let q be the query graph in Figure 6(a), and

assume each label matches 10 vertices in the data graph. In the first

step, the set S is empty, we choose an edge (d, c), as f(d) = 0.4
and f(c) = 0.3 are among the largest. Then, we generate STwig

T1={d, (b, c, e, f )} and STwig T2={c, (a, f )}. After that, we have

S={a,b, e}. Note that f is excluded from S because its degree is 0

after all edges in T1 and T2 are removed. Now, b has the largest f -

value (f(b) = 0.2) and its two neighbors have the same f -values.

We select edge (b, a), and generate STwig T3={b, (a,f )}. After T3

is removed, no edge is left and the algorithm halts.

Regarding the time complexity of the algorithm, we note that

computing f -values and sorting nodes by f -values have O(n log n)

cost, where n is the number of nodes in the query. In each round,

at least two nodes are removed from g, so the iteration needs O(n)

steps. Thus, the time complexity of Algorithm 2 is O(n2 log n).

Similar to the proof of the approximate ratio bound of VC prob-

lem [12], we prove the approximate ratio bound of Algorithm 2.

THEOREM 2. Algorithm 2 is a 2-approximate algorithm. That

is, the size of T is at most twice of the optimal solution to Problem 1.

PROOF. Let T
∗ be the optimal STwig cover. Let E be the edge

set selected by our algorithm. Since any two edges in E share no

vertices and the edges in one STwig must share one vertex, each

STwig contains at most one edge in E. It means that |E| 6 |T∗|.
Since in Algorithm 2, for each edge e in E, at most two STwigs

are generated with the roots as the two vertices of e, respectively.

It implies that |T| 6 2|E| 6 2|T∗|.

5.3 Head STwig and Load Set Selection
As we discussed in Section 4.3, head STwig and load set have big

impact on communication cost. As we can see from Example 1, the

communication cost is determined by how the data is distributed in

different machines. In this section, we first introduce the cluster

graph that models the data distribution, then we introduce how to

decide the load set and choose the head STwig.

The Cluster Graph

Given a query, we create a cluster graph to model the data distri-

bution among different machines in the cluster with regard to the

query.

Specifically, for a data graph G and a query q, we first introduce

Gq , which is the part of G that is relevant to q. The graph Gq

is created by removing edges in G that do not match any edge in

q. Clearly, the results of q on G and Gq are the same. We then

create a cluster graph C. Each vertex in C uniquely represents a

machine in the cluster. An edge i Ã j exists in C iff there exists

an edge u Ã v in Gq such that u and v reside in machine i and j

respectively. For example, let G be the graph in Figure 5, and let

q be the query in Figure 4(a). We show Gq in Figure 7(a) and the

cluster graph C in Figure 7(b).

One question is how costly it is to create a query-specific cluster

graph? There is no need to materialize Gq . In the preprocessing

phase, for each pairs of machines, we record all possible pairs of

node labels. That is, we associate a pair of labels (A, B) to a pair

of machines (i, j) if there exists an edge u Ã v such that u and

v reside in machine i and j respectively, and u and v are labeled

A and B respectively. For a given query q, the cluster graph is

constructed by looking up the stored label pairs for each edge in q

instead of accessing the data graph. The process can be carried out

efficiently.

We now introduce how to use the cluster graph for optimization.

Let DC(i, j) denote the shortest distance between two nodes i and

j in the cluster graph C, and let Dq(u, v) denote the shortest dis-

tance between u and v in Gq . We have the following theorem.
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Figure 7: An Example for the Cluster Graph

THEOREM 3. For any nodes u and v reside in machines i and

j respectively, we have DC(i, j) 6 Dq(u, v).

PROOF. First, we show that the inequality holds when Dq(u, v)=1.

There are two cases. In the first case, u and v reside in the same

machine i. Obviously, DC(i, i) = 0 < Dq(u, v). Otherwise, there

is an edge between machine i and j that match u Ã v. Since

Dq(u, v) = 1, we have DC(i, j) = 1. Next, we show that the

inequality holds when Dq(u, v) > 1. Consider the path between

u and v as a sequence of edges. For each edge (u′, v′), the in-

equality is true. We then aggregate all the inequalities to obtain the

inequality for the entire path.

Load Set

Assume query q is decomposed into a set of STwigs. For a ma-

chine k and an STwig qt in the decomposition, we would like to

find Fk,t, that is, the set of machines from which k needs to re-

quest results of qt. Assume qs is selected as the head STwig (the

method of head STwig selection is given later in the section), which

means each machine computes qs on its own without the need of

communicating with other machines, we have the following result.

THEOREM 4. Machine k only needs query results for STwig qt

from machines in the set Fk,t, which is given by:

Fk,t = {j|DC(k, j) 6 d(rs, rt)}

where d(rs, rt) denotes the shortest distance in q between rs and

rt (the root nodes of qs and qt).

PROOF. Let ri denote the root node of STwig qi. Assume two

subgraphs gs and gt match qs and qt, respectively, and in gs and

gt, ns and nt match rs and rt, respectively. If gs and gt belong to

a match for q, then there is a path between ns and nt matching the

shortest path between qs and qt in q. Since any path between ns and

nt is no shorter than Dq(ns, nt), we have Dq(ns, nt) 6 d(rs, rt).

If gs and gt are generated in machine k and j respectively, from

Theorem 3, we have DC(k, j) 6 Dq(ns, nt) 6 d(rs, rt). Thus

we have Fk,t={j|DC(k, j) 6 d(rs, rt)}.

As an example, consider the query shown in Figure 4(b) against

the graph in Figure 5. Assume q1 is selected as the head STwig.

In the query graph, the distance between a and b is 1. From The-

orem 4, we have FM1,q3={M2, M4}, which shows that the results

of q3 are unnecessary to be loaded from M3 to M1.

Head STwig Selection

We model head STwig selection as an optimization problem. The

goal is to minimize total communication among the machines.

THEOREM 5. Assume a query q is decomposed as q1, · · · , qn

and qs is selected as the head STwig. The communication cost is

T (s) =
∑

k∈C

|{j|DC(k, j) 6 d(s)}| (2)

where d(s) = max16i6n{d(rs, ri)}.

PROOF. Since a machine k can request the results of multi-

ple STwigs from a machine j by a single communication, the to-

tal number of communications for k is the maximal size of Fk,qi

(1 6 i 6 n). Thus the total communication times in the cluster C

is computed as:

T (s) =
∑

k∈C

max
16i6n

{|Fk,qi |}

=
∑

k∈C

max
16i6n

{|{j|DC(k, j) 6 d(rs, rt)}|}

For any machine k, the larger d(rs, rt), the larger |{j|DC(k, j) 6

d(rs, rt)}|. Thus the maximal d(rs, rt) implies the maximal |{j|
DC(k, j) 6 d(rs, rt)}|. Therefore,

T (s) =
∑

k∈C

|{j|DC(k, j) 6 max
16i6n

{d(rs, ri)}}|

Thus, we should choose qs where s = argmin
x

T (x) as the head

STwig. From Eq 2, to minimize T (s), we should minimize d(s).

To solve this problem, we compute d(i) for each qi and select the

qs with minimal d(s). We first compute the shortest path between

each pair of vertices in a query q using the Floyd Algorithm [12].

The result is a matrix M where each entry Mu,v is the length of the

shortest path between u and v in q. For each pair of STwigs qi and

qj , d(ri, rj) is Mri,rj . Then for each qi, we compute d(i), which

is the maximal value of Mri,rj , that is, d(i) ← max
16j6n

Mri,rj .

Finally, we choose the STwig with the minimal d(s) as the head

STwig qs.

The time complexity of all-pair shortest paths computation is

O(m3). The time complexity of the following choosing steps are

O(m2), O(m2) and O(m), respectively. Thus the time complexity

of the head STwig selection algorithm is O(m3) where m is the

number of vertices in the subgraph pattern q.

6. EXPERIMENTAL EVALUATION
To verify the performance of STwig approach, we performed ex-

periments on both real data sets and synthetic data sets.

6.1 Experiment Environment
We perform experiments on two clusters: cluster 1 consists of 8

machines. Each one has 32 GB DDR3 RAM and two 2.53 GHz

Intel Xeon E5540 CPU, each has 4 cores and 8 threads. The net-

work adapter is Broadcom BCM5709C NetXtreme II GigE. Cluster

2 consists of 12 machines. Each machine has 48 GB DDR3 RAM

and two 2.67 GHz Intel Xeon E5650 CPU, each has 6 cores and

12 threads. Dual network adapters are installed on cluster 2, one

is 1 Gbps HP NC382i DP Multifunction Gigabit Server Adapter

and the other is 40 Gbps Mellanox IPoIB Adapter. All experiments

are implemented using C# and compiled using .NET Framework 4.

The operating system is Windows Server 2008 R2 Enterprise with

service pack 1.
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We generate two kinds of queries for each graph. One query

set is generated using DFS traversal from a randomly chosen node.

The first N nodes are kept as the query pattern. The other query set

is generated by randomly adding E edges among N given nodes.

A spanning tree is generated on the generated query to guarantee

it is a connected graph. The nodes of a query are labelled from a

given label collection once it is generated. The default values of N

and E are 10 and 20 respectively.

For each data graph, we generate 100 queries and record its av-

erage execution time. When using the pipeline join strategy, the

program terminates after 1024 matches have been found.

6.2 Experiments on Real Data
Cluster 1 is used for the experiments on real data. We performed

several experiments on the following two data sets:

• US Patents2 This directed graph represents the reference re-

lations between US patents. This graph contains 3,774,768

nodes and 16,522,438 edges. We use the property class as

the label collection. The graph has totally 418 labels.

• WordNet3 This graph represents the relations between En-

glish words. Parts of speech are used as node labels. This

graph has 82,670 nodes, 133,445 edges and 5 labels.

DFS Queries. Node counts of the queries vary from 3 to 10. The

Experimental results are shown in Figure 8(a). On both data sets,

the query time increases significantly from node count 7. While

the execution times of queries with 10 nodes are similar to or even

lower than those of queries with 9 nodes. The reasons are as fol-

lows: On one hand, more STwigs and joins will be processed when

the number of query nodes gets larger. That’s why the query time

increases as query size gets larger. On the other hand, the labels

of real data are relatively dense, such that the intermediate results

to be joined are close to the combination of the nodes matching

the labels when query size is small. For larger query, more STwig

queries and join operations may be performed, however the inter-

mediate results often get smaller under our exploration strategy,

thus the overall processing cost is reduced.

Random Queries. To study the relationship between query size

and execution time, we performed a set of experiments with differ-

ent query sizes. The experimental results are shown in Figure 8(b),

where the node count N varies from 5 to 15, and the corresponding

edge count is 2N . The experimental results show that the query

time is almost linear with the number of query nodes. It is because

most randomly generated queries have relatively small result sizes.

Hence, except for the first few STwigs, the costs of processing most

STwigs are close. The join of intermediate results starts from small

candidate sets with our join order selection strategy, thus the costs

of most join operations are close. Larger the query, more join op-

erations. Hence, the query time is nearly linear with the query size.

We have performed a set of experiments with edge count E

varies from 10 to 20 to study the impact of edge density as shown

in Figure 8(c). According to the experimental results, the number

of edges has no significant impact on the query time. Under our

partition strategy, the average number of STwigs does not increase

with the edge number. Thus the average numbers of STwig and

2http://vlado.fmf.uni-lj.si/pub/networks/
data/patents/Patents.htm
3http://vlado.fmf.uni-lj.si/pub/networks/
data/dic/Wordnet/Wordnet.zip

Table 2: The Time of Graph Loading
Node number (M) 1 4 16 64 256 1024 4096

Load Time (s) 2 4 9 36 66 266 689

join operation are very close. As discussed above, for randomly

generated queries, the query time is nearly linear with the number

of STwigs and joins. Therefore, the edge number in a query has

small impact on the query time.

Speed­up. The relation between query time and machine num-

ber are shown in Figure 9(a) and Figure 9(b). The same query is

performed with machine number varies from 1 to 8. Three obser-

vations can be obtained from the experimental results. 1) As ex-

pected, the query time is significantly reduced as machine number

increases. 2) The query time decreases sub-linearly with the ma-

chine number. The reason is that more network traffic and synchro-

nization cost will be incurred with more machines. 3) The speedup

ratio for DFS queries is greater than that for random queries. Each

machine has relatively light work load when processing random

queries due to smaller query result sizes, thus the speedup for ran-

dom queries is not as significant as that for DFS queries.
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Figure 9: Speed-up on Real Data

6.3 Experiments on Synthetic data
To verify the scalability of our approach, our algorithm is further

evaluated on a set of synthetic graphs generated using R-MAT [8]

model. The following experiments are performed on cluster 2.

The default values of node count, average degree and average edge

count are 64M , 64 and 0.0001 respectively.

Graph Size. A set of experiments are performed to verify the

scalability with regard to graph size. From the Table 2, even when

the graph size scales to 1B, it can be loaded in our system within a

few hundreds of seconds.

By the experimental results shown in Figure 10(a), graph size has

no significant impact on the response time when average node de-

gree is fixed (this degree is 16 in this experiment). Query response

time varies between 400ms and 1800ms as graph node count varies

from 1 million to 4 billion. No clear proportional relationship be-

tween response time and graph size is observed in this experiment.

This indicates that the query time is not sensitive to total node

count, thus this approach scales well as graph grows large. The

reason is that the query time mainly depends on STwig number and

STwig size, not the total number of the graph nodes. Experimental

results shown in Figure 10(b) confirms this conclusion. In this ex-

periment, node count varies with a fixed graph density. In this case,

larger node count leads to larger average node degree. And larger
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Figure 10: Experimental Results on Synthetic Data

node degree means larger STwig number and STwig size, thus the

query time increases as the node count grows in this case.

Graph Density. The query response times under different graph

densities are shown in Figure 10(c). We get two observations from

the experimental results: 1) Greater the graph density, more neigh-

bor nodes are accessed during STwig processing. No surprise, the

query time increases as graph density grows large. However, the

query time increases sub-linearly with graph density. 2) As graph

gets dense, more intermediate results will be generated for ran-

domly generated queries. Hence, graph density has greater impact

on random queries than that on DFS queries as shown by the curve.

Label Density. Label density determines the number of the nodes

that match the roots of STwigs. Higher label ratio, fewer matched

nodes for a given label. Thus as expected, the query time decreases

as label ratio varies from 10−5 to 10−1 as shown in Figure 10(d).

6.4 Summary
We summarize experimental results as follows.

1. Subgraph matching on billion node graphs can be completed

within one or two seconds.

2. Our approach scales sub-linearly with graph size and graph

density, thus it can scale to very large graphs.

3. Our approach can easily scale out. Larger graphs can be ef-

ficiently handled by adding more Trinity slaves.

7. RELATED WORK
Graph matching has been widely studied. We survey related

work in two areas: graph pattern matching algorithms, and parallel

and distributed graph processing techniques.

Subgraph pattern matching on graph data can be classified into

queries on a large set of small graphs [28] and queries on a sin-

gle large graph. The scalability issue in the first problem is mainly

related to graph isomorphism, as the size of the graph set can be

simply addressed by parallelism. The second problem is more chal-

lenging as far as the size of the graph is concerned. We study the

second problem in this paper. Hence, this brief survey focuses on

the queries on single large graph.

An important class of subgraph matching methods, called search-

pruning methods [26, 11, 15, 30, 29], perform subgraph matching

by searching the graph with some pruning strategies. For exam-

ple, Ullmann [26] and Cordella et al [11] proposed global pruning

strategy to accelerate query processing. However, the global prun-

ing strategy requires the global information for the graph and not

suitable for parallel processing for large graphs. Even though local

pruning strategies are used in [15] to reduce the search space, the

repetitive traversals of the graph cannot be avoided and cannot be

applied to parallel processing.

Many approaches use index to accelerate subgraph pattern match-

ing [9, 36, 32, 34, 18]. Cheng et al [9] and Zou et al [36] used 2-hop

label scheme as index. GADDI [32] records the distance of each

pair in the graph. The sizes of such indices are in more than square

to the vertex number and the maintain cost is large. The indices

in [33] and [34] use a signature representing neighborhoods within

a given distance for each vertex. With a structural index costly to

build and maintain, they cannot scale to web-scale data. Addition-

ally, these index structures do not support parallelization.

It is natural to manage large graphs using parallel and distributed

computation. Many parallel and distributed algorithms for graph

problems, such as connected component, minimal spanning tree,

all pairs shortest paths, etc. have been developed previously [20,

10, 6]. However, the study is mostly from an algorithmic perspec-

tive for parallel computing rather than from a big data perspective.

They usually assume the graph can reside in the shared memory.
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For example, traversal-based methods [10, 6] solve problems by

parallelized graph traversal. On the other hand, matrix-partition-

based methods [20] represent a graph as an adjacent matrix and

parallelize the graph algorithms after partitioning the matrix onto

multiple processors. Such kinds of methods require that the tasks

can easily processed on the adjacent matrix, and they more suitable

for dense graphs. Since subgraph matching is difficult to process

on the adjacent matrix and most real-world large graphs are sparse,

such methods cannot be applied for subgraph matching easily.

8. CONCLUSIONS
Subgraph matching on billion-node graphs is a challenge. One

issue in previous approaches is that they all require index structures

of super-linear size or super-linear construction time. This is infea-

sible for billion-node graphs. Our approach combines the benefits

of subgraph join and graph exploration to support subgraph match-

ing without using structure indices. For efficient query processing,

we introduce several query optimization techniques, and a paral-

lel version of our method. To deal with large intermediary results,

we employ pipe-line join processing strategies. Experimental re-

sults demonstrate that our method can scale to billion-node graphs.

We will do further experiments on even larger graphs (e.g. trillion

scale graphs) to verify the system speedup, query throughput and

response time bounds on massive data set. As another future work,

some extra experiments will be also performed to test the amount

of transmitted data on larger clusters.
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