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Praise for Effective C++, Third Edition

“Scott Meyers’ book, Effective C++, Third Edition, is distilled programming experience — 
experience that you would otherwise have to learn the hard way. This book is a great 
resource that I recommend to everybody who writes C++ professionally.”

— Peter Dulimov, ME, Engineer, Ranges and Assessing Unit, NAVSYSCOM, 
Australia

“The third edition is still the best book on how to put all of the pieces of C++ together 
in an efficient, cohesive manner. If you claim to be a C++ programmer, you must read 
this book.”

— Eric Nagler, Consultant, Instructor, and author of Learning C++

“The first edition of this book ranks among the small (very small) number of books 
that I credit with significantly elevating my skills as a ‘professional’ software devel-
oper. Like the others, it was practical and easy to read, but loaded with important 
advice. Effective C++, Third Edition, continues that tradition. C++ is a very powerful 
programming language. If C gives you enough rope to hang yourself, C++ is a hard-
ware store with lots of helpful people ready to tie knots for you. Mastering the points 
discussed in this book will definitely increase your ability to effectively use C++ and 
reduce your stress level.”

— Jack W. Reeves, Chief Executive Officer, Bleading Edge Software Technologies

“Every new developer joining my team has one assignment — to read this book.”
— Michael Lanzetta, Senior Software Engineer

“I read the first edition of Effective C++ about nine years ago, and it immediately 
became my favorite book on C++. In my opinion, Effective C++, Third Edition, remains 
a mustread today for anyone who wishes to program effectively in C++. We would live 
in a better world if C++ programmers had to read this book before writing their first 
line of professional C++ code.”

— Danny Rabbani, Software Development Engineer

“I encountered the first edition of Scott Meyers’ Effective C++ as a struggling program-
mer in the trenches, trying to get better at what I was doing. What a lifesaver! I found 
Meyers’ advice was practical, useful, and effective, fulfilling the promise of the title 
100 percent. The third edition brings the practical realities of using C++ in serious 
development projects right up to date, adding chapters on the language’s very latest 
issues and features. I was delighted to still find myself learning something interesting 
and new from the latest edition of a book I already thought I knew well.”

— Michael Topic, Technical Program Manager

“From Scott Meyers, the guru of C++, this is the definitive guide for anyone who 
wants to use C++ safely and effectively, or is transitioning from any other OO lan-
guage to C++. This book has valuable information presented in a clear, concise, 
entertaining, and insightful manner.”

— Siddhartha Karan Singh, Software Developer



“This should be the second book on C++ that any developer should read, after a gen-
eral introductory text. It goes beyond the how and what of C++ to address the why 
and wherefore. It helped me go from knowing the syntax to understanding the philos-
ophy of C++ programming.”

— Timothy Knox, Software Developer

“This is a fantastic update of a classic C++ text. Meyers covers a lot of new ground in this 
volume, and every serious C++ programmer should have a copy of this new edition.”

— Jeffrey Somers, Game Programmer

“Effective C++, Third Edition, covers the things you should be doing when writing code 
and does a terrific job of explaining why those things are important. Think of it as 
best practices for writing C++.”

— Jeff Scherpelz, Software Development Engineer

“As C++ embraces change, Scott Meyers’ Effective C++, Third Edition, soars to remain 
in perfect lock-step with the language. There are many fine introductory books on 
C++, but exactly one second book stands head and shoulders above the rest, and 
you’re holding it. With Scott guiding the way, prepare to do some soaring of your own!”

— Leor Zolman, C++ Trainer and Pundit, BD Software

“This book is a must-have for both C++ veterans and newbies. After you have finished 
reading it, it will not collect dust on your bookshelf — you will refer to it all the time.”

— Sam Lee, Software Developer

“Reading this book transforms ordinary C++ programmers into expert C++ program-
mers, step-by-step, using 55 easy-to-read items, each describing one technique or tip.”

— Jeffrey D. Oldham, Ph.D., Software Engineer, Google

“Scott Meyers’ Effective C++ books have long been required reading for new and expe-
rienced C++ programmers alike. This new edition, incorporating almost a decade’s 
worth of C++ language development, is his most content-packed book yet. He does 
not merely describe the problems inherent in the language, but instead he provides 
unambiguous and easy-to-follow advice on how to avoid the pitfalls and write ‘effec-
tive C++.’ I expect every C++ programmer to have read it.”

— Philipp K. Janert, Ph.D., Software Development Manager

“Each previous edition of Effective C++ has been the must-have book for developers 
who have used C++ for a few months or a few years, long enough to stumble into 
the traps latent in this rich language. In this third edition, Scott Meyers extensively 
refreshes his sound advice for the modern world of new language and library features 
and the programming styles that have evolved to use them. Scott’s engaging writing 
style makes it easy to assimilate his guidelines on your way to becoming an effective 
C++ developer.”

— David Smallberg, Instructor, DevelopMentor; Lecturer, Computer Science, UCLA

“Effective C++ has been completely updated for twenty-first-century C++ practice and 
can continue to claim to be the first second book for all C++ practitioners.” 

— Matthew Wilson, Ph.D., author of Imperfect C++
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I wrote the original edition of Effective C++ in 1991. When the time
came for a second edition in 1997, I updated the material in important
ways, but, because I didn’t want to confuse readers familiar with the
first edition, I did my best to retain the existing structure: 48 of the
original 50 Item titles remained essentially unchanged. If the book
were a house, the second edition was the equivalent of freshening
things up by replacing carpets, paint, and light fixtures. 

For the third edition, I tore the place down to the studs. (There were
times I wished I’d gone all the way to the foundation.) The world of
C++ has undergone enormous change since 1991, and the goal of this
book — to identify the most important C++ programming guidelines in
a small, readable package — was no longer served by the Items I’d es-
tablished nearly 15 years earlier. In 1991, it was reasonable to as-
sume that C++ programmers came from a C background. Now,
programmers moving to C++ are just as likely to come from Java or
C#. In 1991, inheritance and object-oriented programming were new
to most programmers. Now they’re well-established concepts, and ex-
ceptions, templates, and generic programming are the areas where
people need more guidance. In 1991, nobody had heard of design pat-
terns. Now it’s hard to discuss software systems without referring to
them. In 1991, work had just begun on a formal standard for C++.
Now that standard is eight years old, and work has begun on the next
version.

To address these changes, I wiped the slate as clean as I could and
asked myself, “What are the most important pieces of advice for prac-
ticing C++ programmers in 2005?” The result is the set of Items in this
new edition. The book has new chapters on resource management
and on programming with templates. In fact, template concerns are
woven throughout the text, because they affect almost everything in
C++. The book also includes new material on programming in the
presence of exceptions, on applying design patterns, and on using the

Preface
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new TR1 library facilities. (TR1 is described in Item 54.) It acknowl-
edges that techniques and approaches that work well in single-
threaded systems may not be appropriate in multithreaded systems.
Well over half the material in the book is new. However, most of the
fundamental information in the second edition continues to be impor-
tant, so I found a way to retain it in one form or another. (You’ll find a
mapping between the second and third edition Items in Appendix B.)

I’ve worked hard to make this book as good as I can, but I have no il-
lusions that it’s perfect. If you feel that some of the Items in this book
are inappropriate as general advice; that there is a better way to ac-
complish a task examined in the book; or that one or more of the tech-
nical discussions is unclear, incomplete, or misleading, please tell me.
If you find an error of any kind — technical, grammatical, typographi-
cal, whatever — please tell me that, too. I’ll gladly add to the acknowl-
edgments in later printings the name of the first person to bring each
problem to my attention. 

Even with the number of Items expanded to 55, the set of guidelines
in this book is far from exhaustive. But coming up with good rules —
ones that apply to almost all applications almost all the time — is
harder than it might seem. If you have suggestions for additional
guidelines, I would be delighted to hear about them.

I maintain a list of changes to this book since its first printing, includ-
ing bug fixes, clarifications, and technical updates. The list is avail-
able at the Effective C++ Errata web page, http://aristeia.com/BookErrata/
ec++3e-errata.html. If you’d like to be notified when I update the list, I
encourage you to join my mailing list. I use it to make announcements
likely to interest people who follow my professional work. For details,
consult http://aristeia.com/MailingList/.

SCOTT DOUGLAS MEYERS STAFFORD, OREGON
http://aristeia.com/ APRIL 2005

http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/BookErrata/ec++3e-errata.html
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Effective C++ has existed for fifteen years, and I started learning C++
about three years before I wrote the book. The “Effective C++ project”
has thus been under development for nearly two decades. During that
time, I have benefited from the insights, suggestions, corrections, and,
occasionally, dumbfounded stares of hundreds (thousands?) of peo-
ple. Each has helped improve Effective C++. I am grateful to them all. 

I’ve given up trying to keep track of where I learned what, but one gen-
eral source of information has helped me as long as I can remember:
the Usenet C++ newsgroups, especially comp.lang.c++.moderated and
comp.std.c++. Many of the Items in this book — perhaps most — have
benefited from the vetting of technical ideas at which the participants
in these newsgroups excel.

Regarding new material in the third edition, Steve Dewhurst worked
with me to come up with an initial set of candidate Items. In Item 11,
the idea of implementing operator= via copy-and-swap came from Herb
Sutter’s writings on the topic, e.g., Item 13 of his Exceptional C++ (Ad-
dison-Wesley, 2000). RAII (see Item 13) is from Bjarne Stroustrup’s
The C++ Programming Language (Addison-Wesley, 2000). The idea be-
hind Item 17 came from the “Best Practices” section of the Boost
shared_ptr web page, http://boost.org/libs/smart_ptr/shared_ptr.htm#Best-
Practices and was refined by Item 21 of Herb Sutter’s More Exceptional
C++ (Addison-Wesley, 2002). Item 29 was strongly influenced by Herb
Sutter’s extensive writings on the topic, e.g., Items 8-19 of Exceptional
C++, Items 17–23 of More Exceptional C++, and Items 11–13 of Excep-
tional C++ Style (Addison-Wesley, 2005); David Abrahams helped me
better understand the three exception safety guarantees. The NVI id-
iom in Item 35 is from Herb Sutter’s column, “Virtuality,” in the Sep-
tember 2001 C/C++ Users Journal. In that same Item, the Template
Method and Strategy design patterns are from Design Patterns (Addi-
son-Wesley, 1995) by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. The idea of using the NVI idiom in Item 37 came
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from Hendrik Schober. David Smallberg contributed the motivation
for writing a custom set implementation in Item 38. Item 39’s observa-
tion that the EBO generally isn’t available under multiple inheritance
is from David Vandevoorde’s and Nicolai M. Josuttis’ C++ Templates
(Addison-Wesley, 2003). In Item 42, my initial understanding about
typename came from Greg Comeau’s C++ and C FAQ (http://
www.comeaucomputing.com/techtalk/#typename), and Leor Zolman
helped me realize that my understanding was incorrect. (My fault, not
Greg’s.) The essence of Item 46 is from Dan Saks’ talk, “Making New
Friends.” The idea at the end of Item 52 that if you declare one version
of operator new, you should declare them all, is from Item 22 of Herb
Sutter’s Exceptional C++ Style. My understanding of the Boost review
process (summarized in Item 55) was refined by David Abrahams. 

Everything above corresponds to who or where I learned about some-
thing, not necessarily to who or where the thing was invented or first
published.

My notes tell me that I also used information from Steve Clamage, An-
toine Trux, Timothy Knox, and Mike Kaelbling, though, regrettably,
the notes fail to tell me how or where.

Drafts of the first edition were reviewed by Tom Cargill, Glenn Carroll,
Tony Davis, Brian Kernighan, Jak Kirman, Doug Lea, Moises Lejter,
Eugene Santos, Jr., John Shewchuk, John Stasko, Bjarne Stroustrup,
Barbara Tilly, and Nancy L. Urbano. I received suggestions for
improvements that I was able to incorporate in later printings from
Nancy L. Urbano, Chris Treichel, David Corbin, Paul Gibson, Steve
Vinoski, Tom Cargill, Neil Rhodes, David Bern, Russ Williams, Robert
Brazile, Doug Morgan, Uwe Steinmüller, Mark Somer, Doug Moore,
David Smallberg, Seth Meltzer, Oleg Shteynbuk, David Papurt, Tony
Hansen, Peter McCluskey, Stefan Kuhlins, David Braunegg, Paul
Chisholm, Adam Zell, Clovis Tondo, Mike Kaelbling, Natraj Kini, Lars
Nyman, Greg Lutz, Tim Johnson, John Lakos, Roger Scott, Scott
Frohman, Alan Rooks, Robert Poor, Eric Nagler, Antoine Trux, Cade
Roux, Chandrika Gokul, Randy Mangoba, and Glenn Teitelbaum.

Drafts of the second edition were reviewed by Derek Bosch, Tim
Johnson, Brian Kernighan, Junichi Kimura, Scott Lewandowski, Laura
Michaels, David Smallberg, Clovis Tondo, Chris Van Wyk, and Oleg
Zabluda. Later printings benefited from comments from Daniel
Steinberg, Arunprasad Marathe, Doug Stapp, Robert Hall, Cheryl
Ferguson, Gary Bartlett, Michael Tamm, Kendall Beaman, Eric Nagler,
Max Hailperin, Joe Gottman, Richard Weeks, Valentin Bonnard, Jun
He, Tim King, Don Maier, Ted Hill, Mark Harrison, Michael Rubenstein,
Mark Rodgers, David Goh, Brenton Cooper, Andy Thomas-Cramer,
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Learning the fundamentals of a programming language is one thing;
learning how to design and implement effective programs in that lan-
guage is something else entirely. This is especially true of C++, a lan-
guage boasting an uncommon range of power and expressiveness.
Properly used, C++ can be a joy to work with. An enormous variety of
designs can be directly expressed and efficiently implemented. A judi-
ciously chosen and carefully crafted set of classes, functions, and
templates can make application programming easy, intuitive, efficient,
and nearly error-free. It isn’t unduly difficult to write effective C++
programs, if you know how to do it. Used without discipline, however,
C++ can lead to code that is incomprehensible, unmaintainable, inex-
tensible, inefficient, and just plain wrong.

The purpose of this book is to show you how to use C++ effectively. I
assume you already know C++ as a language and that you have some
experience in its use. What I provide here is a guide to using the lan-
guage so that your software is comprehensible, maintainable, porta-
ble, extensible, efficient, and likely to behave as you expect.

The advice I proffer falls into two broad categories: general design
strategies, and the nuts and bolts of specific language features. The
design discussions concentrate on how to choose between different
approaches to accomplishing something in C++. How do you choose
between inheritance and templates? Between public and private in-
heritance? Between private inheritance and composition? Between
member and non-member functions? Between pass-by-value and
pass-by-reference? It’s important to make these decisions correctly at
the outset, because a poor choice may not become apparent until
much later in the development process, at which point rectifying it is
often difficult, time-consuming, and expensive.

Even when you know exactly what you want to do, getting things just
right can be tricky. What’s the proper return type for assignment op-
erators? When should a destructor be virtual? How should operator
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new behave when it can’t find enough memory? It’s crucial to sweat
details like these, because failure to do so almost always leads to un-
expected, possibly mystifying program behavior. This book will help
you avoid that.

This is not a comprehensive reference for C++. Rather, it’s a collection
of 55 specific suggestions (I call them Items) for how you can improve
your programs and designs. Each Item stands more or less on its own,
but most also contain references to other Items. One way to read the
book, then, is to start with an Item of interest, then follow its refer-
ences to see where they lead you. 

The book isn’t an introduction to C++, either. In Chapter 2, for exam-
ple, I’m eager to tell you all about the proper implementations of con-
structors, destructors, and assignment operators, but I assume you
already know or can go elsewhere to find out what these functions do
and how they are declared. A number of C++ books contain informa-
tion such as that.

The purpose of this book is to highlight those aspects of C++ program-
ming that are often overlooked. Other books describe the different
parts of the language. This book tells you how to combine those parts
so you end up with effective programs. Other books tell you how to get
your programs to compile. This book tells you how to avoid problems
that compilers won’t tell you about.

At the same time, this book limits itself to standard C++. Only fea-
tures in the official language standard have been used here. Portabil-
ity is a key concern in this book, so if you’re looking for platform-
dependent hacks and kludges, this is not the place to find them.

Another thing you won’t find in this book is the C++ Gospel, the One
True Path to perfect C++ software. Each of the Items in this book pro-
vides guidance on how to develop better designs, how to avoid com-
mon problems, or how to achieve greater efficiency, but none of the
Items is universally applicable. Software design and implementation is
a complex task, one colored by the constraints of the hardware, the
operating system, and the application, so the best I can do is provide
guidelines for creating better programs. 

If you follow all the guidelines all the time, you are unlikely to fall into
the most common traps surrounding C++, but guidelines, by their na-
ture, have exceptions. That’s why each Item has an explanation. The
explanations are the most important part of the book. Only by under-
standing the rationale behind an Item can you determine whether it
applies to the software you are developing and to the unique con-
straints under which you toil. 
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The best use of this book is to gain insight into how C++ behaves, why
it behaves that way, and how to use its behavior to your advantage.
Blind application of the Items in this book is clearly inappropriate, but
at the same time, you probably shouldn’t violate any of the guidelines
without a good reason.

Terminology

There is a small C++ vocabulary that every programmer should under-
stand. The following terms are important enough that it is worth mak-
ing sure we agree on what they mean.

A declaration tells compilers about the name and type of something,
but it omits certain details. These are declarations:

extern int x; // object declaration

std::size_t numDigits(int number); // function declaration

class Widget; // class declaration

template<typename T> // template declaration
class GraphNode; // (see Item 42 for info on

// the use of “typename”)

Note that I refer to the integer x as an “object,” even though it’s of
built-in type. Some people reserve the name “object” for variables of
user-defined type, but I’m not one of them. Also note that the function
numDigits’ return type is std::size_t, i.e., the type size_t in namespace
std. That namespace is where virtually everything in C++’s standard li-
brary is located. However, because C’s standard library (the one from
C89, to be precise) can also be used in C++, symbols inherited from C
(such as size_t) may exist at global scope, inside std, or both, depend-
ing on which headers have been #included. In this book, I assume that
C++ headers have been #included, and that’s why I refer to std::size_t
instead of just size_t. When referring to components of the standard li-
brary in prose, I typically omit references to std, relying on you to rec-
ognize that things like size_t, vector, and cout are in std. In example
code, I always include std, because real code won’t compile without it. 

size_t, by the way, is just a typedef for some unsigned type that C++
uses when counting things (e.g., the number of characters in a char*-
based string, the number of elements in an STL container, etc.). It’s
also the type taken by the operator[] functions in vector, deque, and
string, a convention we’ll follow when defining our own operator[] func-
tions in Item 3.

Each function’s declaration reveals its signature, i.e., its parameter
and return types. A function’s signature is the same as its type. In the
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case of numDigits, the signature is std::size_t (int), i.e., “function taking
an int and returning a std::size_t.” The official C++ definition of “signa-
ture” excludes the function’s return type, but in this book, it’s more
useful to have the return type be considered part of the signature.

A definition provides compilers with the details a declaration omits.
For an object, the definition is where compilers set aside memory for
the object. For a function or a function template, the definition pro-
vides the code body. For a class or a class template, the definition lists
the members of the class or template:

int x; // object definition

std::size_t numDigits(int number) // function definition.
{ // (This function returns

std::size_t digitsSoFar = 1; // the number of digits
// in its parameter.)

while ((number /= 10) != 0) ++digitsSoFar;

return digitsSoFar;
}

class Widget { // class definition
public:

Widget();
~Widget();
...

};

template<typename T> // template definition
class GraphNode {
public:

GraphNode();
~GraphNode();
...

};

Initialization is the process of giving an object its first value. For ob-
jects generated from structs and classes, initialization is performed by
constructors. A default constructor is one that can be called without
any arguments. Such a constructor either has no parameters or has a
default value for every parameter:

class A {
public:

A(); // default constructor
};

class B {
public:

explicit B(int x = 0, bool b = true); // default constructor; see below
}; // for info on “explicit”
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class C {
public:

explicit C(int x); // not a default constructor
};

The constructors for classes B and C are declared explicit here. That
prevents them from being used to perform implicit type conversions,
though they may still be used for explicit type conversions:

void doSomething(B bObject); // a function taking an object of
// type B

B bObj1; // an object of type B

doSomething(bObj1); // fine, passes a B to doSomething

B bObj2(28); // fine, creates a B from the int 28
// (the bool defaults to true)

doSomething(28); // error! doSomething takes a B,
// not an int, and there is no 
// implicit conversion from int to B

doSomething(B(28)); // fine, uses the B constructor to
// explicitly convert (i.e., cast) the
// int to a B for this call. (See 
// Item 27 for info on casting.)

Constructors declared explicit are usually preferable to non-explicit
ones, because they prevent compilers from performing unexpected
(often unintended) type conversions. Unless I have a good reason for
allowing a constructor to be used for implicit type conversions, I
declare it explicit. I encourage you to follow the same policy.

Please note how I’ve highlighted the cast in the example above.
Throughout this book, I use such highlighting to call your attention to
material that is particularly noteworthy. (I also highlight chapter
numbers, but that’s just because I think it looks nice.)

The copy constructor is used to initialize an object with a different
object of the same type, and the copy assignment operator is used
to copy the value from one object to another of the same type:

class Widget {
public:

Widget(); // default constructor
Widget(const Widget& rhs); // copy constructor
Widget& operator=(const Widget& rhs); // copy assignment operator
...

};

Widget w1; // invoke default constructor

Widget w2(w1); // invoke copy constructor

w1 = w2; // invoke copy
// assignment operator
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Read carefully when you see what appears to be an assignment, be-
cause the “=” syntax can also be used to call the copy constructor:

Widget w3 = w2; // invoke copy constructor! 

Fortunately, copy construction is easy to distinguish from copy as-
signment. If a new object is being defined (such as w3 in the statement
above), a constructor has to be called; it can’t be an assignment. If no
new object is being defined (such as in the “w1 = w2” statement above),
no constructor can be involved, so it’s an assignment.

The copy constructor is a particularly important function, because it
defines how an object is passed by value. For example, consider this:

bool hasAcceptableQuality(Widget w);

...

Widget aWidget;

if (hasAcceptableQuality(aWidget)) ...

The parameter w is passed to hasAcceptableQuality by value, so in the
call above, aWidget is copied into w. The copying is done by Widget’s
copy constructor. Pass-by-value means “call the copy constructor.”
(However, it’s generally a bad idea to pass user-defined types by value.
Pass-by-reference-to-const is typically a better choice. For details, see
Item 20.)

The STL is the Standard Template Library, the part of C++’s standard
library devoted to containers (e.g., vector, list, set, map, etc.), iterators
(e.g., vector<int>::iterator, set<string>::iterator, etc.), algorithms (e.g.,
for_each, find, sort, etc.), and related functionality. Much of that related
functionality has to do with function objects: objects that act like
functions. Such objects come from classes that overload operator(), the
function call operator. If you’re unfamiliar with the STL, you’ll want to
have a decent reference available as you read this book, because the
STL is too useful for me not to take advantage of it. Once you’ve used
it a little, you’ll feel the same way.

Programmers coming to C++ from languages like Java or C# may be
surprised at the notion of undefined behavior. For a variety of rea-
sons, the behavior of some constructs in C++ is literally not defined:
you can’t reliably predict what will happen at runtime. Here are two
examples of code with undefined behavior:

int *p = 0; // p is a null pointer

std::cout << *p; // dereferencing a null pointer
// yields undefined behavior
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char name[] = "Darla"; // name is an array of size 6 (don’t
// forget the trailing null!)

char c = name[10]; // referring to an invalid array index
// yields undefined behavior

To emphasize that the results of undefined behavior are not predict-
able and may be very unpleasant, experienced C++ programmers of-
ten say that programs with undefined behavior can erase your hard
drive. It’s true: a program with undefined behavior could erase your
hard drive. But it’s not probable. More likely is that the program will
behave erratically, sometimes running normally, other times crash-
ing, still other times producing incorrect results. Effective C++ pro-
grammers do their best to steer clear of undefined behavior. In this
book, I point out a number of places where you need to be on the look-
out for it. 

Another term that may confuse programmers coming to C++ from an-
other language is interface. Java and the .NET languages offer Inter-
faces as a language element, but there is no such thing in C++,
though Item 31 discusses how to approximate them. When I use the
term “interface,” I’m generally talking about a function’s signature,
about the accessible elements of a class (e.g., a class’s “public inter-
face,” “protected interface,” or “private interface”), or about the ex-
pressions that must be valid for a template’s type parameter (see
Item 41). That is, I’m talking about interfaces as a fairly general de-
sign idea.

A client is someone or something that uses the code (typically the in-
terfaces) you write. A function’s clients, for example, are its users: the
parts of the code that call the function (or take its address) as well as
the humans who write and maintain such code. The clients of a class
or a template are the parts of the software that use the class or tem-
plate, as well as the programmers who write and maintain that code.
When discussing clients, I typically focus on programmers, because
programmers can be confused, misled, or annoyed by bad interfaces.
The code they write can’t be.

You may not be used to thinking about clients, but I’ll spend a good
deal of time trying to convince you to make their lives as easy as you
can. After all, you are a client of the software other people develop.
Wouldn’t you want those people to make things easy for you? Besides,
at some point you’ll almost certainly find yourself in the position of be-
ing your own client (i.e., using code you wrote), and at that point,
you’ll be glad you kept client concerns in mind when developing your
interfaces.
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In this book, I often gloss over the distinction between functions and
function templates and between classes and class templates. That’s
because what’s true about one is often true about the other. In situa-
tions where this is not the case, I distinguish among classes, func-
tions, and the templates that give rise to classes and functions. 

When referring to constructors and destructors in code comments, I
sometimes use the abbreviations ctor and dtor.

Naming Conventions

I have tried to select meaningful names for objects, classes, functions,
templates, etc., but the meanings behind some of my names may not
be immediately apparent. Two of my favorite parameter names, for
example, are lhs and rhs. They stand for “left-hand side” and “right-
hand side,” respectively. I often use them as parameter names for
functions implementing binary operators, e.g., operator== and opera-
tor*. For example, if a and b are objects representing rational numbers,
and if Rational objects can be multiplied via a non-member operator*
function (as Item 24 explains is likely to be the case), the expression

a * b

is equivalent to the function call 

operator*(a, b)

In Item 24, I declare operator* like this:

const Rational operator*(const Rational& lhs, const Rational& rhs);

As you can see, the left-hand operand, a, is known as lhs inside the
function, and the right-hand operand, b, is known as rhs.

For member functions, the left-hand argument is represented by the
this pointer, so sometimes I use the parameter name rhs by itself. You
may have noticed this in the declarations for some Widget member
functions on page 5. Which reminds me. I often use the Widget class
in examples. “Widget” doesn’t mean anything. It’s just a name I some-
times use when I need an example class name. It has nothing to do
with widgets in GUI toolkits.

I often name pointers following the rule that a pointer to an object of
type T is called pt, “pointer to T.” Here are some examples:

Widget *pw; // pw = ptr to Widget

class Airplane;
Airplane *pa; // pa = ptr to Airplane
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class GameCharacter;
GameCharacter *pgc; // pgc = ptr to GameCharacter

I use a similar convention for references: rw might be a reference to a
Widget and ra a reference to an Airplane.

I occasionally use the name mf when I’m talking about member func-
tions.

Threading Considerations

As a language, C++ has no notion of threads — no notion of concur-
rency of any kind, in fact. Ditto for C++’s standard library. As far as
C++ is concerned, multithreaded programs don’t exist. 

And yet they do. My focus in this book is on standard, portable C++,
but I can’t ignore the fact that thread safety is an issue many pro-
grammers confront. My approach to dealing with this chasm between
standard C++ and reality is to point out places where the C++ con-
structs I examine are likely to cause problems in a threaded environ-
ment. That doesn’t make this a book on multithreaded programming
with C++. Far from it. Rather, it makes it a book on C++ programming
that, while largely limiting itself to single-threaded considerations, ac-
knowledges the existence of multithreading and tries to point out
places where thread-aware programmers need to take particular care
in evaluating the advice I offer. 

If you’re unfamiliar with multithreading or have no need to worry
about it, you can ignore my threading-related remarks. If you are pro-
gramming a threaded application or library, however, remember that
my comments are little more than a starting point for the issues you’ll
need to address when using C++.

TR1 and Boost

You’ll find references to TR1 and Boost throughout this book. Each
has an Item that describes it in some detail (Item 54 for TR1, Item 55
for Boost), but, unfortunately, these Items are at the end of the book.
(They’re there because it works better that way. Really. I tried them in
a number of other places.) If you like, you can turn to those Items and
read them now, but if you’d prefer to start the book at the beginning
instead of the end, the following executive summary will tide you over:

■ TR1 (“Technical Report 1”) is a specification for new functionality
being added to C++’s standard library. This functionality takes the
form of new class and function templates for things like hash ta-
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bles, reference-counting smart pointers, regular expressions, and
more. All TR1 components are in the namespace tr1 that’s nested
inside the namespace std. 

■ Boost is an organization and a web site (http://boost.org) offering
portable, peer-reviewed, open source C++ libraries. Most TR1
functionality is based on work done at Boost, and until compiler
vendors include TR1 in their C++ library distributions, the Boost
web site is likely to remain the first stop for developers looking for
TR1 implementations. Boost offers more than is available in TR1,
however, so it’s worth knowing about in any case.

http://boost.org
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because destructors that emit exceptions are dangerous, always run-
ning the risk of premature program termination or undefined behav-
ior. In this example, telling clients to call close themselves doesn’t
impose a burden on them; it gives them an opportunity to deal with
errors they would otherwise have no chance to react to. If they don’t
find that opportunity useful (perhaps because they believe that no
error will really occur), they can ignore it, relying on DBConn’s destruc-
tor to call close for them. If an error occurs at that point — if close does
throw — they’re in no position to complain if DBConn swallows the
exception or terminates the program. After all, they had first crack at
dealing with the problem, and they chose not to use it.

Things to Remember

✦ Destructors should never emit exceptions. If functions called in a
destructor may throw, the destructor should catch any exceptions,
then swallow them or terminate the program.

✦ If class clients need to be able to react to exceptions thrown during
an operation, the class should provide a regular (i.e., non-destruc-
tor) function that performs the operation.

Item 9: Never call virtual functions during 
construction or destruction.

I’ll begin with the recap: you shouldn’t call virtual functions during
construction or destruction, because the calls won’t do what you
think, and if they did, you’d still be unhappy. If you’re a recovering
Java or C# programmer, pay close attention to this Item, because this
is a place where those languages zig, while C++ zags. 

Suppose you’ve got a class hierarchy for modeling stock transactions,
e.g., buy orders, sell orders, etc. It’s important that such transactions
be auditable, so each time a transaction object is created, an appro-
priate entry needs to be created in an audit log. This seems like a rea-
sonable way to approach the problem:

class Transaction { // base class for all
public: // transactions

Transaction();

virtual void logTransaction() const = 0; // make type-dependent
// log entry

...

};
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Transaction::Transaction() // implementation of
{ // base class ctor

...
logTransaction(); // as final action, log this

} // transaction

class BuyTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

class SellTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

Consider what happens when this code is executed:

BuyTransaction b;

Clearly a BuyTransaction constructor will be called, but first, a Transac-
tion constructor must be called; base class parts of derived class
objects are constructed before derived class parts are. The last line of
the Transaction constructor calls the virtual function logTransaction, but
this is where the surprise comes in. The version of logTransaction that’s
called is the one in Transaction, not the one in BuyTransaction — even
though the type of object being created is BuyTransaction. During base
class construction, virtual functions never go down into derived
classes. Instead, the object behaves as if it were of the base type.
Informally speaking, during base class construction, virtual functions
aren’t. 

There’s a good reason for this seemingly counterintuitive behavior.
Because base class constructors execute before derived class con-
structors, derived class data members have not been initialized when
base class constructors run. If virtual functions called during base
class construction went down to derived classes, the derived class
functions would almost certainly refer to local data members, but
those data members would not yet have been initialized. That would
be a non-stop ticket to undefined behavior and late-night debugging
sessions. Calling down to parts of an object that have not yet been ini-
tialized is inherently dangerous, so C++ gives you no way to do it. 

It’s actually more fundamental than that. During base class construc-
tion of a derived class object, the type of the object is that of the base



50 Item 9 Chapter 2
class. Not only do virtual functions resolve to the base class, but the
parts of the language using runtime type information (e.g.,
dynamic_cast (see Item 27) and typeid) treat the object as a base class
type. In our example, while the Transaction constructor is running to
initialize the base class part of a BuyTransaction object, the object is of
type Transaction. That’s how every part of C++ will treat it, and the
treatment makes sense: the BuyTransaction-specific parts of the object
haven’t been initialized yet, so it’s safest to treat them as if they didn’t
exist. An object doesn’t become a derived class object until execution
of a derived class constructor begins. 

The same reasoning applies during destruction. Once a derived class
destructor has run, the object’s derived class data members assume
undefined values, so C++ treats them as if they no longer exist. Upon
entry to the base class destructor, the object becomes a base class
object, and all parts of C++ — virtual functions, dynamic_casts, etc., —
treat it that way.

In the example code above, the Transaction constructor made a direct
call to a virtual function, a clear and easy-to-see violation of this
Item’s guidance. The violation is so easy to see, some compilers issue
a warning about it. (Others don’t. See Item 53 for a discussion of
warnings.) Even without such a warning, the problem would almost
certainly become apparent before runtime, because the logTransaction
function is pure virtual in Transaction. Unless it had been defined
(unlikely, but possible — see Item 34), the program wouldn’t link: the
linker would be unable to find the necessary implementation of Trans-
action::logTransaction.

It’s not always so easy to detect calls to virtual functions during con-
struction or destruction. If Transaction had multiple constructors, each
of which had to perform some of the same work, it would be good soft-
ware engineering to avoid code replication by putting the common ini-
tialization code, including the call to logTransaction, into a private non-
virtual initialization function, say, init:

class Transaction {
public:

Transaction()
{ init(); } // call to non-virtual...

virtual void logTransaction() const = 0;
...

private:
void init()
{

...
logTransaction(); // ...that calls a virtual!

}
};
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This code is conceptually the same as the earlier version, but it’s more
insidious, because it will typically compile and link without complaint.
In this case, because logTransaction is pure virtual in Transaction, most
runtime systems will abort the program when the pure virtual is
called (typically issuing a message to that effect). However, if logTrans-
action were a “normal” virtual function (i.e., not pure virtual) with an
implementation in Transaction, that version would be called, and the
program would merrily trot along, leaving you to figure out why the
wrong version of logTransaction was called when a derived class object
was created. The only way to avoid this problem is to make sure that
none of your constructors or destructors call virtual functions on the
object being created or destroyed and that all the functions they call
obey the same constraint. 

But how do you ensure that the proper version of logTransaction is
called each time an object in the Transaction hierarchy is created?
Clearly, calling a virtual function on the object from the Transaction
constructor(s) is the wrong way to do it. 

There are different ways to approach this problem. One is to turn
logTransaction into a non-virtual function in Transaction, then require
that derived class constructors pass the necessary log information to
the Transaction constructor. That function can then safely call the non-
virtual logTransaction. Like this:

class Transaction {
public:

explicit Transaction(const std::string& logInfo);

void logTransaction(const std::string& logInfo) const; // now a non-
// virtual func

...

};

Transaction::Transaction(const std::string& logInfo)
{

...
logTransaction(logInfo); // now a non-

} // virtual call

class BuyTransaction: public Transaction {
public:

BuyTransaction( parameters )
: Transaction(createLogString( parameters )) // pass log info
{ ... } // to base class
... // constructor

private:
static std::string createLogString( parameters );

};
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In other words, since you can’t use virtual functions to call down from
base classes during construction, you can compensate by having
derived classes pass necessary construction information up to base
class constructors instead. 

In this example, note the use of the (private) static function createL-
ogString in BuyTransaction. Using a helper function to create a value to
pass to a base class constructor is often more convenient (and more
readable) than going through contortions in the member initialization
list to give the base class what it needs. By making the function static,
there’s no danger of accidentally referring to the nascent BuyTransac-
tion object’s as-yet-uninitialized data members. That’s important,
because the fact that those data members will be in an undefined
state is why calling virtual functions during base class construction
and destruction doesn’t go down into derived classes in the first place.

Things to Remember

✦ Don’t call virtual functions during construction or destruction, be-
cause such calls will never go to a more derived class than that of
the currently executing constructor or destructor.

Item 10: Have assignment operators return a 
reference to *this.

One of the interesting things about assignments is that you can chain
them together:

int x, y, z;

x = y = z = 15; // chain of assignments

Also interesting is that assignment is right-associative, so the above
assignment chain is parsed like this:

x = (y = (z = 15));

Here, 15 is assigned to z, then the result of that assignment (the
updated z) is assigned to y, then the result of that assignment (the
updated y) is assigned to x. 

The way this is implemented is that assignment returns a reference to
its left-hand argument, and that’s the convention you should follow
when you implement assignment operators for your classes:

class Widget {
public:

...
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Here I’ve switched from an object of type string to an object of type Wid-
get to avoid any preconceptions about the cost of performing a con-
struction, destruction, or assignment for the object. 

In terms of Widget operations, the costs of these two approaches are
as follows:

■ Approach A: 1 constructor + 1 destructor + n assignments.

■ Approach B: n constructors + n destructors.

For classes where an assignment costs less than a constructor-
destructor pair, Approach A is generally more efficient. This is espe-
cially the case as n gets large. Otherwise, Approach B is probably bet-
ter. Furthermore, Approach A makes the name w visible in a larger
scope (the one containing the loop) than Approach B, something that’s
contrary to program comprehensibility and maintainability. As a
result, unless you know that (1) assignment is less expensive than a
constructor-destructor pair and (2) you’re dealing with a perfor-
mance-sensitive part of your code, you should default to using
Approach B.

Things to Remember

✦ Postpone variable definitions as long as possible. It increases pro-
gram clarity and improves program efficiency.

Item 27: Minimize casting.

The rules of C++ are designed to guarantee that type errors are impos-
sible. In theory, if your program compiles cleanly, it’s not trying to
perform any unsafe or nonsensical operations on any objects. This is
a valuable guarantee. You don’t want to forgo it lightly.

Unfortunately, casts subvert the type system. That can lead to all
kinds of trouble, some easy to recognize, some extraordinarily subtle.
If you’re coming to C++ from C, Java, or C#, take note, because cast-
ing in those languages is more necessary and less dangerous than in
C++. But C++ is not C. It’s not Java. It’s not C#. In this language, cast-
ing is a feature you want to approach with great respect.

Let’s begin with a review of casting syntax, because there are usually
three different ways to write the same cast. C-style casts look like this:

(T) expression // cast expression to be of type T

Function-style casts use this syntax:

T(expression) // cast expression to be of type T
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There is no difference in meaning between these forms; it’s purely a
matter of where you put the parentheses. I call these two forms old-
style casts.

C++ also offers four new cast forms (often called new-style or C++-style
casts):

const_cast<T>(expression)

dynamic_cast<T>(expression)

reinterpret_cast<T>(expression)

static_cast<T>(expression)

Each serves a distinct purpose: 

■ const_cast is typically used to cast away the constness of objects. It
is the only C++-style cast that can do this.

■ dynamic_cast is primarily used to perform “safe downcasting,” i.e.,
to determine whether an object is of a particular type in an inher-
itance hierarchy. It is the only cast that cannot be performed us-
ing the old-style syntax. It is also the only cast that may have a
significant runtime cost. (I’ll provide details on this a bit later.)

■ reinterpret_cast is intended for low-level casts that yield implemen-
tation-dependent (i.e., unportable) results, e.g., casting a pointer
to an int. Such casts should be rare outside low-level code. I use it
only once in this book, and that’s only when discussing how you
might write a debugging allocator for raw memory (see Item 50).

■ static_cast can be used to force implicit conversions (e.g., non-const
object to const object (as in Item 3), int to double, etc.). It can also be
used to perform the reverse of many such conversions (e.g., void*
pointers to typed pointers, pointer-to-base to pointer-to-derived),
though it cannot cast from const to non-const objects. (Only
const_cast can do that.)

The old-style casts continue to be legal, but the new forms are prefer-
able. First, they’re much easier to identify in code (both for humans
and for tools like grep), thus simplifying the process of finding places
in the code where the type system is being subverted. Second, the
more narrowly specified purpose of each cast makes it possible for
compilers to diagnose usage errors. For example, if you try to cast
away constness using a new-style cast other than const_cast, your
code won’t compile. 

About the only time I use an old-style cast is when I want to call an ex-
plicit constructor to pass an object to a function. For example:
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class Widget {
public:

explicit Widget(int size);
...

};

void doSomeWork(const Widget& w);

doSomeWork(Widget(15)); // create Widget from int
// with function-style cast

doSomeWork(static_cast<Widget>(15)); // create Widget from int
// with C++-style cast

Somehow, deliberate object creation doesn’t “feel” like a cast, so I’d
probably use the function-style cast instead of the static_cast in this
case. (They do exactly the same thing here: create a temporary Widget
object to pass to doSomeWork.) Then again, code that leads to a core
dump usually feels pretty reasonable when you write it, so perhaps
you’d best ignore feelings and use new-style casts all the time.

Many programmers believe that casts do nothing but tell compilers to
treat one type as another, but this is mistaken. Type conversions of
any kind (either explicit via casts or implicit by compilers) often lead to
code that is executed at runtime. For example, in this code fragment,

int x, y;
...
double d = static_cast<double>(x)/y; // divide x by y, but use

// floating point division

the cast of the int x to a double almost certainly generates code,
because on most architectures, the underlying representation for an
int is different from that for a double. That’s perhaps not so surprising,
but this example may widen your eyes a bit:

class Base { ... };

class Derived: public Base { ... };

Derived d;

Base *pb = &d; // implicitly convert Derived* ⇒ Base*

Here we’re just creating a base class pointer to a derived class object,
but sometimes, the two pointer values will not be the same. When
that’s the case, an offset is applied at runtime to the Derived* pointer to
get the correct Base* pointer value. 

This last example demonstrates that a single object (e.g., an object of
type Derived) might have more than one address (e.g., its address
when pointed to by a Base* pointer and its address when pointed to by
a Derived* pointer). That can’t happen in C. It can’t happen in Java. It
can’t happen in C#. It does happen in C++. In fact, when multiple
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inheritance is in use, it happens virtually all the time, but it can hap-
pen under single inheritance, too. Among other things, that means
you should generally avoid making assumptions about how things are
laid out in C++, and you should certainly not perform casts based on
such assumptions. For example, casting object addresses to char*
pointers and then using pointer arithmetic on them almost always
yields undefined behavior.

But note that I said that an offset is “sometimes” required. The way
objects are laid out and the way their addresses are calculated varies
from compiler to compiler. That means that just because your “I know
how things are laid out” casts work on one platform doesn’t mean
they’ll work on others. The world is filled with woeful programmers
who’ve learned this lesson the hard way.

An interesting thing about casts is that it’s easy to write something
that looks right (and might be right in other languages) but is wrong.
Many application frameworks, for example, require that virtual mem-
ber function implementations in derived classes call their base class
counterparts first. Suppose we have a Window base class and a Spe-
cialWindow derived class, both of which define the virtual function
onResize. Further suppose that SpecialWindow’s onResize is expected to
invoke Window’s onResize first. Here’s a way to implement this that
looks like it does the right thing, but doesn’t:

class Window { // base class
public:

virtual void onResize() { ... } // base onResize impl
...

};

class SpecialWindow: public Window { // derived class
public:

virtual void onResize() { // derived onResize impl;
static_cast<Window>(*this).onResize(); // cast *this to Window,

// then call its onResize;
// this doesn’t work!

... // do SpecialWindow-
} // specific stuff

...

};

I’ve highlighted the cast in the code. (It’s a new-style cast, but using
an old-style cast wouldn’t change anything.) As you would expect, the
code casts *this to a Window. The resulting call to onResize therefore
invokes Window::onResize. What you might not expect is that it does
not invoke that function on the current object! Instead, the cast cre-
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ates a new, temporary copy of the base class part of *this, then invokes
onResize on the copy! The above code doesn’t call Window::onResize on
the current object and then perform the SpecialWindow-specific
actions on that object — it calls Window::onResize on a copy of the base
class part of the current object before performing SpecialWindow-spe-
cific actions on the current object. If Window::onResize modifies the
current object (hardly a remote possibility, since onResize is a non-
const member function), the current object won’t be modified. Instead,
a copy of that object will be modified. If SpecialWindow::onResize modi-
fies the current object, however, the current object will be modified,
leading to the prospect that the code will leave the current object in an
invalid state, one where base class modifications have not been made,
but derived class ones have been. 

The solution is to eliminate the cast, replacing it with what you really
want to say. You don’t want to trick compilers into treating *this as a
base class object; you want to call the base class version of onResize on
the current object. So say that:

class SpecialWindow: public Window {
public:

virtual void onResize() {
Window::onResize(); // call Window::onResize
... // on *this

}

...

};

This example also demonstrates that if you find yourself wanting to
cast, it’s a sign that you could be approaching things the wrong way.
This is especially the case if your want is for dynamic_cast.

Before delving into the design implications of dynamic_cast, it’s worth
observing that many implementations of dynamic_cast can be quite
slow. For example, at least one common implementation is based in
part on string comparisons of class names. If you’re performing a
dynamic_cast on an object in a single-inheritance hierarchy four levels
deep, each dynamic_cast under such an implementation could cost you
up to four calls to strcmp to compare class names. A deeper hierarchy
or one using multiple inheritance would be more expensive. There are
reasons that some implementations work this way (they have to do
with support for dynamic linking). Nonetheless, in addition to being
leery of casts in general, you should be especially leery of
dynamic_casts in performance-sensitive code.

The need for dynamic_cast generally arises because you want to per-
form derived class operations on what you believe to be a derived class
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object, but you have only a pointer- or reference-to-base through
which to manipulate the object. There are two general ways to avoid
this problem. 

First, use containers that store pointers (often smart pointers — see
Item 13) to derived class objects directly, thus eliminating the need to
manipulate such objects through base class interfaces. For example,
if, in our Window/SpecialWindow hierarchy, only SpecialWindows sup-
port blinking, instead of doing this:

class Window { ... };

class SpecialWindow: public Window {
public:

void blink();
...

};

typedef // see Item 13 for info
std::vector<std::tr1::shared_ptr<Window> > VPW; // on tr1::shared_ptr

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); // undesirable code:
iter != winPtrs.end(); // uses dynamic_cast
++iter) {

if (SpecialWindow *psw = dynamic_cast<SpecialWindow*>(iter->get()))
psw->blink();

}

try to do this instead:

typedef std::vector<std::tr1::shared_ptr<SpecialWindow> > VPSW;

VPSW winPtrs;

...

for (VPSW::iterator iter = winPtrs.begin(); // better code: uses 
iter != winPtrs.end(); // no dynamic_cast
++iter)

(*iter)->blink();

Of course, this approach won’t allow you to store pointers to all possi-
ble Window derivatives in the same container. To work with different
window types, you might need multiple type-safe containers.

An alternative that will let you manipulate all possible Window deriva-
tives through a base class interface is to provide virtual functions in
the base class that let you do what you need. For example, though
only SpecialWindows can blink, maybe it makes sense to declare the
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function in the base class, offering a default implementation that does
nothing:

class Window {
public:

virtual void blink() {} // default impl is no-op;
... // see Item 34 for why

}; // a default impl may be
// a bad idea

class SpecialWindow: public Window {
public:

virtual void blink() { ... } // in this class, blink
... // does something

};

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs; // container holds
// (ptrs to) all possible

... // Window types

for (VPW::iterator iter = winPtrs.begin();
iter != winPtrs.end();
++iter) // note lack of 

(*iter)->blink(); // dynamic_cast

Neither of these approaches — using type-safe containers or moving
virtual functions up the hierarchy — is universally applicable, but in
many cases, they provide a viable alternative to dynamic_casting. When
they do, you should embrace them. 

One thing you definitely want to avoid is designs that involve cascad-
ing dynamic_casts, i.e., anything that looks like this:

class Window { ... };

... // derived classes are defined here

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); iter != winPtrs.end(); ++iter)
{

if (SpecialWindow1 *psw1 =
dynamic_cast<SpecialWindow1*>(iter->get())) { ... }

else if (SpecialWindow2 *psw2 =
dynamic_cast<SpecialWindow2*>(iter->get())) { ... }

else if (SpecialWindow3 *psw3 =
dynamic_cast<SpecialWindow3*>(iter->get())) { ... }

...

}
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Such C++ generates code that’s big and slow, plus it’s brittle, because
every time the Window class hierarchy changes, all such code has to
be examined to see if it needs to be updated. (For example, if a new
derived class gets added, a new conditional branch probably needs to
be added to the above cascade.) Code that looks like this should
almost always be replaced with something based on virtual function
calls.

Good C++ uses very few casts, but it’s generally not practical to get rid
of all of them. The cast from int to double on page 118, for example, is
a reasonable use of a cast, though it’s not strictly necessary. (The code
could be rewritten to declare a new variable of type double that’s ini-
tialized with x’s value.) Like most suspicious constructs, casts should
be isolated as much as possible, typically hidden inside functions
whose interfaces shield callers from the grubby work being done
inside.

Things to Remember

✦ Avoid casts whenever practical, especially dynamic_casts in perfor-
mance-sensitive code. If a design requires casting, try to develop a
cast-free alternative. 

✦ When casting is necessary, try to hide it inside a function. Clients
can then call the function instead of putting casts in their own code.

✦ Prefer C++-style casts to old-style casts. They are easier to see, and
they are more specific about what they do.

Item 28: Avoid returning “handles” to object internals.

Suppose you’re working on an application involving rectangles. Each
rectangle can be represented by its upper left corner and its lower
right corner. To keep a Rectangle object small, you might decide that
the points defining its extent shouldn’t be stored in the Rectangle
itself, but rather in an auxiliary struct that the Rectangle points to:

class Point { // class for representing points
public:

Point(int x, int y);
...

void setX(int newVal);
void setY(int newVal);
...

};
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template<typename T> // declare
const Rational<T> doMultiply( const Rational<T>& lhs, // helper

const Rational<T>& rhs); // template

template<typename T>
class Rational {
public:

...

friend
const Rational<T> operator*(const Rational<T>& lhs,

const Rational<T>& rhs) // Have friend
{ return doMultiply(lhs, rhs); } // call helper
...

};

Many compilers essentially force you to put all template definitions in
header files, so you may need to define doMultiply in your header as
well. (As Item 30 explains, such templates need not be inline.) That
could look like this:

template<typename T> // define
const Rational<T> doMultiply(const Rational<T>& lhs, // helper

const Rational<T>& rhs) // template in
{ // header file,

return Rational<T>(lhs.numerator() * rhs.numerator(), // if necessary
lhs.denominator() * rhs.denominator());

}

As a template, of course, doMultiply won’t support mixed-mode multi-
plication, but it doesn’t need to. It will only be called by operator*, and
operator* does support mixed-mode operations! In essence, the func-
tion operator* supports whatever type conversions are necessary to
ensure that two Rational objects are being multiplied, then it passes
these two objects to an appropriate instantiation of the doMultiply tem-
plate to do the actual multiplication. Synergy in action, no?

Things to Remember

✦ When writing a class template that offers functions related to the
template that support implicit type conversions on all parameters,
define those functions as friends inside the class template.

Item 47: Use traits classes for information about types.

The STL is primarily made up of templates for containers, iterators,
and algorithms, but it also has a few utility templates. One of these is
called advance. advance moves a specified iterator a specified distance:
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template<typename IterT, typename DistT> // move iter d units
void advance(IterT& iter, DistT d); // forward; if d < 0,

// move iter backward

Conceptually, advance just does iter += d, but advance can’t be imple-
mented that way, because only random access iterators support the
+= operation. Less powerful iterator types have to implement advance
by iteratively applying ++ or -- d times. 

Um, you don’t remember your STL iterator categories? No problem,
we’ll do a mini-review. There are five categories of iterators, corre-
sponding to the operations they support. Input iterators can move only
forward, can move only one step at a time, can only read what they
point to, and can read what they’re pointing to only once. They’re
modeled on the read pointer into an input file; the C++ library’s
istream_iterators are representative of this category. Output iterators
are analogous, but for output: they move only forward, move only one
step at a time, can only write what they point to, and can write it only
once. They’re modeled on the write pointer into an output file;
ostream_iterators epitomize this category. These are the two least pow-
erful iterator categories. Because input and output iterators can move
only forward and can read or write what they point to at most once,
they are suitable only for one-pass algorithms.

A more powerful iterator category consists of forward iterators. Such
iterators can do everything input and output iterators can do, plus
they can read or write what they point to more than once. This makes
them viable for multi-pass algorithms. The STL offers no singly linked
list, but some libraries offer one (usually called slist), and iterators into
such containers are forward iterators. Iterators into TR1’s hashed
containers (see Item 54) may also be in the forward category.

Bidirectional iterators add to forward iterators the ability to move
backward as well as forward. Iterators for the STL’s list are in this cat-
egory, as are iterators for set, multiset, map, and multimap.

The most powerful iterator category is that of random access iterators.
These kinds of iterators add to bidirectional iterators the ability to per-
form “iterator arithmetic,” i.e., to jump forward or backward an arbi-
trary distance in constant time. Such arithmetic is analogous to
pointer arithmetic, which is not surprising, because random access
iterators are modeled on built-in pointers, and built-in pointers can
act as random access iterators. Iterators for vector, deque, and string
are random access iterators.

For each of the five iterator categories, C++ has a “tag struct” in the
standard library that serves to identify it:
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struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional_iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public bidirectional_iterator_tag {};

The inheritance relationships among these structs are valid is-a rela-
tionships (see Item 32): it’s true that all forward iterators are also
input iterators, etc. We’ll see the utility of this inheritance shortly.

But back to advance. Given the different iterator capabilities, one way
to implement advance would be to use the lowest-common-denomina-
tor strategy of a loop that iteratively increments or decrements the
iterator. However, that approach would take linear time. Random
access iterators support constant-time iterator arithmetic, and we’d
like to take advantage of that ability when it’s present. 

What we really want to do is implement advance essentially like this:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if (iter is a random access iterator) {
iter += d; // use iterator arithmetic

} // for random access iters
else {

if (d >= 0) { while (d--) ++iter; } // use iterative calls to
else { while (d++) --iter; } // ++ or -- for other

} // iterator categories
}

This requires being able to determine whether iter is a random access
iterator, which in turn requires knowing whether its type, IterT, is a
random access iterator type. In other words, we need to get some
information about a type. That’s what traits let you do: they allow you
to get information about a type during compilation.

Traits aren’t a keyword or a predefined construct in C++; they’re a
technique and a convention followed by C++ programmers. One of the
demands made on the technique is that it has to work as well for
built-in types as it does for user-defined types. For example, if advance
is called with a pointer (like a const char*) and an int, advance has to
work, but that means that the traits technique must apply to built-in
types like pointers.

The fact that traits must work with built-in types means that things
like nesting information inside types won’t do, because there’s no way
to nest information inside pointers. The traits information for a type,
then, must be external to the type. The standard technique is to put it
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into a template and one or more specializations of that template. For
iterators, the template in the standard library is named iterator_traits:

template<typename IterT> // template for information about
struct iterator_traits; // iterator types

As you can see, iterator_traits is a struct. By convention, traits are
always implemented as structs. Another convention is that the structs
used to implement traits are known as — I am not making this up —
traits classes. 

The way iterator_traits works is that for each type IterT, a typedef named
iterator_category is declared in the struct iterator_traits<IterT>. This
typedef identifies the iterator category of IterT. 

iterator_traits implements this in two parts. First, it imposes the
requirement that any user-defined iterator type must contain a nested
typedef named iterator_category that identifies the appropriate tag
struct. deque’s iterators are random access, for example, so a class for
deque iterators would look something like this:

template < ... > // template params elided
class deque {
public:

class iterator {
public:

typedef random_access_iterator_tag iterator_category;
...

};
...

};

list’s iterators are bidirectional, however, so they’d do things this way:

template < ... >
class list {
public:

class iterator {
public:

typedef bidirectional_iterator_tag iterator_category;
...

};
...

};

iterator_traits just parrots back the iterator class’s nested typedef:

// the iterator_category for type IterT is whatever IterT says it is;
// see Item 42 for info on the use of “typedef typename”
template<typename IterT>
struct iterator_traits {

typedef typename IterT::iterator_category iterator_category;
...

};
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This works well for user-defined types, but it doesn’t work at all for
iterators that are pointers, because there’s no such thing as a pointer
with a nested typedef. The second part of the iterator_traits implemen-
tation handles iterators that are pointers.

To support such iterators, iterator_traits offers a partial template spe-
cialization for pointer types. Pointers act as random access iterators,
so that’s the category iterator_traits specifies for them:

template<typename T> // partial template specialization
struct iterator_traits<T*> // for built-in pointer types
{

typedef random_access_iterator_tag iterator_category;
...

};

At this point, you know how to design and implement a traits class:

■ Identify some information about types you’d like to make available
(e.g., for iterators, their iterator category).

■ Choose a name to identify that information (e.g., iterator_category).

■ Provide a template and set of specializations (e.g., iterator_traits)
that contain the information for the types you want to support. 

Given iterator_traits — actually std::iterator_traits, since it’s part of C++’s
standard library — we can refine our pseudocode for advance:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if (typeid(typename std::iterator_traits<IterT>::iterator_category) ==
typeid(std::random_access_iterator_tag))

...
}

Although this looks promising, it’s not what we want. For one thing, it
will lead to compilation problems, but we’ll explore that in Item 48;
right now, there’s a more fundamental issue to consider. IterT’s type is
known during compilation, so iterator_traits<IterT>::iterator_category can
also be determined during compilation. Yet the if statement is evalu-
ated at runtime (unless your optimizer is crafty enough to get rid of it).
Why do something at runtime that we can do during compilation? It
wastes time (literally), and it bloats our executable. 

What we really want is a conditional construct (i.e., an if...else state-
ment) for types that is evaluated during compilation. As it happens,
C++ already has a way to get that behavior. It’s called overloading. 

When you overload some function f, you specify different parameter
types for the different overloads. When you call f, compilers pick the
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best overload, based on the arguments you’re passing. Compilers
essentially say, “If this overload is the best match for what’s being
passed, call this f; if this other overload is the best match, call it; if
this third one is best, call it,” etc. See? A compile-time conditional
construct for types. To get advance to behave the way we want, all we
have to do is create multiple versions of an overloaded function con-
taining the “guts” of advance, declaring each to take a different type of
iterator_category object. I use the name doAdvance for these functions:

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // random access

std::random_access_iterator_tag) // iterators
{

iter += d;
}

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // bidirectional

std::bidirectional_iterator_tag) // iterators
{ 

if (d >= 0) { while (d--) ++iter; }
else { while (d++) --iter; }

}

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // input iterators

std::input_iterator_tag)
{

if (d < 0 ) {
throw std::out_of_range("Negative distance"); // see below

}
while (d--) ++iter;

}

Because forward_iterator_tag inherits from input_iterator_tag, the ver-
sion of doAdvance for input_iterator_tag will also handle forward itera-
tors. That’s the motivation for inheritance among the various
iterator_tag structs. (In fact, it’s part of the motivation for all public
inheritance: to be able to write code for base class types that also
works for derived class types.)

The specification for advance allows both positive and negative dis-
tances for random access and bidirectional iterators, but behavior is
undefined if you try to move a forward or input iterator a negative dis-
tance. The implementations I checked simply assumed that d was
non-negative, thus entering a very long loop counting “down” to zero if
a negative distance was passed in. In the code above, I’ve shown an
exception being thrown instead. Both implementations are valid.
That’s the curse of undefined behavior: you can’t predict what will
happen.
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Given the various overloads for doAdvance, all advance needs to do is
call them, passing an extra object of the appropriate iterator category
type so that the compiler will use overloading resolution to call the
proper implementation:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

doAdvance( // call the version
iter, d, // of doAdvance 
typename // that is 

std::iterator_traits<IterT>::iterator_category() // appropriate for
); // iter’s iterator

} // category

We can now summarize how to use a traits class:

■ Create a set of overloaded “worker” functions or function tem-
plates (e.g., doAdvance) that differ in a traits parameter. Implement
each function in accord with the traits information passed.

■ Create a “master” function or function template (e.g., advance) that
calls the workers, passing information provided by a traits class.

Traits are widely used in the standard library. There’s iterator_traits, of
course, which, in addition to iterator_category, offers four other pieces
of information about iterators (the most useful of which is value_type
— Item 42 shows an example of its use). There’s also char_traits, which
holds information about character types, and numeric_limits, which
serves up information about numeric types, e.g., their minimum and
maximum representable values, etc. (The name numeric_limits is a bit
of a surprise, because the more common convention is for traits
classes to end with “traits,” but numeric_limits is what it’s called, so
numeric_limits is the name we use.)

TR1 (see Item 54) introduces a slew of new traits classes that give infor-
mation about types, including is_fundamental<T> (whether T is a built-in
type), is_array<T> (whether T is an array type), and is_base_of<T1, T2>
(whether T1 is the same as or is a base class of T2). All told, TR1 adds
over 50 traits classes to standard C++.

Things to Remember

✦ Traits classes make information about types available during com-
pilation. They’re implemented using templates and template special-
izations. 

✦ In conjunction with overloading, traits classes make it possible to
perform compile-time if...else tests on types.
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