
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321334879
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321334879
https://plusone.google.com/share?url=http://www.informit.com/title/9780321334879
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321334879
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321334879/Free-Sample-Chapter

Praise for Effective C++, Third Edition

“Scott Meyers’ book, Effective C++, Third Edition, is distilled programming experience —
experience that you would otherwise have to learn the hard way. This book is a great
resource that I recommend to everybody who writes C++ professionally.”

— Peter Dulimov, ME, Engineer, Ranges and Assessing Unit, NAVSYSCOM,
Australia

“The third edition is still the best book on how to put all of the pieces of C++ together
in an efficient, cohesive manner. If you claim to be a C++ programmer, you must read
this book.”

— Eric Nagler, Consultant, Instructor, and author of Learning C++

“The first edition of this book ranks among the small (very small) number of books
that I credit with significantly elevating my skills as a ‘professional’ software devel-
oper. Like the others, it was practical and easy to read, but loaded with important
advice. Effective C++, Third Edition, continues that tradition. C++ is a very powerful
programming language. If C gives you enough rope to hang yourself, C++ is a hard-
ware store with lots of helpful people ready to tie knots for you. Mastering the points
discussed in this book will definitely increase your ability to effectively use C++ and
reduce your stress level.”

— Jack W. Reeves, Chief Executive Officer, Bleading Edge Software Technologies

“Every new developer joining my team has one assignment — to read this book.”
— Michael Lanzetta, Senior Software Engineer

“I read the first edition of Effective C++ about nine years ago, and it immediately
became my favorite book on C++. In my opinion, Effective C++, Third Edition, remains
a mustread today for anyone who wishes to program effectively in C++. We would live
in a better world if C++ programmers had to read this book before writing their first
line of professional C++ code.”

— Danny Rabbani, Software Development Engineer

“I encountered the first edition of Scott Meyers’ Effective C++ as a struggling program-
mer in the trenches, trying to get better at what I was doing. What a lifesaver! I found
Meyers’ advice was practical, useful, and effective, fulfilling the promise of the title
100 percent. The third edition brings the practical realities of using C++ in serious
development projects right up to date, adding chapters on the language’s very latest
issues and features. I was delighted to still find myself learning something interesting
and new from the latest edition of a book I already thought I knew well.”

— Michael Topic, Technical Program Manager

“From Scott Meyers, the guru of C++, this is the definitive guide for anyone who
wants to use C++ safely and effectively, or is transitioning from any other OO lan-
guage to C++. This book has valuable information presented in a clear, concise,
entertaining, and insightful manner.”

— Siddhartha Karan Singh, Software Developer

“This should be the second book on C++ that any developer should read, after a gen-
eral introductory text. It goes beyond the how and what of C++ to address the why
and wherefore. It helped me go from knowing the syntax to understanding the philos-
ophy of C++ programming.”

— Timothy Knox, Software Developer

“This is a fantastic update of a classic C++ text. Meyers covers a lot of new ground in this
volume, and every serious C++ programmer should have a copy of this new edition.”

— Jeffrey Somers, Game Programmer

“Effective C++, Third Edition, covers the things you should be doing when writing code
and does a terrific job of explaining why those things are important. Think of it as
best practices for writing C++.”

— Jeff Scherpelz, Software Development Engineer

“As C++ embraces change, Scott Meyers’ Effective C++, Third Edition, soars to remain
in perfect lock-step with the language. There are many fine introductory books on
C++, but exactly one second book stands head and shoulders above the rest, and
you’re holding it. With Scott guiding the way, prepare to do some soaring of your own!”

— Leor Zolman, C++ Trainer and Pundit, BD Software

“This book is a must-have for both C++ veterans and newbies. After you have finished
reading it, it will not collect dust on your bookshelf — you will refer to it all the time.”

— Sam Lee, Software Developer

“Reading this book transforms ordinary C++ programmers into expert C++ program-
mers, step-by-step, using 55 easy-to-read items, each describing one technique or tip.”

— Jeffrey D. Oldham, Ph.D., Software Engineer, Google

“Scott Meyers’ Effective C++ books have long been required reading for new and expe-
rienced C++ programmers alike. This new edition, incorporating almost a decade’s
worth of C++ language development, is his most content-packed book yet. He does
not merely describe the problems inherent in the language, but instead he provides
unambiguous and easy-to-follow advice on how to avoid the pitfalls and write ‘effec-
tive C++.’ I expect every C++ programmer to have read it.”

— Philipp K. Janert, Ph.D., Software Development Manager

“Each previous edition of Effective C++ has been the must-have book for developers
who have used C++ for a few months or a few years, long enough to stumble into
the traps latent in this rich language. In this third edition, Scott Meyers extensively
refreshes his sound advice for the modern world of new language and library features
and the programming styles that have evolved to use them. Scott’s engaging writing
style makes it easy to assimilate his guidelines on your way to becoming an effective
C++ developer.”

— David Smallberg, Instructor, DevelopMentor; Lecturer, Computer Science, UCLA

“Effective C++ has been completely updated for twenty-first-century C++ practice and
can continue to claim to be the first second book for all C++ practitioners.”

— Matthew Wilson, Ph.D., author of Imperfect C++

Effective C++
Third Edition

Addison-Wesley Professional Computing Series
Brian W. Kernighan, Consulting Editor

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library
David R. Butenhof, Programming with POSIX® Threads
Brent Callaghan, NFS Illustrated
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition: Repelling

the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Users and System Administrators
Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design
Dan Farmer/Wietse Venema, Forensic Discovery
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable Object-

Oriented Software
Peter Haggar, Practical Java™ Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software
Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk
Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++
Brian W. Kernighan/Rob Pike, The Practice of Programming
S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network
John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs
Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs
Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs
Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library
Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second Edition:

C++ Programming with the Standard Template Library
John K. Ousterhout, Tcl and the Tk Toolkit
Craig Partridge, Gigabit Networking
Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols
Stephen A. Rago, UNIX® System V Network Programming
Eric S. Raymond, The Art of UNIX Programming
Marc J. Rochkind, Advanced UNIX Programming, Second Edition
Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers
W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols
W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX®

Domain Protocols
W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network Programming Volume 1, Third Edition: The

Sockets Networking API
W. Richard Stevens/Stephen A. Rago, Advanced Programming in the UNIX® Environment, Second Edition
W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set
John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way
Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation
Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more information about these titles.

http://www.awprofessional.com/series/professionalcomputing

Effective C++
Third Edition

55 Specific Ways to Improve Your Programs and Designs

Scott Meyers

▲
▼▼

ADDISON-WESLEY

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

This e-book reproduces in electronic form the printed book content of Effective C++, Third Edition: 55
Specific Ways to Improve Your Programs and Designs, by Scott Meyers. Copyright © 2005 by Pearson
Education, Inc. ISBN: 0-321-33487-6.

LICENSE FOR PERSONAL USE: For the convenience of readers, this e-book is licensed and sold in
its PDF version without any digital rights management (DRM) applied. Purchasers of the PDF version
may, for their personal use only, install additional copies on multiple devices and copy or print excerpts
for themselves. The duplication, distribution, transfer, or sharing of this e-book’s content for any pur-
pose other than the purchaser’s personal use, in whole or in part, by any means, is strictly prohibited.

PERSONALIZATION NOTICE: To discourage unauthorized uses of this e-book and thereby allow its
publication without DRM, each copy of the PDF version identifies its purchaser. To encourage a DRM-
free policy, please protect your files from access by others.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in the original printed book and this e-book, and we were
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of the original printed book and this e-book,
but make no expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

DISCOUNTS AND SITE LICENSES: The publisher offers discounted prices on this e-book when pur-
chased with its corresponding printed book or with other e-books by Scott Meyers. The publisher also
offers site licenses for these e-books (not available in some countries). For more information, please
visit: www.ScottMeyers-EBooks.com or www.informit.com/aw.

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

E-book ISBN 13: 978-0-321-51582-7
E-book ISBN 10: 0-321-51582-X

Second e-book release, April 2011 (essentially identical to the 11th Paper Printing).

http://www.ScottMeyers-EBooks.com
http://www.informit.com/aw

For Nancy,
without whom nothing

would be much worth doing

Wisdom and beauty form a very rare combination.

— Petronius Arbiter
Satyricon, XCIV

This page intentionally left blank

And in memory of Persephone,
1995–2004

This page intentionally left blank

Preface xv

Acknowledgments xvii

Introduction 1

Chapter 1: Accustoming Yourself to C++ 11

Item 1: View C++ as a federation of languages. 11
Item 2: Prefer consts, enums, and inlines to #defines. 13
Item 3: Use const whenever possible. 17
Item 4: Make sure that objects are initialized before

they’re used. 26

Chapter 2: Constructors, Destructors, and
Assignment Operators 34

Item 5: Know what functions C++ silently writes and calls. 34
Item 6: Explicitly disallow the use of compiler-generated

functions you do not want. 37
Item 7: Declare destructors virtual in polymorphic

base classes. 40
Item 8: Prevent exceptions from leaving destructors. 44
Item 9: Never call virtual functions during construction or

destruction. 48
Item 10: Have assignment operators return a reference to *this. 52
Item 11: Handle assignment to self in operator=. 53
Item 12: Copy all parts of an object. 57

Chapter 3: Resource Management 61

Item 13: Use objects to manage resources. 61

Contents

xii Contents Effective C++
Item 14: Think carefully about copying behavior in
resource-managing classes. 66

Item 15: Provide access to raw resources in
resource-managing classes. 69

Item 16: Use the same form in corresponding uses of new
and delete. 73

Item 17: Store newed objects in smart pointers in standalone
statements. 75

Chapter 4: Designs and Declarations 78

Item 18: Make interfaces easy to use correctly and hard to
use incorrectly. 78

Item 19: Treat class design as type design. 84
Item 20: Prefer pass-by-reference-to-const to pass-by-value. 86
Item 21: Don’t try to return a reference when you must

return an object. 90
Item 22: Declare data members private. 94
Item 23: Prefer non-member non-friend functions to

member functions. 98
Item 24: Declare non-member functions when type

conversions should apply to all parameters. 102
Item 25: Consider support for a non-throwing swap. 106

Chapter 5: Implementations 113

Item 26: Postpone variable definitions as long as possible. 113
Item 27: Minimize casting. 116
Item 28: Avoid returning “handles” to object internals. 123
Item 29: Strive for exception-safe code. 127
Item 30: Understand the ins and outs of inlining. 134
Item 31: Minimize compilation dependencies between files. 140

Chapter 6: Inheritance and Object-Oriented Design 149

Item 32: Make sure public inheritance models “is-a.” 150
Item 33: Avoid hiding inherited names. 156
Item 34: Differentiate between inheritance of interface and

inheritance of implementation. 161
Item 35: Consider alternatives to virtual functions. 169
Item 36: Never redefine an inherited non-virtual function. 178

Effective C++ Contents xiii
Item 37: Never redefine a function’s inherited default
parameter value. 180

Item 38: Model “has-a” or “is-implemented-in-terms-of”
through composition. 184

Item 39: Use private inheritance judiciously. 187
Item 40: Use multiple inheritance judiciously. 192

Chapter 7: Templates and Generic Programming 199

Item 41: Understand implicit interfaces and compile-time
polymorphism. 199

Item 42: Understand the two meanings of typename. 203
Item 43: Know how to access names in templatized

base classes. 207
Item 44: Factor parameter-independent code out of templates. 212
Item 45: Use member function templates to accept

“all compatible types.” 218
Item 46: Define non-member functions inside templates

when type conversions are desired. 222
Item 47: Use traits classes for information about types. 226
Item 48: Be aware of template metaprogramming. 233

Chapter 8: Customizing new and delete 239

Item 49: Understand the behavior of the new-handler. 240
Item 50: Understand when it makes sense to replace new

and delete. 247
Item 51: Adhere to convention when writing new and delete. 252
Item 52: Write placement delete if you write placement new. 256

Chapter 9: Miscellany 262

Item 53: Pay attention to compiler warnings. 262
Item 54: Familiarize yourself with the standard library,

including TR1. 263
Item 55: Familiarize yourself with Boost. 269

Appendix A: Beyond Effective C++ 273

Appendix B: Item Mappings Between Second
and Third Editions 277

Index 280

This page intentionally left blank

I wrote the original edition of Effective C++ in 1991. When the time
came for a second edition in 1997, I updated the material in important
ways, but, because I didn’t want to confuse readers familiar with the
first edition, I did my best to retain the existing structure: 48 of the
original 50 Item titles remained essentially unchanged. If the book
were a house, the second edition was the equivalent of freshening
things up by replacing carpets, paint, and light fixtures.

For the third edition, I tore the place down to the studs. (There were
times I wished I’d gone all the way to the foundation.) The world of
C++ has undergone enormous change since 1991, and the goal of this
book — to identify the most important C++ programming guidelines in
a small, readable package — was no longer served by the Items I’d es-
tablished nearly 15 years earlier. In 1991, it was reasonable to as-
sume that C++ programmers came from a C background. Now,
programmers moving to C++ are just as likely to come from Java or
C#. In 1991, inheritance and object-oriented programming were new
to most programmers. Now they’re well-established concepts, and ex-
ceptions, templates, and generic programming are the areas where
people need more guidance. In 1991, nobody had heard of design pat-
terns. Now it’s hard to discuss software systems without referring to
them. In 1991, work had just begun on a formal standard for C++.
Now that standard is eight years old, and work has begun on the next
version.

To address these changes, I wiped the slate as clean as I could and
asked myself, “What are the most important pieces of advice for prac-
ticing C++ programmers in 2005?” The result is the set of Items in this
new edition. The book has new chapters on resource management
and on programming with templates. In fact, template concerns are
woven throughout the text, because they affect almost everything in
C++. The book also includes new material on programming in the
presence of exceptions, on applying design patterns, and on using the

Preface

xvi Preface Effective C++
new TR1 library facilities. (TR1 is described in Item 54.) It acknowl-
edges that techniques and approaches that work well in single-
threaded systems may not be appropriate in multithreaded systems.
Well over half the material in the book is new. However, most of the
fundamental information in the second edition continues to be impor-
tant, so I found a way to retain it in one form or another. (You’ll find a
mapping between the second and third edition Items in Appendix B.)

I’ve worked hard to make this book as good as I can, but I have no il-
lusions that it’s perfect. If you feel that some of the Items in this book
are inappropriate as general advice; that there is a better way to ac-
complish a task examined in the book; or that one or more of the tech-
nical discussions is unclear, incomplete, or misleading, please tell me.
If you find an error of any kind — technical, grammatical, typographi-
cal, whatever — please tell me that, too. I’ll gladly add to the acknowl-
edgments in later printings the name of the first person to bring each
problem to my attention.

Even with the number of Items expanded to 55, the set of guidelines
in this book is far from exhaustive. But coming up with good rules —
ones that apply to almost all applications almost all the time — is
harder than it might seem. If you have suggestions for additional
guidelines, I would be delighted to hear about them.

I maintain a list of changes to this book since its first printing, includ-
ing bug fixes, clarifications, and technical updates. The list is avail-
able at the Effective C++ Errata web page, http://aristeia.com/BookErrata/
ec++3e-errata.html. If you’d like to be notified when I update the list, I
encourage you to join my mailing list. I use it to make announcements
likely to interest people who follow my professional work. For details,
consult http://aristeia.com/MailingList/.

SCOTT DOUGLAS MEYERS STAFFORD, OREGON
http://aristeia.com/ APRIL 2005

http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/MailingList/
http://aristeia.com/

Effective C++ has existed for fifteen years, and I started learning C++
about three years before I wrote the book. The “Effective C++ project”
has thus been under development for nearly two decades. During that
time, I have benefited from the insights, suggestions, corrections, and,
occasionally, dumbfounded stares of hundreds (thousands?) of peo-
ple. Each has helped improve Effective C++. I am grateful to them all.

I’ve given up trying to keep track of where I learned what, but one gen-
eral source of information has helped me as long as I can remember:
the Usenet C++ newsgroups, especially comp.lang.c++.moderated and
comp.std.c++. Many of the Items in this book — perhaps most — have
benefited from the vetting of technical ideas at which the participants
in these newsgroups excel.

Regarding new material in the third edition, Steve Dewhurst worked
with me to come up with an initial set of candidate Items. In Item 11,
the idea of implementing operator= via copy-and-swap came from Herb
Sutter’s writings on the topic, e.g., Item 13 of his Exceptional C++ (Ad-
dison-Wesley, 2000). RAII (see Item 13) is from Bjarne Stroustrup’s
The C++ Programming Language (Addison-Wesley, 2000). The idea be-
hind Item 17 came from the “Best Practices” section of the Boost
shared_ptr web page, http://boost.org/libs/smart_ptr/shared_ptr.htm#Best-
Practices and was refined by Item 21 of Herb Sutter’s More Exceptional
C++ (Addison-Wesley, 2002). Item 29 was strongly influenced by Herb
Sutter’s extensive writings on the topic, e.g., Items 8-19 of Exceptional
C++, Items 17–23 of More Exceptional C++, and Items 11–13 of Excep-
tional C++ Style (Addison-Wesley, 2005); David Abrahams helped me
better understand the three exception safety guarantees. The NVI id-
iom in Item 35 is from Herb Sutter’s column, “Virtuality,” in the Sep-
tember 2001 C/C++ Users Journal. In that same Item, the Template
Method and Strategy design patterns are from Design Patterns (Addi-
son-Wesley, 1995) by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. The idea of using the NVI idiom in Item 37 came

Acknowledgments

http://boost.org/libs/smart_ptr/shared_ptr.htm#Best-Practices
http://boost.org/libs/smart_ptr/shared_ptr.htm#Best-Practices
http://www.amazon.com/gp/product/0201615622?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201615622
http://www.amazon.com/gp/product/0201615622?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201615622
http://www.amazon.com/gp/product/0201889544?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201889544
http://www.amazon.com/gp/product/020170434X?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020170434X
http://www.amazon.com/gp/product/0201760428?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201760428
http://www.amazon.com/gp/product/0201760428?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201760428
http://www.amazon.com/gp/product/0201615622?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201615622
http://www.amazon.com/gp/product/020170434X?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020170434X
http://www.amazon.com/gp/product/020170434X?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020170434X

xviii Acknowledgments Effective C++
from Hendrik Schober. David Smallberg contributed the motivation
for writing a custom set implementation in Item 38. Item 39’s observa-
tion that the EBO generally isn’t available under multiple inheritance
is from David Vandevoorde’s and Nicolai M. Josuttis’ C++ Templates
(Addison-Wesley, 2003). In Item 42, my initial understanding about
typename came from Greg Comeau’s C++ and C FAQ (http://
www.comeaucomputing.com/techtalk/#typename), and Leor Zolman
helped me realize that my understanding was incorrect. (My fault, not
Greg’s.) The essence of Item 46 is from Dan Saks’ talk, “Making New
Friends.” The idea at the end of Item 52 that if you declare one version
of operator new, you should declare them all, is from Item 22 of Herb
Sutter’s Exceptional C++ Style. My understanding of the Boost review
process (summarized in Item 55) was refined by David Abrahams.

Everything above corresponds to who or where I learned about some-
thing, not necessarily to who or where the thing was invented or first
published.

My notes tell me that I also used information from Steve Clamage, An-
toine Trux, Timothy Knox, and Mike Kaelbling, though, regrettably,
the notes fail to tell me how or where.

Drafts of the first edition were reviewed by Tom Cargill, Glenn Carroll,
Tony Davis, Brian Kernighan, Jak Kirman, Doug Lea, Moises Lejter,
Eugene Santos, Jr., John Shewchuk, John Stasko, Bjarne Stroustrup,
Barbara Tilly, and Nancy L. Urbano. I received suggestions for
improvements that I was able to incorporate in later printings from
Nancy L. Urbano, Chris Treichel, David Corbin, Paul Gibson, Steve
Vinoski, Tom Cargill, Neil Rhodes, David Bern, Russ Williams, Robert
Brazile, Doug Morgan, Uwe Steinmüller, Mark Somer, Doug Moore,
David Smallberg, Seth Meltzer, Oleg Shteynbuk, David Papurt, Tony
Hansen, Peter McCluskey, Stefan Kuhlins, David Braunegg, Paul
Chisholm, Adam Zell, Clovis Tondo, Mike Kaelbling, Natraj Kini, Lars
Nyman, Greg Lutz, Tim Johnson, John Lakos, Roger Scott, Scott
Frohman, Alan Rooks, Robert Poor, Eric Nagler, Antoine Trux, Cade
Roux, Chandrika Gokul, Randy Mangoba, and Glenn Teitelbaum.

Drafts of the second edition were reviewed by Derek Bosch, Tim
Johnson, Brian Kernighan, Junichi Kimura, Scott Lewandowski, Laura
Michaels, David Smallberg, Clovis Tondo, Chris Van Wyk, and Oleg
Zabluda. Later printings benefited from comments from Daniel
Steinberg, Arunprasad Marathe, Doug Stapp, Robert Hall, Cheryl
Ferguson, Gary Bartlett, Michael Tamm, Kendall Beaman, Eric Nagler,
Max Hailperin, Joe Gottman, Richard Weeks, Valentin Bonnard, Jun
He, Tim King, Don Maier, Ted Hill, Mark Harrison, Michael Rubenstein,
Mark Rodgers, David Goh, Brenton Cooper, Andy Thomas-Cramer,

http://www.comeaucomputing.com/techtalk/#typename
http://www.comeaucomputing.com/techtalk/#typename
http://www.amazon.com/gp/product/0201734842?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201734842
http://www.amazon.com/gp/product/0201760428?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201760428

Effective C++

Antoine Trux, Jo
Gary Yee, John
Feliks Kluzniak,
Harris, Mark S
Smallberg, Herb
Blomqvist, Jimm
Kuriyama, Micha
Rabinowitz, Ares

An early partial
Angelika Langer
Nicholas Strous
were Leor Zolm
Abrahams, Gerh
Andrew Kirmse,
Roze, Enrico Ca
Martin Fallenste
Janert, Guido Ba
Nishant Mittal,
Chang, Greg Li,
Sasan Dashtine
Cory Hicks, D
Rabbani, Jake C
Jeffrey D. Oldh
Alexandrescu, Ti
Henney. Drafts o
and Attila F. Feh

Reviewing an u
manding work, a
I continue to be
dertake it for me

Reviewing is har
ing discussed an
script. Astonish
Chrysta Meadow
thorough work e

Leor Zolman che
in preparation fo
manuscript. If a

Karl Wiegers an
back on back co
Acknowledgments xix

hn Wait, Brian Sharon, Liam Fitzpatrick, Bernd Mohr,
 O'Hanley, Brady Patterson, Christopher Peterson,
 Isi Dunietz, Christopher Creutzi, Ian Cooper, Carl
tickel, Clay Budin, Panayotis Matsinopoulos, David
 Sutter, Pajo Misljencevic, Giulio Agostini, Fredrik
y Snyder, Byrial Jensen, Witold Kuzminski, Kazunobu
el Christensen, Jorge Yáñez Teruel, Mark Davis, Marty
 Lagae, and Alexander Medvedev.

draft of this edition was reviewed by Brian Kernighan,
, Jesse Laeuchli, Roger E. Pedersen, Chris Van Wyk,
trup, and Hendrik Schober. Reviewers for a full draft
an, Mike Tsao, Eric Nagler, Gene Gutnik, David
ard Kreuzer, Drosos Kourounis, Brian Kernighan,

 Balog Pal, Emily Jagdhar, Eugene Kalenkovich, Mike
rrara, Benjamin Berck, Jack Reeves, Steve Schirripa,
dt, Timothy Knox, Yun Bai, Michael Lanzetta, Philipp
rtolucci, Michael Topic, Jeff Scherpelz, Chris Nauroth,
Jeff Somers, Hal Moroff, Vincent Manis, Brandon
Jim Meehan, Alan Geller, Siddhartha Singh, Sam Lee,
zhad, Alex Marin, Steve Cai, Thomas Fruchterman,
avid Smallberg, Gunavardhan Kakulapati, Danny
ohen, Hendrik Schober, Paco Viciana, Glenn Kennedy,
am, Nicholas Stroustrup, Matthew Wilson, Andrei
m Johnson, Leon Matthews, Peter Dulimov, and Kevlin
f some individual Items were reviewed by Herb Sutter
ér.

npolished (possibly incomplete) manuscript is de-
nd doing it under time pressure only makes it harder.
grateful that so many people have been willing to un-
.

der still if you have no background in the material be-
d are expected to catch every problem in the manu-

ingly, some people still choose to be copy editors.
brooke was the copy editor for this book, and her very
xposed many problems that eluded everyone else.

cked all the code examples against multiple compilers
r the full review, then did it again after I revised the
ny errors remain, I’m responsible for them, not Leor.

d especially Tim Johnson offered rapid, helpful feed-
ver copy.

xx

Since
sugges
Fehér,
Lupins
Hudso
Kobaya
Vincen
Fraser
Yukito
Pal, D
Johnso
Chu, a

John W
signed
Denise
pleasa
seen h
produc
the pr
(her bo
issues
issues
Appen
Haugla
Praser
have b
what a
Coutu

During
the Va
Only w

Kathy
remain
to crea
knowin
Compu
timate
to Joh

My wif
after s
has un

From
withou
taken
Acknowledgments Effective C++

publication of the first printing, I have incorporated revisions
ted by Jason Ross, Robert Yokota, Bernhard Merkle, Attila
Gerhard Kreuzer, Marcin Sochacki, J. Daniel Smith, Idan

ky, G. Wade Johnson, Clovis Tondo, Joshua Lehrer, T. David
n, Phillip Hellewell, Thomas Schell, Eldar Ronen, Ken
shi, Cameron Mac Minn, John Hershberger, Alex Dumov,
t Stojanov, Andrew Henrick, Jiongxiong Chen, Balbir Singh,
 Ross, Niels Dekker, Harsh Gaurav Vangani, Vasily Poshehonov,
shi Fujimura, Alex Howlett, Ed Ji Xihuang. Mike Rizzi, Balog
avid Solomon, Tony Oliver, Martin Rottinger, Miaohua, Brian
n, Joe Suzow, Effeer Chen, Nate Kohl, Zachary Cohen, Owen
nd Molly Sharp.

ait, my editor for the first two editions of this book, foolishly
 up for another tour of duty in that capacity. His assistant,
 Mickelsen, adroitly handled my frequent pestering with a
nt smile. (At least I think she’s been smiling. I’ve never actually
er.) Julie Nahil drew the short straw and hence became my
tion manager. She handled the overnight loss of six weeks in
oduction schedule with remarkable equanimity. John Fuller
ss) and Marty Rabinowitz (his boss) helped out with production

, too. Vanessa Moore’s official job was to help with FrameMaker
 and PDF preparation, but she also added the entries to
dix B and formatted it for printing on the inside cover. Solveig
nd helped with index formatting. Sandra Schroeder and Chuti

tsith were responsible for cover design, though Chuti seems to
een the one who had to rework the cover each time I said, “But
bout this photo with a stripe of that color...?” Chanda Leary-
got tapped for the heavy lifting in marketing.

 the months I worked on the manuscript, the TV series Buffy
mpire Slayer often helped me “de-stress” at the end of the day.
ith great restraint have I kept Buffyspeak out of the book.

Reed taught me programming in 1971, and I’m gratified that we
 friends to this day. Donald French hired me and Moises Lejter
te C++ training materials in 1989 (an act that led to my really
g C++), and in 1991 he engaged me to present them at Stratus
ter. The students in that class encouraged me to write what ul-

ly became the first edition of this book. Don also introduced me
n Wait, who agreed to publish it.

e, Nancy L. Urbano, continues to encourage my writing, even

even book projects, a CD adaptation, and a dissertation. She
believable forbearance. I couldn’t do what I do without her.

start to finish, our dog, Persephone, has been a companion
t equal. Sadly, for much of this project, her companionship has
the form of an urn in the office. We really miss her.

http://www.amazon.com/gp/product/B000AQ68RI?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=B000AQ68RI
http://www.amazon.com/gp/product/B000AQ68RI?ie=UTF8&tag=ecpp3e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=B000AQ68RI

Learning the fundamentals of a programming language is one thing;
learning how to design and implement effective programs in that lan-
guage is something else entirely. This is especially true of C++, a lan-
guage boasting an uncommon range of power and expressiveness.
Properly used, C++ can be a joy to work with. An enormous variety of
designs can be directly expressed and efficiently implemented. A judi-
ciously chosen and carefully crafted set of classes, functions, and
templates can make application programming easy, intuitive, efficient,
and nearly error-free. It isn’t unduly difficult to write effective C++
programs, if you know how to do it. Used without discipline, however,
C++ can lead to code that is incomprehensible, unmaintainable, inex-
tensible, inefficient, and just plain wrong.

The purpose of this book is to show you how to use C++ effectively. I
assume you already know C++ as a language and that you have some
experience in its use. What I provide here is a guide to using the lan-
guage so that your software is comprehensible, maintainable, porta-
ble, extensible, efficient, and likely to behave as you expect.

The advice I proffer falls into two broad categories: general design
strategies, and the nuts and bolts of specific language features. The
design discussions concentrate on how to choose between different
approaches to accomplishing something in C++. How do you choose
between inheritance and templates? Between public and private in-
heritance? Between private inheritance and composition? Between
member and non-member functions? Between pass-by-value and
pass-by-reference? It’s important to make these decisions correctly at
the outset, because a poor choice may not become apparent until
much later in the development process, at which point rectifying it is
often difficult, time-consuming, and expensive.

Even when you know exactly what you want to do, getting things just
right can be tricky. What’s the proper return type for assignment op-
erators? When should a destructor be virtual? How should operator

Introduction

2 Introduction Effective C++
new behave when it can’t find enough memory? It’s crucial to sweat
details like these, because failure to do so almost always leads to un-
expected, possibly mystifying program behavior. This book will help
you avoid that.

This is not a comprehensive reference for C++. Rather, it’s a collection
of 55 specific suggestions (I call them Items) for how you can improve
your programs and designs. Each Item stands more or less on its own,
but most also contain references to other Items. One way to read the
book, then, is to start with an Item of interest, then follow its refer-
ences to see where they lead you.

The book isn’t an introduction to C++, either. In Chapter 2, for exam-
ple, I’m eager to tell you all about the proper implementations of con-
structors, destructors, and assignment operators, but I assume you
already know or can go elsewhere to find out what these functions do
and how they are declared. A number of C++ books contain informa-
tion such as that.

The purpose of this book is to highlight those aspects of C++ program-
ming that are often overlooked. Other books describe the different
parts of the language. This book tells you how to combine those parts
so you end up with effective programs. Other books tell you how to get
your programs to compile. This book tells you how to avoid problems
that compilers won’t tell you about.

At the same time, this book limits itself to standard C++. Only fea-
tures in the official language standard have been used here. Portabil-
ity is a key concern in this book, so if you’re looking for platform-
dependent hacks and kludges, this is not the place to find them.

Another thing you won’t find in this book is the C++ Gospel, the One
True Path to perfect C++ software. Each of the Items in this book pro-
vides guidance on how to develop better designs, how to avoid com-
mon problems, or how to achieve greater efficiency, but none of the
Items is universally applicable. Software design and implementation is
a complex task, one colored by the constraints of the hardware, the
operating system, and the application, so the best I can do is provide
guidelines for creating better programs.

If you follow all the guidelines all the time, you are unlikely to fall into
the most common traps surrounding C++, but guidelines, by their na-
ture, have exceptions. That’s why each Item has an explanation. The
explanations are the most important part of the book. Only by under-
standing the rationale behind an Item can you determine whether it
applies to the software you are developing and to the unique con-
straints under which you toil.

Effective C++ Introduction 3
The best use of this book is to gain insight into how C++ behaves, why
it behaves that way, and how to use its behavior to your advantage.
Blind application of the Items in this book is clearly inappropriate, but
at the same time, you probably shouldn’t violate any of the guidelines
without a good reason.

Terminology

There is a small C++ vocabulary that every programmer should under-
stand. The following terms are important enough that it is worth mak-
ing sure we agree on what they mean.

A declaration tells compilers about the name and type of something,
but it omits certain details. These are declarations:

extern int x; // object declaration

std::size_t numDigits(int number); // function declaration

class Widget; // class declaration

template<typename T> // template declaration
class GraphNode; // (see Item 42 for info on

// the use of “typename”)

Note that I refer to the integer x as an “object,” even though it’s of
built-in type. Some people reserve the name “object” for variables of
user-defined type, but I’m not one of them. Also note that the function
numDigits’ return type is std::size_t, i.e., the type size_t in namespace
std. That namespace is where virtually everything in C++’s standard li-
brary is located. However, because C’s standard library (the one from
C89, to be precise) can also be used in C++, symbols inherited from C
(such as size_t) may exist at global scope, inside std, or both, depend-
ing on which headers have been #included. In this book, I assume that
C++ headers have been #included, and that’s why I refer to std::size_t
instead of just size_t. When referring to components of the standard li-
brary in prose, I typically omit references to std, relying on you to rec-
ognize that things like size_t, vector, and cout are in std. In example
code, I always include std, because real code won’t compile without it.

size_t, by the way, is just a typedef for some unsigned type that C++
uses when counting things (e.g., the number of characters in a char*-
based string, the number of elements in an STL container, etc.). It’s
also the type taken by the operator[] functions in vector, deque, and
string, a convention we’ll follow when defining our own operator[] func-
tions in Item 3.

Each function’s declaration reveals its signature, i.e., its parameter
and return types. A function’s signature is the same as its type. In the

4 Introduction Effective C++
case of numDigits, the signature is std::size_t (int), i.e., “function taking
an int and returning a std::size_t.” The official C++ definition of “signa-
ture” excludes the function’s return type, but in this book, it’s more
useful to have the return type be considered part of the signature.

A definition provides compilers with the details a declaration omits.
For an object, the definition is where compilers set aside memory for
the object. For a function or a function template, the definition pro-
vides the code body. For a class or a class template, the definition lists
the members of the class or template:

int x; // object definition

std::size_t numDigits(int number) // function definition.
{ // (This function returns

std::size_t digitsSoFar = 1; // the number of digits
// in its parameter.)

while ((number /= 10) != 0) ++digitsSoFar;

return digitsSoFar;
}

class Widget { // class definition
public:

Widget();
~Widget();
...

};

template<typename T> // template definition
class GraphNode {
public:

GraphNode();
~GraphNode();
...

};

Initialization is the process of giving an object its first value. For ob-
jects generated from structs and classes, initialization is performed by
constructors. A default constructor is one that can be called without
any arguments. Such a constructor either has no parameters or has a
default value for every parameter:

class A {
public:

A(); // default constructor
};

class B {
public:

explicit B(int x = 0, bool b = true); // default constructor; see below
}; // for info on “explicit”

Effective C++ Introduction 5
class C {
public:

explicit C(int x); // not a default constructor
};

The constructors for classes B and C are declared explicit here. That
prevents them from being used to perform implicit type conversions,
though they may still be used for explicit type conversions:

void doSomething(B bObject); // a function taking an object of
// type B

B bObj1; // an object of type B

doSomething(bObj1); // fine, passes a B to doSomething

B bObj2(28); // fine, creates a B from the int 28
// (the bool defaults to true)

doSomething(28); // error! doSomething takes a B,
// not an int, and there is no
// implicit conversion from int to B

doSomething(B(28)); // fine, uses the B constructor to
// explicitly convert (i.e., cast) the
// int to a B for this call. (See
// Item 27 for info on casting.)

Constructors declared explicit are usually preferable to non-explicit
ones, because they prevent compilers from performing unexpected
(often unintended) type conversions. Unless I have a good reason for
allowing a constructor to be used for implicit type conversions, I
declare it explicit. I encourage you to follow the same policy.

Please note how I’ve highlighted the cast in the example above.
Throughout this book, I use such highlighting to call your attention to
material that is particularly noteworthy. (I also highlight chapter
numbers, but that’s just because I think it looks nice.)

The copy constructor is used to initialize an object with a different
object of the same type, and the copy assignment operator is used
to copy the value from one object to another of the same type:

class Widget {
public:

Widget(); // default constructor
Widget(const Widget& rhs); // copy constructor
Widget& operator=(const Widget& rhs); // copy assignment operator
...

};

Widget w1; // invoke default constructor

Widget w2(w1); // invoke copy constructor

w1 = w2; // invoke copy
// assignment operator

6 Introduction Effective C++
Read carefully when you see what appears to be an assignment, be-
cause the “=” syntax can also be used to call the copy constructor:

Widget w3 = w2; // invoke copy constructor!

Fortunately, copy construction is easy to distinguish from copy as-
signment. If a new object is being defined (such as w3 in the statement
above), a constructor has to be called; it can’t be an assignment. If no
new object is being defined (such as in the “w1 = w2” statement above),
no constructor can be involved, so it’s an assignment.

The copy constructor is a particularly important function, because it
defines how an object is passed by value. For example, consider this:

bool hasAcceptableQuality(Widget w);

...

Widget aWidget;

if (hasAcceptableQuality(aWidget)) ...

The parameter w is passed to hasAcceptableQuality by value, so in the
call above, aWidget is copied into w. The copying is done by Widget’s
copy constructor. Pass-by-value means “call the copy constructor.”
(However, it’s generally a bad idea to pass user-defined types by value.
Pass-by-reference-to-const is typically a better choice. For details, see
Item 20.)

The STL is the Standard Template Library, the part of C++’s standard
library devoted to containers (e.g., vector, list, set, map, etc.), iterators
(e.g., vector<int>::iterator, set<string>::iterator, etc.), algorithms (e.g.,
for_each, find, sort, etc.), and related functionality. Much of that related
functionality has to do with function objects: objects that act like
functions. Such objects come from classes that overload operator(), the
function call operator. If you’re unfamiliar with the STL, you’ll want to
have a decent reference available as you read this book, because the
STL is too useful for me not to take advantage of it. Once you’ve used
it a little, you’ll feel the same way.

Programmers coming to C++ from languages like Java or C# may be
surprised at the notion of undefined behavior. For a variety of rea-
sons, the behavior of some constructs in C++ is literally not defined:
you can’t reliably predict what will happen at runtime. Here are two
examples of code with undefined behavior:

int *p = 0; // p is a null pointer

std::cout << *p; // dereferencing a null pointer
// yields undefined behavior

Effective C++ Introduction 7
char name[] = "Darla"; // name is an array of size 6 (don’t
// forget the trailing null!)

char c = name[10]; // referring to an invalid array index
// yields undefined behavior

To emphasize that the results of undefined behavior are not predict-
able and may be very unpleasant, experienced C++ programmers of-
ten say that programs with undefined behavior can erase your hard
drive. It’s true: a program with undefined behavior could erase your
hard drive. But it’s not probable. More likely is that the program will
behave erratically, sometimes running normally, other times crash-
ing, still other times producing incorrect results. Effective C++ pro-
grammers do their best to steer clear of undefined behavior. In this
book, I point out a number of places where you need to be on the look-
out for it.

Another term that may confuse programmers coming to C++ from an-
other language is interface. Java and the .NET languages offer Inter-
faces as a language element, but there is no such thing in C++,
though Item 31 discusses how to approximate them. When I use the
term “interface,” I’m generally talking about a function’s signature,
about the accessible elements of a class (e.g., a class’s “public inter-
face,” “protected interface,” or “private interface”), or about the ex-
pressions that must be valid for a template’s type parameter (see
Item 41). That is, I’m talking about interfaces as a fairly general de-
sign idea.

A client is someone or something that uses the code (typically the in-
terfaces) you write. A function’s clients, for example, are its users: the
parts of the code that call the function (or take its address) as well as
the humans who write and maintain such code. The clients of a class
or a template are the parts of the software that use the class or tem-
plate, as well as the programmers who write and maintain that code.
When discussing clients, I typically focus on programmers, because
programmers can be confused, misled, or annoyed by bad interfaces.
The code they write can’t be.

You may not be used to thinking about clients, but I’ll spend a good
deal of time trying to convince you to make their lives as easy as you
can. After all, you are a client of the software other people develop.
Wouldn’t you want those people to make things easy for you? Besides,
at some point you’ll almost certainly find yourself in the position of be-
ing your own client (i.e., using code you wrote), and at that point,
you’ll be glad you kept client concerns in mind when developing your
interfaces.

8 Introduction Effective C++
In this book, I often gloss over the distinction between functions and
function templates and between classes and class templates. That’s
because what’s true about one is often true about the other. In situa-
tions where this is not the case, I distinguish among classes, func-
tions, and the templates that give rise to classes and functions.

When referring to constructors and destructors in code comments, I
sometimes use the abbreviations ctor and dtor.

Naming Conventions

I have tried to select meaningful names for objects, classes, functions,
templates, etc., but the meanings behind some of my names may not
be immediately apparent. Two of my favorite parameter names, for
example, are lhs and rhs. They stand for “left-hand side” and “right-
hand side,” respectively. I often use them as parameter names for
functions implementing binary operators, e.g., operator== and opera-
tor*. For example, if a and b are objects representing rational numbers,
and if Rational objects can be multiplied via a non-member operator*
function (as Item 24 explains is likely to be the case), the expression

a * b

is equivalent to the function call

operator*(a, b)

In Item 24, I declare operator* like this:

const Rational operator*(const Rational& lhs, const Rational& rhs);

As you can see, the left-hand operand, a, is known as lhs inside the
function, and the right-hand operand, b, is known as rhs.

For member functions, the left-hand argument is represented by the
this pointer, so sometimes I use the parameter name rhs by itself. You
may have noticed this in the declarations for some Widget member
functions on page 5. Which reminds me. I often use the Widget class
in examples. “Widget” doesn’t mean anything. It’s just a name I some-
times use when I need an example class name. It has nothing to do
with widgets in GUI toolkits.

I often name pointers following the rule that a pointer to an object of
type T is called pt, “pointer to T.” Here are some examples:

Widget *pw; // pw = ptr to Widget

class Airplane;
Airplane *pa; // pa = ptr to Airplane

Effective C++ Introduction 9
class GameCharacter;
GameCharacter *pgc; // pgc = ptr to GameCharacter

I use a similar convention for references: rw might be a reference to a
Widget and ra a reference to an Airplane.

I occasionally use the name mf when I’m talking about member func-
tions.

Threading Considerations

As a language, C++ has no notion of threads — no notion of concur-
rency of any kind, in fact. Ditto for C++’s standard library. As far as
C++ is concerned, multithreaded programs don’t exist.

And yet they do. My focus in this book is on standard, portable C++,
but I can’t ignore the fact that thread safety is an issue many pro-
grammers confront. My approach to dealing with this chasm between
standard C++ and reality is to point out places where the C++ con-
structs I examine are likely to cause problems in a threaded environ-
ment. That doesn’t make this a book on multithreaded programming
with C++. Far from it. Rather, it makes it a book on C++ programming
that, while largely limiting itself to single-threaded considerations, ac-
knowledges the existence of multithreading and tries to point out
places where thread-aware programmers need to take particular care
in evaluating the advice I offer.

If you’re unfamiliar with multithreading or have no need to worry
about it, you can ignore my threading-related remarks. If you are pro-
gramming a threaded application or library, however, remember that
my comments are little more than a starting point for the issues you’ll
need to address when using C++.

TR1 and Boost

You’ll find references to TR1 and Boost throughout this book. Each
has an Item that describes it in some detail (Item 54 for TR1, Item 55
for Boost), but, unfortunately, these Items are at the end of the book.
(They’re there because it works better that way. Really. I tried them in
a number of other places.) If you like, you can turn to those Items and
read them now, but if you’d prefer to start the book at the beginning
instead of the end, the following executive summary will tide you over:

■ TR1 (“Technical Report 1”) is a specification for new functionality
being added to C++’s standard library. This functionality takes the
form of new class and function templates for things like hash ta-

10 Introduction Effective C++
bles, reference-counting smart pointers, regular expressions, and
more. All TR1 components are in the namespace tr1 that’s nested
inside the namespace std.

■ Boost is an organization and a web site (http://boost.org) offering
portable, peer-reviewed, open source C++ libraries. Most TR1
functionality is based on work done at Boost, and until compiler
vendors include TR1 in their C++ library distributions, the Boost
web site is likely to remain the first stop for developers looking for
TR1 implementations. Boost offers more than is available in TR1,
however, so it’s worth knowing about in any case.

http://boost.org

48 Item 9 Chapter 2
because destructors that emit exceptions are dangerous, always run-
ning the risk of premature program termination or undefined behav-
ior. In this example, telling clients to call close themselves doesn’t
impose a burden on them; it gives them an opportunity to deal with
errors they would otherwise have no chance to react to. If they don’t
find that opportunity useful (perhaps because they believe that no
error will really occur), they can ignore it, relying on DBConn’s destruc-
tor to call close for them. If an error occurs at that point — if close does
throw — they’re in no position to complain if DBConn swallows the
exception or terminates the program. After all, they had first crack at
dealing with the problem, and they chose not to use it.

Things to Remember

✦ Destructors should never emit exceptions. If functions called in a
destructor may throw, the destructor should catch any exceptions,
then swallow them or terminate the program.

✦ If class clients need to be able to react to exceptions thrown during
an operation, the class should provide a regular (i.e., non-destruc-
tor) function that performs the operation.

Item 9: Never call virtual functions during
construction or destruction.

I’ll begin with the recap: you shouldn’t call virtual functions during
construction or destruction, because the calls won’t do what you
think, and if they did, you’d still be unhappy. If you’re a recovering
Java or C# programmer, pay close attention to this Item, because this
is a place where those languages zig, while C++ zags.

Suppose you’ve got a class hierarchy for modeling stock transactions,
e.g., buy orders, sell orders, etc. It’s important that such transactions
be auditable, so each time a transaction object is created, an appro-
priate entry needs to be created in an audit log. This seems like a rea-
sonable way to approach the problem:

class Transaction { // base class for all
public: // transactions

Transaction();

virtual void logTransaction() const = 0; // make type-dependent
// log entry

...

};

Constructors, Destructors, operator= Item 9 49
Transaction::Transaction() // implementation of
{ // base class ctor

...
logTransaction(); // as final action, log this

} // transaction

class BuyTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

class SellTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

Consider what happens when this code is executed:

BuyTransaction b;

Clearly a BuyTransaction constructor will be called, but first, a Transac-
tion constructor must be called; base class parts of derived class
objects are constructed before derived class parts are. The last line of
the Transaction constructor calls the virtual function logTransaction, but
this is where the surprise comes in. The version of logTransaction that’s
called is the one in Transaction, not the one in BuyTransaction — even
though the type of object being created is BuyTransaction. During base
class construction, virtual functions never go down into derived
classes. Instead, the object behaves as if it were of the base type.
Informally speaking, during base class construction, virtual functions
aren’t.

There’s a good reason for this seemingly counterintuitive behavior.
Because base class constructors execute before derived class con-
structors, derived class data members have not been initialized when
base class constructors run. If virtual functions called during base
class construction went down to derived classes, the derived class
functions would almost certainly refer to local data members, but
those data members would not yet have been initialized. That would
be a non-stop ticket to undefined behavior and late-night debugging
sessions. Calling down to parts of an object that have not yet been ini-
tialized is inherently dangerous, so C++ gives you no way to do it.

It’s actually more fundamental than that. During base class construc-
tion of a derived class object, the type of the object is that of the base

50 Item 9 Chapter 2
class. Not only do virtual functions resolve to the base class, but the
parts of the language using runtime type information (e.g.,
dynamic_cast (see Item 27) and typeid) treat the object as a base class
type. In our example, while the Transaction constructor is running to
initialize the base class part of a BuyTransaction object, the object is of
type Transaction. That’s how every part of C++ will treat it, and the
treatment makes sense: the BuyTransaction-specific parts of the object
haven’t been initialized yet, so it’s safest to treat them as if they didn’t
exist. An object doesn’t become a derived class object until execution
of a derived class constructor begins.

The same reasoning applies during destruction. Once a derived class
destructor has run, the object’s derived class data members assume
undefined values, so C++ treats them as if they no longer exist. Upon
entry to the base class destructor, the object becomes a base class
object, and all parts of C++ — virtual functions, dynamic_casts, etc., —
treat it that way.

In the example code above, the Transaction constructor made a direct
call to a virtual function, a clear and easy-to-see violation of this
Item’s guidance. The violation is so easy to see, some compilers issue
a warning about it. (Others don’t. See Item 53 for a discussion of
warnings.) Even without such a warning, the problem would almost
certainly become apparent before runtime, because the logTransaction
function is pure virtual in Transaction. Unless it had been defined
(unlikely, but possible — see Item 34), the program wouldn’t link: the
linker would be unable to find the necessary implementation of Trans-
action::logTransaction.

It’s not always so easy to detect calls to virtual functions during con-
struction or destruction. If Transaction had multiple constructors, each
of which had to perform some of the same work, it would be good soft-
ware engineering to avoid code replication by putting the common ini-
tialization code, including the call to logTransaction, into a private non-
virtual initialization function, say, init:

class Transaction {
public:

Transaction()
{ init(); } // call to non-virtual...

virtual void logTransaction() const = 0;
...

private:
void init()
{

...
logTransaction(); // ...that calls a virtual!

}
};

Constructors, Destructors, operator= Item 9 51
This code is conceptually the same as the earlier version, but it’s more
insidious, because it will typically compile and link without complaint.
In this case, because logTransaction is pure virtual in Transaction, most
runtime systems will abort the program when the pure virtual is
called (typically issuing a message to that effect). However, if logTrans-
action were a “normal” virtual function (i.e., not pure virtual) with an
implementation in Transaction, that version would be called, and the
program would merrily trot along, leaving you to figure out why the
wrong version of logTransaction was called when a derived class object
was created. The only way to avoid this problem is to make sure that
none of your constructors or destructors call virtual functions on the
object being created or destroyed and that all the functions they call
obey the same constraint.

But how do you ensure that the proper version of logTransaction is
called each time an object in the Transaction hierarchy is created?
Clearly, calling a virtual function on the object from the Transaction
constructor(s) is the wrong way to do it.

There are different ways to approach this problem. One is to turn
logTransaction into a non-virtual function in Transaction, then require
that derived class constructors pass the necessary log information to
the Transaction constructor. That function can then safely call the non-
virtual logTransaction. Like this:

class Transaction {
public:

explicit Transaction(const std::string& logInfo);

void logTransaction(const std::string& logInfo) const; // now a non-
// virtual func

...

};

Transaction::Transaction(const std::string& logInfo)
{

...
logTransaction(logInfo); // now a non-

} // virtual call

class BuyTransaction: public Transaction {
public:

BuyTransaction(parameters)
: Transaction(createLogString(parameters)) // pass log info
{ ... } // to base class
... // constructor

private:
static std::string createLogString(parameters);

};

52 Item 10 Chapter 2
In other words, since you can’t use virtual functions to call down from
base classes during construction, you can compensate by having
derived classes pass necessary construction information up to base
class constructors instead.

In this example, note the use of the (private) static function createL-
ogString in BuyTransaction. Using a helper function to create a value to
pass to a base class constructor is often more convenient (and more
readable) than going through contortions in the member initialization
list to give the base class what it needs. By making the function static,
there’s no danger of accidentally referring to the nascent BuyTransac-
tion object’s as-yet-uninitialized data members. That’s important,
because the fact that those data members will be in an undefined
state is why calling virtual functions during base class construction
and destruction doesn’t go down into derived classes in the first place.

Things to Remember

✦ Don’t call virtual functions during construction or destruction, be-
cause such calls will never go to a more derived class than that of
the currently executing constructor or destructor.

Item 10: Have assignment operators return a
reference to *this.

One of the interesting things about assignments is that you can chain
them together:

int x, y, z;

x = y = z = 15; // chain of assignments

Also interesting is that assignment is right-associative, so the above
assignment chain is parsed like this:

x = (y = (z = 15));

Here, 15 is assigned to z, then the result of that assignment (the
updated z) is assigned to y, then the result of that assignment (the
updated y) is assigned to x.

The way this is implemented is that assignment returns a reference to
its left-hand argument, and that’s the convention you should follow
when you implement assignment operators for your classes:

class Widget {
public:

...

116 Item 27 Chapter 5
Here I’ve switched from an object of type string to an object of type Wid-
get to avoid any preconceptions about the cost of performing a con-
struction, destruction, or assignment for the object.

In terms of Widget operations, the costs of these two approaches are
as follows:

■ Approach A: 1 constructor + 1 destructor + n assignments.

■ Approach B: n constructors + n destructors.

For classes where an assignment costs less than a constructor-
destructor pair, Approach A is generally more efficient. This is espe-
cially the case as n gets large. Otherwise, Approach B is probably bet-
ter. Furthermore, Approach A makes the name w visible in a larger
scope (the one containing the loop) than Approach B, something that’s
contrary to program comprehensibility and maintainability. As a
result, unless you know that (1) assignment is less expensive than a
constructor-destructor pair and (2) you’re dealing with a perfor-
mance-sensitive part of your code, you should default to using
Approach B.

Things to Remember

✦ Postpone variable definitions as long as possible. It increases pro-
gram clarity and improves program efficiency.

Item 27: Minimize casting.

The rules of C++ are designed to guarantee that type errors are impos-
sible. In theory, if your program compiles cleanly, it’s not trying to
perform any unsafe or nonsensical operations on any objects. This is
a valuable guarantee. You don’t want to forgo it lightly.

Unfortunately, casts subvert the type system. That can lead to all
kinds of trouble, some easy to recognize, some extraordinarily subtle.
If you’re coming to C++ from C, Java, or C#, take note, because cast-
ing in those languages is more necessary and less dangerous than in
C++. But C++ is not C. It’s not Java. It’s not C#. In this language, cast-
ing is a feature you want to approach with great respect.

Let’s begin with a review of casting syntax, because there are usually
three different ways to write the same cast. C-style casts look like this:

(T) expression // cast expression to be of type T

Function-style casts use this syntax:

T(expression) // cast expression to be of type T

Implementations Item 27 117
There is no difference in meaning between these forms; it’s purely a
matter of where you put the parentheses. I call these two forms old-
style casts.

C++ also offers four new cast forms (often called new-style or C++-style
casts):

const_cast<T>(expression)

dynamic_cast<T>(expression)

reinterpret_cast<T>(expression)

static_cast<T>(expression)

Each serves a distinct purpose:

■ const_cast is typically used to cast away the constness of objects. It
is the only C++-style cast that can do this.

■ dynamic_cast is primarily used to perform “safe downcasting,” i.e.,
to determine whether an object is of a particular type in an inher-
itance hierarchy. It is the only cast that cannot be performed us-
ing the old-style syntax. It is also the only cast that may have a
significant runtime cost. (I’ll provide details on this a bit later.)

■ reinterpret_cast is intended for low-level casts that yield implemen-
tation-dependent (i.e., unportable) results, e.g., casting a pointer
to an int. Such casts should be rare outside low-level code. I use it
only once in this book, and that’s only when discussing how you
might write a debugging allocator for raw memory (see Item 50).

■ static_cast can be used to force implicit conversions (e.g., non-const
object to const object (as in Item 3), int to double, etc.). It can also be
used to perform the reverse of many such conversions (e.g., void*
pointers to typed pointers, pointer-to-base to pointer-to-derived),
though it cannot cast from const to non-const objects. (Only
const_cast can do that.)

The old-style casts continue to be legal, but the new forms are prefer-
able. First, they’re much easier to identify in code (both for humans
and for tools like grep), thus simplifying the process of finding places
in the code where the type system is being subverted. Second, the
more narrowly specified purpose of each cast makes it possible for
compilers to diagnose usage errors. For example, if you try to cast
away constness using a new-style cast other than const_cast, your
code won’t compile.

About the only time I use an old-style cast is when I want to call an ex-
plicit constructor to pass an object to a function. For example:

118 Item 27 Chapter 5
class Widget {
public:

explicit Widget(int size);
...

};

void doSomeWork(const Widget& w);

doSomeWork(Widget(15)); // create Widget from int
// with function-style cast

doSomeWork(static_cast<Widget>(15)); // create Widget from int
// with C++-style cast

Somehow, deliberate object creation doesn’t “feel” like a cast, so I’d
probably use the function-style cast instead of the static_cast in this
case. (They do exactly the same thing here: create a temporary Widget
object to pass to doSomeWork.) Then again, code that leads to a core
dump usually feels pretty reasonable when you write it, so perhaps
you’d best ignore feelings and use new-style casts all the time.

Many programmers believe that casts do nothing but tell compilers to
treat one type as another, but this is mistaken. Type conversions of
any kind (either explicit via casts or implicit by compilers) often lead to
code that is executed at runtime. For example, in this code fragment,

int x, y;
...
double d = static_cast<double>(x)/y; // divide x by y, but use

// floating point division

the cast of the int x to a double almost certainly generates code,
because on most architectures, the underlying representation for an
int is different from that for a double. That’s perhaps not so surprising,
but this example may widen your eyes a bit:

class Base { ... };

class Derived: public Base { ... };

Derived d;

Base *pb = &d; // implicitly convert Derived* ⇒ Base*

Here we’re just creating a base class pointer to a derived class object,
but sometimes, the two pointer values will not be the same. When
that’s the case, an offset is applied at runtime to the Derived* pointer to
get the correct Base* pointer value.

This last example demonstrates that a single object (e.g., an object of
type Derived) might have more than one address (e.g., its address
when pointed to by a Base* pointer and its address when pointed to by
a Derived* pointer). That can’t happen in C. It can’t happen in Java. It
can’t happen in C#. It does happen in C++. In fact, when multiple

Implementations Item 27 119
inheritance is in use, it happens virtually all the time, but it can hap-
pen under single inheritance, too. Among other things, that means
you should generally avoid making assumptions about how things are
laid out in C++, and you should certainly not perform casts based on
such assumptions. For example, casting object addresses to char*
pointers and then using pointer arithmetic on them almost always
yields undefined behavior.

But note that I said that an offset is “sometimes” required. The way
objects are laid out and the way their addresses are calculated varies
from compiler to compiler. That means that just because your “I know
how things are laid out” casts work on one platform doesn’t mean
they’ll work on others. The world is filled with woeful programmers
who’ve learned this lesson the hard way.

An interesting thing about casts is that it’s easy to write something
that looks right (and might be right in other languages) but is wrong.
Many application frameworks, for example, require that virtual mem-
ber function implementations in derived classes call their base class
counterparts first. Suppose we have a Window base class and a Spe-
cialWindow derived class, both of which define the virtual function
onResize. Further suppose that SpecialWindow’s onResize is expected to
invoke Window’s onResize first. Here’s a way to implement this that
looks like it does the right thing, but doesn’t:

class Window { // base class
public:

virtual void onResize() { ... } // base onResize impl
...

};

class SpecialWindow: public Window { // derived class
public:

virtual void onResize() { // derived onResize impl;
static_cast<Window>(*this).onResize(); // cast *this to Window,

// then call its onResize;
// this doesn’t work!

... // do SpecialWindow-
} // specific stuff

...

};

I’ve highlighted the cast in the code. (It’s a new-style cast, but using
an old-style cast wouldn’t change anything.) As you would expect, the
code casts *this to a Window. The resulting call to onResize therefore
invokes Window::onResize. What you might not expect is that it does
not invoke that function on the current object! Instead, the cast cre-

120 Item 27 Chapter 5
ates a new, temporary copy of the base class part of *this, then invokes
onResize on the copy! The above code doesn’t call Window::onResize on
the current object and then perform the SpecialWindow-specific
actions on that object — it calls Window::onResize on a copy of the base
class part of the current object before performing SpecialWindow-spe-
cific actions on the current object. If Window::onResize modifies the
current object (hardly a remote possibility, since onResize is a non-
const member function), the current object won’t be modified. Instead,
a copy of that object will be modified. If SpecialWindow::onResize modi-
fies the current object, however, the current object will be modified,
leading to the prospect that the code will leave the current object in an
invalid state, one where base class modifications have not been made,
but derived class ones have been.

The solution is to eliminate the cast, replacing it with what you really
want to say. You don’t want to trick compilers into treating *this as a
base class object; you want to call the base class version of onResize on
the current object. So say that:

class SpecialWindow: public Window {
public:

virtual void onResize() {
Window::onResize(); // call Window::onResize
... // on *this

}

...

};

This example also demonstrates that if you find yourself wanting to
cast, it’s a sign that you could be approaching things the wrong way.
This is especially the case if your want is for dynamic_cast.

Before delving into the design implications of dynamic_cast, it’s worth
observing that many implementations of dynamic_cast can be quite
slow. For example, at least one common implementation is based in
part on string comparisons of class names. If you’re performing a
dynamic_cast on an object in a single-inheritance hierarchy four levels
deep, each dynamic_cast under such an implementation could cost you
up to four calls to strcmp to compare class names. A deeper hierarchy
or one using multiple inheritance would be more expensive. There are
reasons that some implementations work this way (they have to do
with support for dynamic linking). Nonetheless, in addition to being
leery of casts in general, you should be especially leery of
dynamic_casts in performance-sensitive code.

The need for dynamic_cast generally arises because you want to per-
form derived class operations on what you believe to be a derived class

Implementations Item 27 121
object, but you have only a pointer- or reference-to-base through
which to manipulate the object. There are two general ways to avoid
this problem.

First, use containers that store pointers (often smart pointers — see
Item 13) to derived class objects directly, thus eliminating the need to
manipulate such objects through base class interfaces. For example,
if, in our Window/SpecialWindow hierarchy, only SpecialWindows sup-
port blinking, instead of doing this:

class Window { ... };

class SpecialWindow: public Window {
public:

void blink();
...

};

typedef // see Item 13 for info
std::vector<std::tr1::shared_ptr<Window> > VPW; // on tr1::shared_ptr

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); // undesirable code:
iter != winPtrs.end(); // uses dynamic_cast
++iter) {

if (SpecialWindow *psw = dynamic_cast<SpecialWindow*>(iter->get()))
psw->blink();

}

try to do this instead:

typedef std::vector<std::tr1::shared_ptr<SpecialWindow> > VPSW;

VPSW winPtrs;

...

for (VPSW::iterator iter = winPtrs.begin(); // better code: uses
iter != winPtrs.end(); // no dynamic_cast
++iter)

(*iter)->blink();

Of course, this approach won’t allow you to store pointers to all possi-
ble Window derivatives in the same container. To work with different
window types, you might need multiple type-safe containers.

An alternative that will let you manipulate all possible Window deriva-
tives through a base class interface is to provide virtual functions in
the base class that let you do what you need. For example, though
only SpecialWindows can blink, maybe it makes sense to declare the

122 Item 27 Chapter 5
function in the base class, offering a default implementation that does
nothing:

class Window {
public:

virtual void blink() {} // default impl is no-op;
... // see Item 34 for why

}; // a default impl may be
// a bad idea

class SpecialWindow: public Window {
public:

virtual void blink() { ... } // in this class, blink
... // does something

};

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs; // container holds
// (ptrs to) all possible

... // Window types

for (VPW::iterator iter = winPtrs.begin();
iter != winPtrs.end();
++iter) // note lack of

(*iter)->blink(); // dynamic_cast

Neither of these approaches — using type-safe containers or moving
virtual functions up the hierarchy — is universally applicable, but in
many cases, they provide a viable alternative to dynamic_casting. When
they do, you should embrace them.

One thing you definitely want to avoid is designs that involve cascad-
ing dynamic_casts, i.e., anything that looks like this:

class Window { ... };

... // derived classes are defined here

typedef std::vector<std::tr1::shared_ptr<Window> > VPW;

VPW winPtrs;

...

for (VPW::iterator iter = winPtrs.begin(); iter != winPtrs.end(); ++iter)
{

if (SpecialWindow1 *psw1 =
dynamic_cast<SpecialWindow1*>(iter->get())) { ... }

else if (SpecialWindow2 *psw2 =
dynamic_cast<SpecialWindow2*>(iter->get())) { ... }

else if (SpecialWindow3 *psw3 =
dynamic_cast<SpecialWindow3*>(iter->get())) { ... }

...

}

Implementations Item 28 123
Such C++ generates code that’s big and slow, plus it’s brittle, because
every time the Window class hierarchy changes, all such code has to
be examined to see if it needs to be updated. (For example, if a new
derived class gets added, a new conditional branch probably needs to
be added to the above cascade.) Code that looks like this should
almost always be replaced with something based on virtual function
calls.

Good C++ uses very few casts, but it’s generally not practical to get rid
of all of them. The cast from int to double on page 118, for example, is
a reasonable use of a cast, though it’s not strictly necessary. (The code
could be rewritten to declare a new variable of type double that’s ini-
tialized with x’s value.) Like most suspicious constructs, casts should
be isolated as much as possible, typically hidden inside functions
whose interfaces shield callers from the grubby work being done
inside.

Things to Remember

✦ Avoid casts whenever practical, especially dynamic_casts in perfor-
mance-sensitive code. If a design requires casting, try to develop a
cast-free alternative.

✦ When casting is necessary, try to hide it inside a function. Clients
can then call the function instead of putting casts in their own code.

✦ Prefer C++-style casts to old-style casts. They are easier to see, and
they are more specific about what they do.

Item 28: Avoid returning “handles” to object internals.

Suppose you’re working on an application involving rectangles. Each
rectangle can be represented by its upper left corner and its lower
right corner. To keep a Rectangle object small, you might decide that
the points defining its extent shouldn’t be stored in the Rectangle
itself, but rather in an auxiliary struct that the Rectangle points to:

class Point { // class for representing points
public:

Point(int x, int y);
...

void setX(int newVal);
void setY(int newVal);
...

};

226 Item 47 Chapter 7
template<typename T> // declare
const Rational<T> doMultiply(const Rational<T>& lhs, // helper

const Rational<T>& rhs); // template

template<typename T>
class Rational {
public:

...

friend
const Rational<T> operator*(const Rational<T>& lhs,

const Rational<T>& rhs) // Have friend
{ return doMultiply(lhs, rhs); } // call helper
...

};

Many compilers essentially force you to put all template definitions in
header files, so you may need to define doMultiply in your header as
well. (As Item 30 explains, such templates need not be inline.) That
could look like this:

template<typename T> // define
const Rational<T> doMultiply(const Rational<T>& lhs, // helper

const Rational<T>& rhs) // template in
{ // header file,

return Rational<T>(lhs.numerator() * rhs.numerator(), // if necessary
lhs.denominator() * rhs.denominator());

}

As a template, of course, doMultiply won’t support mixed-mode multi-
plication, but it doesn’t need to. It will only be called by operator*, and
operator* does support mixed-mode operations! In essence, the func-
tion operator* supports whatever type conversions are necessary to
ensure that two Rational objects are being multiplied, then it passes
these two objects to an appropriate instantiation of the doMultiply tem-
plate to do the actual multiplication. Synergy in action, no?

Things to Remember

✦ When writing a class template that offers functions related to the
template that support implicit type conversions on all parameters,
define those functions as friends inside the class template.

Item 47: Use traits classes for information about types.

The STL is primarily made up of templates for containers, iterators,
and algorithms, but it also has a few utility templates. One of these is
called advance. advance moves a specified iterator a specified distance:

Templates and Generic Programming Item 47 227
template<typename IterT, typename DistT> // move iter d units
void advance(IterT& iter, DistT d); // forward; if d < 0,

// move iter backward

Conceptually, advance just does iter += d, but advance can’t be imple-
mented that way, because only random access iterators support the
+= operation. Less powerful iterator types have to implement advance
by iteratively applying ++ or -- d times.

Um, you don’t remember your STL iterator categories? No problem,
we’ll do a mini-review. There are five categories of iterators, corre-
sponding to the operations they support. Input iterators can move only
forward, can move only one step at a time, can only read what they
point to, and can read what they’re pointing to only once. They’re
modeled on the read pointer into an input file; the C++ library’s
istream_iterators are representative of this category. Output iterators
are analogous, but for output: they move only forward, move only one
step at a time, can only write what they point to, and can write it only
once. They’re modeled on the write pointer into an output file;
ostream_iterators epitomize this category. These are the two least pow-
erful iterator categories. Because input and output iterators can move
only forward and can read or write what they point to at most once,
they are suitable only for one-pass algorithms.

A more powerful iterator category consists of forward iterators. Such
iterators can do everything input and output iterators can do, plus
they can read or write what they point to more than once. This makes
them viable for multi-pass algorithms. The STL offers no singly linked
list, but some libraries offer one (usually called slist), and iterators into
such containers are forward iterators. Iterators into TR1’s hashed
containers (see Item 54) may also be in the forward category.

Bidirectional iterators add to forward iterators the ability to move
backward as well as forward. Iterators for the STL’s list are in this cat-
egory, as are iterators for set, multiset, map, and multimap.

The most powerful iterator category is that of random access iterators.
These kinds of iterators add to bidirectional iterators the ability to per-
form “iterator arithmetic,” i.e., to jump forward or backward an arbi-
trary distance in constant time. Such arithmetic is analogous to
pointer arithmetic, which is not surprising, because random access
iterators are modeled on built-in pointers, and built-in pointers can
act as random access iterators. Iterators for vector, deque, and string
are random access iterators.

For each of the five iterator categories, C++ has a “tag struct” in the
standard library that serves to identify it:

228 Item 47 Chapter 7
struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional_iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public bidirectional_iterator_tag {};

The inheritance relationships among these structs are valid is-a rela-
tionships (see Item 32): it’s true that all forward iterators are also
input iterators, etc. We’ll see the utility of this inheritance shortly.

But back to advance. Given the different iterator capabilities, one way
to implement advance would be to use the lowest-common-denomina-
tor strategy of a loop that iteratively increments or decrements the
iterator. However, that approach would take linear time. Random
access iterators support constant-time iterator arithmetic, and we’d
like to take advantage of that ability when it’s present.

What we really want to do is implement advance essentially like this:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if (iter is a random access iterator) {
iter += d; // use iterator arithmetic

} // for random access iters
else {

if (d >= 0) { while (d--) ++iter; } // use iterative calls to
else { while (d++) --iter; } // ++ or -- for other

} // iterator categories
}

This requires being able to determine whether iter is a random access
iterator, which in turn requires knowing whether its type, IterT, is a
random access iterator type. In other words, we need to get some
information about a type. That’s what traits let you do: they allow you
to get information about a type during compilation.

Traits aren’t a keyword or a predefined construct in C++; they’re a
technique and a convention followed by C++ programmers. One of the
demands made on the technique is that it has to work as well for
built-in types as it does for user-defined types. For example, if advance
is called with a pointer (like a const char*) and an int, advance has to
work, but that means that the traits technique must apply to built-in
types like pointers.

The fact that traits must work with built-in types means that things
like nesting information inside types won’t do, because there’s no way
to nest information inside pointers. The traits information for a type,
then, must be external to the type. The standard technique is to put it

Templates and Generic Programming Item 47 229
into a template and one or more specializations of that template. For
iterators, the template in the standard library is named iterator_traits:

template<typename IterT> // template for information about
struct iterator_traits; // iterator types

As you can see, iterator_traits is a struct. By convention, traits are
always implemented as structs. Another convention is that the structs
used to implement traits are known as — I am not making this up —
traits classes.

The way iterator_traits works is that for each type IterT, a typedef named
iterator_category is declared in the struct iterator_traits<IterT>. This
typedef identifies the iterator category of IterT.

iterator_traits implements this in two parts. First, it imposes the
requirement that any user-defined iterator type must contain a nested
typedef named iterator_category that identifies the appropriate tag
struct. deque’s iterators are random access, for example, so a class for
deque iterators would look something like this:

template < ... > // template params elided
class deque {
public:

class iterator {
public:

typedef random_access_iterator_tag iterator_category;
...

};
...

};

list’s iterators are bidirectional, however, so they’d do things this way:

template < ... >
class list {
public:

class iterator {
public:

typedef bidirectional_iterator_tag iterator_category;
...

};
...

};

iterator_traits just parrots back the iterator class’s nested typedef:

// the iterator_category for type IterT is whatever IterT says it is;
// see Item 42 for info on the use of “typedef typename”
template<typename IterT>
struct iterator_traits {

typedef typename IterT::iterator_category iterator_category;
...

};

230 Item 47 Chapter 7
This works well for user-defined types, but it doesn’t work at all for
iterators that are pointers, because there’s no such thing as a pointer
with a nested typedef. The second part of the iterator_traits implemen-
tation handles iterators that are pointers.

To support such iterators, iterator_traits offers a partial template spe-
cialization for pointer types. Pointers act as random access iterators,
so that’s the category iterator_traits specifies for them:

template<typename T> // partial template specialization
struct iterator_traits<T*> // for built-in pointer types
{

typedef random_access_iterator_tag iterator_category;
...

};

At this point, you know how to design and implement a traits class:

■ Identify some information about types you’d like to make available
(e.g., for iterators, their iterator category).

■ Choose a name to identify that information (e.g., iterator_category).

■ Provide a template and set of specializations (e.g., iterator_traits)
that contain the information for the types you want to support.

Given iterator_traits — actually std::iterator_traits, since it’s part of C++’s
standard library — we can refine our pseudocode for advance:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

if (typeid(typename std::iterator_traits<IterT>::iterator_category) ==
typeid(std::random_access_iterator_tag))

...
}

Although this looks promising, it’s not what we want. For one thing, it
will lead to compilation problems, but we’ll explore that in Item 48;
right now, there’s a more fundamental issue to consider. IterT’s type is
known during compilation, so iterator_traits<IterT>::iterator_category can
also be determined during compilation. Yet the if statement is evalu-
ated at runtime (unless your optimizer is crafty enough to get rid of it).
Why do something at runtime that we can do during compilation? It
wastes time (literally), and it bloats our executable.

What we really want is a conditional construct (i.e., an if...else state-
ment) for types that is evaluated during compilation. As it happens,
C++ already has a way to get that behavior. It’s called overloading.

When you overload some function f, you specify different parameter
types for the different overloads. When you call f, compilers pick the

Templates and Generic Programming Item 47 231
best overload, based on the arguments you’re passing. Compilers
essentially say, “If this overload is the best match for what’s being
passed, call this f; if this other overload is the best match, call it; if
this third one is best, call it,” etc. See? A compile-time conditional
construct for types. To get advance to behave the way we want, all we
have to do is create multiple versions of an overloaded function con-
taining the “guts” of advance, declaring each to take a different type of
iterator_category object. I use the name doAdvance for these functions:

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // random access

std::random_access_iterator_tag) // iterators
{

iter += d;
}

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // bidirectional

std::bidirectional_iterator_tag) // iterators
{

if (d >= 0) { while (d--) ++iter; }
else { while (d++) --iter; }

}

template<typename IterT, typename DistT> // use this impl for
void doAdvance(IterT& iter, DistT d, // input iterators

std::input_iterator_tag)
{

if (d < 0) {
throw std::out_of_range("Negative distance"); // see below

}
while (d--) ++iter;

}

Because forward_iterator_tag inherits from input_iterator_tag, the ver-
sion of doAdvance for input_iterator_tag will also handle forward itera-
tors. That’s the motivation for inheritance among the various
iterator_tag structs. (In fact, it’s part of the motivation for all public
inheritance: to be able to write code for base class types that also
works for derived class types.)

The specification for advance allows both positive and negative dis-
tances for random access and bidirectional iterators, but behavior is
undefined if you try to move a forward or input iterator a negative dis-
tance. The implementations I checked simply assumed that d was
non-negative, thus entering a very long loop counting “down” to zero if
a negative distance was passed in. In the code above, I’ve shown an
exception being thrown instead. Both implementations are valid.
That’s the curse of undefined behavior: you can’t predict what will
happen.

232 Item 47 Chapter 7
Given the various overloads for doAdvance, all advance needs to do is
call them, passing an extra object of the appropriate iterator category
type so that the compiler will use overloading resolution to call the
proper implementation:

template<typename IterT, typename DistT>
void advance(IterT& iter, DistT d)
{

doAdvance(// call the version
iter, d, // of doAdvance
typename // that is

std::iterator_traits<IterT>::iterator_category() // appropriate for
); // iter’s iterator

} // category

We can now summarize how to use a traits class:

■ Create a set of overloaded “worker” functions or function tem-
plates (e.g., doAdvance) that differ in a traits parameter. Implement
each function in accord with the traits information passed.

■ Create a “master” function or function template (e.g., advance) that
calls the workers, passing information provided by a traits class.

Traits are widely used in the standard library. There’s iterator_traits, of
course, which, in addition to iterator_category, offers four other pieces
of information about iterators (the most useful of which is value_type
— Item 42 shows an example of its use). There’s also char_traits, which
holds information about character types, and numeric_limits, which
serves up information about numeric types, e.g., their minimum and
maximum representable values, etc. (The name numeric_limits is a bit
of a surprise, because the more common convention is for traits
classes to end with “traits,” but numeric_limits is what it’s called, so
numeric_limits is the name we use.)

TR1 (see Item 54) introduces a slew of new traits classes that give infor-
mation about types, including is_fundamental<T> (whether T is a built-in
type), is_array<T> (whether T is an array type), and is_base_of<T1, T2>
(whether T1 is the same as or is a base class of T2). All told, TR1 adds
over 50 traits classes to standard C++.

Things to Remember

✦ Traits classes make information about types available during com-
pilation. They’re implemented using templates and template special-
izations.

✦ In conjunction with overloading, traits classes make it possible to
perform compile-time if...else tests on types.

Operators are listed under operator. That is, operator<< is listed under
operator<<, not under <<, etc.

Example classes, structs, and class or struct templates are indexed
under example classes/templates. Example function and function
templates are indexed under example functions/templates.

Index
Before A
.NET 7, 81, 135, 145, 194

see also C#
=, in initialization vs. assignment 6
1066 150
2nd edition of this book

compared to 3rd edition xv–xvi, 277–279
see also inside back cover

3rd edition of this book
compared to 2nd edition xv–xvi, 277–279
see also inside back cover

80-20 rule 139, 168

A
Abrahams, David xvii, xviii, xix
abstract classes 43
accessibility

control over data members’ 95
name, multiple inheritance and 193

accessing names, in templatized
bases 207–212

addresses
inline functions 136
objects 118

aggregation, see composition
Alexandrescu, Andrei xix
aliasing 54
alignment 249–250
allocators, in the STL 240

alternatives to virtual functions 169–177
ambiguity

multiple inheritance and 192
nested dependent names and types 205

Arbiter, Petronius vii
argument-dependent lookup 110
arithmetic, mixed-mode 103, 222–226
array layout, vs. object layout 73
array new 254–255
array, invalid index and 7
ASPECT_RATIO 13
assignment

see also operator=
chaining assignments 52
copy-and-swap and 56
generalized 220
to self, operator= and 53–57
vs. initialization 6, 27–29, 114

assignment operator, copy 5
auto_ptr, see std::auto_ptr
automatically generated functions 34–37

copy constructor and copy assignment
operator 221

disallowing 37–39
avoiding code duplication 50, 60

B
Bai, Yun xix
Barry, Dave, allusion to 229
Bartolucci, Guido xix

Effective C++ Index 281
base classes
copying 59
duplication of data in 193
lookup in, this-> and 210
names hidden in derived classes 263
polymorphic 44
polymorphic, destructors and 40–44
templatized 207–212
virtual 193

basic guarantee, the 128
Battle of Hastings 150
Berck, Benjamin xix
bidirectional iterators 227
bidirectional_iterator_tag 228
binary upgradeability, inlining and 138
binding

dynamic, see dynamic binding
static, see static binding

birds and penguins 151–153
bitwise const member functions 21–22
books

C++ Programming Language, The xvii
C++ Templates xviii
Design Patterns xvii
Effective STL 273, 275–276
Exceptional C++ xvii
Exceptional C++ Style xvii, xviii
More Effective C++ 273, 273–274
More Exceptional C++ xvii
Satyricon vii
Some Must Watch While Some Must

Sleep 150
Boost 10, 269–272

containers 271
Conversion library 270
correctness and testing support 272
data structures 272
function objects and higher-order pro-

gramming utilities 271
functionality not provided 272
generic programming support 271
Graph library 270
inter-language support 272
Lambda library 271
math and numerics utilities 271
memory management utilities 272
MPL library 270, 271
noncopyable base class 39
Pool library 250, 251
scoped_array 65, 216, 272
shared_array 65
shared_ptr implementation, costs 83
smart pointers 65, 272

web page xvii
string and text utilities 271
template metaprogramming

support 271

TR1 and 9–10, 268, 269
typelist support 271
web site 10, 269, 272

boost, as synonym for std::tr1 268
Bosch, Derek xviii
breakpoints, and inlining 139
Buffy the Vampire Slayer xx
bugs, reporting xvi
built-in types 26–27

efficiency and passing 89
incompatibilities with 80

C
C standard library and C++ standard

library 264
C# 43, 76, 97, 100, 116, 118, 190

see also .NET
C++ Programming Language, The xvii
C++ standard library 263–269

<iosfwd> and 144
array replacements and 75
C standard library and 264
C89 standard library and 264
header organization of 101
list template 186
logic_error and 113
set template 185
vector template 75

C++ Templates xviii
C++, as language federation 11–13
C++0x 264
C++-style casts 117
C, as sublanguage of C++ 12
C99 standard library, TR1 and 267
caching

const and 22
mutable and 22

Cai, Steve xix
calling swap 110
calls to base classes, casting and 119
Cargill, Tom xviii
Carrara, Enrico xix
Carroll, Glenn xviii
casting 116–123

see also const_cast, static_cast,
dynamic_cast, and reinterpret_cast

base class calls and 119
constness away 24–25
encapsulation and 123
grep and 117
syntactic forms 116–117
type systems and 116
undefined behavior and 119

chaining assignments 52

282 Index Effective C++
Chang, Brandon xix
Clamage, Steve xviii
class definitions

artificial client dependencies,
eliminating 143

class declarations vs. 143
object sizes and 141

class design, see type design
class names, explicitly specifying 162
class, vs. typename 203
classes

see also class definitions, interfaces
abstract 43, 162
base

see also base classes
duplication of data in 193
polymorphic 44
templatized 207–212
virtual 193

defining 4
derived

see also inheritance
virtual base initialization of 194

Handle 144–145
Interface 145–147
meaning of no virtual functions 41
RAII, see RAII
specification, see interfaces
traits 226–232

client 7
clustering objects 251
code

bloat 24, 135, 230
avoiding, in templates 212–217

copy assignment operator 60
duplication, see duplication
exception-safe 127–134
factoring out of templates 212–217
incorrect, efficiency and 90
reuse 195
sharing, see duplication, avoiding

Cohen, Jake xix
Comeau, Greg xviii

URL for his C/C++ FAQ xviii
common features and inheritance 164
commonality and variability analysis 212
compatibility, vptrs and 42
compatible types, accepting 218–222
compilation dependencies 140–148

minimizing 140–148, 190
pointers, references, and objects

and 143
compiler warnings 262–263

calls to virtuals and 50
inlining and 136
partial copies and 58

compiler-generated functions 34–37
disallowing 37–39
functions compilers may generate 221

compilers
parsing nested dependent names 204
programs executing within, see tem-

plate metaprogramming
register usage and 89
reordering operations 76
typename and 207
when errors are diagnosed 212

compile-time polymorphism 201
composition 184–186

meanings of 184
replacing private inheritance with 189
synonyms for 184
vs. private inheritance 188

conceptual constness, see const, logical
consistency with the built-in types 19, 86
const 13, 17–26

bitwise 21–22
caching and 22
casting away 24–25
function declarations and 18
logical 22–23
member functions 19–25

duplication and 23–25
members, initialization of 29
overloading on 19–20
pass by reference and 86–90
passing std::auto_ptr and 220
pointers 17
return value 18
uses 17
vs. #define 13–14

const_cast 25, 117
see also casting

const_iterator, vs. iterators 18
constants, see const
constraints on interfaces, from

inheritance 85
constructors 84

copy 5
default 4
empty, illusion of 137
explicit 5, 85, 104
implicitly generated 34
inlining and 137–138
operator new and 137
possible implementation in derived

classes 138
relationship to new 73
static functions and 52
virtual 146, 147
virtual functions and 48–52
with vs. without arguments 114

containers, in Boost 271

Effective C++ Index 283
containment, see composition
continue, delete and 62
control over data members’

accessibility 95
convenience functions 100
Conversion library, in Boost 270
conversions, type, see type conversions
copies, partial 58
copy assignment operator 5

code in copy constructor and 60
derived classes and 60

copy constructors
default definition 35
derived classes and 60
generalized 219
how used 5
implicitly generated 34
pass-by-value and 6

copy-and-swap 131
assignment and 56
exception-safe code and 132

copying
base class parts 59
behavior, resource management

and 66–69
functions, the 57
objects 57–60

correctness
designing interfaces for 78–83
testing and, Boost support 272

corresponding forms of new and
delete 73–75

corrupt data structures, exception-safe
code and 127

cows, coming home 139
crimes against English 39, 204
cross-DLL problem 82
CRTP 246
C-style casts 116
ctor 8
curiously recurring template pattern 246

D
dangling handles 126
Dashtinezhad, Sasan xix
data members

adding, copying functions and 58
control over accessibility 95
protected 97
static, initialization of 242
why private 94–98

data structures
exception-safe code and 127
in Boost 272

Davis, Tony xviii

deadly MI diamond 193
debuggers

#define and 13
inline functions and 139

declarations 3
inline functions 135
replacing definitions 143
static const integral members 14

default constructors 4
construction with arguments vs. 114
implicitly generated 34

default implementations
for virtual functions, danger of 163–167
of copy constructor 35
of operator= 35

default initialization, unintended 59
default parameters 180–183

impact if changed 183
static binding of 182

#define
debuggers and 13
disadvantages of 13, 16
vs. const 13–14
vs. inline functions 16–17

definitions 4
classes 4
deliberate omission of 38
functions 4
implicitly generated functions 35
objects 4
pure virtual functions 162, 166–167
replacing with declarations 143
static class members 242
static const integral members 14
templates 4
variable, postponing 113–116

delete
see also operator delete
forms of 73–75
operator delete and 73
relationship to destructors 73
usage problem scenarios 62

delete [], std::auto_ptr and tr1::shared_ptr
and 65

deleters
std::auto_ptr and 68
tr1::shared_ptr and 68, 81–83

Delphi 97
Dement, William 150
dependencies, compilation 140–148
dependent names 204
dereferencing a null pointer, undefined

behavior of 6
derived classes

copy assignment operators and 60
copy constructors and 60
hiding names in base classes 263

284

implem
virtual

design
contra
of inter
of type

Design Pa
design pa

curiou
(C

encaps
genera
Singlet
Strateg
Templa
TMP an

destructo
excepti
inlinin
pure vi
relation
resour
static f
virtual

oper
poly

virtual
Dewhurs
dimensio

and
DLLs, de
dtor 8
Dulimov,
duplicati

avoidin
21

base cl
init fun

dynamic
definiti
of virtu

dynamic
dynamic_

see als
efficien

early bin
easy to u

inco
EBO, see
Effective

C++
Effective

compa
Index Effective C++

enting constructors in 138
 base initialization and 194

diction in 179
faces 78–83
s 78–86
tterns xvii
tterns

sly recurring template
RTP) 246
ulation and 173
ting from templates 237
on 31
y 171–177
te Method 170
d 237
rs 84
ons and 44–48
g and 137–138
rtual 43
ship to delete 73

ce managing objects and 63
unctions and 52

ator delete and 255
morphic base classes and 40–44
 functions and 48–52
t, Steve xvii
nal unit correctness, TMP
236

lete and 82

 Peter xix
on
g 23–25, 29, 50, 60, 164, 183, 212–
7
ass data and 193
ction and 60
binding
on of 181
al functions 179
type, definition of 181
cast 50, 117, 120–123
o casting
cy of 120

E
ding 180
se correctly and hard to use

contents of 275–276
efficiency

assignment vs. construction and
destruction 94

default parameter binding 182
dynamic_cast 120
Handle classes 147
incorrect code and 90, 94
init. with vs. without args 114
Interface classes 147
macros vs. inline functions 16
member init. vs. assignment 28
minimizing compilation

dependencies 147
operator new/operator delete and 248
pass-by-reference and 87
pass-by-value and 86–87
passing built-in types and 89
runtime vs. compile-time tests 230
template metaprogramming and 233
template vs. function parameters 216
unused objects 113
virtual functions 168

Eiffel 100
embedding, see composition
empty base optimization (EBO) 190–191
encapsulation 95, 99

casts and 123
design patterns and 173
handles and 125
measuring 99
protected members and 97
RAII classes and 72

enum hack 15–16, 236
errata list, for this book xvi
errors

detected during linking 39, 44
runtime 152

evaluation order, of parameters 76
example classes/templates

A 4
ABEntry 27
AccessLevels 95
Address 184
Airplane 164, 165, 166
Airport 164
AtomicClock 40
AWOV 43
B 4, 178, 262
Base 54, 118, 137, 157, 158, 159, 160, 254,

255, 259

rrectly 78–83
 empty base optimization
C++, compared to More Effective
and Effective STL 273
STL 273, 275–276
red to Effective C++ 273

BelowBottom 219
bidirectional_iterator_tag 228
Bird 151, 152, 153
Bitmap 54
BorrowableItem 192
Bottom 218
BuyTransaction 49, 51

Effective C++ Index 285
C 5
Circle 181
CompanyA 208
CompanyB 208
CompanyZ 209
CostEstimate 15
CPerson 198
CTextBlock 21, 22, 23
Customer 57, 58
D 178, 262
DatabaseID 197
Date 58, 79
Day 79
DBConn 45, 47
DBConnection 45
deque 229
deque::iterator 229
Derived 54, 118, 137, 157, 158, 159, 160,

206, 254, 260
Directory 31
ElectronicGadget 192
Ellipse 161
Empty 34, 190
EvilBadGuy 172, 174
EyeCandyCharacter 175
Factorial 235
Factorial<0> 235
File 193, 194
FileSystem 30
FlyingBird 152
Font 71
forward_iterator_tag 228
GameCharacter 169, 170, 172, 173, 176
GameLevel 174
GamePlayer 14, 15
GraphNode 4
GUIObject 126
HealthCalcFunc 176
HealthCalculator 174
HoldsAnInt 190, 191
HomeForSale 37, 38, 39
input_iterator_tag 228
input_iterator_tag<Iter*> 230
InputFile 193, 194
Investment 61, 70
IOFile 193, 194
IPerson 195, 197
iterator_traits 229

see also std::iterator_traits
list 229
list::iterator 229
Lock 66, 67, 68
LoggingMsgSender 208, 210, 211
Middle 218
ModelA 164, 165, 167
ModelB 164, 165, 167
ModelC 164, 166, 167
Month 79, 80
MP3Player 192

MsgInfo 208
MsgSender 208
MsgSender<CompanyZ> 209
NamedObject 35, 36
NewHandlerHolder 243
NewHandlerSupport 245
output_iterator_tag 228
OutputFile 193, 194
Penguin 151, 152, 153
Person 86, 135, 140, 141, 142, 145, 146,

150, 184, 187
PersonInfo 195, 197
PhoneNumber 27, 184
PMImpl 131
Point 26, 41, 123
PrettyMenu 127, 130, 131
PriorityCustomer 58
random_access_iterator_tag 228
Rational 90, 102, 103, 105, 222, 223, 224,

225, 226
RealPerson 147
Rectangle 124, 125, 154, 161, 181, 183
RectData 124
SellTransaction 49
Set 185
Shape 161, 162, 163, 167, 180, 182, 183
SmartPtr 218, 219, 220
SpecialString 42
SpecialWindow 119, 120, 121, 122
SpeedDataCollection 96
Square 154
SquareMatrix 213, 214, 215, 216
SquareMatrixBase 214, 215
StandardNewDeleteForms 260
Student 86, 150, 187
TextBlock 20, 23, 24
TimeKeeper 40, 41
Timer 188
Top 218
Transaction 48, 50, 51
Uncopyable 39
WaterClock 40
WebBrowser 98, 100, 101
Widget 4, 5, 44, 52, 53, 54, 56, 107, 108,

109, 118, 189, 199, 201, 242, 245, 246,
257, 258, 261

Widget::WidgetTimer 189
WidgetImpl 106, 108
Window 88, 119, 121, 122
WindowWithScrollBars 88
WristWatch 40
X 242
Y 242
Year 79

example functions/templates
ABEntry::ABEntry 27, 28
AccessLevels::getReadOnly 95
AccessLevels::getReadWrite 95
AccessLevels::setReadOnly 95

286 Index Effective C++
AccessLevels::setWriteOnly 95
advance 228, 230, 232, 233, 234
Airplane::defaultFly 165
Airplane::fly 164, 165, 166, 167
askUserForDatabaseID 195
AWOV::AWOV 43
B::mf 178
Base::operator delete 255
Base::operator new 254
Bird::fly 151
BorrowableItem::checkOut 192
boundingBox 126
BuyTransaction::BuyTransaction 51
BuyTransaction::createLogString 51
calcHealth 174
callWithMax 16
changeFontSize 71
Circle::draw 181
clearAppointments 143, 144
clearBrowser 98
CPerson::birthDate 198
CPerson::CPerson 198
CPerson::name 198
CPerson::valueDelimClose 198
CPerson::valueDelimOpen 198
createInvestment 62, 70, 81, 82, 83
CTextBlock::length 22, 23
CTextBlock::operator[] 21
Customer::Customer 58
Customer::operator= 58
D::mf 178
Date::Date 79
Day::Day 79
daysHeld 69
DBConn::~DBConn 45, 46, 47
DBConn::close 47
defaultHealthCalc 172, 173
Derived::Derived 138, 206
Derived::mf1 160
Derived::mf4 157
Directory::Directory 31, 32
doAdvance 231
doMultiply 226
doProcessing 200, 202
doSomething 5, 44, 54, 110
doSomeWork 118
eat 151, 187
ElectronicGadget::checkOut 192
Empty::~Empty 34
Empty::Empty 34
Empty::operator= 34
encryptPassword 114, 115
error 152
EvilBadGuy::EvilBadGuy 172
f 62, 63, 64
FlyingBird::fly 152
Font::~Font 71
Font::Font 71
Font::get 71

Font::operator FontHandle 71
GameCharacter::doHealthValue 170
GameCharacter::GameCharacter 172, 174,

176
GameCharacter::healthValue 169, 170,

172, 174, 176
GameLevel::health 174
getFont 70
hasAcceptableQuality 6
HealthCalcFunc::calc 176
HealthCalculator::operator() 174
lock 66
Lock::~Lock 66
Lock::Lock 66, 68
logCall 57
LoggingMsgSender::sendClear 208, 210,

211
loseHealthQuickly 172
loseHealthSlowly 172
main 141, 142, 236, 241
makeBigger 154
makePerson 195
max 135
ModelA::fly 165, 167
ModelB::fly 165, 167
ModelC::fly 166, 167
Month::Dec 80
Month::Feb 80
Month::Jan 80
Month::Month 79, 80
MsgSender::sendClear 208
MsgSender::sendSecret 208
MsgSender<CompanyZ>::sendSecret 209
NewHandlerHolder::~NewHandlerHolder 243
NewHandlerHolder::NewHandlerHolder 243
NewHandlerSupport::operator new 245
NewHandlerSupport::set_new_handler 245
numDigits 4
operator delete 255
operator new 249, 252
operator* 91, 92, 94, 105, 222, 224, 225,

226
operator== 93
outOfMem 240
Penguin::fly 152
Person::age 135
Person::create 146, 147
Person::name 145
Person::Person 145
PersonInfo::theName 196
PersonInfo::valueDelimClose 196
PersonInfo::valueDelimOpen 196
PrettyMenu::changeBackground 127, 128,

130, 131
print 20
print2nd 204, 205
printNameAndDisplay 88, 89
priority 75
PriorityCustomer::operator= 59

Effective C++

PriorityCustomer::Pr
processWidget 75
RealPerson::~RealPe
RealPerson::RealPers
Rectangle::doDraw
Rectangle::draw 181
Rectangle::lowerRig
Rectangle::upperLef
releaseFont 70
Set::insert 186
Set::member 186
Set::remove 186
Set::size 186
Shape::doDraw 183
Shape::draw 161, 16
Shape::error 161, 16
Shape::objectID 161
SmartPtr::get 220
SmartPtr::SmartPtr
someFunc 132, 156
SpecialWindow::blin
SpecialWindow::onR
SquareMatrix::invert
SquareMatrix::setDa
SquareMatrix::Squar
StandardNewDelete

delete 260, 26
StandardNewDelete

new 260, 261
std::swap 109
std::swap<Widget>
study 151, 187
swap 106, 109
tempDir 32
TextBlock::operator[
tfs 32
Timer::onTick 188
Transaction::init 50
Transaction::Transac
Uncopyable::operat
Uncopyable::Uncop
unlock 66
validateStudent 87
Widget::onTick 189
Widget::operator ne
Widget::operator+=
Widget::operator= 5
Widget::set_new_ha
Widget::swap 108
Window::blink 122
Window::onResize 1
workWithIterator 20
Year::Year 79

exception specificati
Exceptional C++ xvii
Exceptional C++ Styl
exceptions 113

delete and 62
Index 287

iorityCustomer 59

rson 147
on 147
183
, 183

ht 124, 125
t 124, 125

2, 180, 182, 183
3
, 167

220

k 122
esize 119, 120
214

taPtr 215
eMatrix 215, 216
Forms::operator
1
Forms::operator

107, 108

] 20, 23, 24

tion 49, 50, 51
or= 39
yable 39

w 244
53
3, 54, 55, 56, 107
ndler 243

19
6, 207

destructors and 44–48
member swap and 112
standard hierarchy for 264
swallowing 46
unused objects and 114

exception-safe code 127–134
copy-and-swap and 132
legacy code and 133
pimpl idiom and 131
side effects and 132

exception-safety guarantees 128–129
explicit calls to base class functions 211
explicit constructors 5, 85, 104

generalized copy construction and 219
explicit inline request 135
explicit specification, of class names 162
explicit type conversions vs. implicit 70–

72
expression templates 237
expressions, implicit interfaces and 201

F
factoring code, out of templates 212–217
factory function 40, 62, 69, 81, 146, 195
Fallenstedt, Martin xix
federation, of languages, C++ as 11–13
Fehér, Attila F. xix
final classes, in Java 43
final methods, in Java 190
fixed-size static buffers, problems of 196
forms of new and delete 73–75
FORTRAN 42
forward iterators 227
forward_iterator_tag 228
forwarding functions 144, 160
French, Donald xx
friend functions 38, 85, 105, 135, 173, 223–

225
vs. member functions 98–102

friendship
in real life 105
without needing special access

rights 225
Fruchterman, Thomas xix
FUDGE_FACTOR 15
Fuller, John xx
function declarations, const in 18
function objects
ons 85

e xvii, xviii

definition of 6
higher-order programming utilities

and, in Boost 271
functions

convenience 100
copying 57

288

defini
delibe
factor
forwa
implic

disa
inline
memb

tem
vs.

non-m
tem
typ

non-m
m

non-v
return
signat
static

ctor
virtua

function

Gamma
Geller, A
generali
generali
generati
generic

Boo
get, sma
goddess
goto, de
Graph li
grep, ca
guarant
Gutnik,

Handle
handles

dangl
encap
operat
return

has-a re
hash tab
Hasting
Hauglan
head scr
header f
Index Effective C++

ng 4
rately not defining 38
y, see factory function
rding 144, 160
itly generated 34–37, 221
llowing 37–39

, declaring 135
er
platized 218–222
non-member 104–105
ember
plates and 222–226
e conversions and 102–105, 222–

226
ember non-friend, vs
ember 98–102

irtual, meaning 168
 values, modifying 21
ures, explicit interfaces and 201

s and dtors and 52
l, see virtual functions
-style casts 116

G
, Erich xvii
lan xix

zed assignment 220
zed copy constructors 219
ve programming 237
programming support, in
st 271
rt pointers and 70
, see Urbano, Nancy L.
lete and 62
brary, in Boost 270
sts and 117
ees, exception safety 128–129
 Gene xix

H
classes 144–145
125

ing 126
sulation and 125
or[] and 126
ing 123–126

headers
for declarations vs. for definitions 144
inline functions and 135
namespaces and 100
of C++ standard library 101
templates and 136
usage, in this book 3

hello world, template metaprogramming
and 235

Helm, Richard xvii
Henney, Kevlin xix
Hicks, Cory xix
hiding names, see name hiding
higher-order programming and function

object utilities, in Boost 271
highlighting, in this book 5

I
identity test 55
if...else for types 230
#ifdef 17
#ifndef 17
implementation-dependent behavior,

warnings and 263
implementations

decoupling from interfaces 165
default, danger of 163–167
inheritance of 161–169
of derived class constructors and

destructors 137
of Interface classes 147
references 89
std::max 135
std::swap 106

implicit inline request 135
implicit interfaces 199–203
implicit type conversions vs. explicit 70–

72
implicitly generated functions 34–37, 221

disallowing 37–39
#include directives 17

compilation dependencies and 140
incompatibilities, with built-in types 80
incorrect code and efficiency 90
infinite loop, in operator new 253
inheritance

accidental 165–166
combining with templates 243–245
common features and 164
lationship 184
les, in TR1 266

s, Battle of 150
d, Solveig xx
atching, avoiding 95
iles, see headers

intuition and 151–155
mathematics and 155
mixin-style 244
name hiding and 156–161
of implementation 161–169
of interface 161–169

Effective C++ Index 289
of interface vs. implementation 161–169
operator new and 253–254
penguins and birds and 151–153
private 187–192
protected 151
public 150–155
rectangles and squares and 153–155
redefining non-virtual functions

and 178–180
scopes and 156
sharing features and 164

inheritance, multiple 192–198
ambiguity and 192
combining public and private 197
deadly diamond 193

inheritance, private 214
combining with public 197
eliminating 189
for redefining virtual functions 197
meaning 187
vs. composition 188

inheritance, public
combining with private 197
is-a relationship and 150–155
meaning of 150
name hiding and 159
virtual inheritance and 194

inheritance, virtual 194
init function 60
initialization 4, 26–27

assignment vs. 6
built-in types 26–27
const members 29
const static members 14
default, unintended 59
in-class, of static const integral

members 14
local static objects 31
non-local static objects 30
objects 26–33
reference members 29
static members 242
virtual base classes and 194
vs. assignment 27–29, 114
with vs. without arguments 114

initialization order
class members 29
importance of 31
non-local statics 29–33

inline functions
see also inlining
address of 136
as request to compiler 135
debuggers and 139
declaring 135
headers and 135
optimizing compilers and 134
recursion and 136
vs. #define 16–17

vs. macros, efficiency and 16
inlining 134–139

constructors/destructors and 137–138
dynamic linking and 139
Handle classes and 148
inheritance and 137–138
Interface classes and 148
library design and 138
recompiling and 139
relinking and 139
suggested strategy for 139
templates and 136
time of 135
virtual functions and 136

input iterators 227
input_iterator_tag 228
input_iterator_tag<Iter*> 230
insomnia 150
instructions, reordering by compilers 76
integral types 14
Interface classes 145–147
interfaces

decoupling from implementations 165
definition of 7
design considerations 78–86
explicit, signatures and 201
implicit 199–203

expressions and 201
inheritance of 161–169
new types and 79–80
separating from implementations 140
template parameters and 199–203
undeclared 85

inter-language support, in Boost 272
internationalization, library support

for 264
invalid array index, undefined behavior

and 7
invariants

NVI and 171
over specialization 168

<iosfwd> 144
is-a relationship 150–155
is-implemented-in-terms-of 184–186, 187
istream_iterators 227
iterator categories 227–228
iterator_category 229
iterators as handles 125
iterators, vs. const_iterators 18

J
Jagdhar, Emily xix
Janert, Philipp xix
Java 7, 43, 76, 81, 100, 116, 118, 142, 145,

190, 194

290 Index Effective C++
Johnson, Ralph xvii
Johnson, Tim xviii, xix
Josuttis, Nicolai M. xviii

K
Kaelbling, Mike xviii
Kakulapati, Gunavardhan xix
Kalenkovich, Eugene xix
Kennedy, Glenn xix
Kernighan, Brian xviii, xix
Kimura, Junichi xviii
Kirman, Jak xviii
Kirmse, Andrew xix
Knox, Timothy xviii, xix
Koenig lookup 110
Kourounis, Drosos xix
Kreuzer, Gerhard xix

L
Laeuchli, Jesse xix
Lambda library, in Boost 271
Langer, Angelika xix
languages, other, compatibility with 42
Lanzetta, Michael xix
late binding 180
layering, see composition
layouts, objects vs. arrays 73
Lea, Doug xviii
leaks, exception-safe code and 127
Leary-Coutu, Chanda xx
Lee, Sam xix
legacy code, exception-safety and 133
Lejter, Moises xviii, xx
lemur, ring-tailed 196
Lewandowski, Scott xviii
lhs, as parameter name 8
Li, Greg xix
link-time errors 39, 44
link-time inlining 135
list 186
local static objects

definition of 30
initialization of 31

locales 264
locks, RAII and 66–68
logic_error class 113
logically const member functions 22–23

M
mailing list for Scott Meyers xvi

maintenance
common base classes and 164
delete and 62

managing resources, see resource man-
agement

Manis, Vincent xix
Marin, Alex xix
math and numerics utilities, in Boost 271
mathematical functions, in TR1 267
mathematics, inheritance and 155
matrix operations, optimizing 237
Matthews, Leon xix
max, std, implementation of 135
Meadowbrooke, Chrysta xix
meaning

of classes without virtual functions 41
of composition 184
of non-virtual functions 168
of pass-by-value 6
of private inheritance 187
of public inheritance 150
of pure virtual functions 162
of references 91
of simple virtual functions 163

measuring encapsulation 99
Meehan, Jim xix
member data, see data members
member function templates 218–222
member functions

bitwise const 21–22
common design errors 168–169
const 19–25
duplication and 23–25
encapsulation and 99
implicitly generated 34–37, 221

disallowing 37–39
logically const 22–23
private 38
protected 166
vs. non-member functions 104–105
vs. non-member non-friends 98–102

member initialization
for const static integral members 14
lists 28–29

vs. assignment 28–29
order 29

memory allocation
arrays and 254–255
error handling for 240–246

memory leaks, new expressions and 256
memory management

functions, replacing 247–252
multithreading and 239, 253
utilities, in Boost 272

metaprogramming, see template metapro-
gramming

Effective C++ Index 291
Meyers, Scott
mailing list for xvi
web site for xvi

mf, as identifier 9
Michaels, Laura xviii
Mickelsen, Denise xx
minimizing compilation

dependencies 140–148, 190
Mittal, Nishant xix
mixed-mode arithmetic 103, 104, 222–226
mixin-style inheritance 244
modeling is-implemented-in-terms-

of 184–186
modifying function return values 21
Monty Python, allusion to 91
Moore, Vanessa xx
More Effective C++ 273, 273–274

compared to Effective C++ 273
contents of 273–274

More Exceptional C++ xvii
Moroff, Hal xix
MPL library, in Boost 270, 271
multiparadigm programming language,

C++ as 11
multiple inheritance, see inheritance
multithreading

memory management routines
and 239, 253

non-const static objects and 32
treatment in this book 9

mutable 22–23
mutexes, RAII and 66–68

N
Nagler, Eric xix
Nahil, Julie xx
name hiding

inheritance and 156–161
operators new/delete and 259–261
using declarations and 159

name lookup
this-> and 210
using declarations and 211

name shadowing, see name hiding
names

accessing in templatized bases 207–212
available in both C and C++ 3
dependent 204
hidden by derived classes 263
nested, dependent 204
non-dependent 204

namespaces 110
headers and 100
namespace pollution in a class 166

Nancy, see Urbano, Nancy L.

Nauroth, Chris xix
nested dependent names 204
nested dependent type names, typename

and 205

new
see also operator new
expressions, memory leaks and 256
forms of 73–75
operator new and 73
relationship to constructors 73
smart pointers and 75–77

new types, interface design and 79–80
new-handler 240–247

definition of 240
deinstalling 241
identifying 253

new-handling functions, behavior of 241
new-style casts 117
noncopyable base class, in Boost 39
non-dependent names 204
non-local static objects, initialization

of 30
non-member functions

member functions vs. 104–105
templates and 222–226
type conversions and 102–105, 222–226

non-member non-friend functions 98–102
non-type parameters 213
non-virtual

functions 178–180
static binding of 178

interface idiom, see NVI
nothrow guarantee, the 129
nothrow new 246
null pointer

deleting 255
dereferencing 6
set_new_handler and 241

NVI 170–171, 183

O
object-oriented C++, as sublanguage of

C++ 12
object-oriented principles, encapsulation

and 99
objects

alignment of 249–250
clustering 251
compilation dependencies and 143
copying all parts 57–60
defining 4
definitions, postponing 113–116
handles to internals of 123–126
initialization, with vs. without

arguments 114
layout vs. array layout 73

292

multip
partial
placing
resour
returni
size, pa
sizes, d
vs. var

Oldham,
old-style
operation
operator d

see als
behavi
efficien
name h
non-m
placem
replaci
standa
virtual

operator d
operator n

see als
arrays
bad_all
behavi
efficien
infinite
inherit
membe

re
name h
new-ha
non-m
out-of-

25
placem
replaci
returni
standa
std::bad

operator n
operator()
operator=

const m
default
implici
referen
return
self-as
when n

operator[]
overloa
return

optimizat
by com
Index Effective C++

le addresses for 118
 copies of 58
 in shared memory 251

ce management and 61–66
ng, vs. references 90–94
ss-by-value and 89
etermining 141

iables 3
Jeffrey D. xix
casts 117
s, reordering by compilers 76
elete 84

o delete
or of 255
cy of 248
iding and 259–261

ember, pseudocode for 255
ent 256–261
ng 247–252
rd forms of 260
 destructors and 255
elete[] 84, 255
ew 84

o new
and 254–255
oc and 246, 252
or of 252–255
cy of 248
 loop within 253
ance and 253–254
r, and “wrongly sized”

quests 254
iding and 259–261
ndling functions and 241

ember, pseudocode for 252
memory conditions and 240–241,
2–253
ent 256–261
ng 247–252
ng 0 and 246
rd forms of 260
_alloc and 246, 252
ew[] 84, 254–255
 (function call operator) 6

embers and 36–37
 implementation 35
t generation 34
ce members and 36–37
value of 52–53
signment and 53–57
ot implicitly generated 36–37

during compilation 134
inline functions and 134

order
initialization of non-local statics 29–33
member initialization 29

ostream_iterators 227
other languages, compatibility with 42
output iterators 227
output_iterator_tag 228
overloading

as if...else for types 230
on const 19–20
std::swap 109

overrides of virtuals, preventing 189
ownership transfer 68

P
Pal, Balog xix
parameters

see also pass-by-value, pass-by-refer-
ence

default 180–183
evaluation order 76
non-type, for templates 213
type conversions and, see type conver-

sions
Pareto Principle, see 80-20 rule
parsing problems, nested dependent

names and 204
partial copies 58
partial specialization

function templates 109
std::swap 108

parts, of objects, copying all 57–60
pass-by-reference, efficiency and 87
pass-by-reference-to-const, vs pass-by-

value 86–90
pass-by-value

copy constructor and 6
efficiency of 86–87
meaning of 6
object size and 89
vs. pass-by-reference-to-const 86–90

patterns
see design patterns

Pedersen, Roger E. xix
penguins and birds 151–153
performance, see efficiency
Persephone ix, xx, 36
126
ding on const 19–20
type of 21
ion
pilers 94

pessimization 93
physical constness, see const, bitwise
pimpl idiom

definition of 106
exception-safe code and 131

Effective C++ Index 293
placement delete, see operator delete
placement new, see operator new
Plato 87
pointer arithmetic and undefined

behavior 119
pointers

see also smart pointers
as handles 125
bitwise const member functions and 21
compilation dependencies and 143
const 17

in headers 14
null, dereferencing 6
template parameters and 217
to single vs. multiple objects, and

delete 73
polymorphic base classes, destructors

and 40–44
polymorphism 199–201

compile-time 201
runtime 200

Pool library, in Boost 250, 251
postponing variable definitions 113–116
Prasertsith, Chuti xx
preconditions, NVI and 171
pregnancy, exception-safe code and 133
private data members, why 94–98
private inheritance, see inheritance
private member functions 38
private virtual functions 171
properties 97
protected

data members 97
inheritance, see inheritance
member functions 166
members, encapsulation of 97

public inheritance, see inheritance
pun, really bad 152
pure virtual destructors

defining 43
implementing 43

pure virtual functions 43
defining 162, 166–167
meaning 162

R
Rabbani, Danny xix
Rabinowitz, Marty xx
RAII 63, 70, 243

classes 72
copying behavior and 66–69
encapsulation and 72
mutexes and 66–68

random access iterators 227

random number generation, in TR1 267
random_access_iterator_tag 228
RCSP, see smart pointers
reading uninitialized values 26
rectangles and squares 153–155
recursive functions, inlining and 136
redefining inherited non-virtual

functions 178–180
Reed, Kathy xx
Reeves, Jack xix
references

as handles 125
compilation dependencies and 143
functions returning 31
implementation 89
meaning 91
members, initialization of 29
returning 90–94
to static object, as function return

value 92–94
register usage, objects and 89
regular expressions, in TR1 266
reinterpret_cast 117, 249

see also casting
relationships

has-a 184
is-a 150–155
is-implemented-in-terms-of 184–186,

187
reordering operations, by compilers 76
replacing definitions with

declarations 143
replacing new/delete 247–252
replication, see duplication
reporting, bugs in this book xvi
Resource Acquisition Is Initialization, see

RAII
resource leaks, exception-safe code

and 127
resource management

see also RAII
copying behavior and 66–69
objects and 61–66
raw resource access and 69–73

resources, managing objects and 69–73
return by reference 90–94
return types

const 18
objects vs. references 90–94
of operator[] 21

return value of operator= 52–53
returning handles 123–126
reuse, see code reuse
revenge, compilers taking 58
rhs, as parameter name 8

294 Index Effective C++
Roze, Mike xix
rule of 80-20 139, 168
runtime

errors 152
inlining 135
polymorphism 200

S
Saks, Dan xviii
Santos, Eugene, Jr. xviii
Satch 36
Satyricon vii
Scherpelz, Jeff xix
Schirripa, Steve xix
Schober, Hendrik xviii, xix
Schroeder, Sandra xx
scoped_array 65, 216, 272
scopes, inheritance and 156
sealed classes, in C# 43
sealed methods, in C# 190
second edition, see 2nd edition
self-assignment, operator= and 53–57
set 185

set_new_handler
class-specific, implementing 243–245
using 240–246

set_unexpected function 129
shadowing, names, see name shadowing
Shakespeare, William 156
shared memory, placing objects in 251
shared_array 65
shared_ptr implementation in Boost,

costs 83
sharing code, see duplication, avoiding
sharing common features 164
Shewchuk, John xviii
side effects, exception safety and 132
signatures

definition of 3
explicit interfaces and 201

simple virtual functions, meaning of 163
Singh, Siddhartha xix
Singleton pattern 31
size_t 3
sizeof 253, 254

empty classes and 190
freestanding classes and 254

sizes
of freestanding classes 254
of objects 141

sleeping pills 150
slist 227
Smallberg, David xviii, xix

Smalltalk 142
smart pointers 63, 64, 70, 81, 121, 146, 237

see also std::auto_ptr and tr1::shared_ptr
get and 70
in Boost 65, 272

web page for xvii
in TR1 265
newed objects and 75–77
type conversions and 218–220

Socrates 87
Some Must Watch While Some Must

Sleep 150
Somers, Jeff xix
specialization

invariants over 168
partial, of std::swap 108
total, of std::swap 107, 108

specification, see interfaces
squares and rectangles 153–155
standard exception hierarchy 264
standard forms of operator new/delete 260
standard library, see C++ standard

library, C standard library
standard template library, see STL
Stasko, John xviii
statements using new, smart pointers

and 75–77
static

binding
of default parameters 182
of non-virtual functions 178

objects, returning references to 92–94
type, definition of 180

static functions, ctors and dtors and 52
static members

const member functions and 21
definition 242
initialization 242

static objects
definition of 30
multithreading and 32

static_cast 25, 82, 117, 119, 249
see also casting

std namespace, specializing templates
in 107

std::auto_ptr 63–65, 70
conversion to tr1::shared_ptr and 220
delete [] and 65
pass by const and 220

std::auto_ptr, deleter support and 68
std::char_traits 232
std::iterator_traits, pointers and 230
std::list 186
std::max, implementation of 135
std::numeric_limits 232

Effective C++ Index 295
std::set 185
std::size_t 3

std::swap
see also swap
implementation of 106
overloading 109
partial specialization of 108
total specialization of 107, 108

std::tr1, see TR1
stepping through functions, inlining

and 139
STL

allocators 240
as sublanguage of C++ 12
containers, swap and 108
definition of 6
iterator categories in 227–228

Strategy pattern 171–177
string and text utilities, in Boost 271
strong guarantee, the 128
Stroustrup, Bjarne xvii, xviii
Stroustrup, Nicholas xix
Sutter, Herb xvii, xviii, xix
swallowing exceptions 46
swap 106–112

see also std::swap
calling 110
exceptions and 112
STL containers and 108
when to write 111

symbols, available in both C and C++ 3

T
template C++, as sublanguage of C++ 12
template metaprogramming 233–238

efficiency and 233
hello world in 235
pattern implementations and 237
support in Boost 271
support in TR1 267

Template Method pattern 170
templates

code bloat, avoiding in 212–217
combining with inheritance 243–245
defining 4
errors, when detected 212
expression 237
headers and 136
in std, specializing 107
inlining and 136
instantiation of 222
member functions 218–222
names in base classes and 207–212
non-type parameters 213
parameters, omitting 224

pointer type parameters and 217
shorthand for 224
specializations 229, 235

partial 109, 230
total 107, 209

type conversions and 222–226
type deduction for 223

temporary objects, eliminated by
compilers 94

terminology, used in this book 3–8
testing and correctness, Boost support

for 272
text and string utilities, in Boost 271
third edition, see 3rd edition
this->, to force base class lookup 210
threading, see multithreading
Tilly, Barbara xviii
TMP, see template metaprogramming
Tondo, Clovis xviii
Topic, Michael xix
total class template specialization 209
total specialization of std::swap 107, 108
total template specializations 107
TR1 9, 264–267

array component 267
bind component 266
Boost and 9–10, 268, 269
boost as synonym for std::tr1 268
C99 compatibility component 267
function component 265
hash tables component 266
math functions component 267
mem_fn component 267
random numbers component 267
reference_wrapper component 267
regular expression component 266
result_of component 267
smart pointers component 265
support for TMP 267
tuples component 266
type traits component 267
URL for information on 268

tr1::array 267
tr1::bind 175, 266
tr1::function 173–175, 265
tr1::mem_fn 267
tr1::reference_wrapper 267
tr1::result_of 267
tr1::shared_ptr 53, 64–65, 70, 75–77

construction from other smart pointers
and 220

cross-DLL problem and 82
delete [] and 65
deleter support in 68, 81–83
member template ctors in 220–221

tr1::tuple 266

296 Index Effective C++
tr1::unordered_map 43, 266
tr1::unordered_multimap 266
tr1::unordered_multiset 266
tr1::unordered_set 266
tr1::weak_ptr 265
traits classes 226–232
transfer, ownership 68
translation unit, definition of 30
Trux, Antoine xviii
Tsao, Mike xix
tuples, in TR1 266
type conversions 85, 104

explicit ctors and 5
implicit 104
implicit vs. explicit 70–72
non-member functions and 102–105,

222–226
private inheritance and 187
smart pointers and 218–220
templates and 222–226

type deduction, for templates 223
type design 78–86
type traits, in TR1 267
typedef, typename and 206–207
typedefs, new/delete and 75
typeid 50, 230, 234, 235
typelists 271
typename 203–207

compiler variations and 207
typedef and 206–207
vs. class 203

types
built-in, initialization 26–27
compatible, accepting all 218–222
if...else for 230
integral, definition of 14
traits classes and 226–232

U
undeclared interface 85
undefined behavior

advance and 231
array deletion and 73
casting + pointer arithmetic and 119
definition of 6
destroyed objects and 91
exceptions and 45
initialization order and 30
invalid array index and 7
multiple deletes and 63, 247
null pointers and 6
object deletion and 41, 43, 74
uninitialized values and 26

undefined values of members before con-
struction and after destruction 50

unexpected function 129
uninitialized

data members, virtual functions and 49
values, reading 26

unnecessary objects, avoiding 115
unused objects

cost of 113
exceptions and 114

Urbano, Nancy L. vii, xviii, xx
see also goddess

URLs
Boost 10, 269, 272
Boost smart pointers xvii
Effective C++ errata list xvi
Effective C++ TR1 Info. Page 268
Greg Comeau’s C/C++ FAQ xviii
Scott Meyers’ mailing list xvi
Scott Meyers’ web site xvi
this book’s errata list xvi

usage statistics, memory management
and 248

using declarations
name hiding and 159
name lookup and 211

V
valarray 264
value, pass by, see pass-by-value
Van Wyk, Chris xviii, xix
Vandevoorde, David xviii
variable, vs. object 3
variables definitions, postponing 113–116
vector template 75
Viciana, Paco xix
virtual base classes 193
virtual constructors 146, 147
virtual destructors

operator delete and 255
polymorphic base classes and 40–44

virtual functions
alternatives to 169–177
ctors/dtors and 48–52
default implementations and 163–167
default parameters and 180–183
dynamic binding of 179
efficiency and 168
explict base class qualification and 211
implementation 42
inlining and 136
language interoperability and 42
meaning of none in class 41
preventing overrides 189
private 171
pure, see pure virtual functions
simple, meaning of 163

Effective C++ Index 297
uninitialized data members and 49
virtual inheritance, see inheritance
virtual table 42
virtual table pointer 42
Vlissides, John xvii
vptr 42
vtbl 42

W
Wait, John xx
warnings, from compiler 262–263

calls to virtuals and 50
inlining and 136
partial copies and 58

web sites, see URLs
Widget class, as used in this book 8
Wiegers, Karl xix
Wilson, Matthew xix
Wizard of Oz, allusion to 154

X
XP, allusion to 225
XYZ Airlines 163

Z
Zabluda, Oleg xviii
Zolman, Leor xviii, xix

	Contents
	Praise for Effective C++, Third Edition
	Addison-Wesley Professional Computing Series
	Preface
	Acknowledgments
	Introduction
	Item 9: Never call virtual functions during construction or destruction.
	Item 27: Minimize casting.
	Item 47: Use traits classes for information about types.
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

