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Abstract
Combining global and local search is a strategy used by many successful hybrid opti-
mization approaches. Memetic Algorithms (MAs) are Evolutionary Algorithms (EAs)
that apply some sort of local search to further improve the fitness of individuals in
the population. Memetic Algorithms have been shown to be very effective in solv-
ing many hard combinatorial optimization problems. This paper provides a forum
for identifying and exploring the key issues that affect the design and application of
Memetic Algorithms. The approach combines a hierarchical design technique, Genetic
Algorithms, constructive techniques and advanced local search to solve VLSI circuit
layout in the form of circuit partitioning and placement. Results obtained indicate that
Memetic Algorithms based on local search, clustering and good initial solutions im-
prove solution quality on average by 35% for the VLSI circuit partitioning problem
and 54% for the VLSI standard cell placement problem.
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1 Introduction

Efficient optimization algorithms used to solve hard problems usually employ a hybrid
of at least two techniques to find a near optimal solution to the problem being solved.
The main motivation for hybridization in optimization practice is the achievement of
increased efficiency (i.e. adequate solution quality in minimum time or maximum
quality in specified time). From an optimization point of view, Memetic Algorithms
combine global and local search by using Evolutionary Algorithms (EA) to perform
exploration while the local search method performs exploitation. Memetic Algorithms
have been shown to be very effective in solving many hard combinatorial optimization
problems. This paper identifies the effect of local search, clustering and good initial
solutions on the overall Memetic Algorithm by using the circuit partitioning and place-
ment problems as a paradigm.

In the combinatorial sense, the circuit layout problem is a constrained optimization
problem. We are given a circuit (usually a module-wire connection-list called a netlist)
which is a description of switching elements and their connecting wires. Figure 1 shows
a circuit consisting of several gates that need to be mapped onto the chip such that
we minimize the interconnection between the modules. The inputs and outputs of
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the circuit in Figure 1-a are mapped onto I/O Pads in Figure 1-b. Each logic gate or
module is called a cell1 and the interconnection between the cells is established via the
netlist as illustrated in the figure. We seek an assignment of geometric coordinates of
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Figure 1: VLSI Physical Design Automation

the circuit components (in the plane or in one of a few planar layers) that satisfies the
requirements of the fabrication technology (sufficient spacing between wires, restricted
number of wiring layers, etc) and that minimizes certain cost criteria (i.e. power, area
and delay).

1.1 Motivation

The interconnect effects have not been a serious concern in CMOS VLSI chips until
recently, since the gate delays due to capacitive load components dominated the in-
terconnect delay in most cases (KL03). However, with the introduction of deep sub-
micron semiconductor technologies (transistor channel widths below 1 � m), this pic-
ture has undergone rapid changes (RCN03). This fact is illustrated in Figure 2, where
typical interconnect and gate delays are plotted for different technologies. It can be
seen that for sub-micron technologies, both interconnect and gate delays decrease as
the feature sizes decrease - but at different rates. This is because the gate delay usu-
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Figure 2: Interconnect and Gate Delay

ally decreases in sub-micron technologies while interconnect capacitance is indepen-
dent of scaling2. The delay of a circuit, as well as the power dissipation and area, are

1We will use module or cell to refer to a logic gate in this paper.
2Reducing the transistor features.
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dominated by interconnections between logical elements (i.e. transistors) in deep sub-
micron regimes (RCN03). The most important influence of the increased interconnect
delay is that the placement problem (which determines the location of devices) becomes
very critical in today’s VLSI design. Another important implication of decreasing de-
vices and wire geometries is that the components in a circuit increase at a substantial
rate. As a result, a partitioning/placement heuristic that produces excellent results for
a small size problem may take weeks or months to obtain a good result. Obviously, a
computationally expensive technique is often useless to the modern just-in-time fabri-
cation mentality.

1.2 Contributions and Paper Organization

The main contributions of this paper are (i) the introduction of a new methodology for
solving the VLSI circuit layout problem, (ii) integrating several techniques in the form
of good initial solutions, local search and circuit clustering within a Genetic Algorithm
paradigm, (iii) investigating balance between exploration and exploitation of the solu-
tion space (iv) improving the performance of Genetic Algorithms in general to solve
the Circuit Partitioning/Placement problems by 35% and 54% respectively.

This paper is organized as follows: the iterative improvement and constructive
techniques for circuit partitioning and placement are introduced in Section 2. The over-
all solution methodology is introduced in Section 3. The basic Genetic/Memetic algo-
rithms along with some experimental results are then presented in Section 4. Section
5 introduces the clustering technique based Memetic algorithms and the correspond-
ing experimental results. The paper concludes with some comments on how the local
search and clustering technique impact on the performance of Genetic/Memetic Algo-
rithms and possible future work.

2 Background

Practically all aspects of the layout problem as a whole are intractable (circuit partition-
ing, placement and global routing); that is, they are NP-hard (GJ79). Consequently, we
have to resort to heuristic methods to solve very large problems. One of these methods
is to break up the problem into subproblems (as seen in Figure 3, which are then solved
one after the other. Almost always, these subproblems are NP-hard as well, but they
are more amenable to heuristic solutions than is the entire layout problem itself. Each
one of the layout subproblems is decomposed in an analogous fashion. In this way,
we proceed to break up the optimization problems until we reach primitive subprob-
lems. These subproblems are not decomposed further, but rather solved directly, either
optimally (if an efficient polynomial-time optimization algorithm exists) or approxi-
mately if the subproblem is itself NP-hard or intractable, otherwise. The most common
way of breaking up the layout problem into subproblems is first to do logic partition-
ing where a large circuit is divided into a collection of smaller modules according to
some criteria. Following the circuit partitioning, the divided circuits are then placed
on a layout surface. The main objectives of the circuit placement are to minimize the
total chip area and the total estimated wire length for all the nets. Optimization of the
chip area usage can fit more functionality into a given chip area. Optimization of the
total estimated wire length can reduce the capacitive delays associated with longer nets
and speed up the operation of the chip. Thus, the placement design process has a pro-
nounced affect on the final chip performance. The final step in the VLSI circuit layout
is to route the different nets connecting modules along the channels dedicated for this
task (global/detailed routing phase).
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Figure 3: Physical Design Cycle (Circuit Layout)

2.1 Circuit Partitioning

Circuit partitioning is the task of dividing a circuit into smaller parts. It is an important
aspect of layout for several reasons. Partitioning can be used directly to divide a circuit
into portions that are implemented on separate physical components, such as printed
circuit boards or chips. Here, the objective is to partition the circuit into parts such
that the sizes of the components are within prescribed ranges and the complexity of
connections (nets cut) between the components is minimized.

A standard mathematical model in VLSI layout associates a graph
���������
	��

with the circuit netlist, where vertices in V represent modules, and edges in E represent
signal nets. The netlist is more generally represented by a hypergraph  ��������	����

,
where hyperedges in

	 �
are the subsets of V contained by each net (since nets often

are connected to more than two modules). In this formulation, we attempt to partition
a circuit with ��� modules and ��� nets into ��� blocks containing approximately ������
modules each; (i.e. we attempt to equi-partition the V modules among the ��� blocks),
such that the number of uncut nets in the � � blocks is maximized.
We define: � �"! �$#&% if module i is placed in block k'

otherwise

(*) ! � # % if net j is placed in block k'
otherwise

The linear integer programming (LIP) model of the netlist partitioning problem is
given by maximizing the number of uncut nets in each block;

+-, � �/.0)
132
�/�0! 132 (*) ! (1)
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s.t. (i) Module placement constraints:�/�0! 132 � �"! � % � � � � % ��� ������� � � �
(ii) Block size constraints:� �0 � 1�2 � ��!�� � ���� � � ! � % ��� ������� � � �
(iii) Netlist constraints:

( ) ! � � ��! �	��
����� % ����� � �% ����� �������� ��� �
(iv) 0-1 constraints:� �"! ��� ' � % � � % � � � � �"! % �#��� ���(*) ! �$� ' � % � � % ���%� � �&! % ���'� ���

The module placement constraints ensure that each module can be placed in only one
block. The block size constraints guarantee that each block will not exceed a certain limit
of modules. Finally, the netlist constraints determine if a net (wire) j is placed entirely
in block k or if it is not. In problem (LIP) we maximize the number of uncut nets in the� � blocks. This is equivalent to the netlist partitioning problem where we minimize the
number of wires connecting the � � blocks.

The heuristic algorithms for partitioning problems can be classified as being con-
structive or iterative. Constructive algorithms determine a partitioning from the graph
describing the circuit or system, whereas iterative methods aim at improving the qual-
ity of an existing partitioning solution.

2.1.1 Iterative Techniques for Circuit Partitioning
To date, iterative improvement techniques that make local changes to an initial parti-
tion are still the most successful algorithms in practice. The advantage of these heuris-
tics is that they are quite robust. In fact, they can deal with netlists as well as arbitrary
vertex weights, edge costs, and balance criteria.

Kernighan and Lin (KL70) described a successful heuristic procedure for graph
partitioning which became the basis for most module interchange-based improvement
partitioning heuristics used in general. Their approach starts with an initial bisection
and then involves the exchange of pairs of vertices across the cut of the bisection to im-
prove the cut-size. The algorithm determines the vertex pair whose exchange results in
the largest decrease of the cut-size or in the smallest increase, if no decrease is possible.
A pass in the Kernighan and Lin algorithm attempts to exchange all vertices on both
sides of the bisection. At the end of a pass the vertices that yield the best cut-size are
the only vertices to be exchanged.

Fiduccia and Mattheyses (FM82) (usually referred to as the FM technique) modi-
fied the Kernighan and Lin algorithm by suggesting to move one cell at a time instead
of exchanging pairs of vertices, and they also introduced the concept of preserving
balance in the size of blocks. The FM method reduces the time per pass to linear in
the size of the netlist (i.e. O(p), where p is the total number of pins) by adapting a
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current solution � initial solution
current cost � evaluate(current solution)
Repeat

initialize partition
While (can move(modules))

choose cell with highest gain
update gains of all cells
if ( ���

� ��� � � � , � �����
���	� ��
 �� � , � � )

bestgain = current gain
end while
move nodes pointed to by bestgain ptr
if (no improvement)

++noimp counter
Until((pass � MaxPass) OR

(noimp � MaxNoImp))

Figure 4: Fiduccia Mattheyses Algorithm

single-cell move structure, and a gain bucket data structure that allows constant-time
selection of the highest-gain cell and fast gain updates after each move. Figure 4 shows
the basic FM algorithm used for circuit partitioning (FM82). Sanchis (San89) uses the
above technique for multiple way network partitioning. Under such a scheme, we
should consider all possible moves of each free cell from its home block to any of the
other blocks, at each iteration during a pass the best move should be chosen. As usual,
passes should be performed until no improvement in cutset size is obtained.

A modified implementation of the Sanchis iterative improvement heuristic called
Simple Dynamic Hill Climbing (SDHC) (Are00) can also be used. It is characterized
by the ability for local optimum to escape, which usually causes simple descent algo-
rithms to terminate, by dynamically taking a different direction of a steepest ascent. In
SDHC, after the termination of the Sanchis heuristic, the technique considers all pos-
sible moves of each free cell from its home block to any of the other blocks, such that
the value of the cut-size is increased. This is done such that the direction of the up-
ward slope is different than the last pass performed. The main objective of SDHC is to
explore small regions effectively in relatively short periods of time.

2.1.2 Constructive Techniques
In general, node interchange methods are greedy or local in nature and get easily
trapped in local minima. More importantly, it has been shown that interchange meth-
ods fail to converge to “optimal” or “near optimal” partitions unless they initially be-
gin from “good” partitions. Sechen (SC88) shows that over 100 trials or different runs
(each run beginning with a randomly generated initial partition) are required to guar-
antee that the best solution would be within twenty percent of the optimum solution. In
order for interchange methods to converge to “near optimal” solutions they have to ini-
tially begin from “good” starting points (Are00). Constructive partitioning approaches
are mainly based on clustering (AV96; DD96), placement-based partitioning (RDJ94),
mathematical programming or network flow computations.

GRASP is a greedy randomized adaptive search procedure that has been success-
ful in solving many combinatorial optimization problems efficiently (FRS94). Figure 5
shows a pseudo-code of the GRASP heuristic. The algorithm starts with a construction
phase followed by a local improvement phase. The GRASP implementation terminates
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after a certain number of phases or runs have passed. The construction phase as shown
in Figure 5(B) is iterative, greedy and adaptive. It is iterative because the initial solution
is built by considering one element at a time. The choice of the next element to be added
is determined by ordering all elements in a list. The list of the best candidates is called
the restricted candidate list (RCL). It is greedy because the addition of each element is
guided by a greedy function. The construction phase is randomized by allowing the se-
lection of the next element added to the solution to be any element in the RCL. Finally,
it is adaptive because the element chosen at any iteration in a construction is a function
of those previously chosen. The improvement phase typically consists of a local search
procedure as shown in Figure 5(C). A more sophisticated local search based on Tabu
Search can be implemented instead of the simple local search procedure.

(A) MAIN GRASP()
1. Read Circuit NetList();
2. do

3. Construction Phase(Greedy,Rand,Adapt)
4. Local Improvement Phase(Initial Solution)
5. Store Best Solution(Previous Solutions)
6. While not Done

7. Report Best Solution()
(B) Construction Phase()

1. While (construction not done)
2. Greedy: Create Candidate List (RCL)
3. Random: Module = Select from RCL
4. Adaptive: Add new element to solution
5. Feasibility: Check Feasibility of Solution

6. EndWhile
(C) Local Improvement Phase()

1. Read Initial Solution
2. While (local optimum not reached)

3. NewSolution = Local Changes(Solution)
4. EndWhile
5. Return Best Solution()

Figure 5: GRASP (Greedy Adaptive Search)

2.2 Circuit Placement

Usually, a circuit is represented by a hypergraph
� ������	��

, where the vertex set
� �

� � 2 � � � ������� � � � � represents the nodes of the hypergraph (set of cells to be placed), and	 � � � 2 � � � ������� � � � � represents the set of edges of the hypergraph (set of nets connect-
ing the cells). The two dimensional placement region is represented as an array of legal
placement locations. The hypergraph is transformed into a graph (a hypergraph with
all hyperedge sizes equal to 2) via a clique model for each net. Each edge

� ) is an or-
dered pair of vertices with a non-negative weight

� ) assigned to it. The placement task
seeks to assign all cells of the circuit to legal locations such that cells do not overlap (as
explained earlier in Figure 1. Each cell

�
is assigned a location

� � � � (/� � on the XY-plane.
The cost of an edge connecting two cells

�
and � with locations

� � � � (/� � and
� � ) � ( ) � is

computed as the product of the squared
� � norm of the difference vector

� � ��� � ) � ( ��� (*) �
and the weight of the connecting edge

� � ) . The total cost, denoted � � � � ( � , can then be
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given as the sum of the cost over all edges; i.e.:

� � � � ( ��� 02 � ��� ) ��� � � )�� � � � � � ) � ��� � ( � � (*) � �
	 (2)

Minimizing (2) produces a placement with a great amount of overlap among the cells
because it attracts cells sharing common nets together3. Formulation (2) can be written
in matrix form as:

� � � � ( ��� %�������� ��� ��� � %�������� ��� ��� ��� (3)

where vectors � and � denote the coordinates of the
�

movable cells; matrix � is the
Hessian matrix; vectors

�
� and

�
� and the constant term

�
result from the contributions

of the fixed cells. Normally the first moment constraints are added to force the distri-
bution of the cells to be uniform around the center of the placement area. It follows that
the quadratic placement model is given as:

Min � � � � ( �
s.t. � � � ��� �

� � ( ��� �� � � � � � � �� � � ( � � � �
where � � and � � are � � � matrices; � is the number of regions into which the place-
ment area has been partitioned. The �!� % vectors

� � and
� � represent the centers of

the � regions. The parameters
� � , � � , � � and � � are lower and upper bounds on the� and ( coordinates of the cells. Clearly, the above optimization problem can be split

into two 1-dimensional subproblems and each subproblem can then be solved inde-
pendently (YA02).

Depending on the input, the placement algorithms can be classified into two ma-
jor groups, referred to as the constructive placement and iterative improvement methods.
Usually, constructive placement algorithms include random placement, cluster growth,
partitioning-based placement (GJ79), numerical optimization, and branch and bound tech-
niques (RDJ94). There are two classes of iterative improvement placement methods:
deterministic and stochastic heuristics. A deterministic heuristic interchanges randomly
selected pairs of modules and only accepts the interchange if it results in a reduction in
cost (YA02). On the contrary, a stochastic heuristic not only accepts the possible pertur-
bation that results in cost reduction but also uses some “randomness” to accept some
poor solutions, which allows the heuristic to avoid the local-optimal and explore the
solution space more effectively.

2.2.1 Tile Based Iterative Improvement
A good placement heuristic should consider both quality and computational efficiency
issues. The quality of the placement is essential for the performance of the final cir-
cuit whereas computational efficiency is essential to shorten the design procedure. The
Tile based iterative heuristic is a kind of algorithm that produces a good solution in a
reasonable amount of time (ATV01). In the Tile based approach overlapping tiles or
windows (ATV01) are introduced to localize the arrangement of cells throughout the
placement area. The introduction of tiles is useful for restricting the rearrangement
of cells. Each tile contains a small subset of the cells. Furthermore, cells may belong

3We refer to formulation (2) as the QP (Quadratic Programming) formulation.
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to more than one tile due to the overlap which exists between tiles. The Tile itera-
tive approach works as follows. A tile is selected, and a list of cells within the tile is
generated. Subsequently, cells within the selected tile are rearranged in some fashion.
In rearranging the cells, the cells are restricted to positions within the tile boundaries,
which keeps cells close to their original positions. The computational effort required
to find improved cell positions is reduced, since the search for improved cell positions
is restricted to positions within the tile boundaries. Since tiles overlap, cells near the
boundaries of a tile may be permitted to move between tiles. During one pass, tiles are
selected randomly, and only once during each pass. After each pass, the quality of the
placement is evaluated and compared to placements generated by previous passes. The
algorithm terminates when either a maximum number of passes is exceeded, or when
the improvement in the placements over a number of consecutive passes is negligible.
Figure 6 summarizes the Tile approach.

1. Input: initial placement s;
estimate wirelength(initial placement)

2. Repeat
select cells i and j;
determine cell shifts();
estimate wirelength(new placement)
If

�
Total wirelength � 0 do

update placement();
3. Until attempted moves � max attempts;
4. Output Best placement found so far

Figure 6: A Tile-based Algorithm

2.2.2 Cluster-Seed Based Constructive Technique
Cluster-Seed placement is one of the cluster growth placement algorithms (YA02).
Cluster growth placement is a bottom-up method that operates by selecting modules
and adding them to a partial placement (KP86). Normally, it contains two functions: (i)
selection function and (ii) placement function. The selection function determines the order
in which the unplaced modules are included in the placement. The placement function
decides the best position for those modules (KP86).

The Cluster-Seed based placement algorithm is described in Figure 7. First, a seed
placement is determined by selecting the pads in natural order and then placing all
unplaced modules that are directly connected with these pads. Next, other unplaced
modules are selected one at a time in order of their connectivity to the placed modules
(highly connected first) and fixed at a vacant position close to the placed modules so
that the total wire length is minimized.

2.3 Circuit Clustering

As the complexity of VLSI circuits increases, a hierarchical design approach becomes
essential to shorten the design period (HK92). Circuit clustering plays a fundamental
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1. Set Total mods, placed mods;
2. Place the modules connecting with the

pads directly and update placed mods;
3. While (placed mods

�� Total mods)
If (all the pads on the top side)

Top pads placement();
Elseif (all the pads on the bottom side)

Bottom pads placement();
Else

Normal pads placement();
update placed mods

End While
5. Return the legalized placement solution.

Figure 7: A Cluster-Seed Algorithm

role in hierarchical designs. Identifying highly connected components in the netlist can
significantly reduce the complexity of the circuit and improve the performance of the
design process. Figure 8 illustrates the procedure utilized to combine highly connected
modules to form super clusters for both circuit partitioning and placement. Following
clustering, several efficient heuristic techniques can be used to minimize the nets cut
and/or place modules efficiently on the chip. The circuit has to be transformed again
to its original representation and therefore it is flattened (i.e de-clustered). Section 5 will
further demonstrate the effectiveness of this technique in solving both problems using
a Memetic Algorithm.

ba

dc
NET

e f g

h

CELL

CLUSTERING

PARTITIONING

Blk 1 Blk 2

a b

dc

e
f

g

h
n

ml

k

i

j

FLATTEN

Cluster or Super Node

PLACEMENT

Y

X

FLATTEN

Row 1

Row 2

Y

X

Figure 8: Overview of clustering

10 Evolutionary Computation Volume x, Number x



Effective Memetic Algorithms for VLSI Design Automation

Circuit Cells Nets Pins Pads Rows Cell Degree Net Size
MAX � � MAX � �

Fract 125 147 462 24 6 7 3.1 1.6 17 3.1 2.2
Prim1 833 902 2908 81 16 9 3.4 1.2 18 3.2 2.5
Struct 1888 1920 5471 64 21 4 2.8 0.6 17 2.8 1.9
Ind1 2271 2192 7743 814 15 10 3.4 1.1 318 3.5 9.0

Prim2 2907 3029 18407 107 28 9 3.7 1.5 37 3.7 3.8
Bio 6417 5742 21040 97 46 6 3.2 1.0 861 3.6 20.8

Ind2 12142 13419 48158 495 72 12 3.8 1.8 585 3.5 10.9
Ind3 15057 21808 65416 374 54 12 4.3 1.4 325 2.9 3.2
Avq.s 21854 22124 76231 64 80 7 3.4 1.4 4042 3.4 53.3
Avq.l 25144 25384 82751 64 86 7 3.2 1.2 4042 3.2 49.8

Table 1: Benchmarks Used as Test Cases

2.4 VLSI Benchmarks

For the partitioning and placement problems, the quality of solutions obtained are
based on a set of hypergraphs that are part of the widely used ACM/SIGDA (RP87)
circuit partitioning/placement benchmarks suite. The characteristics of these hyper-
graphs are shown in Table 1. The second column of the table shows the number of cells
within the circuit. The third column presents the number of nets connecting the cells
within the benchmarks. The total number of pins (i.e connections) within the circuit is
summarized in column four. The fifth column indicates the pads (i.e I/O connections)
that connect the circuit to the outside world. The sixth column gives the number of
rows where the cells are to be placed (exclusively for the circuit placement problem).
The last two columns summarize the statistics of the circuit (i.e connectivity). The pro-
posed optimization techniques are implemented in the ‘C’ programming Language on
a Sun Ultra10 workstation.

3 Solution Methodology

The traditional approach in partitioning and placement is to construct an initial solu-
tion by using constructive heuristic algorithms. A final solution is then produced by
using iterative improvement techniques where a modification is usually accepted if a
reduction in cost occurs, otherwise it is rejected. Constructive heuristic algorithms pro-

LocalSearch
Simple

Dynamic
HillClimbing

GA

Traditional Memetic Algorithms

Constructive

Techniques

Constraint

Relaxation

MultiLevel Hierarchical Clustering

Figure 9: Memetic Algorithm Approach for VLSI Design

duce an initial solution from scratch. It takes a negligible amount of computation time
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compared to iterative improvement algorithms and provides a good starting point for
them (SM91). However, the solution generated by constructive algorithms may be far
from optimal. Thus, an iterative improvement algorithm is performed next to improve
the solution. Although iterative improvement algorithms can produce a good final so-
lution, the computation time of such algorithms is also large. Therefore, a hierarchical
approach in the form of multilevel clustering is utilized to reduce the complexity of the
search space. Figure 9 summarizes the overall approach used in this paper to solve hard
VLSI combinatorial optimization problems. A bottom-up technique gradually clusters
cells at several levels of the hierarchy. At the top level a Genetic Algorithm is applied
where several good initial solutions are injected to the population. A local search tech-
nique with dynamic hill climbing capability is applied to the chromosomes to enhance
their quality. The system tackles some of the hard constraints imposed on the problem
(e.g size constraint for circuit partitioning) with intermediate relaxation mechanism to
further enhance the solution quality.

3.1 Exploration versus Exploitation

Exploration is the process of visiting entirely new regions of a search space (new re-
gions where the gain can be high) to determine if anything promising may be found.
Exploitation on the other hand concentrates on previously visited points to maximize
the gain (i.e the determination of which places might be profitable to visit next). A
purely random search is good at exploration whereas a purely hill-climbing method is
good at exploitation. Combinations of these two strategies can be quite effective, but it
is difficult to know where the best balance is set. One of the main objectives in imple-
menting any Memetic Algorithm is the means of achieving both techniques during the
search. In this paper we attempt to illustrate the best balance to achieve good results
for both circuit partitioning and placement. It is important to understand that injecting
constructive initial solutions within a population is a form of local search. Also, the con-
cept of clustering that will be utilized in this paper attempts to smooth the landscape
being searched and therefore can be considered a different form of iterative improve-
ment embedded within the Memetic Algorithm. Results introduced in Section 4 and 5
will illustrate how this concept of utilizing exploration and exploitation can be used to
produce efficient results for both problems.

4 Evolutionary Algorithms

Evolutionary Algorithms (EA’s) are a class of optimization algorithms that seek im-
proved performance by sampling areas of the parameter space that have a high prob-
ability for leading to good solutions (Mic92). As an optimization technique, Genetic
Algorithms simultaneously examine and manipulate a set of possible solutions. The
power of GA’s comes from the fact that the technique is robust, and can deal success-
fully with a wide range of problem areas, including those which are difficult for other
methods to solve. GA’s are not guaranteed to find the global optimum solution to a
problem, but they are generally good at finding “acceptably good” solutions to prob-
lems. Another drawback of Genetic Algorithms is that they are not well suited to per-
form finely tuned search, but on the other hand they are good at exploring the solution
space since they search from a set of designs and not from a single design.

4.1 Genetic-based Partitioning Algorithm

One way to represent the partitioning problem (as seen in Figure 10) is to use group-
number encoding where the � ��� integer

� ) � � % ������� � � � indicates the group number as-
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signed to object j. This representation scheme creates the possibility of applying stan-

Nets Cut

Block 1Block 0

01110100

M8M7M6M5M4M3M2M1

M1 M2 M4 M8 M3 M5 M6 M7

Group Number Encoding

Figure 10: Chromosome Representation for Circuit Partitioning

dard operators (Mic92). However an offspring may contain less than k groups; more-
over, an offspring of two parents, both representing feasible solutions may be infeasible,
since the constraint of having equal number of modules in each partition is not met. In
this case either special repair heuristics are used to modify chromosomes to become fea-
sible, or penalty functions that penalize infeasible solutions, are used to eliminate the
problem. The penalty function approach may lead to good solutions but is computa-
tionally expensive. Instead we use the repair heuristics as a means to obtain feasible
solutions.

Figure 11 illustrates a Genetic Algorithm implementation for circuit partitioning.
The GA starts with several alternative solutions to the optimization problem, which are
considered as individuals in a population. These solutions are coded as binary strings,
called chromosomes. The initial population is constructed randomly. These individuals
are evaluated, using the partitioning-specific fitness function. The GA then uses these
individuals to produce a new generation of hopefully better solutions. In each genera-
tion, two of the individuals are selected probabilistically as parents, with the selection
probability proportional to their fitness. Crossover is performed on these individuals to
generate two new individuals, called offspring, by exchanging parts of their structure
as seen in Figure 12b. Thus each offspring inherits a combination of features from both
parents. The next step is mutation (as illustrated in Figure 12a) where an incremental
change is made to each member of the population, with a small probability. This en-
sures that the GA can explore new features that may not be in the population yet. It
makes the entire search space reachable, despite the finite population size. Our empir-
ical study, strongly supports using multi-point crossover over the one-point crossover
technique. A 3-point and 4-point crossover works best for our circuit partitioning prob-
lem. In this implementation we have used the Roulette Wheel parent selection method
which is conceptually one of the simplest stochastic selection technique. Our genera-
tion replacement technique is based on replacing the most inferior member in a popu-
lation by new offsprings.

4.2 Memetic Based Partitioning Algorithms

Genetic Algorithms are not well suited for fine-tuning structures which are close to op-
timal solutions (Gol89). Incorporation of local improvement operators into the recom-
bination step of a Genetic Algorithm is essential if a competitive Genetic Algorithm
is desired. Memetic Algorithms (MAs) apply a separate local search process to refine
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1. Encode Solution Space for circuit
2.(a) set pop size, max gen, gen=0;

(b) set cross rate, mutate rate;
3. Initialize Population.
4. While max gen

�
gen

Evaluate Fitness (# of cuts)
For (i=1 to pop size)

Select (mate1,mate2)
if (rnd(0,1) � cross rate)

child = Crossover(mate1,mate2);
if (rnd(0,1) � mutate rate)

child = Mutation();
Repair child if necessary

End For
Add offsprings to New Generation.
gen = gen + 1

End While
5. Return best chromosomes.

Figure 11: A Genetic Algorithm for VLSI Circuit Partitioning
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Figure 12: Crossover and Mutation Operators for Circuit Partitioning
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individuals (i.e improve their fitness by hill-climbing). Memetic Algorithms have been
shown to be very effective for many combinatorial optimization problems, including
the quadratic assignment problem (QAP), traveling salesman problem (TSP) and many
others. In particular, the relative advantage of MAs over EAs is quite consistent on
complex search spaces. In the next few subsections we present several approaches of
integrating Genetic Algorithms with local search heuristics to effectively design robust
Memetic Algorithms for circuit partitioning and placement problems.

4.2.1 A Simple Memetic Implementation
Figure 13 shows a simple implementation of a Memetic algorithm based on the Ge-
netic Algorithm introduced in Section 4.1. We use a simple variation of the Fiduccia
and Mattheyses (FM) heuristic (San89). The original FM heuristic has several passes
after which the heuristic terminates as presented in Section 2. In the local optimization
phase, a few passes are allowed4, furthermore a restriction on the number of modules
to be moved is set to a certain value. It is to be noted that if local optimization is not
strong enough to overcome the inherent disruption of the crossover, stronger local op-
timization is needed.

1. Encode Solution Space for circuit paritioning
2.(a) set pop size, max gen, gen=0;

(b) set cross rate, mutate rate;
3. Initialize Population.
4. While(Gen � Gensize)

Apply GA
Apply FM Local Search to Population

EndWhile /* end of a run */
Apply Final Local Search to Best Chromosome

Figure 13: A Partitioning based Memetic Algorithm

4.2.2 A Parameter Relaxation Approach
A standard technique in solving optimization problems involves relaxation of one or
more problem parameters. In this section we illustrate the use of this technique in
Memetic Algorithms. The partitioning problem for any given objective is inherently
a constraint-driven one. The most common constraint is the balance ratio of total
sizes that the two subsets of a partition must satisfy (DT97). Other frequently encoun-
tered partitioning constraints include limits on the sizes or timing minimization. This
balance-constrained partitioning problem can be stated as follows. Given a netlist G
which describes cell connectivities and cell sizes in a circuit, construct k sub-circuits
of G with a balance ratio of

� 2�� � � � � � � � � ! and an acceptable tolerance of � � such
that some objective functions are optimized. In an attempt to satisfy the balance-ratio,
however, movement of larger cells and clusters can be restricted thus leading to sub-
optimal results. One of the fundamental constraints in bi-partitioning is the required
balance in the sizes of

� 2 and
� � . Assuming � � 2 � � � � � � , the constraint can be stated

as
� � � � � ���	�� ����
��	 � � � �

. During the search phase, a temporary violation of the size
constraint is allowed, however at the end, size constraints are satisfied and fully re-
stored by a greedy algorithm. Relaxed partitioning helps in removing natural clusters
that straddle the cut-line by blocks of unidirectional moves that temporary violate the

4The number of passes depends on the fitness of each chromosome in the population
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balance constraint; in a non-relaxed partitioner, these clusters can get locked in the cut-
set due to alternating moves in the two directions. The proposed Memetic algorithm
as seen in Figure 14 starts with the GA technique followed by SDHC with and without
relaxation of size constraints.

While(Gen � Gensize)
Apply GA
If Relax Size Constraint

Relax Size of Required Partitions
If Apply Local Search

Apply FM Local Search to Population
Else

Apply SDHC to Population
Enforce Size Constraint Greedly

Else
Apply SDHC or FM to Population

EndWhile /* end of a run */

Figure 14: A Memetic Algorithm with Relaxation

The parameters used for the GA are similar to those explained in Section 4.1. If the
size constraints are relaxed, then the algorithm applies either FM (Sanchis multi-way
partitioning) or SDHC (simple dynamic hill climbing) on the population for a limited
number of passes (determined by the user). Size constraints are enforced at the end of
the algorithm using a greedy heuristic.

4.2.3 Computational Results for Memetic Algorithm Implementation
Tables 2 and 3 compare the performance of a pure Genetic Algorithm to a memetic tech-
nique that combines GA with simple local search techniques and also a more advanced
hill climbing technique. All results are the average of 10 runs5.

The first column of each table presents the results based on a pure Genetic Algo-
rithm with a population size of 50, crossover rate of 99%, mutation rate of 0.36% and
generation size of 10. The second column in each table is based on a simple integration
of Genetic Algorithms with a local search heuristic (GA-II). In each generation a few
passes of local search are applied to each chromosome. The third column presents a
Memetic Algorithm (GA-FI) where a local search approach is applied to all chromo-
somes in only the last two generations. The fourth column presents an implementation
that combines (GA-II) with (GA-FI) (i.e strong local search). The last column of each ta-
ble gives results based on an integrated Genetic Algorithm with a dynamic hill climbing
technique with size constraints relaxed as explained above. Results obtained for four-
way partitioning indicate that for most circuits the amount of improvement achieved
is on average 16% for the GA-DHC implementation at the expense of increased CPU
time. It is interesting to notice that the GA-II implementation where local search is ap-
plied to all the chromosomes in every generation does not achieve as good results as
expected. This is due to premature convergence of the solutions because of the strong
local search applied to the population. Table 4 is identical to Table 3 except that 25%
of the population is injected with good initial solutions based on GRASP. The quality
of solutions obtained by GA-GR (Genetic Algorithm with GRASP) alone enhances the

5Fractional parts excluded due to large number of nets within a circuit.
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Memetic Algorithms With Random Initial Solutions
Circuit Pure GA GA-II GA-FI GA-IFI GA-DHC

Cuts Time Cuts Time Cuts Time Cuts Time Cuts Time
Fract 46 0:01 49 0:01 11 0:01 23 0:01 11 0:01
Prim1 87 0:06 87 0:07 71 0:07 87 0:06 68 0:07
Struct 77 0:13 65 0:15 55 0:16 51 0:15 45 0:17
Prim2 196 0:24 198 0:27 171 0:29 190 0:27 171 0:32
Ind1 78 0:17 76 0:19 65 0:20 75 0:19 57 0:22
Bio 211 0:46 206 0:51 195 0:54 204 0:51 115 1:00

Ind2 299 2:09 286 2:21 278 2:31 261 2:20 278 2:47
Ind3 555 3:15 491 3:34 448 3:52 491 3:34 415 4:15
Avq.s 511 3:35 516 3:55 483 4:06 512 3:57 483 4:38
Avq.l 486 4:08 526 4:30 467 4:50 488 4:34 467 5:21
Total 2546 894 2500 980 2244 1046 2382 984 2110 1160
%Imp 0% 0% +2% -8% +12% -14% +6% -9% +17% -22%

Table 2: Performance of 2-Way GA/MA Partitioning (Random Initial)

Memetic Algorithms With Random Initial Solutions
Circuit Pure GA GA-II GA-FI GA-IFI GA-DHC

Cuts Time Cuts Time Cuts Time Cuts Time Cuts Time
Fract 67 0:01 70 0:01 42 0:02 48 0:01 31 0:02
Prim1 162 0:07 154 0:08 129 0:09 145 0:08 129 0:11
Struct 253 0:18 240 0:21 192 0:21 219 0:19 181 0:23
Prim2 447 0:29 400 0:32 370 0:37 348 0:32 370 0:38
Ind1 140 0:21 134 0:24 101 0:27 104 0:23 100 0:28
Bio 285 1:03 307 1:08 266 1:17 284 1:09 266 1:23

Ind2 1287 2:55 1340 3:11 894 3:48 753 3:15 894 4:02
Ind3 1581 4:18 1518 4:45 1360 5:33 1441 4:48 1360 5:46
Avq.s 1079 4:57 1070 5:23 995 6:16 989 5:26 995 6:37
Avq.l 1071 5:38 1070 6:11 1019 7:17 1002 6:14 1019 7:39
Total 6372 1207 6303 1324 5368 1547 5333 1335 5345 1629
%Imp 0% 0% +1% -8% +16% -21% +16% -10% +16% -26%

Table 3: 4-Way GA/MA Random Partitioning (Random Initial)
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quality of the solution by 12% over a GA implementation that utilizes an initial random
population. Solutions obtained by GA-GR-DHC which utilizes a dynamic hill climb-
ing technique with relaxed size constraints improve on average by 20% over a simple
Genetic Algorithm implementation.

Memetic Algorithms With GRASP Initial Solutions
Circuit GA-GR GA-GR-II GA-GR-FI GA-GR-IFI GA-GR-DHC

Cuts Time Cuts Time Cuts Time Cuts Time Cuts Time
Fract 49 0:01 43 0:01 35 0:02 34 0:02 28 0:01
Prim1 133 0:08 125 0:08 125 0:10 113 0:10 120 0:10
Struct 167 0:20 178 0:21 164 0:25 151 0:25 132 0:26
Prim2 369 0:33 387 0:35 358 0:42 369 0:42 339 0:42
Ind1 130 0:25 114 0:26 143 0:31 102 0:32 92 0:31
Bio 324 1:17 328 1:18 242 1:32 275 1:32 303 1:40

Ind2 866 3:23 740 3:32 761 4:16 648 4:23 801 4:21
Ind3 1551 5:01 1513 5:27 1762 6:20 1444 7:08 1345 6:36
Avq.s 997 6:13 992 6:40 1059 8:58 947 8:04 986 7:55
Avq.l 1028 7:12 996 7:50 983 10:31 1001 9:21 988 9:13
Total 5614 1473 5416 1578 5632 2007 5084 1939 5134 1895

%Imp +12% -18% +15% -23% +11% -39% +20% -37% +19% -36%

Table 4: Performance of 4-Way GA/MA Partitioning (GRASP Initial)

4.3 Genetic-based Placement Algorithm
In this section, we present a Genetic Algorithm for standard cell placement. In this
algorithm, a solution string is represented by a set of alleles (the number of alleles
equal to the number of cells). Each allele indicates the index, the x- coordinates and
row number of the cell. Figure 15a illustrates the string encoding of the cell placement
given in Figure 15b. Figure 16 shows a pseudo-code of the Genetic-based placement

2

7 4

3 5

1

8 6

       0          20        50        30        0         50        40        30

row_number         0           3          0          2          1          2          3          1

x−coordinate

 cell_index            2           3          1          8          7          6          5          4

1          2          3          4          5          6          7          8

(b) Placement(a) String Encoding 

allele

 0

 2

 3

 1

row number cell

Figure 15: String Encoding

algorithm. The fitness function used is the reciprocal of the total HPWL6 for all the
nets.

� � %2��� �� 132 ������ � (4)

6HPWL is the Half Perimeter Wire Length.
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1. Encode Solution Space for Placement
2. set popsize, max gen, gen=0;

set crossover rate, mutation rate;
3. Generate initial population randomly
4. While (gen � max gen)

For (i=1 to popsize/2)
Select parents(mate1,mate2);
if (random(0,1) � crossover rate)

child = Do Crossover(mate1,mate2);
if (random(0,1) � mutation rate)

Mutation(offspring) and evaluate offspring;
End For
Replacement();
gen = gen + 1 ;

End While
5. Return best solution in current population.

Figure 16: A Genetic Placement Algorithm

where HPWL is the sum of the half perimeter of the smallest bounding rectangle for
each net as illustrated in Figure 17. ������ � is the estimate wire length of net i and

HPWL

Pin

Module

Bounding Box

Figure 17: Half Perimeter Wire Length (HPWL)

n is the number of nets. In the implementation, cell overlaps are removed and row
lengths are adjusted before evaluating the chromosome. Removing the overlaps after
every generation not only gives the algorithm a more accurate picture of the wire length
but also gives the algorithm repeated chances to optimize the circuit after it has been
perturbed by overlap removal (YA02). For the initial population construction, some
placement solutions produced by the Cluster-Seed method are injected to increase the
convergence rate. The traditional crossover operator used in GAs may produce infea-
sible solutions for the standard cell placement problem, therefore a crossover operator
called Order Crossover is considered as shown in Figure 18. Following crossover, each
offspring is mutated with a probability equal to the mutation rate. In GAs, mutation
produces incremental random changes in the offspring generated through crossover. It
not only plays the crucial role of replacing the gene values lost during the selection pro-
cess, but also provides the gene values that were not presented in the initial population.
Two mutation operators � 2 and � � were tested. Operator � 2 mutates an individual
by interchanging randomly selected pair of cells without changing the x-coordinate and
row number. Figure 19 illustrates the mutation process. Its random nature allows for
a broader exploration of the solution space. However, it typically increases a string’s
score due to its disruptive effect on the placement solution. Therefore, another muta-
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 2  1  3  8  7  5  9  6  4  10

 8 1  2  3  4  9  10 5  6 7

 2  1  3  8  7  4  9  5  6  10

 2  1  3  8  7  5  9  6  4  10

 8 1  2  3  4  9  10 5  6 7

 1  9  5 6  4  3  7 10  8 2

(a)  One−Point Order Crossover (b) Two−Point Order Crossover

Crossover Point Crossover Point1 Crossover Point2

Figure 18: Order Crossover for Circuit Placement

x−coordinate                             0           20        50        30        0        50          40        30

cell_index            2           3

row_number        0           3          0          2          1          2          3          1

 8          7 5          46 1

x−coordinate                             0           20        50        30        0        50          40        30

cell_index            2           3

row_number        0           3          0          2          1          2          3          1

 8          7 5          41 6

Before Mutation After Mutation

Figure 19: Placement Mutation Operator

tion operator � � was considered, where a cell � 2 is randomly chosen and its location is
swapped with another randomly selected cell � � , if and only if cell � � is located in the
same cell, or up or down one row from cell � 2 .

The replacement process is done by replacing the two worst individuals in the
population with the offsprings only if the latter are better than the worst two individu-
als.

4.4 Memetic Algorithm for Circuit Placement

The proposed Memetic Algorithm (shown in Figure 20) for circuit placement is based
on the Genetic Algorithm introduced earlier. In each generation, a Tile-based local
search heuristic is performed on part of the population to improve their fitness. The
number of generations used to terminate the algorithm is set to 10.

For the circuit placement problem, the pure GA is combined with Tile-based local
search in three different ways, referred to as performing local search on part of the
population: (i) before the crossover “GA-ME-1” (ii) after the crossover “GA-ME-2” (iii)
before and after the crossover “GA-ME-3”.

The first column in Table 5 presents results produced by the pure Genetic Al-
gorithm. For all the results the population size is 14 and the generation size is 10.
Cluster-Seed (presented in Section 2.2.2) based results are injected into both pure GA
and Memetic algorithms as part of the initial population. From the table, it can be seen
that the amount of improvement achieved is 44%, 43% and 47% respectively. Obvi-
ously, integrating GA with local search in the first two methods reduces the amount of
wire-length and CPU time on average by 45% and 17% respectively. The last approach
enhances the wire-length quality at the expense of an increase in CPU time on average
by 40%.
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1. Encode Solution Space for Placement
2. set popsize, max gen, gen=0;

set crossover rate, mutation rate;
3. Generate initial population randomly
4. Evaluate the initial population
5. While (gen

�
max gen)

Apply GA
Apply Tile-based algorithm to Population;

End While
6. Return best solution in current population.

Figure 20: A Memetic Placement Algorithm

Performance of Memetic Algorithms For Placement
Circuit Pure GA GA-ME-1 GA-ME-2 GA-ME-3

X+Y Time X+Y Time X+Y Time X+Y Time
Fract 61207 3.5 34997 15.1 35942 15.4 34953 31.1
Prim1 1.78e+06 29.6 995713 233.2 1.02e+06 219.6 1.00e+06 467.8
Struct 930148 114.0 504720 288.8 490276 251.0 460289 600.7
Ind1 4.42e+06 185.4 2.21e+06 926.9 2.07e+06 876.6 2.14e+06 1806.0

Prim2 1.03e+07 263.4 5.48e+06 741.3 5.44e+06 685.8 5.47e+06 1451.5
Bio 7.44e+06 863.5 3.98e+06 1256.8 4.01e+06 1240.0 3.82e+06 2492.7

Ind2 6.39e+07 2933.3 2.97e+07 3185.7 3.08e+07 3055.8 2.78e+07 6522.6
Ind3 1.58e+08 4688.6 9.92e+07 5716.4 1.01e+08 5313.4 9.31e+07 11405.4

avq.small 3.80e+07 7697.7 2.10e+07 5278.9 2.09e+07 5033.9 2.02e+07 10130.6
avq.large 5.08e+07 11699.4 2.34e+07 6422.6 2.35e+07 6065 2.27e+07 12387.4

Total 33.55+07 28475 18.59+07 24065 18.87+07 22753 17.67+07 47295
% Imp 0% 0% +44% +15% +43% +20% +47% -39%

Table 5: Results of Memetic Algorithms for Circuit Placement
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5 Hierarchical Approach

Clustering usually serves as a bottom-up preprocessing stage in a hierarchical parti-
tioning and placement environment. A good clustering method should identify groups
of cells which will eventually end up together in the final partitioning and placement
stages. Figure 21 shows the effect of clustering in reducing the complexity of a simple
circuit with 10 modules and 15 nets. It is clear that the number of local minima is re-
duced after clustering the original circuit. This process enables the Genetic Algorithm
to explore the solution space more effectively and to converge to a good neighborhood
solution in a short period of time.
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Figure 21: 3D View of Circuit Before/After Clustering

5.1 Hierarchical Approach for Circuit Partitioning

The hierarchical based partitioning algorithm uses a modified Memetic Algorithm that
integrates a Genetic Algorithm, GRASP, local search and clustering. Initially the sys-
tem starts by calculating statistical information and the attributes of the circuit. This
information is then used to collapse a set of nodes to form a single component (i.e su-
per nodes). The algorithm then proceeds with an encoding and initialization phase
during which each string in the population is assigned a uniformly distributed random
point in the solution space. Following clustering, a

�
% of the population is injected

with good initial solutions based on a constructive technique (i.e GRASP). In the final
stage of the Memetic Algorithm a local search heuristic is used on the flattened network
to further optimize local partitions of cells. The combined clustering and local search
methodology can be viewed as a combined bottom-up and top-down approach.

Tables 6, 7 show the results obtained with random initial solutions. The first col-
umn (GA-FLAT) of each table are based on applying a pure Genetic Algorithm to a flat
circuit (i.e no clustering involved). The results in the second column (GA-GC-FI) are
based on a Memetic Algorithm with simple local search applied at the end of the last
two generations. The technique (GA-GC-FI) involves clustering the circuit to a single
level and then applying the Memetic Algorithm. The third column (GA-GC-IFI) is sim-
ilar to (GA-GC-FI) except that local search is applied at the end of each generation to
all individuals in addition to a local search to the best chromosome. The final column
(GA-GC-DHC) is based on a dynamic hill climbing algorithm. The last two rows in the
tables present the total cut-size and amount of improvement achieved with respect to
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the pure Genetic Algorithm implementation. It is clear from Tables 6, 7 that the best re-
sults achieved are those based on both clustering and simple local search. The amount
of improvement in cut-size achieved using (GA-GC-FI) are 13% for two way partition-
ing and 25% for four-way partitioning respectively. The amount of improvement using
(GA-GC-IFI) is 16% for two-way partitioning and 22% for two way partitioning. A
clustering Memetic Algorithm (GA-GC-DHC) with dynamic hill climbing capability
improves the solution quality by 24% for two-way partitioning and 35% for four-way
partitioning. The computation time involved using all techniques improves upon those
obtained using a pure GA on the flat circuit.

Random Clustered Based Memetic Techniques
Circuit GA-FLAT GA-GC-FI GA-GC-IFI GA-GC-DHC

Cuts Time Cuts Time Cuts Time Cuts Time
Fract 46 0:01 11 0:01 11 0:01 11 0:01
Prim1 87 0:06 90 0:04 68 0:04 65 0:04
Struct 77 0:13 49 0:08 49 0:09 49 0:09
Prim2 196 0:24 168 0:17 168 0:19 155 0:23
Ind1 78 0:17 67 0:13 67 0:14 62 0:16
Bio 211 0:46 133 0:47 98 0:47 92 0:48

Ind2 299 2:09 351 1:55 327 2:08 301 2:16
Ind3 555 3:15 434 3:07 404 3:25 358 3:33
Avq.s 511 3:35 462 3:41 467 3:51 435 3:58
Avq.l 486 4:08 453 3:45 485 3:15 407 3:12
Total 2546 894 2218 791 2144 853 1935 880

%Imp 0% 0% +13% +12% +16% +4% +24% +2%

Table 6: 2-Way Clustered Based Partitioning

Random Clustered Based Memetic Techniques
Circuit GA-FLAT GA-GC-FI GA-GC-IFI GA-GC-DHC

Cuts Time Cuts Time Cuts Time Cuts Time
Fract 67 0:01 36 0:01 37 0:01 35 0:01
Prim1 162 0:07 114 0:05 114 0:05 112 0:06
Struct 253 0:18 127 0:07 135 0:08 124 0:09
Prim2 447 0:29 347 0:24 278 0:26 275 0:34
Ind1 140 0:21 90 0:14 94 0:15 94 0:14
Bio 285 1:03 234 0:46 255 0:53 230 0:58

Ind2 1287 2:55 862 2:35 859 2:50 754 3:03
Ind3 1581 4:18 1134 3:24 1131 3:47 921 3:55
Avq.s 1079 4:57 894 3:53 857 4:05 749 4:07
Avq.l 1071 5:38 963 4:03 916 4:37 847 4:45
Total 6372 1207 4801 932 4676 1027 4141 1072

%Imp 0% 0% +25% +22% +27% +15% +35% +12%

Table 7: 4-Way Clustered Based Partitioning
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5.2 Hierarchical Approach for Standard Cell Placement

Early methods of clustering performed the desired circuit size reduction in a single
level (e.g. (MG89)). Research has recently shown that clustering in steps (illustrated in
Figure 22), reducing the circuit size gradually by adding intermediate levels to the hier-
archy, produces superior results by permitting more gradual de-clustering (KAKS97).
This gradual clustering is often called “multi-level” or “hierarchical” clustering. Dur-
ing de-clustering in a single clustering level heuristic, the difference between positions
in clustered cells and flat circuit cells can be substantial, and significant iterative im-
provement is necessary to achieve a high quality solution. In a multi-level heuristic,
much smaller differences are created between levels of the hierarchy, because it is built
slowly. During de-clustering, these differences are more easily managed by simple
interchange heuristics, resulting in a superior quality solution in a shorter amount of
time (AMA01).

A

B

A B

C D

A B

C D

clusters fromed
from cells in
previous level

cluster de−cluster

cluster

Level 1

Level n

de−cluster

Level 0
(Flat)

Figure 22: Multilevel Clustering Hierarchy.

In this paper, a simple multi-level clustering technique called “Weighted Hyper-
edge Clustering” (ATV01), (which is an extension to Karypis et. al work (KAKS97)) is
used for the hierarchical placement approach. As seen in the pseudo-code in Figure 23,
an upper and lower width limit is determined based on the cell widths in the current
hierarchical level. As a potential clustering of cells is examined, a new cluster is only
created if the sum of the constituent cells’ widths is in the current hierarchical level.
As a potential clustering of cells is examined, a new cluster is only created if the sum
of the constituent cells’ widths is between these width limits. This limitation on sizes
prevents excessively large clusters from impeding improvement, yet still reduces the
problem size.

Table 8 shows the results obtained by a Genetic Algorithm (Pure GA), a GA with
a clustering technique (GA-GC), a Memetic Algorithm with a simple Tile-based local
search (GA-Tile) and a GA based on a clustering technique with Tile-based local search
embedded (GA-GC-Tile). It is clear from this table that the algorithm based on both
clustering and simple local search produces high quality solutions. The results shown
in the first two columns indicate that by combining the clustering technique with GA
the computation time was largely reduced by 85% but the quality of the solution deteri-
orated compared to results obtained for flat benchmarks. The amount of improvement
in total estimated wire-length achieved using Memetic algorithm (GA-Tile) are 47% but
the computation time involved using a Memetic algorithm increases largely. A cluster-
ing Memetic Algorithm (GA-GC-Tile) improves the solution quality by 54% and the
computation time is less than that of the flat Memetic Algorithm (GA-Tile).
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1. Sort nets by increasing size
2. For each sorted net

If no cell on net is clustered
If sum of cell widths on net is within limits

Cluster all cells on net
End If

End If
End For

3. For each sorted net
If sum of unclust cell widths is within limits

Cluster all unclust cells on net
End If

End For
4. For each cell in circuit

If not clustered
Create a new cluster from cell

End If
End For

Figure 23: Weighted Hyperedge Clustering

Performance of Hierarchical Approach
Circuit Pure GA GA-GC GA-Tile GA-GC-Tile

X+Y Time X+Y Time X+Y Time X+Y Time
Fract 61207 3.5 54548 1.5 34953 31.1 34627 22.9
Prim1 1.78e+06 29.6 2.18e+06 9.4 1.00e+06 467.8 964815 438.2
Struct 930148 114.0 1.39e+06 14.3 460289 600.7 464454 544.8
Ind1 4.42e+06 185.4 3.87e+06 47.6 2.14e+06 1806.0 1.97e+06 1318.4

Prim2 1.03e+07 263.4 1.21e+07 54.2 5.47e+06 1451.5 5.31e+06 1286.9
Bio 7.44e+06 863.5 6.15e+06 64.6 3.82e+06 2492.7 2.77e+06 2157.9

Ind2 6.39e+07 2933.3 7.42e+07 642.5 2.78e+07 6522.6 3.10e+07 5420.7
Ind3 1.58e+08 4688.6 2.86e+08 816.3 9.31e+07 11405.4 8.06e+07 7521.4

avq.small 3.80e+07 7697.7 4.51e+07 1203.2 2.02e+07 10130.6 1.35e+07 9711.6
avq.large 5.08e+07 11699.4 6.13e+07 1606.4 2.27e+07 12387.4 1.60e+07 11060.4

Total 33.46+07 28478 49.17+07 4460 17.67+07 47294 15.26+07 39478
% Imp 0% 0% -32% 85% 47% -39% 54% -27%

Table 8: Hierarchical Clustering for Circuit Placement
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6 Conclusions and Future Work

This paper presented several approaches to integrating Evolutionary Computation
models with local search techniques (i.e Memetic Algorithms) for efficiently solving
underlying VLSI circuit partitioning and placement problems. The methodology pre-
sented in the paper explained how clustering reduces the complexity of the circuit and
thereby enables the Evolutionary technique to explore the solution space more effec-
tively. Constructive heuristic techniques in the form of GRASP and Cluster Growth
were utilized to inject the initial population with good initial solutions to diversify the
search and exploit the solution space. Furthermore, the local search technique was able
to enhance the convergence rate of the Evolutionary Algorithm by finely tuning the
search on the immediate area of the landscape being considered.

For the partitioning problem, Memetic Algorithms based on GRASP, local search
and clustering achieve on average an improvement of 35% over a traditional Genetic
Algorithm. Whereas for the circuit placement, Memetic Algorithms based on Cluster-
Growth, Tile-based local search and hierarchical clustering reduce the total estimated
wire-length on average by 54%. This clearly indicates that Memetic Algorithms are
a powerful algorithmic paradigm for evolutionary computing. Future work involves
using more efficient ways to combine a local search heuristic with GA to produce high
quality solutions in less time, especially for the circuit placement problem.
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