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a b s t r a c t

Recent investigations into the education production function have moved beyond traditional

teacher inputs, such as education, certification, and salary, focusing instead on observational

measures of teaching practice. However, challenges to identification mean that this work has

yet to coalesce around specific instructional dimensions that increase student achievement. I

build on this discussion by exploiting within-school, between-grade, and cross-cohort varia-

tion in scores from two observation instruments; further, I condition on a uniquely rich set of

teacher characteristics, practices, and skills. Findings indicate that inquiry-oriented instruc-

tion positively predicts student achievement. Content errors and imprecisions are negatively

related, though these estimates are sensitive to the set of covariates included in the model.

Two other dimensions of instruction, classroom emotional support and classroom organiza-

tion, are not related to this outcome. Findings can inform recruitment and development efforts

aimed at improving the quality of the teacher workforce.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decade, research has confirmed that teach-

ers have substantial impacts on their students’ academic

and life-long success (e.g., Nye, Konstantopoulos, & Hedges,

2004; Chetty, Friedman, & Rockoff, 2014). Despite concerted

efforts to identify characteristics such as experience, educa-

tion, and certification that might be correlated with effec-

tiveness (for a review, see Wayne & Youngs, 2003), how-

ever, the nature of effective teaching still largely remains a

black box. Given that the effect of teachers on achievement

must occur at least in part through instruction, it is crit-

ical that researchers identify the types of classroom prac-

tices that matter most to student outcomes. This is especially

true as schools and districts work to meet the more rigor-

ous goals for student achievement set by the Common Core

State Standards (Porter, McMaken, Hwang, & Yang, 2011),
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particularly in mathematics (Duncan, 2010; Johnson, 2012;

U.S. Department of Education, 2010).

Our limited progress toward understanding the impact of

teaching practice on student outcomes stems from two main

research challenges. The first barrier is developing appro-

priate tools to measure the quality of teachers’ instruction.

Much of the work in this area tends to examine instruction

either in laboratory settings or in classrooms over short pe-

riods of time (e.g., Anderson, Everston, & Brophy, 1979; Star

& Rittle-Johnson, 2009), neither of which is likely to capture

the most important kinds of variation in teachers’ practices

that occur over the course of a school year. The second is a

persistent issue in economics of education research of de-

signing studies that support causal inferences (Murnane &

Willett, 2011). Non-random sorting of students to teachers

(Clotfelter, Ladd, & Vigdor, 2006; Rothstein, 2010) and omit-

ted measures of teachers’ skills and practices limit the suc-

cess of prior research.

I address these challenges through use of a unique dataset

on fourth- and fifth-grade teachers and their students from

three anonymous school districts on the East Coast of the
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United States. Over the course of two school years, the project

captured observed measures of teachers’ classroom prac-

tices on the Mathematical Quality of Instruction (MQI) and

Classroom Assessment Scoring System (CLASS) instruments,

focusing on mathematics-specific and general teaching prac-

tices, respectively. The project also collected data on a range

of other teacher characteristics, as well as student outcomes

on a low-stakes achievement test that was common across

participants.

My identification strategy has two key features that dis-

tinguish it from prior work on this topic. First, to account

for sorting of students to schools and teachers, I exploit vari-

ation in observation scores within schools, across adjacent

grades and years. Specifically, I specify models that include

school fixed effects and instructional quality scores averaged

to the school-grade-year level. This approach assumes that

student and teacher assignments are random within schools

and across grades or years, which I explore in detail be-

low. Second, to isolate the independent contribution of in-

structional practices to student achievement, I condition on

a uniquely rich set of teacher characteristics, skills, and prac-

tices. I expect that there likely are additional factors that are

difficult to observe and, thus, are excluded from my data.

Therefore, to explore the possible degree of bias in my es-

timates, I test the sensitivity of results to models that in-

clude different sets of covariates. Further, I interpret findings

in light of limitations associated with this approach.

Results point to a positive relationship between am-

bitious or inquiry-oriented mathematics instruction and

performance on a low-stakes test of students’ math knowl-

edge of roughly 0.10 standard deviations. I also find sug-

gestive evidence for a negative relationship between teach-

ers’ mathematical errors and student achievement, though

estimates are sensitive to the specific set of teacher char-

acteristics included in the model. I find no relationships

between two other dimensions of teaching practice – class-

room emotional support and classroom organization – and

student achievement. Teachers included in this study have

value-added scores calculated from state assessment data

similar to those of other fourth- and fifth-grade teachers in

their respective districts, leading me to conclude that find-

ings likely generalize to these populations beyond my iden-

tification sample. I argue that results can inform recruitment

and development efforts aimed at improving the quality of

the teacher workforce.

The remainder of this paper is organized as follows. In the

second section, I discuss previous research on the relation-

ship between observational measures of teacher quality and

student achievement. In the third section, I describe the re-

search design, including the sample and data. In the fourth

section, I present my identification strategy and tests of as-

sumptions. In the fifth section, I provide main results and

threats to internal and external validity. I conclude by dis-

cussing the implications of my findings for ongoing research

and policy on teacher and teaching quality.

2. Background and context

Although improving the quality of the teacher workforce

is seen as an economic imperative (Hanushek, 2009), long-

standing traditions that reward education and training or of-
fer financial incentives based on student achievement have

been met with limited success (Boyd, Grossman, Lankford,

Loeb, & Wyckoff, 2006; Fryer, 2013; Harris & Sass, 2011;

Springer et al., 2010). One reason for this posed by Murnane

and Cohen (1986) almost three decades ago is the “nature of

teachers’ work” (p. 3). They argued that the “imprecise na-

ture of the activity” makes it difficult to describe why some

teachers are good and what other teachers can do to improve

(p. 7).

Recent investigations have sought to test this theory by

comparing subjective and objective (i.e., value-added) mea-

sures of teacher performance. In one such study, Jacob and

Lefgren (2008) found that principals were able to distinguish

between teachers in the tails of the achievement distribution

but not in the middle. Correlations between principal ratings

of teacher effectiveness and value added were weak to mod-

erate: 0.25 and 0.18 in math and reading, respectively (0.32

and 0.29 when adjusted for measurement error). Further,

while subjective ratings were a statistically significant pre-

dictor of future student achievement, they performed worse

than objective measures. Including both in the same regres-

sion model, estimates for principal ratings were 0.08 stan-

dard deviations (sd) in math and 0.05 sd in reading; com-

paratively, estimates for value-added scores were 0.18 sd in

math and 0.10 sd in reading. This evidence led the authors to

conclude that “good teaching is, at least to some extent, ob-

servable by those close to the education process even though

it may not be easily captured in those variables commonly

available to the econometrician” (p. 103).

Two other studies found similar results. Using data from

New York City, Rockoff, et al. (2012) estimated correlations of

roughly 0.21 between principal evaluations of teacher effec-

tiveness and value-added scores averaged across math and

reading. These relationships corresponded to effect sizes of

0.07 sd in math and 0.08 sd in reading when predicting future

student achievement. Extending this work to mentor eval-

uations of teacher effectiveness, Rockoff and Speroni (2010)

found smaller relationships to future student achievement in

math between 0.02 sd and 0.05 sd. Together, these studies

suggest that principals and other outside observers under-

stand some but not all of the production function that con-

verts classroom teaching and professional expertise into stu-

dent outcomes.

In more recent years, there has been a growing in-

terest amongst educators and economists alike in explor-

ing teaching practice more directly. This now is possible

through the use of observation instruments that quantita-

tively capture the nature and quality of teachers’ instruc-

tion. In one of the first econometric analyses of this kind,

Kane, Taylor, Tyler, and Wooten (2011) examined teaching

quality scores captured on the Framework for Teaching in-

strument as a predictor of math and reading test scores.

Data came from Cincinnati and widespread use of this in-

strument in a peer evaluation system. Relationships to stu-

dent achievement of 0.11 sd in math and 0.14 sd in reading

provided suggestive evidence of the importance of general

classroom practices captured on this instrument (e.g., class-

room climate, organization, routines) in explaining teacher

productivity.

At the same time, this work highlighted a central chal-

lenge associated with looking at relationships between
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1 This project also includes a fourth district that I exclude here due to data

and sample limitations. In the first year of the study, students did not take

the baseline achievement test. In the second year, there were only three
scores from observation instruments and student test scores.

Non-random sorting of students to teachers and non-random

variation in classroom practices across teachers means that

there likely are unobserved characteristics related both to

instructional quality and student achievement. As one way

to address this concern, the authors’ preferred model in-

cluded school fixed effects to account for factors at the school

level, apart from instructional quality, that could lead to dif-

ferences in achievement gains. In addition, they relied on

out-of-year observation scores that, by design, could not be

correlated with the error term predicting current student

achievement. This approach is similar to those taken by Jacob

and Lefgren (2008), Rockoff, et al. (2012), and Rockoff and

Speroni (2010), who used principal/mentor ratings of teacher

effectiveness to predict future student achievement. Finally,

as a robustness test, the authors replaced school fixed ef-

fects with teacher fixed effects but noted that these esti-

mates were much noisier because of the small sample of

teachers.

The largest and most ambitious study to date to conduct

these sorts of analyses is the Measures of Effective Teach-

ing (MET) project, which collected data from teachers across

six urban school districts on multiple observation instru-

ments. By randomly assigning teachers to class rosters within

schools and using out-of-year observation scores, Kane, Mc-

Caffrey, Miller, and Staiger (2013) were able to limit some of

the sources of bias described above. In math, relationships

between scores from the Framework for Teaching and prior

student achievement fell between 0.09 sd and 0.11 sd. In

the non-random assignment portion of the study, Kane and

Staiger (2012) found correlations between scores from other

observation instruments and prior-year achievement gains

in math from 0.09 (for the Mathematical Quality of Instruc-

tion) to 0.27 (for the UTeach Teacher Observation Protocol).

The authors did not report these as effect size estimates. As

a point of comparison, the correlation for the Framework for

Teaching and prior-year gains was 0.13.

Notably, these relationships between observation scores

and student achievement from both the Cincinnati and MET

studies are equal to or larger in magnitude than those that fo-

cus on principal or mentor ratings of teacher quality. This is

somewhat surprising given that principal ratings of teacher

effectiveness – often worded specifically as teachers’ ability

to raise student achievement – and actual student achieve-

ment are meant to measure the same underlying construct.

Comparatively, dimensions of teaching quality included on

these instruments are thought to be important contributors

to student outcomes but are not meant to capture every

aspect of the classroom environment that influence learn-

ing (Pianta & Hamre, 2009). Therefore, using findings from

Jacob and Lefgren (2008), Rockoff et al. (2012), and Rockoff

and Speroni (2010) as a benchmark, estimates describing

the relationship between observed classroom practices and

student achievement are, at a minimum, substantively mean-

ingful; at a maximum, they may be viewed as large. Follow-

ing Murnane and Cohen’s intuition, then, continued explo-

ration into the “nature of teachers’ work” (1986, p. 3), the

practices that comprise high-quality teaching, and their role

in the education production function will be a central com-

ponent of efforts aimed at raising teacher quality and student

achievement.
At the same time that work by Kane et al.

(2011,2012,2013) has greatly expanded conversation in

the economics of education literature to include teaching

quality when considering teacher quality, this work has

yet to coalesce around specific instructional dimensions

that increase student outcomes. Random assignment of

teachers to students – and other econometric methods

such as use of school fixed effects, teacher fixed effects, and

out-of-year observation ratings – likely provide internally

valid estimates of the effect of having a teacher who pro-

vides high-quality instruction on student outcomes. This

approach is useful when validating different measures of

teacher quality, as was the stated goal of many of the studies

described above including MET. However, these approaches

are insufficient to produce internally valid estimates of the

effect of high-quality instruction itself on student outcomes.

This is because teachers whose measured instructional

practices are high quality might have a true, positive effect

on student achievement even though other practices and

skills – e.g., spending more time with students, knowledge of

students – are responsible for the higher achievement. Kane

et al. (2011) fit models with teacher fixed effects in order to

“control for all time-invariant teacher characteristics that

might be correlated with both student achievement growth

and observed classroom practices” (p. 549). However, it is

likely that there are other time-variant skills related both to

instructional quality and student achievement.

I address this challenge to identification in two ways.

First, my analyses explore an additional approach to account

for the non-random sorting of students to teachers. Sec-

ond, I attempt to isolate the unique contribution of specific

teaching dimensions to student outcomes by conditioning

on a broad set of teacher characteristics, practices, and skills.

Specifically, I include observation scores captured on two in-

struments (both content-specific and general dimensions of

instruction), background characteristics (education, certifi-

cation, and teaching experience), knowledge (mathematical

content knowledge and knowledge of student performance),

and non-instructional classroom behaviors (preparation for

class and formative assessment) that are thought to relate

both to instructional quality and student achievement. Com-

paratively, in their preferred model, Kane et al. (2011) in-

cluded scores from one observation instrument, controlling

for teaching experience. While I am not able to capture ev-

ery possible characteristic, I argue that these analyses are an

important advance beyond what currently exists in the field.

3. Sample and data

3.1. Sample

Data come from the National Center for Teacher

Effectiveness (NCTE), which focused on collection of instruc-

tional quality scores and other teacher characteristics in

three anonymous districts (henceforth Districts 1 through

3).1 Districts 1 and 2 are located in the same state. Data was
schools in which all teachers in the relevant grades participated in data
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Table 1

Sample descriptive statistics.

All districts District 1 District 2 District 3

Students

Male (%) 49.7 48.8 51.1 47.6

African American (%) 53.1 42.8 51.0 67.2

Asian (%) 4.2 7.2 3.7 2.4

Hispanic (%) 17.2 37.7 12.4 8.8

White (%) 21.7 6.6 29.0 19.8

FRPL (%) 71.0 84.1 71.3 58.3

SPED (%) 10.6 14.5 10.2 7.9

LEP (%) 16.4 23.6 17.8 6.6

Students 3203 724 1692 787

Teachers

Bachelor’s degree in education (%) 45.4 33.3 57.5 42.1

Math coursework (Likert Scale from 1 to 4) 2.3 2.4 2.4 2.2

Master’s degree (%) 75.0 83.3 77.5 65.8

Traditional certification (%) 70.3 74.2 92.5 45.0

Experience (In Years) 9.0 8.9 9.1 9.0

Mathematical content knowledge (Standardized) −0.07 0.15 0.00 −0.35

Knowledge of student performance (Standardized) 0.05 0.32 0.16 −0.28

Preparation for class (Likert Scale from 1 to 5) 3.4 3.4 3.3 3.4

Formative assessment (Likert Scale from 1 to 5) 3.6 3.6 3.6 3.6

Teachers 111 31 40 40
collected from participating fourth- and fifth-grade math

teachers in the 2010–2011 and 2011–2012 school years. Due

to the nature of the study and the requirement for teach-

ers to be videotaped over the course of a school year, par-

ticipants consist of a non-random sample of schools and

teachers who agreed to participate. During recruitment,

study information was presented to schools based on district

referrals and size; the study required a minimum of two

teachers at each of the sampled grades. Of eligible teachers,

143 (roughly 55%) agreed to participate. My identification

strategy focuses on school-grade-years in which I have the

full sample of teachers who work in non-specialized class-

rooms (i.e., not self-contained special education or limited

English proficient classes) in that school-grade-year. I fur-

ther restrict the sample to schools that have at least two

complete grade-year cells. This includes 111 teachers in 26

schools and 76 school-grade-years; 45 of these teachers, 17

of these schools, and 27 of these school-grade-years are in

the sample for both school years.

In Table 1, I present descriptive statistics on the students

and teachers in this sample. Students in District 1 are pre-

dominantly African American or Hispanic, with over 80% eli-

gible for free- or reduced-price lunch (FRPL), 15% designated

as in need of special education (SPED) services, and roughly

24% designated as limited English proficient (LEP). In District

2, there is a greater percentage of white students (29%) and

fewer FRPL (71%), SPED (10%), and LEP students (18%). In Dis-

trict 3, there is a greater percentage of African-American stu-

dents (67%) and fewer FRPL (58%), SPED (8%), and LEP stu-

dents (7%). Across all districts, teachers have roughly nine

years of experience. Teachers in Districts 1 and 2 were cer-

tified predominantly through traditional programs (74% and

93%, respectively), while more teachers in District 3 entered
collection, which is an important requirement of my identification strategy.

At the same time, when I include these few observations in my analyses,

patterns of results are the same.
the profession through alternative programs or were not cer-

tified at all (55%). Relative to all study participants, teachers

in Districts 1 through 3 have above average, average, and be-

low average mathematical content knowledge, respectively.

3.2. Main predictor and outcome measures

3.2.1. Video-recorded lesson of instruction

Mathematics lessons were captured over a two-year pe-

riod, with a maximum of three lessons per teacher per year.

Capture occurred with a three-camera, unmanned unit and

lasted between 45 and 80 min. Teachers were allowed to

choose the dates for capture in advance, and were directed

to select typical lessons and exclude days on which students

were taking a test. Although it is possible that these lessons

are unique from teachers’ general instruction, teachers did

not have any incentive to select lessons strategically as no

rewards or sanctions were involved with data collection. In

addition, analyses from the MET project indicate that teach-

ers are ranked almost identically when they choose lessons

themselves compared to when lessons are chosen for them

(Ho & Kane, 2013).

Trained raters scored these lessons on two established

observational instruments: the Mathematical Quality of

Instruction (MQI), focused on mathematics-specific prac-

tices, and the Classroom Assessment Scoring System (CLASS),

focused on general teaching practices. For the MQI, two cer-

tified and trained raters watched each lesson and scored

teachers’ instruction on 13 items for each seven-and-a-half

minute segment on a scale from Low (1) to High (3) (see Table

2 for a full list of items). Lessons have different numbers

of segments, depending on their length. Analyses of these

data (Blazar, Braslow, Charalambous, & Hill, 2015) show that

items cluster into two main factors: Ambitious Mathematics

Instruction, which corresponds to many elements contained

within the mathematics reforms of the 1990s (National

Council of Teachers of Mathematics, 1989,1991,2000)

and the Common Core State Standards for Mathematics
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Table 2

Univariate and bivariate descriptive statistics of instructional quality dimensions.

Univariate statistics Pairwise correlations

Teacher level School-grade-year

level

Adjusted

intraclass

correlation

Ambitious

mathemat-

ics

instruction

Mathematical

errors and

imprecisions

Classroom

emotional

support

Classroom

organization

Mean SD Mean SD

Ambitious Mathematics Instruction 1.26 0.12 1.27 0.10 0.69 1

Linking and connections

Explanations

Multiple methods

Generalizations

Math language

Remediation of student difficulty

Use of student productions

Student explanations

Student mathematical questioning

and reasoning

Enacted task cognitive activation

Mathematical Errors and Imprecisions 1.12 0.12 1.12 0.08 0.52 −0.33∗∗∗ 1

Major mathematical errors

Language imprecisions

Lack of clarity

Classroom Emotional Support 4.26 0.55 4.24 0.34 0.55 0.34∗∗∗ −0.01 1

Positive climate

Teacher sensitivity

Respect for student perspectives

Classroom Organization 6.32 0.44 6.33 0.31 0.65 0.19∗∗∗ 0.05 0.44∗∗∗ 1

Negative climate

Behavior management

Productivity

Notes: ∼p<0.10, ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. Statistics generated from all available data. MQI items (from Ambitious Mathematics Instruction and Mathematical

Errors and Imprecisions) on a scale from 1 to 3. CLASS items (from Classroom Emotional Support and Classroom Organization) on a scale from 1 to 7.
(National Governors Association for Best Practices, 2010);

and Mathematical Errors and Imprecisions, which captures

any mathematical errors the teacher introduces into the

lesson. For Ambitious Mathematics Instruction, higher scores

indicate better performance. For Mathematical Errors and

Imprecisions, higher scores indicate that teachers make more

errors in their instruction and, therefore, worse perfor-

mance. I estimate reliability for these metrics by calculating

the amount of variance in teacher scores that is attributable

to the teacher (i.e., the intraclass correlation), adjusted for

the modal number of lessons. These estimates are 0.69 and

0.52 for Ambitious Mathematics Instruction and Mathematical

Errors and Imprecisions, respectively. Though this latter

estimate is lower than conventionally acceptable levels (0.7),

it is consistent with those generated from similar studies

(Bell, et al., 2012; Kane & Staiger, 2012).2
2 Reliability estimates for the MQI from the MET study were lower. One

reason for this may be that MET used the MQI Lite and not the full MQI in-

strument used in this study. The MQI Lite has raters provide only overarch-

ing dimension scores, while the full instrument asks raters to score teachers

on up to five items before assessing an overall score. Another reason likely

is related to differences in scoring designs. MET had raters score 30 min of

instruction from each lesson. Comparatively, in this study, raters provided

scores for the whole lesson, which is in line with recommendations made

by Hill, Charalambous, and Kraft (2012) in a formal generalizability study. Fi-

nally, given MET’s intent to validate observation instruments for the purpose

of new teacher evaluation systems, they utilized a set of raters similar to

the school leaders and staff who will conduct these evaluations in practice.

In contrast, other research shows that raters who are selectively recruited

due to a background in mathematics or mathematics education and who
The CLASS instrument captures more general classroom

quality. By design, the instrument is split into three dimen-

sions. Based on factor analyses described above, I utilize two:

Classroom Emotional Support, which focuses on the classroom

climate and teachers’ interactions with students; and Class-

room Organization, including behavior management and pro-

ductivity of the lesson. Following the protocol provided by in-

strument developers, one certified and trained rater watched

and scored each lesson on 11 items for each fifteen-minute

segment on a scale from Low (1) to High (7). I reverse code

one item from the Classroom Organization dimension, “Neg-

ative Climate,” to align with the valence of the other items.

Therefore, in all cases, higher scores indicate better perfor-

mance. Using the same method as above, I estimate relia-

bilities of 0.55 for Classroom Emotional Support and 0.65 for

Classroom Organization.

In Table 2, I present summary statistics of teacher-level

scores that are averaged across raters (for the MQI), seg-

ments, and lessons. For the MQI, mean scores are slightly

lower than the middle of the scale itself: 1.26 for Ambitious

Mathematics Instruction (out of 3; sd = 0.12) and 1.12 for

Mathematical Errors and Imprecisions (out of 3; sd = 0.12).

For the CLASS, mean scores are centered above the middle

of the scale: 4.26 for Classroom Emotional Support (out of 7;

sd = 0.55) and 6.52 for Classroom Organization (out of 7; sd

= 0.44). Pairwise correlations between these teacher-level
complete initial training and ongoing calibration score more accurately on

the MQI than those who are not selectively recruited (Hill et al., 2012).
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Table 3

Variance decomposition of school-grade-year instructional quality

scores.

School Residual

Ambitious mathematics instruction 0.59 0.41

Mathematical errors and imprecisions 0.46 0.54

Classroom emotional support 0.45 0.55

Classroom organization 0.52 0.48

Notes: Sample includes 76 school-grade-years.
scores range from roughly zero (between Mathematical Errors

and Imprecisions and the two dimensions on the CLASS in-

strument) to 0.44 (between Classroom Emotional Support and

Classroom Organization). Ambitious Mathematics Instruction is

more consistently related to the other instructional quality

dimensions, with correlations between 0.19 and 0.34. These

correlations are high enough to suggest that high-quality

teachers who engage in one type of instructional practice

may also engage in others, but not too high to indicate that

dimensions measure the same construct.

As I discuss below, my identification strategy relies on

instructional quality scores at the school-grade-year level.

While this strategy loses between-teacher variation, which

likely is the majority of the variation in instructional quality

scores, I still find substantive variation in instructional qual-

ity scores within schools, across grades and years. In Table 3,

I decompose the variation in school-grade-year scores into

two components: the school-level component, which de-

scribes the percent of variation that lies across schools, and

the residual component, which describes the rest of the vari-

ation that lies within schools. For all four instructional qual-

ity dimensions, I find that at least 40% of the variation in

school-grade-year scores lies within schools. This leads me

to conclude that there is substantive variation within schools

at the school-grade-year level to exploit in this analysis.

In order to minimize noise in these observational mea-

sures, I use all available lessons for each teacher (Hill,

Charalambous, & Kraft, 2012). Teachers who participated in

the study for one year had three lessons, on average, while

those who participated in the study for two years generally

had six lessons. A second benefit of this approach is that it

reduces the possibility for bias due to unobserved classroom

characteristics that affect both instructional quality and stu-

dent outcomes (Kane, Taylor, Tyler, & Wooten, 2011).3 This is
3 Kane et al. (2011) argue that cotemporaneous measurement of teacher

observation scores and student outcomes may bias estimates due to class

characteristics that affect both the predictor and the outcome. I do not do so

here for both practical and substantive reasons. The sample of school-grade-

years in which all teachers have out-of-year observation scores is too limited

to conduct the same sort of analysis. In addition, as this study is interested

in the effect of instruction on student outcomes, I want to utilize scores that

capture the types of practices and activities in which students themselves

are engaged.

At the same time, I am able to examine the extent to which Kane et al.’s

hypothesis plays out in my own data. To do so, I explore whether changes in

classroom composition predict changes in instructional quality for those

45 teachers for whom I have two years of observation data. In Appendix

Table A1, I present estimates from models that regress each instruc-

tional quality dimension on a vector of observable class characteristics and

teacher fixed effects. Here, I observe that classroom composition only pre-

dicts within-teacher, cross-year differences in Classroom Emotional Support

(F = 2.219, p = 0.035). This suggests that attention to omitted variables
because, in roughly half of cases, scores represent elements

of teachers’ instruction from the prior year or future year,

in addition to the current year. Specifically, I utilize empiri-

cal Bayes estimation to shrink scores back toward the mean

based on their precision (see Raudenbush & Bryk, 2002). To

do so, I specify the following hierarchical linear model using

all available data, including teachers beyond my identifica-

tion sample

OBSERVATIONl j = μ j + εl j (1)

where the outcome is the observation score for lesson l and

teacher j, μj is a random effect for each teacher j, and ɛlj is

the error term. I utilize standardized estimates of the teacher-

level random effect as each teacher’s observation score. Most

distributions of these variables are roughly normal. For iden-

tification, I average these scores within each school-grade-

year. I do not re-standardize these school-grade-year scores

in order to interpret estimates in teacher-level standard de-

viation units, which are more meaningful than school-grade-

year units.

3.2.2. Student demographic and test-score data

One source of student-level data is district administrative

records. Demographic data include gender, race/ethnicity,

SPED status, LEP status, and FRPL eligibility. I also utilize

prior-year test scores on state assessments in both math

and reading, which are standardized within district by grade,

subject, and year using the entire sample of students in each

district, grade, subject, and year.

Student outcomes were measured in both fall and spring

on a new assessment developed by researchers who created

the MQI in conjunction with the Educational Testing Service

(see Hickman, Fu, & Hill, 2012). Validity evidence indicates

internal consistency reliability of 0.82 or higher for each form

across the relevant grade levels and school years. Three key

features of this test make it ideal for this study. First, the test

is common across all districts and students in the sample,

which is important given evidence on the sensitivity of sta-

tistical models of teacher effectiveness to different achieve-

ment tests (Lockwood, et al., 2007; Papay, 2011). Second, the

test is vertically aligned, allowing me to compare achieve-

ment scores for students in fourth versus fifth grade. Third,

the assessment is a relatively cognitively demanding test,

thereby well aligned to many of the teacher-level practices

assessed in this study, particularly those captured on the MQI

instrument. It likely also is similar to new mathematics as-

sessments administered under the Common Core (National

Governors Association Center for Best Practices, 2010). Lynch,

Chin, and Blazar (2015) coded items from this assessment for

format and cognitive demand using the Surveys of Enacted

Curriculum framework (Porter, 2002). They found that the

assessment often asked students to solve non-routine prob-

lems, including looking for patterns and explaining their rea-

soning. Roughly 20% of items required short responses.

3.2.3. Teacher survey

Information on teachers’ background, knowledge, and

skills were captured on a teacher questionnaire administered
related both to Classroom Emotional Support and student achievement may

be important.
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Table 4

Correlations between teacher practices, skills, and background characteristics.

Ambitious mathematics

instruction

Mathematical errors

and imprecisions

Classroom emotional

support

Classroom

organiza-

tion

Bachelor’s degree in education −0.14 −0.03 −0.07 0.13

Math coursework 0.08 0.08 0.15 0.30∗∗∗

Master’s degree 0.10 −0.05 0.00 −0.12

Traditional certification 0.09 −0.17∼ 0.12 0.12

Experience −0.07 0.15 −0.04 0.05

Mathematical content knowledge 0.26∗∗ −0.46∗∗∗ 0.03 0.01

Knowledge of student performance 0.18∼ −0.16 0.00 0.09

Preparation for class 0.02 0.07 −0.04 0.10

Formative assessment −0.01 0.24∗∗ 0.14 0.17∼

Notes: ∼ p<0.10, ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001.
in the fall of each year. Survey items about teachers’ back-

ground include whether or not the teacher earned a bache-

lor’s degree in education, amount of undergraduate or grad-

uate coursework in math and math courses for teaching

(2 items scored from 1 [No Classes] to 4 [Six or More Classes],

internal consistency reliability (α) = 0.66), route to certifica-

tion, and whether or not the teacher had a master’s degree

(in any subject). Relatedly, the survey also asked about the

number of years of teaching experience in math.

Next, I capture teachers’ knowledge of content and of

their students. Teachers’ content knowledge was assessed on

items from both the Mathematical Knowledge for Teaching

assessment (Hill, Schilling, & Ball, 2004) and the Mas-

sachusetts Test for Educator Licensure. Teacher scores were

generated by IRTPro software and were standardized in these

models using all available teachers, with a reliability of 0.92.

Second are scores from a test of teachers’ knowledge of stu-

dent performance. These scores were generated by provid-

ing teachers with student test items, asking them to predict

the percent of students who would answer each item cor-

rectly, then calculating the distance between each teacher’s

estimate and the actual percent of students in their class who

got each item correct. Similar to instructional quality scores,

I report reliability as adjusted intraclass correlations, which

are 0.71 and 0.74 for grades four and five, respectively. To ar-

rive at a final scale, I averaged across items and standardized.

Finally, two items refer to additional classroom behaviors

that aim to increase student achievement. The first is teach-

ers’ preparation for class, which asks about the amount of

time each week that teachers devoted to out-of-class activ-

ities such as grading, preparing lesson materials, reviewing

the content of the lesson, and talking with parents (4 items

scored from 1 [No Time] to 5 [More than six hours], α =
0.84). The second construct is formative assessment, which

asks how often teachers evaluated student work and pro-

vided feedback (5 items scored from 1 [Never] to 5 [Daily or

almost daily], α = 0.74).4

In Table 4, I present correlations between these charac-

teristics and the four instructional quality dimensions. The

strongest correlation is between Mathematical Errors and
4 Between three and six teachers are missing data for each of these con-

structs. Given that these data are used for descriptive purposes and as con-

trols, in these instances I impute the mean value for the district. For more

information on these scales, see Hill, Blazar, and Lynch (2015).
Imprecisions and mathematical content knowledge (r =
−0.46). This suggests that teachers’ knowledge of the con-

tent area is moderately to strongly related to their ability to

present correct material in class. The sign of this relationship

is correct, in that higher scores on Mathematical Errors and

Imprecisions means that more errors are made in instruction,

while higher scores on the content knowledge test indicate

stronger understanding of math. Content knowledge also is

related to Ambitious Mathematics Instruction (r = 0.26). In-

terestingly, math coursework is related to Classroom Orga-

nization, and Mathematical Errors and Imprecisions is related

to formative assessment (r = 0.24), even though these con-

structs are not theoretically related. Together, this suggests

that the dimensions of instructional quality generally are dis-

tinct from other measures often used as a proxy for teacher

or teaching quality.

4. Identification strategy and tests of assumptions

In order to estimate the relationship between high-

quality instruction and students’ mathematics achievement,

my identification strategy must address two main chal-

lenges: non-random sorting of students to teachers and

omitted measures of teachers’ skills and practices. I focus on

each in turn.

4.1. Non-random sorting of students to teachers

Non-random sorting of students to teachers consists of

two possible components: the sorting of students to schools

and of students to classes or teachers within schools. In

Table 5, I explore the extent to which these types of sort-

ing might bias results by regressing baseline test scores

on all four dimensions of instructional quality (see Kane

et al., 2011). Comparing teachers within districts, Ambi-

tious Mathematics Instruction is positively related to base-

line achievement. This suggests, unsurprisingly, that teachers

with higher-quality math instruction tend to be assigned to

higher-achieving students. Interestingly, though, only part of

this relationship is explained by differences in instructional

quality and student achievement across schools. Compar-

ing teachers within schools, the magnitude of the relation-

ship between Ambitious Mathematics Instruction and baseline

achievement is substantively smaller but still statistically

significant. Further, I now observe a positive relationship
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Table 5

Relationships between assigned students’ incoming achievement and in-

structional quality.

Within districts Within schools

Ambitious mathematics

instruction

0.180∗∗∗ 0.060∗

(0.026) (0.028)

Mathematical errors and

imprecisions

−0.022 −0.034

(0.021) (0.022)

Classroom emotional

support

−0.013 −0.018

(0.018) (0.023)

Classroom organization −0.003 0.087∗∗

(0.024) (0.029)

Notes: ∼ p< .10, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Columns contain estimates

from separate regressions. Robust standard errors in parentheses. All mod-

els control for district-by-grade-by-year fixed effects. Sample includes

3203 students, 111 teachers, and 76 school-grade-years.

5 Value-added scores are calculated from a model similar to Eq. (2). Here,

I regress end-of-year student mathematics test scores on state assessments

on a vector of prior achievement; student-, class-, and school-level covari-

ates; and district-by-grade-by-year fixed effects. I predict a teacher-level

random effect as the value-added score. I utilize all years of data and all

teachers in the sample districts and grades to increase the precision of my

estimates (Goldhaber & Hansen, 2012; Koedel & Betts 2011; Schochet &

Chiang, 2013).
6 In some instances, mean scores for both switchers and non-switchers

on standardized variables fall below or above zero (e.g., Classroom Emotional

Support). This is possible given that variables were standardized across all

teachers in the study, not just those in the identification sample.
between Classroom Organization and baseline test scores.

This indicates that within-school sorting and the matching of

students to teachers may occur differently than across-school

sorting but that it likely serves as an additional source of

bias.

In light of non-random sorting, I begin by specifying mod-

els that control for a host of observable student and class

characteristics, including prior achievement. Further, follow-

ing Kane, Taylor, Tyler, and Wooten (2011), I include school

fixed effects to account for unobserved differences across

schools, other than instructional quality, that also affect stu-

dent achievement. Finally, to address sorting of students to

classes or teachers within schools, I exploit an important lo-

gistical and structural constraint of schools – that students

may be sorted within but not across grades and years. This

is because, in most cases, students advance with a given

cohort from one grade to the next. Therefore, similar to

Rivkin, Hanushek, and Kain (2005), I exploit between-cohort

differences by aggregating teachers’ observation scores to

the school-grade-year level. They argue that “aggregation

to the grade level circumvents any problems resulting from

classroom assignment” (p. 426). Doing so restricts identify-

ing variation to that observed across grades – e.g., between

fourth-grade teachers in one year and fifth-grade teachers in

the same, following, or former school year. In a few instances

where grade-level composition changes from one year to the

next, there also is identifying variation between the set of

fourth-grade teachers in one year and the set of fourth-grade

teachers in the following or former school year, and similarly

for fifth-grade teachers in one year and fifth-grade teachers

in another year

The hypothesized model that describes this relationship

is outlined in Eq. (2):

Aidsgc jt = βOBSERVATIONdsgt + ζ
(

f (Aidsgc jt−1)
)

+πXidsgc jt + ϕX̄dsgc jt + σdgt + θs + εidsgc jt (2)

where Aidsgcjtis the end-of-year test score for student i in

district d, school s, grade g, and class c with teacher j at time

t; OBSERVATIONdsgt is a vector of instructional quality scores

that are averaged across teachers within each school-grade-

year; f (Aidsgc jt−1) is a cubic function of prior achievement

on the fall baseline assessment, as well as on the prior-year

state assessments in both math and reading; Xi is a vector

of observable student-level characteristics; X̄dsgc jt aggregates
these and prior achievement measures to the class level. I

include district-by-grade-by-year fixed effects, σ dgt, to ac-

count for differences in the scaling of state standardized test

scores. As discussed above, I also include fixed effects for

schools, θ s, as part of my identification strategy. I calculate

standard errors that are clustered at the school-grade-year

level to account for heteroskedasticity in the student-level

errors, ɛidsgcjt, and non-zero covariance among those students

attending the same school in the same grade and year (Kane,

Rockoff, & Staiger, 2008).

The key identifying assumption of this model is that

within-school, between-grade, and cross-cohort differences

in average instructional quality scores are exogenous (see

Woessmann & West, 2006 for a discussion of this assumption

and strategy as it pertains to class size). While the validity

of this assumption is difficult to test directly, I can examine

ways that it may play out in practice. In particular, this as-

sumption would be violated by strategic grade assignments

in which teachers are shifted across grades due to a particu-

larly strong or weak incoming class, or where students are

held back or advanced an additional grade in order to be

matched to a specific teacher.

Although these practices are possible in theory, I present

evidence that such behavior does not threaten inferences

about variation in instructional quality scores. I do observe

that 30 teachers were newly assigned to their grade, ei-

ther because they switched from a different grade in the

prior year (before joining the study) or because they moved

into the district. In Table 6, I examine differences between

switchers and non-switchers on observable characteristics

within school-year cells. In addition to comparing teachers

on the characteristics listed in Tables 1 and 2, I include av-

erage scores on all three baseline achievement tests; I also

include state value-added scores in math.5 Here, I find that

switchers have students with lower prior-year achievement

on state math and reading exams (p = 0.037 and 0.002,

respectively). Importantly, though, there are no differences

between switchers and non-switchers on any of the obser-

vational rubric dimensions, any of the teacher survey con-

structs, or state value-added scores. Nor can I detect differ-

ences between these two groups when all observable traits

are tested jointly (F = 1.159, p = 0.315).6 This suggests that,

even though switchers tend to have lower-achieving stu-

dents, they are unlikely to be matched to these classes based

on observed quality. With regard to sorting of students to

grade, fewer than 20 were retained from the previous year

or skipped a grade. I drop these from the analytic sample.

A second assumption underlying the logic of this strat-

egy is that identification holds only when all teachers at a
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Table 6

Differences between teachers who switch grade assignments and those who

do not.

Switchers Non-switchers p-value on

difference

Instructional Quality

Dimensions

Ambitious mathematics

instruction

−0.05 0.03 0.660

Mathematical errors and

imprecisions

−0.07 −0.20 0.463

Classroom emotional

support

−0.18 −0.25 0.752

Classroom organization −0.22 −0.11 0.596

Other Measures of Teacher

Quality

Bachelor’s degree in

education

63.0 42.7 0.169

Math coursework 2.2 2.4 0.259

Master’s degree 74.4 77.4 0.781

Traditional certification 69.7 74.7 0.613

Experience 7.8 10.1 0.208

Mathematical content

knowledge

−0.19 −0.01 0.558

Knowledge of student

performance

0.20 0.06 0.519

Preparation for class 3.3 3.3 0.981

Formative assessment 3.5 3.7 0.318

Student Achievement

Measures

Fall project-administered

math test

−0.35 −0.12 0.318

Prior-year state math test −0.05 0.08 0.037

Prior-year state reading

test

−0.09 0.10 0.002

State value-added in math −0.03 −0.01 0.646

Join test F-statistic 1.098

p-value 0.367

Teacher-year observations 30 126

Notes: Means and p-values estimated from individual regressions that con-

trol for school-year, which is absorbed in the model. See Table 1 for scale of

teacher quality measures. All other items are standardized.
given school-grade-year are in the study. If only a portion

of the teachers participate, then there may be bias due to

the selection of students assigned to these teachers. To ad-

dress this concern, I limit my final analytic sample to school-

grade-years in which I have full participation of teachers. I

am able to identify these teachers as I have access to class

rosters for all teachers who work in the sample districts. I

exclude from these school-grade-year teams teachers who

teach self-contained special education or bilingual classes, as

the general population of students would not be sorted to

these teachers’ classes.7

By dropping certain school-grade-year observations, I

limit the sample from which I am able to generalize results.

In this sense, I compromise external validity for internal va-

lidity. However, below I discuss the comparability of teachers

and school-grade-years included in my identification sample

to those that I exclude either because they did not participate

in data collection through the NCTE project or because they

did not meet the sample conditions I describe above.
7 I identify these specialized classes in cases where more than 50% of stu-

dents have this designation.
4.2. Omitted variables bias

Given non-random sorting of instructional quality to

teachers, estimating the effect of these practices on mathe-

matics achievement also requires isolating them from other

characteristics that are related both to observation rubric

scores and to student test scores. I focus on characteristics

that prior research suggests may fit the definition of omitted

variables bias in this type of analysis.

Review of prior research indicates that several observable

characteristics are related both to student achievement and

instructional quality. Studies indicate that students experi-

ence larger test score gains in math from teachers with prior

education and coursework in this content area (Boyd, Gross-

man, Lankford, Loeb, & Wyckoff, 2009; Wayne & Youngs,

2003), some forms of alternative certification such as Teach

for America relative to traditional certification (Clark et al,

2013; Decker, Mayer, & Glazerman, 2004), more experience

in the classroom (Chetty et al., 2011; Papay & Kraft, forth-

coming; Rockoff, 2004), and stronger content knowledge

(Metzler & Woessmann, 2012). Emerging work also high-

lights the possible role of additional professional competen-

cies, such as knowledge of student performance, in raising

student achievement (Kunter, et al., 2013; Sadler, Sonnert,

Coyle, Cook-Smith, & Miller, 2013). These factors also appear

to predict some dimensions of instructional quality in this or

other datasets (see Table 3 and Hill, Blazar, & Lynch, 2015 for

further discussion).

Because it is possible that I am missing other important

characteristics – namely unobservable ones – I test the sen-

sitivity of results to models that include different sets of

teacher-level covariates. I also interpret results cautiously.

Despite this limitation, I believe that my ability to isolate in-

structional practices from a range of other teacher traits and

skills is an advance beyond similar studies.

5. Results

5.1. Main results

In Table 7a, I present models examining the relationship

between instructional quality and student achievement. This

first set of models examines the robustness of estimates to

specifications that attempt to account for the non-random

sorting of students to schools and teachers. I begin with a ba-

sic model (Model A) that regresses students’ spring test score

on teacher-level observation scores. I include a cubic func-

tion of fall/prior achievement on the project-administered

test and state standardized tests in math and reading; utiliz-

ing all three tests of prior achievement allows me to com-

pare students with similar scores on low- and high-stakes

tests across both subjects, increasing the precision of my

estimates. I also include district-by-grade-by-year dummy

variables to account for differences in scaling of tests; and

vectors of student-, class-, and school-level covariates. Next,

I replace school-level covariates with school fixed effects

(Model B). In Model C, I retain the school fixed effects and

replace observation scores at the teacher level with those

at the school-grade-year level. This model matches Eq. (2)

above. Finally, in order to ensure that school-specific year ef-

fects do not drive results, I replace school fixed effects with
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Table 7a

Relationships between students’ mathematics achievement and instructional quality, accounting for non-

random sorting.

Model A Model B Model C Model D

Ambitious mathematics instruction 0.061 0.095∗ 0.097∗ 0.109∗

(0.038) (0.037) (0.042) (0.052)

Mathematical errors and imprecisions −0.033 −0.040∼ −0.050∼ −0.053∼
(0.022) (0.023) (0.026) (0.029)

Classroom emotional support −0.028 −0.001 −0.032 −0.026

(0.021) (0.023) (0.035) (0.037)

Classroom organization 0.026 −0.002 −0.003 −0.015

(0.025) (0.024) (0.034) (0.037)

Student covariates X X X X

Class covariates X X X X

District-by-grade-by-year fixed effects X X X X

School covariates X

School fixed effects X X

Instructional quality at School-grade-year level X X

School-by-year fixed effects X

Notes: ∼ p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Columns contain estimates from separate regressions.

Robust standard errors clustered at the school-grade-year level in parentheses. Sample includes 3203 students,

111 teachers, and 76 school-grade-years.
school-by-year fixed effects in Models D. For all models, I

limit the sample to those school-grade-years where all teach-

ers from participating school-grades-years are in the study.

Robust standard errors clustered at the school-grade-year

level are reported in parentheses.8

In Model C, intended to account for non-random sorting

of students to schools and teachers, I find that instructional

quality dimensions focused on the mathematics presented

in the classroom are related to students’ math achievement.

Specifically, I find a statistically significant and positive co-

efficient for Ambitious Mathematics Instruction of 0.10 sd; the

coefficient for Mathematical Errors and Imprecisions of −0.05

sd is marginally significant.

Interestingly, these estimates are larger in magnitude

than those from Models A and B. Comparison of estimates

to Model A implies that schools and/or classrooms where in-

struction is higher quality tend to have below-average test-

score growth. The fact that estimates in Model C is larger than

those in Model B is surprising. By limiting variation to school-

grade-years, I expected to calculate lower-bound estimates of

the relationship between instructional quality and student

achievement (see Rivkin, et al., 2005). One possible expla-

nation for my findings may be that school-grade-year scores

are picking up the quality of teaching teams, which also is

related to student achievement. At the same time, these dif-

ferences are not large. Further, standard errors are larger in

Model C than in Model B, as I would expect given more lim-

ited variation in my main predictor variables. Finally, I find

that estimates in Model D, which replace school fixed ef-

fects with school-by-year fixed effects, are similar in mag-

nitude to those in Model C. This indicates that year effects do

not drive results. As before, standard errors are larger than

those in Model C given more limited identifying variation. I

find no statistically significant relationships for the two other

dimensions of instruction.
8 I also test the robustness of results to clustering of standard errors at

the school-year level, and find that standard errors and significance levels

presented below do not change substantively.
In Table 7b, I re-estimate results from Model C controlling

for different sets of teacher characteristics. I focus on four cat-

egories of covariates: education and certification (Model E),

teaching experience (Model F), knowledge (Model G), and

non-instructional classroom behaviors (Model H). In Model

I, I include all four sets of predictors. Similar to instruc-

tional quality dimensions, these covariates are averaged to

the school-grade-year level. Here, I find that estimates for

Ambitious Mathematics Instruction are fairly robust to inclu-

sion of these control variables. In Model G, which controls

for two measures of teacher knowledge, I find a marginally

significant estimate of 0.08 sd. This slight attenuation makes

sense given the positive relationship between mathemati-

cal content knowledge and Ambitious Mathematics Instruc-

tion noted earlier. Interestingly, coefficients from models that

include other sets of covariates are slightly larger than my

estimate of 0.10 sd from Model C; in Model I, which con-

trols for all teacher characteristics, the resulting estimate is

roughly 0.11 sd. One reason for this may be that be these ad-

ditional predictors are negatively related either to instruc-

tional quality or to student achievement. Earlier, I showed

a negative, though not statistically significant, correlation

between Ambitious Mathematics Instruction and bachelor’s

degree in education; here, I observe small but negative re-

lationships to student achievement for bachelor’s degree in

education, math coursework, traditional certification, and

preparation for class. I am cautious in placing too much em-

phasis on these differences, as they are not large. However,

these patterns suggest that some omitted variables may lead

to upward bias while others lead to downward bias.

The relationship between Mathematical Errors and Impre-

cisions and student achievement is more sensitive to inclu-

sion of control variables. Original estimates from Model C

are attenuated most significantly when controlling for teach-

ers’ mathematical content knowledge; the resulting estimate

of roughly −0.04 sd in Model G is no longer marginally sta-

tistically significant. This attenuation is unsurprising given a

moderate to strong relationship between Mathematical Errors

and Imprecisions and mathematical content knowledge noted

earlier (r = −0.46). Therefore, it is difficult to tell whether
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Table 7b

Relationships between students’ mathematics achievement and instructional quality, accounting for possible

“Omitted” variables.

Model E Model F Model G Model H Model I

Ambitious mathematics instruction 0.124∗∗ 0.096∗ 0.083∼ 0.121∗∗ 0.114∗

(0.042) (0.039) (0.045) (0.041) (0.044)

Mathematical errors and imprecisions −0.049∼ −0.049∼ −0.035 −0.038 −0.028

(0.027) (0.029) (0.026) (0.027) (0.035)

Classroom emotional support −0.038 −0.031 −0.025 −0.044 −0.041

(0.031) (0.036) (0.036) (0.034) (0.036)

Classroom organization 0.010 −0.002 −0.009 −0.002 −0.002

(0.035) (0.033) (0.034) (0.035) (0.039)

Bachelor’s degree in education 0.010 −0.004

(0.065) (0.072)

Math coursework −0.027 −0.019

(0.021) (0.028)

Master’s degree 0.086 0.022

(0.070) (0.075)

Traditional certification −0.013 −0.019

(0.068) (0.077)

Experience −0.001 −0.000

(0.004) (0.005)

Mathematical content knowledge 0.017 0.008

(0.020) (0.031)

Knowledge of student performance 0.035 0.038

(0.041) (0.044)

Preparation for class −0.054∼ −0.044

(0.030) (0.038)

Formative assessment 0.028 0.027

(0.032) (0.037)

Notes: ∼ p< .10, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Columns contain estimates from separate regressions. Robust standard

errors clustered at the school-grade-year level in parentheses. All models control for student and class covariates,

as well as district-by-grade-by-year and school fixed effects. Instructional quality and background characteristics

are averaged at the school-grade-year level. Sample includes 3203 students, 111 teachers, and 76 school-grade-

years.

Table 8

Differences between identification sample and district populations.

In identification

sample

Out of

identification

sample

p-value on

difference

Teacher

Characteristic

State value-added −0.02 0.00 0.123

Teacher-year

observations

156 1334

School-Grade-Year

Characteristics

Male 49.1 50.1 0.361

African-American 53.7 55.3 0.659

Asian 4.6 3.9 0.404

Hispanic 26.6 26.0 0.833

White 11.6 11.6 0.996

FRPL 74.2 76.3 0.504

SPED 17.1 15.7 0.240

LEP 21.3 20.8 0.810

Prior-year state

math test

−0.02 0.04 0.299

Prior-year state

reading test

0.00 0.05 0.409

Joint test F-statistic 0.902

p-value 0.531

School-grade-year

observations

76 511

Notes: Means and p-values calculated from individual regressions that con-

trol for district. School-grade-year demographic characteristics are per-

cents; test scores are standardized.
student achievement is negatively impacted by teachers’ lack

of content knowledge, the way that this lack of knowledge

leads to errors and imprecisions in the presentation of ma-

terial, or a related construct. When I include all sets of pre-

dictors in the same model (Model I), the estimate for Mathe-

matical Errors and Imprecisions is -0.03 sd and not statistically

significant.

5.2. Generalizability of results beyond identification sample

Finally, in Table 8, I examine whether teachers and schools

included in my identification sample are representative of

those in their respective districts. Because I do not have in-

structional quality scores for all district teachers, for this

analysis I draw on mathematics value-added scores using

state assessment data. I also compare observable character-

istics of school-grade-years from my identification sample to

those across the rest of the sample districts, looking for dif-

ferences on each characteristic individually and as a group.

P-values testing the difference between sample means are

calculated through a regression framework that controls for

district, as recruitment of schools and teachers occurred

at this level. In both cases of teachers and school-grade-

years, I cannot reject the null hypothesis that my identifi-

cation sample is the same as the rest of the district popu-

lations (for differences in teachers’ value-added scores: p =
0.123; for joint differences in observable characteristics of
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school-grade-years: F = 0.902, p = 0.531). Therefore, I con-

clude that results likely generalizable to these populations.

6. Discussion and conclusion

This study provides some of the strongest evidence to

date on the relationship between specific instructional di-

mensions and students’ mathematics achievement. Like oth-

ers (e.g., Kane et al., 2013; Kane & Staiger, 2012; Kane et al.,

2011), I utilize observation instruments that capture in-

structional quality within teachers’ own classrooms. I also

draw on established econometric methods to account for

the non-random sorting of students to teachers (e.g., Rivkin,

et al., 2005). Importantly, I build on past work by exam-

ining multiple dimensions of teaching practice, including

content-specific elements of instruction and more general

pedagogical strategies. Further, I examine the sensitivity of

results to models that control for different sets of teacher

characteristics. This allows me to isolate dimensions of

instructional quality from the most likely observable charac-

teristics that might threaten the internal validity of my re-

sults. To my knowledge, no other studies are able to con-

trol for this broad set of teaching practices and teacher

characteristics. While it is possible that estimates are sen-

sitive to other observed or unobserved characteristics not

included in these data, my findings provide strong sugges-

tive evidence of teaching dimensions that support student

achievement.

Results indicate that inquiry-oriented instruction is pos-

itively related to student outcomes on a low-stakes math

test, with an effect size of roughly 0.10 sd. This finding

lends support to decades worth of reform to refocus mathe-

matics instruction toward inquiry and concept-based teach-

ing (National Council of Teachers of Mathematics, 1989,

1991,2000), as well as positive results of some of these types

of activities in laboratory settings (e.g., Star & Rittle-Johnson,

2009). In some analyses, I also find smaller effect sizes for

incorrect presentation of content, though estimates are sen-

sitive to the set of covariates included in the model, particu-

larly teachers’ content knowledge. At the same time, even the

smallest estimate of roughly 0.03 sd (see Model I in Table 7b)

is similar in magnitude to estimates of the relationship be-

tween mentor evaluations and student achievement (Rockoff

& Speroni, 2010), suggesting that this finding may still be

substantively significant.

Finally, I find no relationship between classroom climate

or classroom management and student achievement. These

results diverge from recent research highlighting the impor-

tance of classroom organization and interactions with stu-

dents, often above other classroom features (Grossman, Loeb,

Cohen, & Wyckoff, 2013; Stronge, Ward, & Grant, 2011). In

particular, Kane et al. (2011, 2012, 2013) found positive re-

lationships between these sorts of classroom practices, as

captured on the Framework for Teaching observation in-

strument, and student achievement; estimates were similar

in magnitude to the relationship I find between Ambitious

Mathematics Instruction and student outcomes. One reason

for these differences may be that these other studies did not

account for additional dimensions of teacher and teaching

quality. Therefore, the observed relationship between class-

room organization and student achievement may be driven
by other practices and skills that are related to this type of

instruction. Another reason may be that the outcome used to

measure math achievement in this study is a low-stakes test

that emphasizes cognitively demanding mathematics prac-

tices. Classroom organization and interactions with students

may in fact be important contributors to high-stakes achieve-

ment tests or non-cognitive outcomes. This is an important

topic for future research.

Evidence on the relationship between specific types of

teaching and student achievement raises the question of

how to get more teachers who engage in these practices

into classrooms. Following Murnane and Cohen (1986), I ar-

gue that incentives are unlikely to prove effective here, as

teachers may not know how to improve their instruction.

Therefore, I propose two possible pathways. First, an array of

recent literature highlights the potential use of observation

instruments themselves to remediate teacher practice. De-

spite mixed results on the effect of standard professional

development programs on teachers’ content knowledge, in-

structional practices, or student achievement (Garet et al.,

2011; Yoon, Duncan, Lee, Scarloss, & Shapley, 2007), new

experimental studies highlight positive effects of more in-

tensive coaching programs that utilize observation instru-

ments to improve teacher behaviors and, in some cases, stu-

dent outcomes (Allen, Pianta, Gregory, Mikami, & Lun 2011;

Blazar & Kraft, forthcoming; McCollum, Hemmeter, & Hsieh,

2011; Taylor & Tyler, 2012). Thus far, this sort of work has fo-

cused on use of observation instruments to capture general

teaching practices and those specific to literacy instruction.

However, it is possible that findings also extend to inquiry-

oriented practices in mathematics.

A second pathway to increase the quality of classroom

teaching may also focus on selective recruitment of teach-

ers with content-area expertise. My findings show a mod-

erate to strong relationship between teachers’ knowledge

of math and the way that this content is enacted in the

classroom. Further, I find suggestive evidence of a relation-

ship between incorrect presentation of content and stu-

dent outcomes. While more research is needed to confirm

these relationships, these patterns may inform processes

by which education preparation programs and state licens-

ing agencies screen prospective elementary math teach-

ers. A survey of degree pathways indicates minimal re-

quirements for entry and a high degree of variability in

the type of training pre-service teachers receive in math-

ematics. In addition, in all but a few states, elementary

teachers can pass their licensing exam without passing the

math sub-section (Epstein & Miller, 2011). It is possible

that creating more stringent requirements into the work-

force related to math knowledge could lead to more accu-

rate and precise presentation of content and to better student

outcomes.

Filling elementary classrooms with teachers who engage

in effective mathematics teaching practices will take time.

Doing so likely will entail a variety of efforts, including

improvements in professional development offerings that

engage teachers substantively around their own teaching

practices and stronger efforts to hire teachers with deep

knowledge of mathematics. Importantly, though, the educa-

tion community is beginning to gain an understanding of the

types of teaching that contribute to student achievement.
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Table A1

Relationships between instructional quality and class composition.

Ambitious mathematics

instruction

Mathematical errors

and imprecisions

Classroom emotional

support

Classroom

organization

Class size −0.069 0.020 −0.114 −0.029

(0.069) (0.059) (0.077) (0.061)

Male 0.016 −0.013 −0.002 −0.021

(0.012) (0.013) (0.014) (0.016)

African American 0.005 0.005 −0.038 0.022

(0.023) (0.026) (0.034) (0.029)

Asian −0.015 −0.016 −0.037 0.060

(0.037) (0.038) (0.052) (0.039)

Hispanic 0.002 0.003 −0.036 0.030

(0.022) (0.024) (0.034) (0.026)

White −0.017 0.012 0.005 0.035

(0.035) (0.035) (0.043) (0.036)

FRPL −0.014 0.000 0.012 0.016

(0.011) (0.013) (0.013) (0.011)

SPED −0.009 0.006 −0.035∗ −0.018

(0.010) (0.012) (0.013) (0.012)

LEP −0.003 0.004 0.004 0.014

(0.010) (0.017) (0.018) (0.019)

Fall project-administered math test 0.439 1.739 −2.384∗ 0.085

(0.666) (1.090) (0.880) (0.859)

Prior-year state math test −0.005 0.099 −0.984 −0.523

(0.630) (0.834) (0.877) (1.028)

Prior-year state reading test 0.475∗ −0.401 1.186∗∗ −0.366

(0.224) (0.462) (0.368) (0.421)

Joint test

F-statistic 1.652 0.580 2.219 1.624

p-value 0.125 0.842 0.035 0.133

Notes: ∼ p<0.10, ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. Columns contain estimates from separate regressions. Robust standard errors clustered at the school-grade-

year level in parentheses. All models include teacher fixed effects. Sample includes 45 teachers who were in the study for two years.
Acknowledgments

The research reported here was supported in part by the

Institute of Education Sciences, U.S. Department of Education

(Grant R305C090023) to the President and Fellows of Har-

vard College to support the National Center for Teacher Ef-

fectiveness. Additional support comes from the National Sci-

ence Foundation (Grant 0918383). The opinions expressed

are those of the authors and do not represent views of the

Institute or the U.S. Department of Education. I thank Mark

Chin, Heather Hill, Tom Kane, Dick Murnane, Marty West, and

John Willett for their guidance and feedback throughout the

study.

Appendix

See Table A1.

References

Allen, J. P., Pianta, R. C., Gregory, A., Mikami, A. Y., & Lun, J. (2011). An
interaction-based approach to enhancing secondary school instruction

and student achievement. Science, 333, 1034–1037.
Anderson, L. M., Evertson, C. M., & Brophy, J. E. (1979). An experimental study

of effective teaching in first-grade reading groups. The Elementary School

Journal, 79(4), 193–223.
Bell, C. A., Gitomer, D. H., McCaffrey, D. F., Hamre, B. K., Pianta, R. C., & Qi, Y.

(2012). An argument approach to observation protocol validity. Educa-
tional Assessment, 17(2-3), 62–87.

Blazar, D., Braslow, D., Charalambous, C. Y., & Hill, H. C. (2015). Attending to
general and content-specific dimensions of teaching: exploring factors

across two observation instruments. Working Paper. Cambridge, MA: Na-

tional Center for Teacher Effectiveness, Harvard University.
Blazar, D., & Kraft, M.A. (Forthcoming). Exploring mechanisms of effective
teacher coaching: a tale of two cohorts from a randomized experiment.

Educational Evaluation and Policy Analysis.
Boyd, D., Grossman, P., Lankford, H., Loeb, S., & Wyckoff, J. (2006). How

changes in entry requirements alter the teacher workforce and af-
fect student achievement. Education Finance and Policy, 1(2), 176–

216.

Boyd, D. J., Grossman, P. L., Lankford, H., Loeb, S., & Wyckoff, J. (2009). Teacher
preparation and student achievement. Educational Evaluation and Policy

Analysis, 31(4), 416–440.
Chetty, R., Friedman, J. N., Hilger, N., Saez, E., Schazenbach, D. W., &

Yagan, D. (2011). How does your kindergarten classroom affect your
earnings? Evidence from Project Star. Quarterly Journal of Economics,

126(4), 1593–1660.

Chetty, R., Friedman, J. N., & Rockoff, J. E. (2014). Measuring the impacts of
teachers II: teacher value-added and student outcomes in adulthood.

American Economic Review, 104(9), 2633–2679.
Clark, M. A., Chiang, H. S., Silva, T., McConnell, S., Sonnenfeld, K., Erbe, A., et al.

(2013). The effectiveness of secondary math teachers from Teach For Amer-
ica and the Teaching Fellows programs. Washington, DC: U.S. Department

of Education.

Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2006). Teacher-student matching
and the assessment of teacher effectiveness. Journal of Human Resources,

41(4), 778–820.
Decker, P. T., Mayer, D. P., & Glazerman, S. (2004). The effects of Teach for Amer-

ica on students: Findings from a national evaluation. Princeton, NJ: Math-
ematica Policy Research, Inc.

Duncan, A. (2010). Back to school: Enhancing U.S. education and competi-

tiveness. Foreign Affairs, 89(6), 65–74.
Epstein, D., & Miller, R. T. (2011). Slow off the Mark: elementary school teach-

ers and the crisis in STEM education. Education Digest: Essential Readings
Condensed for Quick Review, 77(1), 4–10.

Fryer, R. (2013). Teacher incentives and student achievement. Evidence from
New York City public schools. Journal of Labor Economics, 31(2), 373–427.

Garet, M. S., Wayne, A. J., Stancavage, F., Taylor, J., Eaton, M., Walters, K., et al.

(2011). Middle school mathematics professional development impact study:
findings after the second year of implementation. Washington, DC: U.S. De-

partment of Education.

http://dx.doi.org/10.13039/100005246
http://dx.doi.org/10.13039/100000001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0001
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0002
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0002
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0002
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0002
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0002
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0003
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0004
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0004
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0004
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0004
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0004
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0004
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0005
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0005
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0005
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0005
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0005
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0005
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0005
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0006
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0006
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0006
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0006
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0006
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0006
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0006
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0007
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0008
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0008
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0008
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0008
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0008
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0009
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0010
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0010
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0010
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0010
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0010
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0011
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0011
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0011
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0011
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0011
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0012
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0012
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0013
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0013
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0013
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0013
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0014
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0014
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0015


D. Blazar / Economics of Education Review 48 (2015) 16–29 29
Goldhaber, D., & Hansen, M. (2012). Is it just a bad class? Assessing the long-
term stability of estimated teacher performance. Economica, 80(319),

589–612.
Grossman, P., Loeb, S., Cohen, J., & Wyckoff, J. (2013). Measure for measure:

the relationship between measures of instructional practice in middle
school English language arts and teachers’ value-added. American Jour-

nal of Education, 119(3), 445–470.

Hanushek, E. A. (2009). Teacher deselection. In D. Goldhaber, & J. Hannaway
(Eds.), Creating a new teaching profession (pp. 165–180). Washington, D C:

Urban Institute Press.
Harris, D. N., & Sass, T. R. (2011). Teacher training, teacher quality and student

achievement. Journal of Public Economics, 95(7), 798–812.
Hickman, J. J., Fu, J., & Hill, H. C. (2012). Technical report: creation and dissem-

ination of upper-elementary mathematics assessment modules. Princeton,
NJ: Educational Testing Service.

Hill, H. C., Blazar, D., & Lynch, K. (2015). Resources for teaching: examining

personal and institutional predictors of high-quality instruction. Work-
ing Paper. Cambridge, MA: National Center for Teacher Effectiveness,

Harvard University.
Hill, H. C., Charalambous, C. Y., Blazar, D., McGinn, D., Kraft, M. A.,

Beisiegel, M., Humez, A., Litke, E., & Lynch, K. (2012). Validating argu-
ments for observational instruments: attending to multiple sources of

variation. Educational Assessment, 17(2–3), 88–106.

Hill, H. C., Charalambous, C. Y., & Kraft, M. A. (2012). When rater reliability
is not enough: teacher observation systems and a case for the generaliz-

ability study. Educational Researchers, 41(2), 56–64.
Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teach-

ers’ mathematics knowledge for teaching. Elementary School Journal, 105,
11–30.

Ho, A. D., & Kane, T. J. (2013). The reliability of classroom observations by school

personnel. Seattle, WA: Measures of Effective Teaching Project, Bill and
Melinda Gates Foundation.

Jacob, B. A., & Lefgren, L. (2008). Can principals identify effective teachers?
Evidence on subjective performance evaluation in education. Journal of

Labor Economics, 20(1), 101–136.
Johnson, C. (2012). Implementation of STEM education policy: challenges,

progress, and lessons learned. School Science and Mathematics, 112(1),

45–55.
Kane, T. J., McCaffrey, D. F., Miller, T., & Staiger, D. O. (2013). Have

we identified effective teachers? Validating measures of effective teach-
ing using random assignment. Seattle: The Bill and Melinda Gates

Foundation.
Kane, T. J., Rockoff, J. E., & Staiger, D. O. (2008). What does certification tell us

about teacher effectiveness? Evidence from New York City. Economics of

Education Review, 27(6), 615–631.
Kane, T. J., & Staiger, D. O. (2012). Gathering feedback for teaching: Combining

high-quality observations student surveys and achievement gains. Seattle:
The Bill and Melinda Gates Foundation.

Kane, T. J., Taylor, E. S., Tyler, J. H., & Wooten, A. L. (2011). Identifying effective
classroom practices using student achievement data. Journal of Human

Resources, 46(3), 587–613.

Koedel, C., & Betts, J. R. (2011). Does student sorting invalidate value-added
models of teacher effectiveness? An extended analysis of the Rothstein

critique. Education Finance and Policy, 6(1), 18–42.
Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A.

(2013). Professional competence of teachers: Effects on instructional
quality and student development. Journal of Educational Psychology,

105(3), 805–820.
Lockwood, J. R., McCaffrey, D. F., Hamilton, L. S., Stecher, B., Le, V., &

Martinez, J. F. (2007). The sensitivity of value-added teacher effect es-

timates to different mathematics achievement measures. Journal of Ed-
ucational Measurement, 44(1), 47–67.

Lynch, K., Chin, M., & Blazar, D. (2015). How well do teacher observations of
elementary mathematics instruction predict value-added? Exploring vari-

ability across districts. Cambridge, MA: National Center for Teacher Ef-
fectiveness, Harvard University Working Paper.

McCollum, J. A., Hemmeter, M. L., & Hsieh, W. (2011). Coaching teachers for

emergent literacy instruction using performance-based feedback. Topics
in Early Childhood Education, 20(10), 1–10.

Metzler, J., & Woessmann, L. (2012). The impact of teacher subject
knowledge on student achievement: evidence from within-teacher

within-student variation. Journal of Development Economics, 99(2), 486–
496.

Murnane, R. J., & Cohen, D. K. (1986). Merit pay and the evaluation problem:

why most merit pay plans fail and a few survive. Harvard Educational
Review, 56(1), 1–18.
Murnane, R. J., & Willett, J. B. (2011). Methods matter: Improving causal infer-
ence in educational and social science research. New York: Oxford Univer-

sity Press.
National Council of Teachers of Mathematics (1989). Curriculum and evalua-

tion standards for school mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics (1991). Professional standards

for teaching mathematics. Reston, VA: NCTM.

National Council of Teachers of Mathematics (2000). Principles and standards
for school mathematics. Reston, VA: Author.

National Governors Association Center for Best Practices, Council of Chief
State School Officers (2010). Common core state standards for mathemat-

ics. Washington, DC: Author.
Nye, B., Konstantopoulos, S., & Hedges, L. V. (2004). How large are teacher

effects? Educational Evaluation and Policy Analysis, 26(3), 237–257.
Papay, J. P. (2011). Different tests, different answers: the stability of teacher

value-added estimates across outcome measures. American Educational

Research Journal, 48(1), 163–193.
Papay, J.P., & Kraft, M.A. (Forthcoming). Productivity returns to experience in

the teacher labor market: Methodological challenges and new evidence
on long-term career improvement. Journal of Public Economics.

Pianta, R. C., & Hamre, B. K. (2009). Conceptualization, measurement, and
improvement of classroom processes: Standardized observation can

leverage capacity. Educational Researcher, 38(2), 109–119.

Porter, A. C. (2002). Measuring the content of instruction: uses in research
and practice. Educational Researcher, 31(7), 3–14.

Porter, A., McMaken, J., Hwang, J., & Yang, R. (2011). Common core standards:
the new U.S. intended curriculum. Educational Researcher, 40(3), 103–

116.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: applica-

tions and data analysis methods. Second Edition. Thousand Oaks, CA: Sage

Publications.
Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and aca-

demic achievement. Econometrica, 73(2), 417–458.
Rockoff, J. E. (2004). The impact of individual teachers on student achieve-

ment: evidence from panel data. American Economic Review, 94(2), 247–
252.

Rockoff, J. E., & Speroni, C. (2010). Subjective and objective evaluations of

teacher effectiveness. American Economic Review, 261–266.
Rockoff, J. E., Staiger, D. O., Kane, T. J., & Taylor, E. S. (2012). Information and

employee evaluation: evidence from a randomized intervention in pub-
lic schools. American Economic Review, 102(7), 3184–3213.

Rothstein, J. (2010). Teacher quality in educational production: tracking, de-
cay, and student achievement. Quarterly Journal of Economics, 125(1),

175–214.

Sadler, P. M., Sonnert, G., Coyle, H. P., Cook-Smith, N., & Miller, J. L (2013).
The influence of teachers’ knowledge on student learning in middle

school physical science classrooms. American Educational Research Jour-
nal, 50(5), 1020–1049.

Schochet, P. Z., & Chiang, H. S. (2013). What are error rates for classifying
teacher and school performance using value-added models? Journal of

Educational and Behavioral Statistics, 38(2), 142–171.

Springer, M. G., Ballou, D., Hamilton, L., Le, V., Lockwood, J. R., McCaffrey, D. F.,
et al. (2010). Teacher pay for performance: experimental evidence from the

project on incentives in teaching. RAND Corporation.
Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: an experimental

study on computational estimation. Journal of Experimental Child Psy-
chology, 102(4), 408–426.

Stronge, J. H., Ward, T. J., & Grant, L. W. (2011). What makes good teachers
good? A cross-case analysis of the connection between teacher effec-

tiveness and student achievement. Journal of Teacher Education, 62(4),

339–355.
Taylor, E. S., & Tyler, J. H. (2012). The effect of evaluation on teacher perfor-

mance. The American Economic Review, 102(7), 3628–3651.
U.S. Department of Education (2010). A blueprint for reform: reauthoriza-

tion of the elementary and secondary education act. Washington, DC: U.S.
Department of Education, Office of Planning, Evaluation and Policy

Development.

Wayne, A. J., & Youngs, P. (2003). Teacher characteristics and student
achievement gains: a review. Review of Educational Research, 73(1), 89–

122.
Woessmann, L., & West, M. (2006). Class-size effects in school systems

around the world: evidence from between-grade variation in TIMSS. Eu-
ropean Economic Review, 50, 695–736.

Yoon, K. S., Duncan, T., Lee, S. W. Y., Scarloss, B., & Shapley, K. (2007). Review-

ing the evidence on how teacher professional development affects student
achievement. Washington, DC: U.S. Department of Education.

http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0016
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0016
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0016
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0016
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0017
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0017
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0017
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0017
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0017
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0017
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0018
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0018
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0019
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0019
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0019
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0019
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0020
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0020
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0020
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0020
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0020
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0021
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0021
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0021
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0021
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0021
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0022
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0023
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0023
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0023
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0023
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0023
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0024
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0024
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0024
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0024
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0024
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0025
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0025
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0025
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0025
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0026
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0026
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0026
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0026
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0027
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0027
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0028
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0028
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0028
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0028
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0028
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0029
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0029
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0029
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0029
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0030
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0030
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0030
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0030
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0030
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0030
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0031
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0031
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0031
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0031
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0032
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0033
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0034
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0034
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0034
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0034
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0034
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0035
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0035
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0035
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0035
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0035
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0036
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0036
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0036
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0036
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0037
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0037
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0037
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0037
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0038
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0038
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0038
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0038
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0039
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0039
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0040
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0040
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0041
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0041
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0042
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0042
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0043
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0043
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0043
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0043
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0043
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0044
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0044
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0045
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0045
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0045
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0045
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0046
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0046
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0047
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0047
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0047
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0047
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0047
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0047
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0048
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0048
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0048
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0048
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0049
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0049
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0049
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0049
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0049
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0050
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0050
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0051
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0051
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0051
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0051
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0052
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0052
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0052
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0052
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0052
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0052
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0053
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0053
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0054
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0054
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0054
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0054
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0054
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0054
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0054
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0055
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0055
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0055
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0055
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0056
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0057
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0057
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0057
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0057
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0058
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0058
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0058
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0058
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0058
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0059
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0059
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0059
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0059
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0060
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0060
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0061
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0061
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0061
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0061
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0062
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0062
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0062
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0062
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0063
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0063
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0063
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0063
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0063
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0063
http://refhub.elsevier.com/S0272-7757(15)00071-0/sbref0063

	Effective teaching in elementary mathematics: Identifying classroom practices that support student achievement
	1 Introduction
	2 Background and context
	3 Sample and data
	3.1 Sample
	3.2 Main predictor and outcome measures
	3.2.1 Video-recorded lesson of instruction
	3.2.2 Student demographic and test-score data
	3.2.3 Teacher survey


	4 Identification strategy and tests of assumptions
	4.1 Non-random sorting of students to teachers
	4.2 Omitted variables bias

	5 Results
	5.1 Main results
	5.2 Generalizability of results beyond identification sample

	6 Discussion and conclusion
	 Acknowledgments
	 Appendix
	 References


