# EFFECTS OF HERRING GULLS AND GREAT BLACK-BACKED GULLS ON BREEDING PIPING PLOVERS, SOUTH MONOMOY ISLAND, MASSACHUSETTS

by Shannon E. Keane

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of

> Master of Science in Fisheries and Wildlife Sciences

### **APPROVED:**

Dr. James D. Fraser, Chair Dr. P. A. Buckley, Committee Member Dr. Roy L. Kirkpatrick, Committee Member Dr. Dean F. Stauffer, Committee Member Dr. Donald J. Orth, Department Head

> September 18, 2002 Blacksburg, Virginia

Keywords: Charadrius melodus, gull control, Larus argentatus, Larus marinus, Monomoy



Michael St. Germain

## EFFECTS OF HERRING GULLS AND GREAT BLACK-BACKED GULLS ON BREEDING PIPING PLOVERS, SOUTH MONOMOY ISLAND, MASSACHUSETTS

by

Shannon E. Keane James D. Fraser, Chair Fisheries and Wildlife Sciences (ABSTRACT)

The large population of breeding Herring Gulls and Great Black-backed Gulls on South Monomoy Island, Cape Cod, Massachusetts has been thought to negatively affect the breeding success of the threatened Piping Plover. Following the Piping Plover Recovery Plan's call for gull colonies to be removed from Piping Plover breeding sites, in 1996, the USFWS conducted gull removal on part of South Monomoy Island. We determined relative gull abundance on South Monomoy Island from 1998-2000 by counting gulls within 100-m radius plots located on the shoreline. We quantified Piping Plover behavior and habitat use by conducting instantaneous and 5-minute behavioral observations. We quantified characteristics of Piping Plover nesting habitat by measuring characteristics along random transects. We measured gull abundance, beach width, and prey abundance, and then used logistic regression to determine what habitat characteristics influenced Piping Plover nesting area selection. We monitored Piping Plover reproductive success and population fluctuations on South Monomoy Island.

Gull abundance in the gull-removal area was lower than gull abundance in the reference area throughout the Piping Plover breeding season. The difference in gull abundance between the areas did not affect Piping Plover behavior, nest success, chick survival, or productivity. We found that gull removal did not result in an increased Piping Plover population on the island. In both management areas, prenesting plovers preferred to forage in moist substrate habitats. Wide backshore and open vegetation habitats characterized nesting areas. Broods spent most of their time foraging and preferred moist substrate habitats when available. Plovers were not prevented from occupying more suitable habitat by large gulls.

Fewer large gulls were observed near prenesting plovers, plover nests, and plover broods than near random plots. Fewer large gulls were observed in plover nesting areas than in unused

areas when the nesting areas were defined by all area within 100-m or 500-m of a plover nest. We argue that this apparent spatial separation between Piping Plovers and large gulls is due to different habitat preferences among the species. We found that gull removal on South Monomoy Island did not result in increased Piping Plover reproductive success, and large gulls did not affect breeding Piping Plovers on South Monomoy Island from 1998-2000.

#### ACKNOWLEDGEMENTS

I cannot thank my advisor, Dr. James D. Fraser, enough for being my mentor and friend throughout this project. Jim was always very helpful, patient, enthusiastic, encouraging, and supportive throughout all phases of the study. I am especially grateful to Jim for making his students his priority, and for always keeping his door open to us.

I am extremely grateful to my committee members Dr. P. A. Buckley of USGS Patuxent Wildlife Research Center and Dr. Dean Stauffer and Dr. Roy Kirkpatrick of the Department of Fisheries and Wildlife Sciences at Virginia Tech for their invaluable input throughout the study and for their careful review of this thesis.

I would like to thank Anne Hecht of USFWS, Scott Melvin of Massachusetts Division of Fish and Game, Ian Nisbet of I.C.T. Nisbet and Co., and Jay Hestbeck of USGS for spending considerable time and energy reviewing reports and this thesis, discussing and refining methodology, and providing useful information.

Special thanks go to Bud Oliveira, Stephanie Koch, Sharon Fish, Deborah Long, Sharon Ware, Jennifer Casey, and all USFWS staff and volunteers at Monomoy National Wildlife Refuge who gave valuable input, information, logistical support, assistance in the field, and access to the study area. I would also like to thank Rick Schauffler of USFWS Region 5 for valuable discussion of research methodology over a pot of steamers, and for access to georeferenced aerial photographs of Monomoy.

I thank Jeff Spendelow of USGS, Carolyn Mostello of Massachusetts Division of Fish and Game, and Steve Manos of the Department of Fisheries and Wildlife Sciences at Virginia Tech for information and assistance. I thank Frank and Pat Facchetti, John Huether, and all the folks at Outermost Harbor Marine for their assistance with *R/V Charadrius*, as the logistics surrounding the boat were most important for carrying out this study. Special thanks go to Ian Nisbet for donating the trusty 12-foot aluminum skiff, *Sterna*, which safely returned the crew to the mainland time and time again. I give thanks to Stuart Smith for setting the mooring 8 miles from the harbor and the folks at Cape Fishermen's Supply, Inc. and Chatham Printing Service for keeping us in operation. Thanks go to Richard Hall and Kathleen Edwards for great conversation and great chocolate chip cookies. Thanks go to the Lincoln family for emergency

v

transportation to and from the island, and for providing valuable local knowledge of the waters surrounding Monomoy. It was always a great pleasure to see friendly faces when coming in from long stints on the island. Special thanks go to Brian Tague for permission to use his beautiful photographs for presentations. Warm thanks go to the Poirier family for being great neighbors on South Monomoy. I will fondly remember card games in the cabin during periods of thick fog, and the stories shared of life in Whitewash Village. The cabin will always be a special place.

I give a very special thanks to James Hall, Ellen Jedrey, Peter Kappes, Mary Paul, Vanessa Smith, Michael St. Germain and Alison Van Vort for their high spirits and long, tedious hours devoted to data collection. I am especially grateful for their patience, enthusiasm, and friendship. Thanks to Larry Houghton for teaching me software tricks, SAS code, the proper way to spread Tanglefoot insect trap onto paint stirrers, and especially for being there when I needed a shoulder to lean on. Thanks go to Jon Cohen, Scott Klopfer, Danielle Le Fer, Sylvia Schmidt, Pat Devers and Darroch Whitaker for their friendship and assistance, Julie Boyles, Sybille Klenzendorf, Colleen Olfenbuttel, Gyasi Quince, Mandy Rosenberger, Andy Strickland, and Erin Sullivan for being there, and to all of the graduate students, faculty, and staff of Fisheries and Wildlife Sciences at Virginia Tech for support and friendship.

Warm thanks and appreciation go to Mike St. Germain for his encouragement, patience, support, and love, and for photographs and drawings that will always take me back to Monomoy, and to my family and friends for their support and love and for believing that I would eventually graduate.

I thank the U.S. Geological Survey (USGS), Patuxent Wildlife Research Center for providing financial support for this project. Special thanks go to P. A. Buckley, Jay Hestbeck, and Richard Jachowski of USGS for administrative support.

## **TABLE OF CONTENTS**

| ACKNOWLEDGEMENTS                                                       | v    |
|------------------------------------------------------------------------|------|
| TABLE OF CONTENTS                                                      | vii  |
| LIST OF TABLES                                                         | x    |
| LIST OF FIGURES                                                        | xvi  |
| LIST OF APPENDICESxv                                                   | viii |
| INTRODUCTION                                                           | 1    |
| GOALS                                                                  | 3    |
| NULL HYPOTHESES                                                        | 3    |
| PREDICTIONS                                                            | 3    |
| STUDY AREA                                                             |      |
| Piping Plovers on Monomoy Island                                       |      |
| Large Gulls on Monomoy Island                                          |      |
| Gull-removal at Monomoy National Wildlife Refuge                       |      |
| Sampling Areas                                                         |      |
|                                                                        | _    |
| METHODS                                                                | 7    |
| SELECTING RANDOM POINTS                                                | 7    |
| PRENESTING PIPING PLOVERS                                              | 7    |
| Distribution and Abundance of Prenesting Piping Plovers                | 8    |
| Distribution and Abundance of Large Gulls During the Prenesting Period | 8    |
| Prenesting Piping Plover Habitat Availability and Habitat Use          | 10   |
| Habitat Availability                                                   |      |
| Habitat Use                                                            |      |
| Habitat Use vs. Habitat Availability                                   |      |
| Prenesting Piping Plover Behavior and Disturbance                      |      |
| Prenesting Piping Plover Foraging Rates                                | 12   |
| NESTING PIPING PLOVERS                                                 | 13   |
| Distribution and Abundance of Nesting Piping Plovers                   | 13   |
| Nest Observations                                                      | 13   |
| Large Gulls near Piping Plover Nests                                   |      |
| Piping Plover Nesting Areas vs. Unused Areas                           |      |
| Large Gulls                                                            |      |
| Available Habitat                                                      |      |
| Available Prey                                                         |      |
| Nesting Area Models                                                    |      |
| Disturbance to Incubating Piping Plovers                               |      |
| Piping Plover Nest Success                                             | 19   |

| PIPING PLOVER BROODS                                                   |  |
|------------------------------------------------------------------------|--|
| Large Gulls near Piping Plover Broods                                  |  |
| Piping Plover Brood Behavior, Habitat Use, and Foraging Rates          |  |
| Piping Plover Brood Success                                            |  |
| RESULTS                                                                |  |
| PRENESTING PIPING PLOVERS                                              |  |
| Distribution and Abundance of Prenesting Piping Plovers                |  |
| Distribution and Abundance of Large Gulls during the Prenesting Period |  |
| Large Gull Abundance near Prenesting Piping Plovers                    |  |
| Prenesting Piping Plover Habitat Availability and Habitat Use          |  |
| Habitat Availability                                                   |  |
| Habitat Use                                                            |  |
| Habitat Use vs. Habitat Availability                                   |  |
| Prenesting Piping Plover Behavior and Disturbance                      |  |
| Prenesting Piping Plover Foraging Rates in Different Habitats          |  |
| NESTING PIPING PLOVERS                                                 |  |
| Piping Plover Nesting Population                                       |  |
| Large Gulls near Piping Plover Nests                                   |  |
| Piping Plover Nesting Areas vs. Unused Areas                           |  |
| Large Gulls<br>Available Habitat                                       |  |
| Available Prey                                                         |  |
| Nesting Area Models                                                    |  |
| Disturbance to Incubating Piping Plovers                               |  |
| Piping Plover Nest Success                                             |  |
| Causes of Nest Loss                                                    |  |
| Gulls Near Successful vs. Unsuccessful Nests                           |  |
| PIPING PLOVER BROODS                                                   |  |
| Large Gulls near Piping Plover Broods                                  |  |
| Piping Plover Brood Behavior and Habitat Use                           |  |
| Piping Plover Brood Foraging Rates                                     |  |
| Piping Plover Brood Success                                            |  |
| DISCUSSION                                                             |  |
| DISTRIBUTION AND ABUNDANCE OF GULLS                                    |  |
| IMPACT OF GULL REMOVAL ON PIPING PLOVERS                               |  |
| SPATIAL SEPARATION BETWEEN PIPING PLOVERS AND LARGE GULLS              |  |
| Piping Plover Habitat                                                  |  |
| Foraging Habitat                                                       |  |
| Nesting Habitat Models                                                 |  |
| Gull Habitat                                                           |  |
| Herring Gulls<br>Great Black-backed Gulls                              |  |
|                                                                        |  |
| PLOVER POPULATION DYNAMICS ON SOUTH MONOMOY ISLAND                     |  |
| CONCLUSIONS                                                            |  |
| LITERATURE CITED                                                       |  |
| TABLES                                                                 |  |

| FIGURES    |  |
|------------|--|
| APPENDICES |  |
| VITA       |  |

# LIST OF TABLES

| Table 1. Summary of known Piping Plover reproductive success on South Monomoy Island, Cape Cod,<br>Massachusetts, 1998-2000.       52                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table 2.</b> Terms used to describe the management areas and Piping Plover nesting and foraging habitats on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.         56                                                                                                                                                                                                                                                                                                                                       |
| <b>Table 3.</b> Behavior categories used in the analyses of Piping Plover behavioral observations on South MonomoyIsland, Cape Cod, Massachusetts, 1998-2000                                                                                                                                                                                                                                                                                                                                                              |
| <b>Table 4.</b> Mean counts of large gulls within 100 m of random points during the prenesting period, among the<br>management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals<br>the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response<br>Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means<br>                                                                         |
| <b>Table 5.</b> Percent of random points with at least one gull present within 100 m during the prenesting period, among<br>management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals<br>the number of random points. Chi-square tests were used to test for differences in proportions                                                                                                                                                                                      |
| <b>Table 6.</b> Mean counts of large gulls within 100 m of Piping Plovers during the prenesting period, between the gull-<br>removal and reference areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size<br>(n) equals the number plovers observed. Test statistics ( <i>T</i> ) and p-values were obtained from BLOSSOM Multi-<br>response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. 60                                                  |
| <b>Table 7.</b> Percent of instantaneous observations of Piping Plovers with at least one gull present within 100 m during<br>the prenesting period, between the gull-removal and reference areas, South Monomoy Island, Cape Cod,<br>Massachusetts, 1999-2000. The sample size (n) equals the number of plovers observed. Chi-square tests were<br>used to test for differences in proportions                                                                                                                           |
| <b>Table 8.</b> Mean counts of large gulls within 100 m of Piping Plovers compared to mean counts of large gulls within100 m of random points during the prenesting period, by management area, South Monomoy Island, Cape Cod,Massachusetts, 1999-2000. The sample size (n) equals the number of plovers observed or the number ofrandom points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response PermutationProcedure (MRPP), a nonparametric randomization test based on Euclidean distances |
| <b>Table 9.</b> Percent of instantaneous observations of Piping Plovers with at least one large gull present within 100 mcompared to the percent of random points with at least one large gull present within 100 m, during theprenesting period, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Thesample size (n) equals the number of plovers observed or the number of random points. Chi-square tests wereused to test for differences in proportions.63                              |
| <b>Table 10.</b> Mean width (m) of foraging habitats measured along random transects, among years, South MonomoyIsland, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Teststatistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), anonparametric randomization test based on Euclidean distances                                                                                                                                    |
| <b>Table 11.</b> Mean width (m) of foraging habitats measured along random transects, among the management areas,<br>South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of<br>transects. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation<br>Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means with the same<br>letters were not significantly different ( $P < 0.05$ ).66                      |
| <b>Table 12.</b> Prenesting Piping Plover habitat use (%) between years by foraging, nonforaging, and plovers in all<br>behaviors during the prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The<br>sample size (n) equals the total number of plovers observed in each behavior group. Chi-square tests were used<br>to test for differences in proportions of use between years.69                                                                                                         |

- Table 14. Availability (mean % of total beach width measured along random transects), and use (% of instantaneous observations of Piping Plovers in each habitat during the prenesting period), among habitats, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Chi-square tests for homogeneity were used to test if plovers were using habitat in proportion to availability. Confidence intervals were used to determine if habitats were used in greater proportion than availability ("P" = preferred) if habitats were used in less proportion than availability ("A" = avoided), or used in proportion to availability ("="; Neu et al. 1974, Marcum and Loftsgaarden 1980).
- **Table 15.** Mean percent time Piping Plovers were observed in different behaviors during 5-minute observations<br/>during the prenesting period, between the gull-removal and reference areas, South Monomoy Island, Cape Cod,<br/>Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because<br/>individuals were not marked. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response<br/>Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.76
- **Table 16.** Mean percent time Piping Plovers were observed disturbed by various sources during 5-minute observations during the prenesting period, between the gull-removal and reference areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. 77
- **Table 17.** Mean foraging rates (attempts per minute) of prenesting Piping Plovers in different habitats during 5-<br/>minute observations, between the gull-removal and reference area (across rows) and among the habitats (down<br/>columns), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the<br/>number of 5-minute observations because individuals were not marked. Test statistics (*T*) and p-values were<br/>obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test<br/>based on Euclidean distances. Means for habitats with the same letters were not significantly different (P < 0.05). Statistical tests were not performed if n < 3. Habitats with n < 3 were not included in pair-wise<br/>comparisons.78
- **Table 18.** Mean foraging rates (attempts per minute) of foraging prenesting Piping Plovers in different habitats<br/>during 5-minute observations, between the gull-removal and reference area (across rows) and among the<br/>habitats (down columns), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n)<br/>equals the number of 5-minute observations because individuals were not marked. Test statistics (T) and p-<br/>values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric<br/>randomization test based on Euclidean distances. Means for habitats with the same letters were not<br/>significantly different (P < 0.05). Statistical tests were not performed if n < 3. Habitats with n < 3 were not<br/>included in pair-wise comparisons.80

- Table 22. Percent of random points with at least one gull present within 100 m, during the nesting period, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Chi-square tests were used to test for differences in proportions. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.
- Table 23. Mean width (m) of foraging habitats on random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.
- **Table 25.** Mean counts of Diptera, Coleoptera, Amphipoda, and other arthropods trapped during 3-hour trapping<br/>periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod,<br/>Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat.<br/>ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the<br/>same letters were not significantly different (P < 0.05, Fischer's LSD).95
- **Table 26.** Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects,<br/>between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts,<br/>1998-2000. The sample size (n) equals the number of transects that included the habitat. *P*-values were<br/>obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping<br/>Plover nests. Area beyond the nesting area is defined as unused area.
- Table 27. Candidate variables measured along random transects used to construct logistic regression models to predict Piping Plover nesting areas vs. unused areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

   109
- Table 29. Percent of transects predicted correctly and incorrectly as nesting area or unused area by logistic regression models, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

   111
- **Table 30.** Mean percent time incubating Piping Plovers were disturbed by various sources during 5-minute<br/>behavioral observations, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n)<br/>equals the number of 5-minute observations because individuals were not marked. Test statistics (T) and p-<br/>values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric<br/>randomization test based on Euclidean distances.112

| Table 31. Mayfield daily and interval survival rate estimates (Mayfield 1975) for Piping Plover nests | on South     |
|-------------------------------------------------------------------------------------------------------|--------------|
| Monomoy Island, Cape Cod, Massachusetts, 1998-2000. Chi-square tests were used to test for di         | fferences in |
| survival among the years. Survival rates with the same letters were not significantly different (z-t  | ests, $P <$  |
| 0.05)                                                                                                 |              |

| Table 32. | Mayfield daily and interval survival rate estimates (Mayfield 1975) for | exclosed and unexclosed Piping   |
|-----------|-------------------------------------------------------------------------|----------------------------------|
| Plove     | nests on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000       | ). Z-tests were used to test for |
| differ    | ences in survival between exclosed and unexclosed nests.                |                                  |

 Table 33. Mayfield daily and interval survival rate estimates (Mayfield 1975) for Piping Plover nests, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of nests. Chi-square tests were used to test for differences in survival among the management areas. Z-tests were used to test for differences in survival between the gull-removal area and the reference area.

 115

 Table 34. Fate of Piping Plover nests, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

 116

- Table 35.
   Number of Piping Plover nests abandoned or lost to known causes, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.
   120
- **Table 37.** Mean counts of large gulls within 100 m of Piping Plover broods, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area. ..... 126
- **Table 39.** Percent time Piping Plover broods spent in different behaviors during 5-minute behavioral observations ,<br/>by age group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the<br/>number of broods. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation<br/>Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means with the same<br/>letters were not significantly different (P < 0.05).129
- Table 40.
   Percent time Piping Plover broods spent in different behaviors during 5-minute behavioral observations, by age group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods.
   130
- Table 42. Percent time Piping Plover broods were disturbed by gulls and unknown sources during 5-minute behavioral observations, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area.

- Table 43. Percent time Piping Plover broods were disturbed by various sources other than gulls and unknown sources during 5-minute behavioral observations, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area. ...... 134

- Table 46. Brood habitat use in proportion to availability (Compositional Analysis, Aebischer 1993) for broods of ages 0-25 days, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects or the number of broods.
- Table 47. Brood habitat use in proportion to availability (Compositional Analysis, Aebischer 1993) for broods of ages 3-25 days, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects or the number of broods for which 5-minute behavioral observations were conducted.
- Table 49. Mean foraging rates (attempts per minute) of Piping Plover broods of all ages in different habitats during 5-minute behavioral observations in the gull-removal area vs. the reference area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

- Table 52.
   Prefledging daily and interval survival rate estimates (Flint et al. 1995) and chicks fledged/pair, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.
   Z-tests were used to test for differences in survival between the gull-removal area and the reference area (Sauer and Williams 1989)...... 150
- **Table 53.** Prefledging daily and interval survival rate estimates (Flint et al. 1995), by access group, South MonomoyIsland, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Chi-squaretests were used to test for differences in survival among the access groups (Sauer and Williams 1989). ...... 151

- **Table 55.** Number of breeding pairs and overall productivity (chicks fledged/breeding pair) of Piping Plovers at<br/>Monomoy National Wildlife Refuge, Chatham, Massachusetts, 1991-2000. Data prior to 1998 were obtained<br/>from census forms and maps prepared by USFWS for Massachusetts Division of Fish and Wildlife.153

## **LIST OF FIGURES**

| Figure 1. Location of South Monomoy Island on Cape Cod, Massachusetts, and management areas used in this study based on the 1996 USFWS Restoration of Avian Diversity project. (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 2.</b> Number of Piping Plover pairs at Monomoy National Wildlife Refuge (includes both North and South Monomoy Islands) from 1983 to 2000 (with larger square marking the year of gull removal, and number of Piping Plover pairs in Massachusetts (not including the Monomoy Islands) from 1986 to 2000 (USFWS 2002).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 3. Relative gull abundance and distribution based on counts of gulls in random 100 m-radius plots, during the Piping Plover prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Figure 4. Relative gull abundance among the management areas based on mean counts of gulls in random 100 m-radius plots, during the Piping Plover prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Figure 5.</b> Mean width of habitats (m) measured along random transects, among the management areas (gull-<br>removal: $n = 50$ , buffer: $n = 62$ , reference: $n = 116$ ), South Monomoy Island, Cape Cod, Massachusetts, 1999-<br>2000. Error bars represent the standard error of the mean. For each habitat where a difference was found<br>among the management areas (MRPP, $P \le 0.05$ ), pairwise comparisons were conducted. Bars labeled with the<br>same letters within the same habitat were not significantly different (MRPP, $P > 0.5$ )                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Figure 6.</b> Habitat use between the management areas by foraging (a), and nonforaging (b) Piping Plovers during the prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Both foraging and nonforaging plovers did not use habitat in equal proportions between the management areas (foraging: $n = 275$ , $df = 6$ , $= 227.13$ , $P < 0.0001$ with the largest partial chi-square statistics for sound intertidal zone and tidal pond intertidal zone habitats; nonforaging: $n = 556$ , $df = 6$ , $= 301.95$ , $P < 0.0001$ with the largest partial chi-square statistics for ocean and sound backshore habitats). Missing columns represent zero plovers observed in the habitat                                                                                                                                                                                                                  |
| Figure 7. Approximate locations and frequency of observations of foraging Piping Plovers observed throughout the prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. ArcView 3.1 was used to generate Kernal density estimates of observations per ha (search radius = 100 m, cell size = 10, rows = 1200, columns = 800). Locations of observations were obtained using Garmin 12 hand-held GPS units. Upper left shows observations of plovers in the gull-removal area mostly in the sound-side intertidal zone or sand flat habitat. Lower left shows observations of plovers in the reference area mostly in the tidal pond intertidal zone habitat. (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.). |
| <b>Figure 8.</b> Mean percent time Piping Plovers were observed in different behaviors during 5-minute observations during the prenesting period, between the gull-removal area ( $n = 53$ ) and the reference area ( $n = 93$ ), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean. There were no differences between the management areas in percent time in behaviors (MRPP, $P > 0.05$ ) 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Figure 9. Number of nesting Piping Plover pairs, by management area, South Monomoy Island, Cape Cod,<br/>Massachusetts, 1991-2000 (USFWS census data 1991-1997). Missing columns represent zero nesting Piping<br/>Plovers in the management area that year.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

- Figure 10. Approximate locations of Piping Plover nests with the boundary between the nesting (≥ 500 m from all nest locations) and unused areas delineated, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. Locations were obtained using Garmin 12 hand-held GPS units. (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.) ....... 164

- Figure 16. Curves depicting the probability that Piping Plovers will nest within 500 of areas in the reference area, South Monomoy Island, given different backshore widths (m), open vegetation widths (m) and numbers of Great Black-backed Gulls. 170
- Figure 17. Curves depicting the probability that Piping Plovers will nest within 500 of areas in the reference area, South Monomoy Island given different backshore widths (m), open vegetation widths (m) and numbers of Great Black-backed Gulls.

## LIST OF APPENDICES

|             | Individual Piping Plover nest and brood chronology, South Monomoy Island, Cape Cod, usetts, 1998-2000. | 175 |
|-------------|--------------------------------------------------------------------------------------------------------|-----|
| Appendix B. | Distribution of Potential Predators, Competitors, and Disturbances Other Than Large Gulls              | 189 |
| Appendix C. | Sensitivity Analysis of the Nesting Area Size                                                          | 202 |
| Appendix D. | Intertidal Zone Infauna Samples: A Pilot Study                                                         | 211 |

#### INTRODUCTION

In 1986, the Atlantic Coast Piping Plover population (*Charadrius melodus*) was listed as Threatened under the Endangered Species Act of 1973 (USFWS 1985). The decline of this species has been attributed to loss and degradation of breeding habitat. Predation, disturbance, and destruction of nests and young by human activities reduced reproductive rates (e.g., Wilcox 1959, Arbib 1979, Cairns 1977, MacIvor 1990, Goldin 1993, Hoopes 1993). Since listing, a variety of management interventions have been employed to reduce the effects of habitat degradation, resulting in population increases throughout much of the Atlantic Coast region. One of the recovery goals for the Atlantic Coast Piping Plover population is to increase the population to 2,000 breeding pairs, sustained for 5 consecutive years (USFWS 1996a). Overall, the Atlantic Coast population has increased from 790 breeding pairs at the time of listing to approximately 1,400 pairs in 2000 (USFWS 2002). Most of the population increase has been in New England, where pairs have increased >300% (USFWS 2002). Approximately 80% of the New England subpopulation breeds in Massachusetts (Mostello and Melvin 2001).

The Atlantic Coast Recovery Plan states that gulls should be prevented from establishing and expanding nesting colonies at Piping Plover nesting areas (USFWS 1996a). The plan states that existing gull colonies at plover nesting sites should be removed because gulls depredate plover eggs and chicks and take over plover nesting sites. Following recovery plan recommendations, the prevention of gull nesting at Breezy Point, Gateway National Recreation Area, Brooklyn, NY was identified as a "Conservation Recommendation" for Piping Plovers by the USFWS in 1989 (USDA Animal Damage Control 1993). A long-term gull control project was initiated in 1992 using nonlethal harassment methods and nest and egg destruction to reduce the Great-black Backed Gull (*Larus argentatus*) and Herring Gull (*L. marinus*) populations (Olijnyk and Brown 1999). Lauro and Tanacredi (2002) reported that gull predation accounted for 6% of Piping Plover egg loss from 1992 to 1996. However, based on their artificial nest study, crows (*Corvis* spp.) took significantly more eggs than gulls, and may be a more serious potential predator to Piping Plover eggs. The success of the Breezy Point gull control project in increasing Piping Plover breeding success has not been shown.

Similar to the Breezy Point site, the large population of nesting Great Black-backed Gulls and Herring Gulls at Monomoy National Wildlife Refuge in Chatham, Massachusetts has been thought to prevent or limit other species from nesting on the island (USFWS 1988, USFWS 1996b). The refuge Master Plan states that, without gull removal, gulls would interfere with Piping Plover courtship rituals, prevent establishment of nesting territories, and depress the plover population (USFWS 1988). MacIvor (1990) asserted that large numbers of roosting and nesting gulls occupied habitats that were physically suitable for plover nesting on South Monomoy Island. She argued that given the amount of habitat that appears physically suitable, numbers of nesting Piping Plovers were surprisingly low. She suggested that this was a consequence of both predation by gulls on Piping Plover eggs and chicks and occupancy of potential plover nesting habitats by large numbers of gulls.

The aim of our research was to determine whether Herring Gulls and/or Great Blackbacked Gulls have any effect on the number and/or productivity of breeding Piping Plovers on South Monomoy Island. We studied Piping Plover behavior and breeding success in relation to gulls and other factors on South Monomoy Island from 1998 to 2000. A summary of Piping Plover reproductive success during our study is presented in Table 1.

#### GOALS

The goals of this project were to:

- (1) Determine factors affecting Piping Plover distribution, habitat use and productivity.
- (2) Determine the distribution of gulls with respect to plover habitats.
- (3) Describe gull-plover interactions and determine whether gulls alter plover behavior, nest site selection and survival, or chick survival.
- (4) Determine if effects of gulls on plovers are reduced with gull removal.

#### NULL HYPOTHESES

- (1) Herring Gulls and/or Great Black-backed Gulls do not limit the Piping Plover breeding population on South Monomoy Island.
- (2) Piping Plover reproductive rates are not limited by Herring Gulls and/or Black-backed Gulls.

#### PREDICTIONS

If gulls are limiting Piping Plover numbers and/or productivity on South Monomoy Island then one or more of the following predictions will be true: (1) Piping Plover habitat use will differ between low- and high-gull abundance areas (gull-removal area and reference area), (2) Piping Plover reproductive rates will be greater in suitable habitat in low-gull abundance areas than in high-gull abundance areas, (3) Piping Plovers will avoid gulls when foraging or nesting, (4) Predation by gulls will be greater in high-gull abundance areas than in low-gull abundance areas, (5) Gull harassment of Piping Plovers will be greater in high-gull abundance areas than in low-gull abundance areas and (6) Piping Plover foraging rates will be lower in high-gull abundance areas than in low-gull abundance areas of equivalent habitat quality.

#### **STUDY AREA**

South Monomoy Island is part of Monomoy National Wildlife Refuge in Chatham, Massachusetts, near the southeastern corner of Cape Cod (Figure 1). Natural processes have frequently changed the shoreline and location of Monomoy. During the first half of the 20<sup>th</sup> century, Monomoy was a barrier spit extending south from Chatham Harbor between the Atlantic Ocean and Nantucket Sound. In 1958, a storm breached the spit, forming Monomoy Island. In February of 1978, a northeaster split Monomoy Island into North and South Monomoy Islands.

During this study, South Monomoy Island was 9.5 km from north to south, and 2.0 km from west to east at the widest point, comprising 655 ha (Figure 1). Large tidal ponds and extensive sand flats provided foraging habitat for shorebirds and wading birds. Most mammalian predators of beach-nesting birds such as red fox (*Vulpes fulva*), raccoon (*Procyon lotor*), and striped skunk (*Mephitis mephitis*) were not present on South Monomoy throughout our study. Coyotes (*Canis latrans*) were present, but USFWS personnel conducted coyote control, focusing on denning animals, during all years of our study (USFWS 1999, USFWS 2000, USFWS in prep). Pedestrian use on South Monomoy was low compared to other Cape Cod beaches.

#### **Piping Plovers on Monomoy Island**

From 1983 to 1993, the number of Piping Plovers nesting at Monomoy National Wildlife Refuge (both North and South Monomoy Islands) fluctuated between 2 and 5 pairs. The number of observed nesting pairs increased from 4 nesting pairs in 1993 to 30 nesting pairs in 2000 (USFWS 1996b, Megyesi 1998, USFWS 1999, USFWS 2000a, this study, Figure 2).

#### Large Gulls on Monomoy Island

An increase in the human population in coastal areas during the 20<sup>th</sup> century and the consequent increase in refuse and fish offal has lead to the southward range expansion and invasion of Herring Gulls and Great Black-backed Gulls into Massachusetts (Hunt 1972, Blodget 1988, Drury 1973 *cited in* Cavanagh 1992). Kadlec and Drury (1968) reported 5 pairs of Herring

Gulls on Monomoy Island in 1963. Seventy-five pairs of Great Black-backed Gulls were recorded in 1965 (USFWS 1988). By 1984, an estimated 15,300 pairs of Herring Gulls and 4,200 pairs of Great Black-backed Gulls nested on Monomoy National Wildlife Refuge (USFWS 1988) but in 1990, the Herring Gull population had declined to 9,600 pairs while the Great Black-backed Gull population increased to 8,200 pairs (Cavanagh 1992, USFWS 1996b).

#### **Gull-removal at Monomoy National Wildlife Refuge**

In an attempt to maintain the tern colony (*Sterna spp.*) on North Monomoy Island, gull control was implemented from 1980 to 1984. Methods used in an attempt to control gulls included harassment, nest and egg destruction, shooting, and limited use of the avicide DRC-1339. Despite these attempts, the gull population continued to increase. From 1993 to 1994, at least 1,000 gulls were shot and at least 3,500 gull nests were destroyed on the refuge. Removal of gulls took place in areas within and surrounding potential and used Piping Plover nesting habitat, including the Powder Hole area. Gull removal methods followed the 1988 Master Plan protocols (USFWS 1988, USFWS unpublished data). The impact on the gull population or the effects of removing gulls on Piping Plover reproductive success was not reported.

In 1996, the U.S. Fish and Wildlife Service (USFWS) began an intensive program of removing gulls from South Monomoy Island. Gull control was conducted on the north end of the island to restore avian diversity by making nesting habitat available for several species, and to increase numbers of Piping Plovers (USFWS 1996b). During the 1996 breeding season, USFWS baited approximately 2,850 gull nests with Purina Starlicide Technical DRC-1339, shot 448 adult gulls, and used nonlethal harassment in the gull-removal area and buffer areas (Figure 1). This resulted in the removal of at least 1,185 Herring Gulls and 726 Great Black-backed Gulls (USFWS 1996b). In 1997, USFWS used nonlethal harassment in conjunction with trapping and shooting 148 territorial gulls in the gull-removal area. Productivity was suppressed in the buffer area by puncturing eggs (Megyesi 1998). From 1998-2000, USFWS was permitted to prevent Herring Gulls and Great Black-backed Gulls from successfully nesting in the gull-removal area by destroying nests and using nonlethal harassment, and to reduce gull productivity in the buffer area by puncturing eggs (USFWS 1999, USFWS 2000a, USFWS in prep.). During

our study, 1 immature Herring Gull was shot by USFWS under in the gull-removal area in 1998 (USFWS 1999).

#### **Sampling Areas**

Sampling areas for this study were based on the USFWS Restoration of Avian Diversity Project management areas (USFWS 1996b; Table 2, Figure 1). The gull-removal area (USFWS Area A) includes the northernmost tip of the island. It comprises approximately 45 ha and has approximately 3.3 km of shoreline. The buffer area (USFWS Area B) comprises approximately 35 ha and has approximately 1.6 km of shoreline. The buffer area includes a tidal pond area (Hospital Pond). The reference area makes up the remainder of the island, comprising approximately 575 ha and approximately 14.9 km of shoreline. This area includes a tidal pond (Powder Hole) adjacent to 1.2 km of sound-side backshore. We refer to all areas west of the northernmost and southernmost tips of the island as the sound side (Nantucket Sound) and all areas east of the northernmost and southernmost tips of the island as the ocean side (Atlantic Ocean).

### **METHODS**

We excluded data from 1998 where methods differed from 1999 and 2000.

#### SELECTING RANDOM POINTS

For several sampling procedures, we used randomly selected points on the midbeach to mark transect locations and 100-m radius plot locations. We selected random points on the shoreline using georeferenced aerial photographs of South Monomoy Island taken in 1994 (Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.) with ArcView GIS, version 3.1 and a random number table, using the random numbers to represent points on the shoreline. We used Garmin 12 GPS units and the coordinates of each random point to navigate to points during data collection.

#### PRENESTING PIPING PLOVERS

The first nests found on South Monomoy Island each season from 1998-2000 were initiated no earlier than 1 May (Appendix A). Thus, we considered the period through 1 May each year as the "prenesting period" and adults seen through 1 May as "prenesting Piping Plovers."

#### **Distribution and Abundance of Prenesting Piping Plovers**

*Instantaneous Observations--* We began searching for Piping Plovers in early March of 1999 and 2000, before plovers were expected to arrive on South Monomoy Island for the breeding season. We attempted to walk the shoreline of South Monomoy Island daily. To minimize tide and observer bias in our surveys, we altered direction traveled, time of day, and observers from day to day. Whenever we observed a plover we recorded date, time, temperature (°C), cloud cover (%), visibility (0-0.1 km, 0.1-1 km, 1-3 km, rain, clear), wind direction (N, S, E, W, NE, NW, SE, SW), wind speed (kph, using a Kestrel 1000 wind meter), and time of the most recent high tide at Monomoy Point. We also recorded the management area and the plover's initial habitat occupied, and the plover's behavior plus source of disturbance if disturbed (Tables 2 and 3). We noted the number of other plovers within 100 m, and whether or not the plover appeared to be with a mate. When groups of plovers were observed in the same habitat and behavior, each bird was recorded individually, but time and weather data were identical for all individuals within the group. We recorded approximate latitude and longitude coordinates of all Piping Plovers and groups of Piping Plovers using Garmin 12 handheld GPS units, and plotted the locations onto georeferenced aerial photographs using ArcView.

#### Distribution and Abundance of Large Gulls During the Prenesting Period

We counted Great Black-backed Gulls and Herring Gulls within 100 m-radius circular plots for indices of gull abundance and distribution among the management areas. We included immature Herring Gulls and Great Black-backed Gulls in counts, but did not identify them to species. Identification was too difficult to accurately identify species of immature gulls when instantaneously estimating the number of gulls in a 100-m radius plot. Hereafter, Great Black-backed Gulls, Herring Gulls and immature gulls of these species will be jointly referred to as "large gulls" to distinguish them from smaller gulls such as Laughing Gulls (*L. atricilla*) and Ring-billed Gulls (*L. delewarensis*).

Random points were located on the backshore-open vegetation line along the perimeter of the island. Latitude-longitude coordinates of each random point were stored in hand-held GPS

units. We used GPS units to navigate to the unmarked random points on the beach. This feature displayed the distance to the random point as we approached it. All counts were conducted from the edge of the circular plot (100 m from the plot center) to minimize and standardize observer disturbance to gulls and other species. We began recording data when we arrived at the edge of the 100 m-radius plot. We counted the number of each species of large gulls, (and of other species, Appendix B) including birds in flight, in a standard order. If the entire plot was not visible, we walked along the perimeter of the plot far enough to count gulls and other species within the entire plot.

To maintain independence among the samples, we spatially and temporally separated the plots by conducting only 2 counts/day in both the gull-removal and buffer areas and 4 counts/day in the reference area. If a plot center was within 300 m of another plot center on the same day, we discarded one plot and used the next random point on our list. Counts were conducted approximately 5 times/week.

We calculated the percent of random plots in which at least one gull was present (including flying gulls) and compared large gull presence among the management areas using chi-square tests. We also used the Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances, using the BLOSSOM Statistical Package, Version W2001 to compare relative gull abundance among the management areas (Cade and Richards 1999, Mielke and Berry 2001, Pages 1-12; BLOSSOM 2001: http://www.mesc.usgs.gov/products/pubs/10002/intro.html).

Euclidean-distance based statistics have greater power (the probability of rejecting the null hypothesis when it is false) to detect central tendency shifts among skewed distributions than do parametric statistics (Cade and Richards 1999, Mielke and Berry 2001, Pages 42-46, BLOSSOM 2001). Also, MRPP does not require that the data be normally distributed or that variances be equal among the populations being compared. MRPP is less sensitive to outliers than standard parametric tests, and can be used even if there are many tied values (Cade and Richards 1999, Mielke and Berry 2001, Page 3; BLOSSOM 2001) whereas nonparametric equivalents of the standard parametric tests can not. The Blossom Statistical Package does not compute exact probabilities in the default setting, but uses an approximation of the exact distribution of the test statistic to estimate the *P*-value. We used the default setting because computations would have been excessively timely to obtain exact *P*-values. The approximation

is based on the mean, variance, and skewness of the permutation distribution evaluated as a Pearson type III distribution (Cade and Richards 1999, Mielke and Berry 2001, Pages 22-26; BLOSSOM 2001).

To compare relative gull abundance near prenesting Piping Plovers among the areas, we counted all large gulls within 100 m of Piping Plovers as an index to gull abundance. We did not count large gulls near more than one plover where the 100 m-radius plots around several plovers overlapped. Instead, we recorded the number of additional plovers within each plot to obtain the plover group size within that plot. This way, we did not have to recount the same gulls for 2 or more Piping Plovers near each other, but an individual plover could be linked to a gull count since all plovers in a group were recorded. Gulls were counted within 100 m of the plover nearest the center of the group. We used MRPP to compare relative gull abundance within 100 m of plovers among the management areas. We compared proportions of plovers with at least one large gull present within 100 m among the management areas using chi-square tests.

To determine if Piping Plovers and large gulls were randomly distributed on South Monomoy Island, we compared the number of large gulls near Piping Plovers to the number of large gulls near random points surveyed during the prenesting period. We used MRPP to compare relative gull abundance between plovers and random locations by management area. We compared the proportion of plovers with at least one large gull within 100 m to the proportion of random points with at least one large gull present using chi-square tests.

#### Prenesting Piping Plover Habitat Availability and Habitat Use

#### Habitat Availability

To estimate the availability of each habitat to Piping Plovers on South Monomoy Island, we measured the width of each habitat on randomly located transects perpendicular to the shoreline following methods similar to Elias et al. (2000). We included the sound-side intertidal zone, fresh wrack, backshore, old wrack and open vegetation, the ocean-side intertidal zone, fresh wrack, backshore, old wrack and open vegetation, and tidal pond intertidal zone as available habitats (Table 2). We did not pool transects from the ocean and sound sides of the island in these analyses. For habitats other than wrack, we counted the number of steps taken within each habitat from the water's edge to dense vegetation, then converted steps to meters for

each observer's pace. We measured the width of the wrack habitats to the nearest 0.1 m using measuring tape. We recorded 0 m for habitat width if the habitat was not encountered along the transect. We used MRPP to compare habitat availability among years and among the management areas.

#### Habitat Use

To assess habitat use, we calculated the proportion of instantaneous observations of prenesting Piping Plovers seen in each habitat out of all plovers in all habitats seen during daily surveys of the entire island during the prenesting period. We assumed that every plover present on the island was observed in a habitat, and that the likelihood of observing a plover was equal among the habitats. Observations of plovers were assumed to be independent because individual plovers were not marked and identified. We used chi-square tests to compare habitat use between the 1999 and 2000 breeding seasons and to compare habitat use among the management areas. We conducted separate analyses for observations of all prenesting plovers, plovers that were foraging, and plovers that were not foraging (Table 3).

#### Habitat Use vs. Habitat Availability

We compared the proportion of use of each habitat (% of instantaneous observations of plovers within each habitat) to the proportion of availability of each habitat (mean % of total beach width estimated from transect data). We used chi-square tests to examine if plovers used habitat in proportion to availability. We assumed habitats to be equally available to each prenesting plover on South Monomoy Island. Observations of plovers were assumed to be independent because individual plovers were not marked and identified. Thus, habitat use and availability were measured at the population level (Thomas and Taylor 1990). We then determined if each habitat was preferred or avoided based on confidence intervals of use and availability. If the confidence interval for use was entirely above the confidence interval for availability, we concluded that that habitat was preferred. If the confidence interval for use was entirely below the confidence interval for availability, we concluded that there was avoided. If confidence intervals for use and availability overlapped, we concluded that there was no evidence that habitat was not used in equal proportion to availability (Neu et al. 1974, Marcum and Loftsgaarden 1980).

#### **Prenesting Piping Plover Behavior and Disturbance**

We conducted 5-minute time-budget observations on randomly selected prenesting Piping Plovers each day to estimate time spent in different behaviors by habitat (Altmann 1974, Lehner 1979, Tyler 1979, Loegering 1992, Elias-Gerken 1994, Elias et al. 2000). We observed a focal bird from a distance with a Bushnell Spacemaster 40x zoom spotting scope on a tripod and continuously recorded behavior (and habitat) into an audiocassette recorder during the timed 5minute period. We included foraging, disturbed, resting, alert, moving, and courting as behaviors for prenesting plovers (Table 3). We conducted timed observations only when the observer did not appear to be causing disturbance to the plover. Timed observations were conducted after the plover's initial behavior (including disturbed by observer) and habitat were recorded, after weather data were recorded, and after large gulls (and other species, Appendix B) within 100 m of the plover were counted and recorded. We recorded the estimated initial distance (m) between the observer and the plover for each observation. If we lost sight of the plover but the habitat was known, we recorded habitat but not behavior. If we were not sure of the habitat or behavior, we recorded "out-of-sight" until we relocated the bird. Later, we recorded the habitat and behavior at every 10-second interval within the 5-minute period. We did this by transcribing the taped data onto datasheets while a timer sounded every 10 seconds. We discarded observations from analyses if the plover was out of sight for >1/3 of the 5-minute period. We used MRPP to compare the percent time Piping Plovers were in different behaviors among the management areas. We also calculated the percent time large gulls and other species disturbed Piping Plovers, and used MRPP to test whether there was more disturbance to plovers in any of the management areas.

#### **Prenesting Piping Plover Foraging Rates**

During the same 5-minute period in which we observed behavior, we continuously recorded foraging rate (attempts/min; Tyler 1979, Tacha et al. 1985). "Foraging attempts" included pecks, aerial snaps, and gleans—regardless of whether prey was captured or consumed. Foraging rates and prey abundance have been considered good indicators of prey availability for

other shorebirds (Goss-Custard 1970, Goss-Custard 1977, Myers et al. 1980, Pienkowski 1983, Maron and Myers 1985, Wilson 1990). We used MRPP to compare foraging rates of prenesting plovers among habitats and among the management areas. Habitats were included in multiple and pair-wise comparisons if there were  $\geq$ 3 observations (n) within the habitat. We repeated these analyses for plovers engaged in foraging behavior only, as foraging rates were low in habitats, such as the ocean backshore, where plovers spent a greater percentage of time in behaviors other than foraging.

#### **NESTING PIPING PLOVERS**

#### **Distribution and Abundance of Nesting Piping Plovers**

We searched for Piping Plovers and their nests by walking the perimeter of the island daily. We noted locations of courtship behavior and active nest scrapes on sketches of the island and on aerial photographs. We observed pairs that exhibited territorial, courtship, and nesting behavior until we located the nest. We often found nests by watching an adult return to incubate after being flushed from the nest by the observer. We also found nests by following high concentrations of Piping Plover tracks. We determined the latitude and longitude coordinates to 0.001 min. of each nest using hand-held Garmin 12 GPS units and recorded the management area, habitat type, and nesting substrate.

#### **Nest Observations**

We attempted to check each known Piping Plover nest at least once but not more than twice each day during the 1998-2000 seasons. On South Monomoy Island, Piping Plovers usually laid a clutch of 4 eggs in 6-7 days. Eggs hatched approximately 27 days after the last egg was laid. We attempted to find all nests before the fourth egg was laid to most accurately estimate the hatch date. We did not check nests in rain and/or wind >40 kph).

We recorded temperature (°C), cloud cover (%), visibility (0-0.1 km, 0.1-1 km, 1-3 km, rain, clear), wind direction (N, S, E, W, NE, NW, SE, SW), wind speed (kph using a Kestrel 1000 wind meter), and the time of the most recent high tide at Monomoy Point, for each nest

check. We recorded the number of eggs, the nest status (incubating, partial hatch, hatch, abandoned, lost, or unknown), and the number of adults seen with the nest. If the clutch was incomplete at the time of the previous nest check, we approached the nest to determine clutch size. We only approached complete clutches when the status of the nest was unknown. We recorded the behavior of the attending adult. If an incubating bird left the nest because the observer disturbed it, we recorded the distance from the observer to the nest at the time the bird flushed (flush distance).

#### Large Gulls near Piping Plover Nests

In 1999 and 2000, we recorded the number of Great Black-backed, Herring, and immature gulls (and other species, Appendix B) within 100 m of each known Piping Plover nest at a random time each day. Gulls and other species in flight were included in the counts. To standardize the level of disturbance to plovers, large gulls, and other species near the plover nest sites, we conducted counts from an observation point on the backshore located approximately 100 m from the nest. If not all of the plot was visible, we maintained our distance of 100 m from the nest and walked to where we could see the remainder of the plot. As we surveyed the island, our distance and position relative to nests were determined using hand-held Garmin 12 GPS units with the nest locations loaded in the memory. We recorded the number of large gulls of each species within 100 m of the plover nest. We used MRPP to test whether there were more large gulls near nests in one management area than another. We also recorded the number of Great Black-backed, Herring, and immature gulls within an estimated 100 m of random points during the Piping Plover nesting period of 2 May to 21 July. We used MRPP to compare relative gull abundance in random plots to relative gull abundance near nests.

#### Piping Plover Nesting Areas vs. Unused Areas

We considered all beach area within 500 m of a Piping Plover nest excluding inland habitats beyond the dense vegetation boundary as "nesting area," and the beach area beyond 500 m from a nest as "unused area." A clutch of at least one egg was considered a nest. "Unused" referred to nesting habitat only, as plovers may have used these areas for foraging. We chose

500 m from plover nests to be the nesting area/unused area boundary based on Jones's (1997) recommendation to set off-road vehicle closures at 500 m from nests to protect 95% of the broods. He found that the mean maximum distance broods moved from nests was 485.8 m at Cape Cod National Seashore, Massachusetts (Jones 1997). We examined the effects of choosing a 500-m boundary to define the nesting area by reanalyzing the data using a 100-m boundary (Appendix C). For each year, we classified all randomly located points and transects as "nesting" or "unused," depending on the point's location relative to Piping Plover nests.

#### Large Gulls

We counted the number of Great Black-backed, Herring, and immature gulls (and other species, Appendix B) within 100 m of random points in nesting and unused areas. For island-wide comparisons between the nesting and unused areas, we randomly selected a subset of the data to standardize the number of transects/km of shoreline within each management area in order to control for sampling intensity bias. We used MRPP to test for differences in gull abundance between the nesting and unused areas within each management area and island-wide. We also calculated the percent of random plots in which at least one large gull was present and compared gull presence between the nesting and unused areas within each management area and island-wide using chi-square tests.

#### Available Habitat

To compare available habitat between the nesting and unused areas, we used the same transect data for which we compared available habitat to prenesting plovers among the management areas. All years were combined for these analyses to increase sample size and because change in island physiography was minimal. We used MRPP to examine differences in habitat availability between the nesting and unused areas within each management area and island-wide.

#### Available Prey

To examine Piping Plover prey distribution and abundance among the habitats within each management area, we obtained an index of arthropod abundance by setting insect traps (and taking core samples, Appendix D) along random transects, similar to methods used by Loegering

and Fraser (1995) and Elias et al. (2000). Once habitat measurements were recorded, we set insect traps along transects to quantify available prey. We sampled the tidal pond intertidal zone and the ocean- and sound-side intertidal zone, fresh wrack, backshore, old wrack, and open vegetation habitats for arthropod abundance. We coated paint stirrers (except for the handles) with Tanglefoot Insect Trap Coating (The Tanglefoot Company), and set them in pairs in each habitat encountered along the transect. Within a pair, we set one paint stirrer vertical and facing the water and one horizontal and parallel to the shoreline. The area of stirrers exposed to trapping was approximately 70 cm<sup>2</sup> for horizontal stirrers and 140 cm<sup>2</sup> for vertical stirrers. Individual stirrers in a pair were placed approximately 10 cm apart, and each pair was set in the middle of all habitats on the transect line except the intertidal zone. We sampled at all stages of the tide. For intertidal zone habitat, we placed pairs of stirrers where the tide most likely would not wash them away during trapping. We left traps for 3 hours, and discarded prey samples (the pair of stirrers in a habitat) if one or both stirrers were wet, misplaced, lost, or covered in debris due to wind (approximately 5% of all samples). We counted and classified arthropods to taxonomic order while in the field.

We compared prey abundance among the habitats within each management area and island-wide. We used a technique based on the Kruskal-Wallis method of ranking described by Nemenyi (1963, *cited in* Miller 1980 pages 165-169) to conduct simultaneous comparisons among the habitats. Ranks of the arthropod abundance samples were used rather than actual values recorded to conduct a nonparametric equivalent to a one-way analysis of variance (ANOVA). We used this method because arthropod abundance data were not normally distributed. We proceeded with pairwise comparisons of arthropod abundance (still using the ranks of the samples in each habitat) using Fisher's Least Significant Difference tests. We also compared prey availability between the nesting and unused area using Kruskal-Wallis tests.

#### Nesting Area Models

We constructed multiple logistic regression models to examine variables that discriminate nesting areas from unused areas. We performed univariate analyses on all variables obtained from the transect data and corresponding 100-m radius plot count data to compare nesting vs. unused areas using MRPP. Variables included habitat widths, prey availability, and numbers of gulls within 100 m of the point determining the location of the transect. If the univariate test had

a *P*-value of <0.25, the variable was considered as a candidate for the mutlivariate model (Hosmer and Lemeshow 1989; pages 84-86). We then performed the stepwise logistic regression procedure (forward selection with backward elimination, SAS 1999-2001) using the candidate variables to select the best fitting model.

Models often are validated by developing one model based on a subset of the data, then assessing the goodness-of-fit using a model constructed from the remainder of the data. Since our model was unstable (variables entered into the model changed each time a new random subset was selected), we repeated the stepwise logistic regression procedure 100 times, each time using a new random 50% subset of the data. We then evaluated our original model by examining the percent occurrence of each regressor in the final model.

South Monomoy Island Models--We constructed a model to examine habitat variables that were influential in Piping Plover nesting area selection on South Monomoy Island. We used all candidate variables except number of gulls to construct the model. We could not include number of gulls as a candidate when our model included data from the gull-removal or buffer areas because gull removal by wildlife managers within known plover nesting areas would have erroneously inflated the apparent importance of gull presence in predicting plover nesting areas. Later, we constructed a reference area model to examine the effects of numbers of gulls (see Reference Area Models). To determine the percent of transects predicted correctly by the model, we chose the probability level corresponding to the greatest value of "percent correct" listed in the classification table (an option of PROC LOGISTIC, SAS). We then determined how the model classified each transect based on how the predicted value for each transect compared to the probability level obtained from the classification table. We examined the percent of all transects island-wide predicted correctly by the model as well as the percent of transects predicted correctly in both the nesting and unused areas. As an alternative to the subjective 500m boundary between nesting and unused areas, we constructed an additional South Monomoy Island model based on a 100-m boundary from nests defining the nesting area following the same methods to see if minimizing the nesting area size increased predictability (See Appendix C for further analyses).

*Reference Area Models*—To construct a model to predict nesting areas based on characteristics of the reference area, we used the same variables selected as candidates for the South Monomoy Island model using only reference area data. We then used the significant explanatory variables from that run with the number of Great Black-backed Gulls included as a candidate variable to see if the number of large gulls influenced the nesting areas. (We did not include the number of Herring Gulls and immature gulls as additional candidate variables because univariate analyses resulted in no evidence of a difference in the number of these gulls between the nesting and unused areas at alpha = 0.25. We examined the percent of transects that were predicted correctly by the model island-wide and within the nesting and unused areas. Because the model was unstable, we evaluated the model by running it with a new random subset of the data 100 times as we did for the South Monomoy Island model. We constructed an additional reference area model based on a 100-m boundary from nests defining the nesting area as we did for the South Monomoy Island model.

We constructed graphs of all 4 models showing the probability that plovers would nest in an area given different levels of each regressor. We used the minimum, median, and maximum values in the data for each regressor to represent the most favorable, the median, and the most unfavorable conditions for Piping Plover nesting habitat. We held 2 of the 3 variables constant at the minimum, median, or maximum values and used a range of values for the 3<sup>rd</sup> variable to examine the influence of the 3<sup>rd</sup> variable on the probability plovers would nest in an area.

#### **Disturbance to Incubating Piping Plovers**

To determine if disturbance by large gulls or other sources differed among the management areas, we conducted 5-minute time-budget behavioral observations on incubating Piping Plovers following the same methods used to examine prenesting Piping Plover behavior. We randomly selected incubating Piping Plovers within each management area that were observable with a spotting scope. We considered incubating plovers to be disturbed if they stood up or left the nest at any time unless the plover was relieved of incubating by its mate. We continued observations of the plover even if the bird left the nest. We calculated the percent time

incubating plovers were disturbed by various sources, using the nest as the sampling unit, and compared disturbance to incubating plovers among the management areas using MRPP.

#### **Piping Plover Nest Success**

We considered a nest successful if at least one egg hatched. We calculated the number of nests that were successful/nest attempt (nest success), the number of eggs laid/nest attempt, the number of eggs hatched/number of eggs laid (hatching success), and the number of eggs hatched/pair within each management area. We calculated the daily and interval survival rate of nests (the probability that a nest will survive a day and the probability that a nest initiated will survive to hatching, Mayfield 1975, Johnson 1979, Heisey and Fuller 1985). We calculated and the percentage of nests lost due to various causes for both exclosed and unexclosed nests in each management area and for the entire island.

If a nest or eggs were missing or destroyed, we searched the nest scrape and surrounding area for evidence to determine the cause of loss. We recorded the distance to the nearest potential predator trail. We considered a nest to be lost due to predation only if identifiable, fresh predator tracks were seen at the nest. We considered a nest lost due to avian predators in this category most likely did not include large gulls, as nests known to be depredated by large gulls were not found with eggshells remains with bill punctures. We considered a nest abandoned if eggs were intact and no adults were seen incubating or defending a territory for at least two days, eggs were buried in sand, and/or Piping Plover tracks were not seen around the nest site for multiple days. Using counts of gulls (and other species, Appendix B) within 100 m of active nests, we tested for differences in gull abundance within 100 m of successful and unsuccessful nests using MRPP.

#### **PIPING PLOVER BROODS**

We attempted to locate each brood daily after hatch for  $\geq 25$  days to estimate survival and to determine habitat use and foraging behavior in the presence of gulls. If a brood or chicks were

missing, we searched all potential brood-rearing habitats within the plover areas for up to one hour per day, taking care not to disturb other broods. If we did not find them again during the pre-fledging period, we presumed they were dead. Broods were considered successful if at least one chick fledged (reached 25 days old or was seen in sustained flight). Even though adults and chicks were not individually marked, in most cases broods separated themselves well enough in time and space as to allow us to keep track of individual broods. We did not search for broods in rain and/or wind > 40 kph.

*Instantaneous Observations*--We recorded the temperature (°C), cloud cover (%), visibility (0-100 m, 100 m-1 km, 1-3 km, rain, clear), wind direction (N, S, E, W, NE, NW, SE, SW), wind speed (kph using a Kestrel 1000 wind meter), and the time of the last high tide at Monomoy Point when we observed a brood. We recorded the brood's age (days), the number of chicks within the brood seen, the number of adults seen with the brood, and habitat (Table 2), behavior (Table 3), and source of disturbance (if any) to the brood. We used Garmin 12 handheld GPS units to obtain latitude and longitude of the brood's general location and the approximate distance between the brood and it's nest site location. Nest site latitude and longitude coordinates were stored in the memory of the GPS units.

### Large Gulls near Piping Plover Broods

We recorded the number of Great Black-backed, Herring, and immature gulls of both species (and the number of other species, Appendix B) within 100 m of each brood at the time we first observed the brood each day. Gulls and other species within 100 m in flight were included in the counts. We attempted to randomize the time of day we observed broods by altering our survey route each day. We conducted counts from where we were when we first observed the brood, and estimated the distance between the observer and the brood. If we could not see all area within 100 m of the brood, we maintained our minimum distance from the brood and viewed the remainder of the area. We used MRPP to examine differences in the mean number of gulls within 100 m of broods among the management areas. We also recorded the number of Great Black-backed, Herring, and immature gulls within 100 m of random points

during the brood-rearing period (5 June to the date the last chick fledged). We compared the number of gulls within 100 m of random points during the brood-rearing period to the number of gulls within 100 m of broods by management area using MRPP.

#### Piping Plover Brood Behavior, Habitat Use, and Foraging Rates

We recorded behavior and habitat use of broods during 5-minute time-budget observations. We attempted to conduct 5-minute observations on all broods, every day, until fledging. For each observation we randomly chose a chick as the focal chick to represent the brood. We recorded the brood number, date, and time of the observation using an audiocassette recorder. We recorded all habitats, behaviors, and foraging attempts of the focal chick during the timed 5-minute period, following methods used to record behavior of prenesting and incubating plovers. If we lost sight of the focal chick but the habitat was known, it was recorded as "out-ofsight" until we relocated the focal chick or classified another chick within the same brood as the new focal chick.

*Behavior and Disturbance*--Behavior categories included foraging, disturbed, resting, alert, moving, and brooding (Table 3). We separated broods into age groups of 0-2 days, 3-10 days, 11-25 days, 3-25 days and 0-25 days following Elias-Gerken (1994), and compared behavior among the age groups using MRPP. We then compared behavior among the management areas by age group using MRPP. We also compared disturbance by large gulls and other species among the management areas using MRPP.

*Habitat Use--*We included ocean- and sound-side intertidal zone, fresh wrack, backshore, old wrack, and open vegetation, tidal pond intertidal zone, and seal carcass as potential habitats used by plover broods (Table 2). We included "seal carcass" as a foraging habitat because some broods were seen foraging in and around maggot and fly infested carcasses. Since not all broods had access to all habitats, we categorized broods into 5 groups based on access to certain habitats to compare habitat use within each access group. We considered a brood to have access to habitats if there were no physical barriers such as scarps or dense vegetation blocking access, and the habitats were within the brood's range determined by GPS locations of each brood. We used

(1) access to ocean-side habitats, (2) access to ocean- and sound-side habitats, (3) access to ocean-side habitats and a seal carcass, (4) access to sound-side and tidal pond habitats, and (5) access to sound-side and tidal pond habitats and a seal carcass as access groups. We first examined habitat use among the habitats using the ranks of the mean percent use of habitats for each brood (n) to conduct a nonparametric equivalent to a one-way analysis of variance (ANOVA). We proceeded with pairwise comparisons of use in each habitat (still using the ranked means of percent use for each brood for each habitat) using Fisher's Least Significant Difference tests. We also examined habitat preference within each access group, based on use-availability analysis following Aebischer et al. (1993) for broods of age 0-25 days and age 3-25 days old. For this procedure, we used a SAS program written in 1997 by Peter Ott and Fred Hovey (http://nhsbig.inhs.uiuc.edu/wes/habitat.html).

*Foraging Rates*—We calculated foraging rates as attempts/min as we did for prenesting plovers. We compared foraging rates by age group among the habitats. We also compared foraging rates by habitat among the management areas for broods of all ages. All foraging rate data were analyzed using MRPP. We examined foraging rates of broods of age 3-10 days from this study and from other studies.

# **Piping Plover Brood Success**

We compared the number of large gulls within 100 m of successful broods to the number of gulls within 100 m of unsuccessful broods using MRPP. We calculated daily survival of chicks using methods described by Flint et al. (1995). We compared survival among the years and among the management areas by year using Z-tests when comparing 2 daily survival rates, and a generalized chi-square statistic that addresses the null hypothesis of homogeneity (Sauer and Williams 1989) when comparing >2 daily survival rates. We calculated overall productivity (chicks fledged/pair) for the entire island and by management area.

# RESULTS

We claim differences when p-values for tests were <0.05. When there were multiple comparisons in one statistical test (e.g., tests for differences among the 3 management areas), and the multi-sample test was significant, we followed with pair-wise tests when appropriate. Tables and figures show means and standard errors, even though most statistical tests were nonparametric.

# PRENESTING PIPING PLOVERS

### **Distribution and Abundance of Prenesting Piping Plovers**

We began searching for Piping Plovers on South Monomoy Island on 14 March and 9 March in 1999 and 2000, respectively. We did not observe plovers until 25 March in 1999 and 16 March in 2000. During the prenesting period of 1999, we observed 64 individuals within 22 groups of 1 or more plovers in the gull-removal area, and 197 individuals within 81 groups in the reference area. Group size ranged from 1-7 plovers in the gull-removal area ( $\bar{x} = 2.1$ , SE = 0.39), and from 1-9 plovers in the reference area ( $\bar{x} = 1.7$ , SE = 0.13). During the prenesting period of 2000, we observed 168 individuals within 78 groups of 1 or more plovers in the gullremoval area, and 402 individuals within 176 groups in the reference area. Group size ranged from 1-7 plovers in the gull-removal area ( $\bar{x} = 2.0$ , SE = 0.15), and from 1-12 plovers in the reference area ( $\bar{x} = 2.1$ , SE = 0.10). We found no difference in group size between the gullremoval and reference areas or between the years. We did not observe plovers in the buffer area during the prenesting period in either year. The mean estimated distance between the observer and observed Piping Plovers during instantaneous observations was 61 m (n = 750, SE = 1.69).

#### Distribution and Abundance of Large Gulls during the Prenesting Period

Random 100-m radius plots were centered on 215 random locations from 27 March 1999 to 1 May 1999, and 234 random locations from 9 March 2000 to 1 May 2000. In 1999-2000, we

observed nearly 4 times as many large gulls in reference area plots than in gull-removal plots (Table 4, Figures 3 and 4). The difference was greatest in 2000, where there were nearly 8 times as many gulls in reference area plots than in gull-removal plots. In 1999, the difference was only 3-fold, and there was no difference in Herring Gull numbers among the management areas (Table 4).

In all years combined, gull presence near random points was lower in the gull-removal area than in the reference area. However, 67% of the plots in the gull-removal area had at least one gull present (Table 5). Great Black-backed Gull presence near random points was lower in the gull-removal area than the reference area throughout the study, whereas Herring Gull presence was lower in the gull-removal area than in the reference area only in 2000 and when both years were combined (Table 5).

### Large Gull Abundance near Prenesting Piping Plovers

We counted fewer adult Great Black-backed Gulls near prenesting Piping Plovers in the gull-removal area than near plovers in the reference area. However, we found no difference in the numbers of total large gulls, Herring Gulls and immature gulls near plovers between the management areas in both years (Table 6). In 1999-2000 we did not observe  $\geq 1$  Great Black-backed Gulls near plovers as frequently in the gull-removal area as in the reference area. However, in both years we observed  $\geq 1$  Herring Gulls or  $\geq 1$  immature gulls near plovers in the gull-removal area as frequently as in the reference area (Table 7).

Overall, we observed fewer Great Black-backed Gulls and Herring Gulls near plovers than near random points in the reference area. We observed fewer Great Black-backed Gulls near plovers than near random points in the gull-removal area. However, in 2000 in the gullremoval area, there were more Herring Gulls near plovers than near random points (Table 8). We observed the presence of  $\geq 1$  large gulls near prenesting plovers less frequently than expected if gull presence between plovers and random points were equal (Table 9).

#### Prenesting Piping Plover Habitat Availability and Habitat Use

#### Habitat Availability

We found more ocean-side fresh wrack, ocean-side old wrack, and sound-side fresh wrack habitats available to plovers in 2000 than in 1999. Island-wide, fresh wrack increased 50% from 1999 to 2000, whereas ocean-side old wrack increased more than 4 times from 1999 to 2000. We found no difference in the widths of all other habitats between the years (Table 10).

We found more ocean-side intertidal zone and ocean-side backshore habitat available to plovers in the gull-removal area than in the reference area. We found more sound-side fresh wrack, sound-side backshore, sound-side old wrack, sound-side open vegetation and tidal pond intertidal zone habitat available in the reference area than in the gull-removal area. The only sound-side habitat that was more abundant in the gull-removal area than in the reference area was the intertidal zone (Table 11, Figure 5).

#### Habitat Use

We observed prenesting Piping Plovers using habitats in different proportions between 1999 and 2000 (Table 12). Foraging plovers and plovers in all behaviors were observed in the tidal pond intertidal zone habitat more often in 1999 than in 2000 (Table 12). We also observed prenesting Piping Plovers using habitats in different proportions among the management areas (Table 13). Foraging plovers in the gull removal area were observed more often in the sound-side intertidal zone habitat (and used it almost exclusively, in 95% of observations) compared to plovers in the reference area. Foraging plovers in the reference area were observed most often in the tidal pond intertidal zone habitat. Seventy-eight percent of observations of foraging plovers in the reference area were in the tidal pond intertidal zone habitat. The tidal pond intertidal zone habitat covered less than half of 1% of the gull-removal area and was not used by plovers there (Tables 13 and 14, Figures 6a and 7). Of the nonforaging prenesting Piping Plovers, birds in the gull-removal area were observed more often in that habitat in the reference area and in the sound-side backshore habitat in the reference area than in that habitat in the gull removal area. (Table 13, Figure 6b).

Habitat Use vs. Habitat Availability

Overall, Piping Plovers did not use habitats in proportion to availability (Table 14). Foraging plovers in the gull-removal area avoided the wrack, backshore, and open vegetation and preferred the intertidal zone. More than 95% of foraging plovers in the gull-removal area were observed in the intertidal zone. Foraging plovers in the reference area avoided the intertidal zone, backshore and open vegetation, and preferred the tidal pond intertidal zone. Although the tidal pond intertidal zone was <7% of the total habitat available within the reference area, >78% of foraging plovers were observed in this habitat. Island wide, foraging plovers preferred the tidal pond intertidal zone and avoided all other habitats except the intertidal zone (Table 14). Nonforaging plovers in the gull-removal area avoided the intertidal zone and open vegetation and preferred the backshore. Nonforaging plovers in the reference area and island-wide preferred the backshore and tidal pond intertidal zone habitats and avoided all other habitats (Table 14).

#### **Prenesting Piping Plover Behavior and Disturbance**

In all years, during the 5-minute behavioral observations we observed prenesting Piping Plovers spending the majority of their time foraging, resting, or alert (Table 15, Figure 8). In 1999 and 2000, plovers spent similar amounts of time foraging, disturbed, resting, moving, and courting between the gull-removal and reference areas. When both years were combined, plovers spent similar amounts of time alert between the management areas (Figure 8). However, in 1999, plovers were alert more often in the reference area than in the gull-removal area (Table 15).

Prenesting Piping Plovers were never disturbed by Great Black-backed, Herring, or immature large gulls during 5-min behavioral observations. The percent time Piping Plovers were disturbed by all birds was not different between the gull-removal area and the reference area during both years (Table 16).

#### **Prenesting Piping Plover Foraging Rates in Different Habitats**

Foraging rates in each habitat were not different between the gull-removal area and the reference area (Tables 17 and 18). In the gull-removal area, foraging rates were greater in the ocean- and sound-side intertidal zone habitats than on the ocean-side backshore. In the reference area, foraging rates were greater in the ocean-side, sound-side, and tidal pond intertidal zone habitats, and in the sound-side fresh wrack habitats than in the ocean-side backshore and old wrack, and sound-side backshore habitats (Table 17). However, when calculated from observations of foraging plovers only, foraging rates were not different among the habitats, except during the 2000 season in the reference area. During this season, foraging rates were greater in the ocean-side intertidal zone (but n = 3,  $\bar{x} = 27.7$ , SE = 7.14) than in most other habitats. Foraging rates in the tidal pond intertidal zone habitat were also high, and more birds were observed foraging in this habitat (n = 9,  $\bar{x} = 19.1$ , p = 0.05; Table 18).

#### **NESTING PIPING PLOVERS**

#### **Piping Plover Nesting Population**

We found 27, 26, and 28 Piping Plover breeding pairs in 1998, 1999, and 2000, respectively (Table 1). In 1998, we recorded 12 nest attempts by 9 breeding pairs in the gull-removal area, 2 nest attempts by 1 breeding pair in the buffer area, and 24 nest attempts by 17 breeding pairs in the reference area. In 1999, we found 10 nest attempts by 9 breeding pairs in the gull-removal area, 1 nest attempt by 1 breeding pair in the buffer area, and 20 nest attempts by 16 breeding pairs in the reference area. In 2000, we found 11 nest attempts by 7 breeding pairs in the gull-removal area and 28 nest attempts by 21 breeding pairs in the reference area (Table 1, Figure 9). We did not find nests in the buffer area in 2000, even though pair(s) were observed in the area for a portion of the nesting period. The number of known breeding pairs decreased in the gull-removal area and increased in the reference area from 1998 to 2000 (Table 1, Figure 9).

#### Large Gulls near Piping Plover Nests

We counted more large gulls within 100 m of Piping Plover nests in the reference area than within 100 m of nests in the gull-removal area during the 1999 and 2000 nesting periods. Each year, adult Great Black-backed Gulls were more abundant near nests in the reference area than near nests in the gull-removal area. In 1999, Herring Gulls and immature gulls were more abundant near Piping Plover nests in the reference area than near Piping Plover nests in the gullremoval area. However, there was no difference in Herring Gulls and immature gull abundance near nests between the management areas in 1998 and 2000 (Table 19).

In both years, we counted more large gulls within 100 m of random points than within 100 m of nests. On average, we counted approximately 24 gulls near random points vs. 5.5 gulls near plover nests in the reference area. In the gull-removal area, the mean number of Great Black-backed Gulls near random points and plover nests was <2 gulls (Table 20). Island wide, Herring Gulls were more abundant near random points than near plover nests, and an average of fewer than 5 gulls were counted near random points (Table 20).

#### **Piping Plover Nesting Areas vs. Unused Areas**

Piping Plover nests were located in 4 general areas on South Monomoy Island (Figure 10). Most pairs in the gull-removal area nested on the ocean side along the northeast beach; a few nests were found on the sound side towards the end of the nesting period. Most pairs in the reference area nested on the sound side adjacent to the tidal pond, or on the ocean side along southeast beach. A few pairs used the overwash area, the narrow point in the middle of the island where waves reached from ocean to sound side during severe storms (Figure 10).

### Large Gulls

Island-wide, relative adult large gull abundance was lower in the Piping Plover nesting areas than in the unused areas. We found no evidence of a difference between the number of immature gulls in the nesting areas vs. unused areas. In the gull-removal area, we found no difference between the number of large gulls in nesting areas vs. the unused areas (Table 21, Figure 11). Similarly, island-wide, unused areas were more likely than nesting areas to have  $\geq 1$ 

gull present. This was not true for immature gulls island-wide, nor for total large gulls in the gull-removal area (Table 22).

#### Available Habitat

Over the entire island, the width of the ocean- and sound-side backshore and open vegetation habitats, as well as the width of the tidal pond intertidal zone habitat, was greater in the nesting areas than in the unused areas. The width of the sound-side fresh wrack was greater in the unused areas than the nesting areas (Table 23, Figure 12). The gull-removal area beach was almost entirely Piping Plover nesting area (62 transects vs. 2 transects in the unused area), rendering comparisons between nesting areas and unused areas meaningless.

#### Available Prey

We sampled arthropod abundance from 16 May to 8 August, 27 March to 16 August, and 28 April to 5 August in 1998, 1999, and 2000, respectively (all years were pooled). Fresh wrack and sound-side intertidal zone habitats were richest in total arthropod abundance. Ocean- and sound-side backshore and open vegetation and ocean intertidal zone habitats were poorest in arthropod abundance (Table 24). Dipterans were most abundant in fresh and old wrack habitats, and coleopterans were most abundant in fresh wrack and all sound-side habitats other than open vegetation. Amphipods were more abundant in the intertidal zone and fresh wrack habitats, and other species were more abundant in the open vegetation (Table 25).

We found no difference in available prey between the nesting and unused areas in the gull-removal area (Table 26). However, sample size was limited for the unused area, as most of the gull-removal area was used for nesting. Contrary to what we would expect if Piping Plovers chose to nest where prey was more abundant, we found that in some habitats, arthropod abundance was greater in the unused area than in the nesting area. Island-wide, we counted more arthropods in the sound-side old wrack in the unused areas than in the nesting areas (Table 26).

# Nesting Area Models

Univariate analyses of all potential variables resulted in the selection of 7 candidates for construction of the South Monomoy Island logistic regression models (Table 27). We included distance (m) from the transect to moist substrate habitats (Figure 13), access to sound-side

habitats (if the transect was adjacent to the sound side), and widths (m) of the intertidal zone, fresh wrack, backshore, old wrack, and open vegetation as candidate variables. We were unable to use width of the tidal pond intertidal zone as a candidate, even though univariate analysis suggested inclusion, because all of the transects with > 0 m of this habitat were classified as nesting area. This resulted in no overlap in the distribution between the two outcome groups (complete separation), so a maximum likelihood estimate could not be calculated (Hosmer and Lemeshow 1989: 129-131).

In validating the data, 100 runs of the stepwise logistic regression procedure using a new random selection of 50% of the data each time resulted in 6 of the 7 variables entering the model at least once. Seventy percent of the runs resulted in including the width of the backshore as a significant regressor. Fifty-one percent of the runs resulted in including distance to moist substrate habitat, and 34% of runs resulted in including width of the open vegetation.

South Monomoy Island Models--Width of the backshore (positive coefficient), distance to moist substrate (negative coefficient), and width of the open vegetation (positive coefficient) were significant explanatory variables in the island models when we used both the 500 m- and 100-m boundary to define the nesting area (Table 28). These variables also appeared most frequently in the 100 runs of random subsets of data, boosting our confidence in validity. Percent of all transects predicted correctly was greater when we used the 100-m boundary to define the nesting area than when we used the 500-m boundary to define the nesting area (85.8% vs. 66.7%, respectively; Table 29; See Appendix C for further analyses).

*Reference Area Models*--Width of the backshore (positive coefficient), number of Great Black-backed Gulls (negative coefficient), and width of the open vegetation (positive coefficient) were significant explanatory variables in the reference area models when we used both the 500 m- and 100 m-boundary to define the nesting area (Table 28). Like the South Monomoy Island models, the percent of all transects predicted correctly was greater when we used the 100-m boundary to define the nesting area than when we used the 500-m boundary to define the nesting area (86.6% vs. 76.2%, respectively; Table 29; See Appendix C for further analyses). *Regressor Influence in the Models*-- South Monomoy Island models showed that if 2 of the 3 significant regressors (vegetation width, backshore width, or distance to moist substrate) were in the most favorable condition for plovers to nest, then there would be a high probability of nesting within 500 m or 100 m, regardless of the value of the  $3^{rd}$  regressor (Figures 14 and 15, top line). Reference area models behaved similarly, except when the number of Great Blackbacked Gulls was >175 gulls for the 500 m model or was >130 gulls for the 100 m model. If Great Black-backed Gulls were this abundant, the chance that a plover would nest there would decrease to below 50%, even if the width of the open vegetation and backshore habitats were most favorable (Figures 16 and 17).

#### **Disturbance to Incubating Piping Plovers**

On average, individual incubating plover pairs were disturbed <1.5 % of the 5-min observation time. We found no difference among the management areas in percent time incubating plovers were disturbed by large gulls (Figure 18). Incubating plovers were disturbed by other plovers more often in the reference area than in the gull-removal area, and were disturbed more often by sources other than large gulls in the gull-removal area than in the reference area (Table 30, Figure 18). Other sources of disturbance included a Willet (*Catoptrophorus semipalmatus*; 40 seconds during one observation), a pedestrian (10 seconds during one observation), and Northern Harriers (*Circus cyaneus*; 20 seconds during 2 observations on different pairs).

#### **Piping Plover Nest Success**

From 1998 to 2000, 15 of 33 nests were successful (45.5%) in the gull-removal area, 1 of 3 nests was successful (33.3%) in the buffer area, and 40 of 72 nests were successful (55.6%) in the reference area. Eggs hatched/eggs laid in the gull-removal, buffer, and reference areas were 46.4%, 36.4%, and 52.3%, respectively (Table 1).

Daily and interval survival estimates (the probability that a nest will survive a day and the probability that a nest initiated will survive to hatching) for South Monomoy Island were greater in 1999 and 2000 than in 1998 (Table 31). In all years pooled, daily and interval survival

estimates were greater for nests protected by predator exclosures than for unprotected nests. However, in 1999 we found no difference in daily and interval survival estimates between exclosed and unexclosed nests (Table 32). Overall, both exclosed and unexclosed nests had greater daily and interval survival estimates in the reference area than in the gull-removal area (Table 33).

#### Causes of Nest Loss

Between 1998 and 2000, 7 of the 33 known Piping Plover nests in the gull-removal area (21.2%) were depredated, and 7 of the 72 known nests in the reference area (9.7%) were depredated. All depredated nests and nests found missing with incomplete evidence to determine the cause of loss were not protected by predator exclosures (Table 34, Figure 19). Of the depredated unexclosed nests lost in the gull-removal area, 3 nests were lost to gulls, 1 to an American Oystercatcher, and 3 to unidentified avian predators (Table 35). Of the depredated unexclosed nests lost in the reference area, 1 nest was lost to a gull, 2 to coyotes, 1 to an American Oystercatcher, and 3 to unidentified avian predators (Table 35).

#### Gulls Near Successful vs. Unsuccessful Nests

We found no difference between the number of gulls near successful nests and the number of gulls near unsuccessful nests (Table 36, Figure 20). This was consistent in all management areas and during all years of the study, with the exception of the 1999 season in the gull-removal area, where we found more immature gulls near successful Piping Plover nests than near unsuccessful nests (Table 36).

# **PIPING PLOVER BROODS**

#### **Large Gulls near Piping Plover Broods**

In 1999 and 2000 combined, we counted fewer adult Great Black-backed Gulls near broods in the gull-removal area than near broods in the reference area, and more immature gulls near broods in the gull-removal area than near broods in the reference area (Table 37). In both 1999 and 2000, in the reference area only, we counted more adult Great Black-backed Gulls and

total large gulls near random points than near broods (Table 38). When both years were combined, we counted more adult Great Black-backed, Herring Gulls and immature gulls near random points than near broods in the reference area (Table 38).

#### **Piping Plover Brood Behavior and Habitat Use**

Overall, we observed broods 3-25 days old spending more time foraging than broods 0-2 days old (Table 39). Broods spent the most amount of time brooding when 0-2 days old, and the least amount of time brooding when 11-25 days old (Table 40). Island wide, broods 0-2 days old spent equal amounts of time foraging and being brooded (38% each, Table 40). Broods 3-10 days old spent most of their time foraging (72%). Broods 11-25 days old also spent most of their time foraging (68%), but spent a considerable amount of time alert and resting (15% and 9%, respectively; Table 40). We observed broods 3-10 days old in the reference area foraging more often than broods 3-10 days old in the gull-removal area, but there were no differences in percent time spent in all other behaviors between the gull-removal and reference areas (Table 41).

We found no differences among the management areas in percent time broods were disturbed (Table 41), nor did we find differences among the management areas in the percent time Great Black-backed Gulls, Herring Gulls, immature large gulls, or Laughing Gulls disturbed broods (Table 42). Common Terns disturbed Piping Plover broods more frequently in the gull-removal area than in the reference area in all years, but disturbance to broods by terns was minimal (<1%; Table 43).

*Habitat Use*--Broods 0-25 days old with access only to ocean-side habitats were observed most often in backshore (46%), open vegetation (24%), and old wrack (20%) habitats. Broods 0-25 days old with access only to ocean-side habitats and a seal carcass were also observed most often in the backshore habitat (54%), but were often observed at seal carcasses (16%). Broods of age 0-25 days with access only to the sound-side habitats and the tidal pond intertidal zone habitats were observed most often in the tidal pond intertidal zone (40%) and the sound side backshore (31%; Table 44). Habitat use by broods of age 3-25 days was similar to broods of age 0-25 days (Table 45).

Brood habitat preferences depended upon the habitat to which broods had access. Broods of all ages with access to ocean-side habitats only preferred the old wrack to all other habitats based on habitat ranking. Backshore and open vegetation habitats were preferred second and third, respectively. The intertidal zone was the least preferred habitat. Broods with access to both the ocean- and sound-side habitats preferred the sound-side old wrack to all other habitats. Sound-side intertidal zone and open vegetation habitats ranked second and third, respectively. Ocean-side backshore, intertidal zone and open vegetation were the least preferred habitats. Broods with access to ocean-side habitats and a seal carcass preferred the seal carcass to all other habitats, and like broods with access to only the ocean-side, they preferred the backshore and open vegetation habitats second and third, respectively. Broods with access to sound-side habitats and the tidal pond intertidal zone preferred the tidal pond intertidal zone to all other habitats. Sound-side backshore and fresh wrack habitats were ranked second and third, respectively, and the sound-side intertidal zone was the least preferred habitat. Broods with access to sound-side habitats, the tidal pond intertidal zone, and a seal carcass preferred the seal carcass to all other habitats. Sound-side old wrack and the tidal pond intertidal zone ranked second and third, respectively. Sound intertidal zone was the least preferred habitat (Tables 46 and 47).

### **Piping Plover Brood Foraging Rates**

Foraging rates were greatest in fresh wrack, tidal pond intertidal zone, and at seal carcasses (Table 48). There were no differences in foraging rates within each habitat between the gull-removal area and the reference area (Table 49).

#### **Piping Plover Brood Success**

We found no difference in numbers of Great Black-backed, Herring or Laughing Gulls near successful versus unsuccessful broods (Table 50). From 1998 to 2000, overall daily survival of chicks on South Monomoy Island was 96.3%. We found no difference in daily survival among the years (Table 51). Daily survival was greater in the reference area (98.4%) than in the gull-removal area (94.7%) in 1999 only (Table 52). We found no difference in daily survival among the habitat access groups (Table 53).

Causes of Piping Plover chick loss are difficult to determine because dead chicks are rarely found. We found one dead fledgling with a small puncture wound located right and caudal in 1998 and one dead 5-day-old chick with no apparent injuries in 1999. The 5-day-old chick was found just after a 3-day period of severe thunderstorms. Both carcasses were collected and sent by USFWS personnel to USGS Biological Resources Division National Wildlife Health Center in Madison, WI for necropsies. Necropsy reports are available in USFWS files.

# DISCUSSION

# DISTRIBUTION AND ABUNDANCE OF GULLS

We counted fewer large gulls in the gull-removal area than in the reference area throughout all stages of the Piping Plover breeding season and in all years of the study. No large gulls nested successfully in the gull-removal area.

Despite different methods used, gull surveys in 1990, 1995 and 1998 (USFWS census data 1995, USFWS 2000b) suggest that the Monomoy Herring Gull and Great Black-backed Gull populations were declining. Based on population models of Monomoy gulls that did not consider gull control, Cavanagh (1992) predicted that the Herring Gull population would decline and the Great Black-backed Gull population would increase. He found that landfills were a primary food source for Monomoy Herring Gulls, whereas Monomoy Great Black-backed Gulls used landfills only as a supplementary food source, mostly in the winter. He predicted that closing landfills on Cape Cod was likely to affect Herring Gulls more than Great Black-backed Gulls. He suggested that the reduced refuse available to Herring Gulls and the higher productivity, lower mortality, and earlier nesting of Great Black-backed Gulls on Monomoy. The cumulative effects of gull removal, harassment, and suppression of gull productivity in the gull-removal and buffer areas on South Monomoy Island may explain why Great Black-backed Gulls also declined through 1998, contradicting Cavanagh's predictions.

Although we counted fewer large gulls in the gull-removal area than in the reference area, large gulls continued to use the intertidal zone and backshore habitats of the gull-removal area for foraging and loafing. During the Piping Plover prenesting period, most of the gulls seen in the gull-removal area were adult Herring Gulls in the sound-side intertidal zone, where they foraged close to plovers and other shorebirds. Herring Gulls commonly foraged for soft-shell clams (*Mya arenaria*) left exposed by commercial shellfishermen, and are known to follow the retreating tide to capture worms in the flats (Pierotti and Good 1994). Drury and Nisbet (1972) found that New England Herring Gulls traveled up to 40 km to foraging sites. Cavanagh (1992)

found that Monomoy Herring Gulls traveled a mean distance of 26 km to landfills on the mainland of Cape Cod. It is likely that as landfills were capped and transfer stations were opened during the 1990s, the Monomoy sand flats in the gull-removal area became an increasingly important foraging area for Herring Gulls in the region.

The 1992-1998 management of Herring Gulls and Great Black-backed Gulls at Breezy Point, Gateway National Recreation Area, New York, was implemented to protect nesting species, specifically Piping Plovers. Management included gull harassment with pyrotechnics and destruction of eggs and nests. Adult gulls were not killed (USDA Animal Damage Control 1993, Olijnyk and Brown 1999). At first, the firing of pyrotechnics discouraged gulls from landing in the colony, but gulls became more persistent and more difficult to harass as their breeding season progressed (USDA Animal Damage Control 1993). Harassment had no effect on the number of loafing gulls within a breeding season, and there was no correlation between the number of rounds of pyrotechnics discharged and the number of gulls loafing on the colony site the following morning (Olijnyk and Brown 1999). Harassment was discontinued upon the arrival of terns each season; gulls continued to nest in the area (USDA Animal Damage Control 1993). Egg puncturing significantly reduced gull reproduction, and after 3 years of gull management at Breezy Point, the number of gulls began to decrease. In conclusion, harassment had little or no effect on the nesting population of gulls at Breezy Point, but nest and egg destruction may have contributed to the decline in nesting and loafing gulls (Olijnyk and Brown 1999).

### IMPACT OF GULL REMOVAL ON PIPING PLOVERS

Despite the difference in gull abundance between the gull-removal and the reference management areas, Piping Plovers on South Monomoy Island used both the gull-removal and reference areas throughout the study.

Although Piping Plover nest loss to gull predation has been observed at other beaches along the Atlantic Coast, loss to gulls has generally been low. For example, MacIvor (1990) found only 8 of 168 nests lost to gull predation from 1985-1988 on outer Cape Cod, Massachusetts beaches (including South Monomoy Island). Loegering (1992) found 1 of 81 nests lost to gull predation from 1988-1990 at Assateague National Seashore, Maryland. Elias-

Gerken (1994) found 1 of 237 nests lost to gull predation from 1993-1994 on Long Island, New York beaches. Jones (1997) found 1 of 81 nests lost to gull predation from 1994-1995 at Cape Cod National Seashore, Massachusetts. Plover nest loss to large gull predation on South Monomoy Island was minimal over the entire island compared to other sources of nest failure; only 1 nest was found lost to gull depredation in the reference area vs. 3 nests in the gull-removal area. Nests lost to unidentified avian predators were characterized by small puncture holes in remaining eggshells, rendering it unlikely that the avian predator was a large gull. There was no evidence that the reduction of nesting large gulls in the gull-removal area resulted in greater Piping Plover nest success compared to the reference area. We found no difference in the number of large gulls near successful Piping Plover nests vs. unsuccessful nests. Survival rates of both exclosed and unexclosed plover nests were greater in the reference area than in the gullremoval area (Table 33).

Although some disturbance to plovers from large gulls was observed in both the gullremoval area and the reference area, there was no evidence that prenesting plovers, incubating plovers, or plover broods were disturbed by large gulls more frequently in the reference area than in the gull-removal area. Broods in the reference area were disturbed by Great Black-backed Gulls 0.13%, Herring Gulls 0.11%, and immature gulls 0.01% of 5-minute behavioral observations. On Long Island, NY, Elias-Gerken (1994) and Houghton (2000) found that gulls disturbed broods for up to 1% of 5-minute observations. Therefore, disturbance to broods by gulls in the reference area of South Monomoy was similar to disturbance at other plover sites that lacked great abundance of nesting gulls.

We found no evidence that the reduction of large gulls in the gull-removal area resulted in greater Piping Plover chick survival compared to the reference area. Daily survival rates of plover chicks in the reference area were similar to survival rates in the gull removal area except in 1999, when daily survival was greater in the reference area than in the gull-removal area (Table 53). We found no difference in the number of large gulls near successful Piping Plover broods vs. unsuccessful broods. These results bolster the conclusion that gull-removal program on South Monomoy Island did not improve Piping Plover reproductive success. Likewise, despite gull predation upon a plover chick in 1995 (Hake 1995, Lauro and Tanacredi 2002) and a decrease in plover pairs in 1996 and 1997 (Gilmore 2000), we have seen no evidence that the

Piping Plover population at Breezy Point, New York, was depressed or prevented from growing by large gulls.

#### SPATIAL SEPARATION BETWEEN PIPING PLOVERS AND LARGE GULLS

Large gulls and Piping Plovers were spatially separated on South Monomoy Island. However, this was not necessarily because plovers avoided gulls, or because gulls avoided plovers. Aggression between gulls and plovers was never observed during the prenesting periods, and was minimal throughout the study, confirming that plovers were not forced out of preferred areas by gulls. Areas with low gull abundance are optimal Piping Plover nesting habitat, not because of fewer gulls, but because of the physical characteristics there. We argue below that the most reasonable explanation for the spatial separation of gulls and plovers is that they select different habitats.

### **Piping Plover Habitat**

#### **Foraging Habitat**

*Prenesting Piping Plovers*--Available prey often is greater in wrack and moist substrate habitats than in other habitats (Loegering and Fraser 1995, Elias et al. 2000). Moist substrate foraging habitat was accessible and abundant in both the gull-removal area and the reference area on South Monomoy Island for prenesting Piping Plovers. Foraging birds were found concentrated in and around moist substrate habitats, and preferred them to all other habitats. In the gull-removal area, prenesting plovers foraged on sand flats on the sound side, which extended up to 2 km from the upland at low tide. In the reference area, prenesting plovers foraged in the tidal pond intertidal zone, a large area that was periodically flooded during our study. Moist substrate habitats may have been preferred during the prenesting period because prey may have been more consistently available, especially early in the Piping Plover breeding season when most insect species had not yet emerged, and birds relied on polychaetes and other infauna for food.

Piping Plover Broods--In previous studies, Piping Plover broods that foraged on bayside sand flats or at ephemeral pools often had greater survival rates than broods that were limited to ocean-side habitats (Patterson et al. 1991, Loegering and Fraser 1995, Goldin et al. 1998 and Elias et al. 2000). Jones (1997) did not find a significant difference in chick survival between chicks with and without access to the bayside, but he stated that broods limited to the ocean-front beaches at Cape Cod National Seashore might have had access to ample prey-rich wrack habitat as a suitable alternative. Brood foraging rates observed in moist substrate habitat on South Monomoy Island were high, and broods preferred these habitats to others when it was available to them. In the reference area of South Monomoy Island, extensive nesting habitat (wide backshore and open vegetation, see below) was adjacent to moist substrate (tidal pond intertidal zone habitat), giving broods access to these habitats. About 75% of broods in the reference area had access to the tidal pond intertidal zone (Appendix A). For broods 3-10 days old, foraging rates in the tidal pond intertidal zone on South Monomoy were similar to foraging rates observed in ephemeral pools on Long Island, New York, by Elias-Gerken (1994) in 1992-1993 and Houghton (unpublished data) in 1993-2000. However, foraging rates in the sound-side backshore habitat appeared lower than foraging rates in the bayside backshore habitat on Long Island (Table 54).

Even though moist substrate habitat was available on the sound side of the gull-removal area, most plover broods there did not have access to the sound side because dense vegetation and/or other territorial plovers blocked movement from the nesting areas to the sand flat. Nests on the sound side adjacent to the gull-removal sand flat often were flooded since the backshore and open vegetation were narrow (< 6 m combined) causing plovers to nest close to the water.

Foraging rates were lowest in ocean backshore and open vegetation habitats, where broods with ocean access only were found most often. Wrack, a preferred foraging habitat on ocean-side beaches (Goldin 1993, Hoopes 1993, Elias et al. 2000), was sparse on the Atlantic Ocean side of South Monomoy Island. Elias et al. (2000) found that broods that did not have access to ephemeral pools or bayside foraging habitats preferred wrack and open vegetation habitats to all other habitats available. She found that a 43% decrease in arthropods in open vegetation coincided with a 55% decrease in the amount of time broods spent foraging in that habitat. Arthropod abundance in open vegetation was greater on Long Island, New York, than

on South Monomoy Island. Ocean-side open vegetation on South Monomoy Island may not be optimal foraging habitat for broods when arthropod abundance is low.

When a seal carcass infested with maggots and flies was within a brood's foraging territory, the carcass provided a valuable food source to broods. Adults aggressively defended carcasses from other plover broods. Broods spent >17% of their time foraging at the carcasses, and foraging rates were high and similar to rates observed in moist substrate habitats.

Prey abundance on South Monomoy Island, as characterized by the number of insects trapped on Tanglefoot-coated paint stirrers, was not predictive of Piping Plover nesting areas. Prey abundance was greatest in some areas not used for nesting, specifically on the sound-side buffer area and the northern section of the sound-side reference area. These areas had narrow backshore and narrow open vegetation habitats and dense, piled wrack. Most likely, plovers did not nest in these areas due to the lack of suitable nest sites (see below). The width of backshore and open vegetation was < 8 m on average in these areas.

### Nesting Habitat Models

Logistic regression models showed that backshore width, open vegetation width, and distance to moist substrate habitat were most predictive of Piping Plover nesting areas. However, all three characteristics did not have to be optimal for an area to be classified as suitable nesting habitat. South Monomoy Piping Plovers were predicted to nest in areas with wide backshore habitat that were close to moist substrate, regardless of the width of the open vegetation. Likewise, plovers were predicted to nest in areas with wide-open vegetation habitat that were close to moist substrate, regardless of the backshore. Apparently, the attraction to moist substrates was strong enough to overcome marginal values of backshore and vegetation widths, and Piping Plovers could find suitable nest sites in either open vegetation or backshore habitat.

Logistic regression models predicted that Piping Plovers on South Monomoy Island nest in areas where open vegetation and backshore habitats were wide, regardless of the distance to moist substrate (Figures 14c and 15c). Piping Plover nesting habitat along the Atlantic Coast usually coincides with wide backshore and/or open vegetation habitats. Elias-Gerken (1994) found that on Long Island, New York beaches, the mean width of open vegetation habitat in 1km beach segments used by plovers was greater than the mean width of open vegetation habitat

in 1-km beach segments not used by plovers. Where plovers did not have access to moist substrate, the width of the open vegetation was important in predicting plover use (Elias-Gerken 1994). Jones (1997) found that on other Cape Cod, Massachusetts beaches, widths of the open vegetation and backshore habitats were significantly greater at nest sites than at random points. In these areas, the expanse of the nesting area (wide stretches of open vegetation and backshore habitats) may provide ample prey when nesting territories are large enough.

If widths of open vegetation and backshore habitats were at median values, our logistic regression models predicted that the number of Great Black-backed Gulls would only affect the probability of plovers nesting in the area at extreme gull abundance. When widths of the open vegetation and backshore habitats were optimal for nesting, the probability that plovers would nest in the area would decrease rapidly as the number of Great Black-backed Gulls increased beyond 80 gulls (Figures 16c and 17c). However, the number of Great Black-backed Gulls within 100 m of random points on South Monomoy Island beaches rarely exceeded 80 gulls. In fact, 96.5% (551/571) of the random points on South Monomoy Island had fewer than 80 gulls within 100 m.

Gulls often fled as observers approached plovers, nests, broods, or random points, resulting in a lower count than the number of gulls that might have been present before the observer arrived. We assumed that equal proportions of gulls would flee among the management areas if we kept our distance to the points at the time of counting constant, so that indices of gull abundance would not be biased. We assumed that USFWS gull harassment activities in the gull-removal area did not affect the probability of a gull being counted disproportionately to the reference area.

# **Gull Habitat**

### Herring Gulls

Greater abundance of Herring Gulls were found in sound-side habitats than in ocean side habitats (Figure 3). We observed Herring Gulls foraging for crabs along the sound side of the reference area. Even though the sound side of the reference area lacks an extensive sand flat, the shallow intertidal zone may be better-quality foraging habitat for Herring Gulls than the oceanside intertidal zone, where the slope is steep and wave energy great. Pierotti (1988) found that

Herring Gulls do not dive below 1-2m, so a shallow intertidal zone like the sound side of the island may provide access to prey. Herring Gulls on South Monomoy also nested on the tops of scarps where the backshore habitat was eroded, and there was very little open vegetation. On South Monomoy Island, this Herring Gull habitat is located outside of areas where our models predicted plover nesting.

Tinbergen (1960) noted that Herring Gulls usually nest near some plants or bushes. Pierotti (1982) found that Herring Gull populations with the highest breeding success often occured in vegetated areas with adequate cover for young. On South Monomoy Island, woody vegetation is abundant close to the sound side of the reference area, but not adjacent to the tidal pond intertidal zone where plovers were nesting. If Herring Gulls prefer to nest in vegetation, this also may contribute to the greater abundance of Herring Gulls on the sound side than on the ocean side. Again, on South Monomoy Island, this Herring Gull habitat is located outside of areas where our models predicted plover nesting.

#### Great Black-backed Gulls

Great Black-backed Gulls prefer more open habitat for nesting than Herring Gulls (Good 1998). On South Monomoy Island, Great Black-backed Gulls often nested on the tops of dunes or ridges and on sandy or flat lightly vegetated inland areas. These areas were more abundant on the ocean side of the reference area. Where the island was narrow (<300 m between the sound and ocean sides), Great Black Backed Gulls were observed loafing on both sides of the island and nesting on the high point in the middle (Figure 3, USFWS 2000b). Bent (1921) noted that Great Black-backed Gull nests were located on the higher portions of the beaches in Newfoundland. Bent (1921) quoted Howard H. Cleaves' notes saying, "All (nests) seemed to have been situated with a view to afford (the gulls) a clear outlook...." We observed large groups of Great Black-backed Gulls loafing in areas where the slope of the beach was steep or the beach was backed by a scarp. Steep beaches may also provide gulls better visibility. These large groups of loafing Great Black-backed Gulls influenced our logistic regression models in that the gulls concentrated in areas where the beach slope was steep due to high-energy waves from the Atlantic Ocean. These areas were not ideal Piping Plover nesting areas. Where backshore/open vegetation is wide, it is also flat. Gull visibility would thus have been reduced in these areas that were, on the other hand, ideal for nesting Piping Plovers.

Immature gull abundance was greater during the Piping Plover brood rearing period compared to the prenesting and nesting periods, especially in 2000 when gull fledglings were loafing in large groups near plover broods in the gull-removal area. However, immature gull abundance was still low in all management areas.

#### PLOVER POPULATION DYNAMICS ON SOUTH MONOMOY ISLAND

Mean Piping Plover productivity (chicks fledged/pair) on South Monomoy Island from 1992 to 1997 (the years prior to our study) was approximately 1.63 chicks/pair (USFWS census data; Table 55). Mean Piping Plover productivity in Massachusetts from 1992 to 1997 was approximately 1.68 chicks/pair (USFWS 1996a; Table 56). These productivity values exceed the recovery goal of an average of 1.5 chicks/pair maintained for 5 years (USFWS 1996a), believed sufficient for population increase. On South Monomoy, the worst year reported since 1992 was 1995, the year prior to gull removal, when productivity was only 0.93 chicks/pair (USFWS census data). During that year, low productivity resulted from poor nest success. Thirty-five percent (6/17) of all nests were abandoned, 6% (1/17) nests were lost to gull predation (gull tracks near nest), and the cause of loss for 6% of the nests were unknown. Particularly high Piping Plover productivity rates on South Monomoy Island were obtained in 1996 and 1997 (2.21 and 1.76 chicks fledged/pair, respectively; Table 56). This may be related to the gullremoval program, but high productivity rates were obtained in both the gull-removal area and the reference area, suggesting that Piping Plover breeding success can be attributed to factors other than gull removal. Also, the extremely high rates of productivity did not continue beyond 1997, even though large gulls were still prevented from nesting in the gull-removal area.

A graph of the Piping Plover population in Massachusetts since listing as an endangered species reveals a sigmoidal curve, characteristic of a population reaching carrying capacity (Figure 2, USFWS 2002). The curve depicting the Piping Plover population on the Monomoy islands follows the same pattern (Figure 2, USFWS 2002). The initial lag in population increase on South Monomoy Island compared to Massachusetts as a whole may be reflective of survey effort, or it may suggest that habitat quality on South Monomoy is not as good as habitat quality elsewhere in Massachusetts.

The maximum number of Piping Plover pairs that can be sustained (carrying capacity) on South Monomoy Island may be a function of the amount of suitable nesting habitat. Nesting habitat fluctuates naturally with overwash caused by storms and vegetation succession. A reduction of nesting habitat near moist substrate foraging habitats due to natural vegetation succession and/or beach erosion may contribute to a decline in nesting plover pairs. Likewise, a reduction in available moist substrate adjacent to nesting habitat due to succession may contribute to a decline in nesting pairs. For example, if the tidal inlet of the tidal pond intertidal zone closes, and the moist substrate succeeds into dense vegetation, numbers of plover pairs in this area will most likely decrease.

# CONCLUSIONS

Through our study, we found no evidence that the Monomoy National Wildlife Refuge gull removal program resulted in increases in Piping Plover reproductive output, survival or population numbers. We found no evidence that Herring or Great Black-backed Gulls affected Piping Plover distribution on the island. Piping Plovers nested in areas where the backshore and open vegetation habitats were wide, and where moist substrate foraging habitat was near by. We believe that spatial separation between large gulls and Piping Plovers is due to different habitat selection among the species.

### LITERATURE CITED

- Aebischer, N. J., P. A. Robertson, and R. E. Kenward. 1993. Compositional analysis of habitat use from radio-tracking data. Ecology 74:1313-1325.
- Arbib, R. 1979. The Blue List for 1980. Am. Birds 33:830-835.
- Altmann, J. 1974. Observational study of behavior sampling methods. Behaviour 49:227-267.
- Bent, A. C. 1921. Life histories of North American gulls and terns. Dover Publications, inc., New York, Pp 79-80.
- Blodget, B. G. 1988. The East Coast gull explosion. Massachusetts Wildlife 38:12-19.
- BLOSSOM Statistical Package. 2001. Version W2001. http://www.mesc.usgs.gov/products/pubs/10002/intro.html).
- Cairns, W. E. 1977. Breeding biology of the Piping Plover in southern Nova Scotia. M.S. Thesis, Dalhousie University, Halifax, Nova Scotia. 115pp.
- Cade, B.S, and J. Richards, 1999, User Manual for Blossom Statistical Software: Fort Collins, CO, U.S. Geological Survey, 107pp.
- Cavanagh, P. M. 1992. Population dynamics, foraging ecology, and management of gulls on Monomoy NWR. Ph.D. Dissertation, University of Massachusetts, Amherst, Massachusetts. 105pp.
- Drury, W. H. and I. C. T. Nisbet. 1972. The importance of movements in the biology of Herring Gulls in New England. Pp 173-212 in Population Ecology of Migratory Birds: A Symposium. USFWS Wildl. Res. Rep. 2. 278pp.
- Elias-Gerken, S. P. 1994. Piping Plover habitat suitability on central Long Island, New York barrier islands. M.S. Thesis. Virginia Polytechnic Institute and State University. Blacksburg, Virginia. 247pp.
- Elias, S. P., J. D. Fraser, and P. A. Buckley. 2000. Piping plover brood foraging ecology on New York barrier islands. Journal of Wildlife Management 64:346-354.
- Flint, P. L., K. H. Pollack, D. Thomas, and J. S. Sedinger. 1995. Estimating prefledging survival: allowing for brood mixing and dependence among brood mates. Journal of Wildlife Management 59:448-455.

- Gilmore, S. 2000. Summary of the Piping Plover management program at Gateway NRA, Breezy Point site. Unpublished document submitted to National Park Service, Gateway National Recreation Area. 20pp.
- Goldin, M. R. 1993. Effects of human disturbance and off-road vehicles on Piping Plover reproductive success and behavior at Breezy Point, Gateway National Recreation Area, New York. M.S. Thesis, University of Massachusetts, Amherst, Massachusetts. 128pp.
- Goldin, M. R. and J. V. Regosin. 1998. Chick behavior, habitat use, and reproductive success of Piping Plovers at Goosewing Beach, Rhode Island. Journal of Field Ornithology 69:228-234.
- Good, T. P. 1998. Great Black-backed Gull (*Larus marinus*). *In* The Birds of North America, No. 330 (A. Poole and F. Gill, eds.). The Birds of North America, Inc., Philadelphia, PA.
- Goss-Custard, J. D. 1970. The responses of redshanks (*Tringa totanus* (L.) to spatial variations in the density of their prey. Journal of Animal Ecology 39:91-113.
- Goss-Custard, J. D. 1977. Responses of redshanks, *Tringa totanus*, to the absolute and relative densities of two prey species. Journal of Animal Ecology 46:867-874.
- Hake, M. 1995. 1995 Summary of Piping Plover and colonial waterbird management program, Breezy Point District. Unpublished document submitted to National Park Service, Gateway National Recreation Area. 45pp.
- Heisey, D. M. and T. K. Fuller. 1985. Evaluation of survival and cause-specific mortality rates using telemetry data. Journal of Wildlife Management 49:668-674.
- Hoopes, E. M. 1993. Relationships between human recreation and Piping Plover foraging ecology and chick survival. M.S. Thesis, University of Massachusetts, Amherst, Massachusetts. 106pp.
- Hosmer, D. W. Jr. and S. Lemshow. 1989. Applied Logistic Regression. Wiley, New York, New York. 307pp.
- Houghton, L. M. unpublished data. Virginia Polytechnic Institute and State University. Blacksburg, Virginia.
- Hunt, G. L. Jr. 1972. Influence of food distribution and human disturbance on the reproductive success of Herring Gulls. Ecology 53:1051-1061.
- Johnson, D. H. 1979. Estimating nest success: the Mayfield method and an alternative. The Auk 96:651-661.

- Jones, K. L. 1997. Piping Plover habitat selection, home range, and reproductive success at Cape Cod National Seashore, Massachusetts. M.S. Thesis, University of Massachusetts, Amherst, Massachusetts. 96pp.
- Kadlec, J. A. and W. H. Drury. 1968. Structure of the New England herring gull population. Ecology 49:644-676.
- Koch, S. L. Personal Communication. U. S. Fish and Wildlife Service, Great Meadows National Wildlife Refuge, Weir Hill Road, Sudbury, Massachusetts, 01776.
- Lauro, B. and J. Tanacredi. 2002. An examination of predatory pressures on Piping Plovers nesting at Breezy Point, New York. Waterbirds 25:401-409.
- Lehner, P. N. 1979. Handbook of ethologica1 methods. Garland STPM Press, New York, New York. 403pp.
- Loegering, J. P. 1992. Piping plover breeding biology, foraging ecology, and behavior on Assateague Island National Seashore, Maryland. M.S. Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia. 248pp.
- Loegering, J. P. and J. D. Fraser. 1995. Factors affecting piping plover chick survival in different brood-rearing habitats. Journal of Wildlife Management 59:646-655.
- MacIvor, 1990. Population dynamics, breeding ecology, and management of Piping Plovers on outer Cape Cod, Massachusetts. M.S. Thesis, University of Massachusetts, Amherst, Massachusetts. 100pp.
- Marcum, C. L. and D. O. Loftsgaarden. 1980. A nonmapping technique for studying habitat preferences. Journal of Wildlife Management 44:963-968.
- Maron, J. L., and J. P Myers. 1985. Seasonal changes in feeding success, activity patterns, and weights of non-breeding sanderlings (*Calidris alba*). The Auk 102:580-586.
- Mayfield, H. F. 1975. Suggestions for calculating nest success. Wilson Bulletin 87:456-466.
- Megyesi, J. L. 1998. Management for avian nesting diversity on the northern end of South Monomoy Island 1997 field season report. Environment Cape Cod 1:13-37.
- Mielke Jr., P. W. and K. J. Berry. 2001. Permutation Methods: A distance function approach. Springer-Verlag Inc., New York. 352pp.
- Miller, R. G., Jr. 1980. Simultaneous Statistical Inference, second ed. Springer-Verlag Inc. New York. 299pp.

- Mostello, C. S. and S. M. Melvin. 2001. Summary of the 2000 Massachusetts piping plover census data. Massachusetts Division of Fisheries and Wildlife. Westborough, Massachusetts. 28pp.
- Myers, J. P., S. L. Williams, and F. A. Pitelka. 1980. An experimental analysis of prey availability for sanderlings (*Aves:Scolopacidae*) feeding on sandy beach crustaceans. Canadian Journal of Zoology 58:1564-1574.
- Nemenyi, P. 1963. Distribution-free multiple comparisons. Unpublished doctoral thesis, Princeton University, New Jersey. Cited in Miller (1980).
- Neu, C. W., C. R. Byers, and J. M. Peek. 1974. A technique for analysis of utilizationavailability data. Journal of Wildlife Management 38:541-545.
- Olijnyk, C. G. and K. M. Brown. 1999. Results of a seven year effort to reduce nesting by Herring and Great Black-backed Gulls. Waterbirds 22:285-289.
- Patterson, M. E., J. D. Fraser and J. W. Roggenbuck. 1991. Factors affecting Piping Plover productivity on Assateague Island. Journal of Wildlife Management 55:525-531.
- Pienkowski, M. W. 1983. Changes in the foraging pattern of plovers in relation to environmental factors. Animal Behaviour 31:244-264.
- Pierotti, R. J. 1982. Habitat selection and its effects on reproductive output in the Herring Gull in Newfoundland. Ecology 63:854-868.
- Pierotti, R. 1988. Associations between marine birds and mammals in the Northwest Atlantic Ocean. Pp. 31-58 *in* Seabirds and other marine vertebrates (J. Burger, ed.). Columbia University Press, New York.
- Pierotti, R. and T. P. Good. 1994. The Herring Gull (*Larus argentatus*). In The Birds of North America, No. 124 (A. Poole and F. Gill, eds.). The Birds of North America, Inc., Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union.
- SAS Institute Inc. 1999-2001. SAS Software Release 8.2 Licensed to Virginia Polytechnic Institute and State University, Campuswide. Cary, NC, USA.
- Sauer J. R. and B. K. Williams. 1989. Generalized procedures for testing hypotheses about survival or recovery rates. Journal of Wildlife Management 53:137-142.
- Tacha, T. C., P. A. Vohs, and G. C. Iverson. 1985. A comparison of interval and continuous sampling methods for behavioral observations. Journal of Field Ornithology 56:258-264.

- Thomas, D. L. and Taylor, E. J. 1990. Study designs and tests for comparing resource use and availability. Journal of Wildlife Management 54:322-330
- Tinbergen, N. 1960. The Herring Gull's world, second ed. Basic Books, New York. 297pp.
- Tyler, S. 1979. Time-sampling: a matter of convention. Animal Behaviour 27: 801-810.
- U.S. Department of Agriculture, Animal Damage Control. 1993. Management of Herring and Greater Black-backed Gulls to protect nesting Piping Plovers on the Breezy Point Unit of the Gateway National Recreation Area, Brooklyn, New York, 1993. Technical Report submitted to the National Park Service. 25pp.
- U.S. Fish and Wildlife Service. 1985. Endangered and threatened wildlife and plants: Determination of endangered and threatened Status for the Piping Plover: Final rule. Federal Register 50:50726-50734.
- U.S. Fish and Wildlife Service. 1988. Environmental assessment: master plan, Monomoy National Wildlife Refuge. Chatham, Massachusetts. 186pp.
- U.S. Fish and Wildlife Service. 1996a. Piping Plover (*Charadrius melodus*), Atlantic Coast Population, Revised Recovery Plan. Hadley, Massachusetts. 258pp.
- U.S. Fish and Wildlife Service. 1996b. Environmental assessment: restoration of avian diversity on Monomoy National Wildlife Refuge. U. S. Fish and Wildlife Service. Chatham, Massachusetts. 94pp.
- U.S. Fish and Wildlife Service. 1999. Summary of field season activities in 1998, Monomoy National Wildlife Refuge. Unpublished Report to U.S. Fish and Wildlife Service, Chatham, Massachusetts. 53pp.
- U.S. Fish and Wildlife Service. 2000a. Summary of field season activities in 1999, Monomoy National Wildlife Refuge. Unpublished Report to U.S. Fish and Wildlife Service, Chatham, Massachusetts. 63pp.
- U.S. Fish and Wildlife Service. 2000b. South Monomoy Island 1998 Gull Count. Prepared by Region 5 Cartography and Spatial Data Services, Hadley, Massachusetts. Presented at the November, 2000 Waterbird Meeting, Plymouth, Massachusetts.
- U.S. Fish and Wildlife Service. 2002. 2000-2001 status update: U.S. Atlantic Coast piping plover population. Sudbury, Massachusetts. 9pp.
- U.S. Fish and Wildlife Service. In prep. Summary of field season activities in 2000, Monomoy National Wildlife Refuge. Unpublished Report to U.S. Fish and Wildlife Service, Chatham, Massachusetts.

Wilson, W. H. Jr. 1990. Relationship between prey abundance and foraging site selection by Semipalmated Sandpipers on a Bay of Fundy mudflat. Journal of Field Ornithology 61:9-19.

Wilcox, L. 1959. A twenty year banding study of the Piping Plover. Auk 79:129-152.

# **TABLES**

Table 1. Summary of known Piping Plover reproductive success on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

| ear                                                                | Gull-                | removal<br>Area | Buff                 | er Area | Re                   | eference<br>Area | South Mc             | nomoy<br>Island |
|--------------------------------------------------------------------|----------------------|-----------------|----------------------|---------|----------------------|------------------|----------------------|-----------------|
| 998                                                                |                      |                 |                      |         |                      |                  |                      |                 |
| Breeding Pairs                                                     |                      | 9               |                      | 1       |                      | 17               |                      | 27              |
| Known Nest Attempts                                                |                      | 12              |                      | 2       |                      | 24               |                      | 38              |
| 1st Attempts                                                       |                      | 9               |                      | 1       |                      | 17               |                      | 27              |
| 2nd Attempts                                                       |                      | 2               |                      | 1       |                      | 6                |                      | ç               |
| 3rd Attempts                                                       | 1                    |                 | 0                    |         | 1                    |                  | 2                    |                 |
| Nests Lost                                                         | 7                    |                 | 2                    |         | 13                   |                  | 22                   |                 |
| Successful Nests                                                   |                      | 5               |                      | 0       |                      | 11               |                      | 16              |
| Eggs Laid <sup>a</sup>                                             |                      | 36              |                      | 7       |                      | 90               |                      | 133             |
| Eggs Lost                                                          | 17                   |                 | 7                    |         | 52                   |                  | 76                   |                 |
| Eggs Hatched                                                       | 19                   |                 | 0                    |         | 34                   |                  | 53                   |                 |
| Eggs Left In Scrape After Hatch                                    | 0                    |                 | 0                    |         | 4                    |                  | 4                    |                 |
| Daily Survival of Nests<br>and Variance (Mayfield 1975)            | 0.9600<br>2.1943E-04 |                 | 0.7500<br>2.3438E-02 |         | 0.9744<br>4.9277E-05 |                  | 0.9681<br>4.4735E-05 |                 |
| Chicks Fledged                                                     |                      | 4               |                      | 0       |                      | 15               |                      | 19              |
| Daily Survival of Chicks<br>and Standard Error (Flint et al. 1995) | 0.8900<br>0.0736     |                 | :                    |         | 0.9614<br>0.0151     |                  | 0.9459<br>0.0176     |                 |
| Successful Nests/Nest Attempt (%)                                  | 5/12                 | 41.67           | 0/2                  | 0.00    | 11/24                | 45.83            | 16/38                | 42.1            |
| Eggs Laid/Nest Attempt <sup>a</sup>                                | 36/12                | 3.00            | 7/2                  | 3.50    | 90/24                | 3.75             | 133/38               | 3.50            |
| Eggs Hatched/Eggs Laid (%) <sup>a</sup>                            | 19/36                | 52.78           | 0/7                  | 0.00    | 34/90                | 37.78            | 53/133               | 39.85           |
| Eggs Hatched/Pair                                                  | 19/9                 | 2.11            | 0/1                  | 0.00    | 34/17                | 2.00             | 53/27                | 1.96            |
| Chicks Fledged/Eggs Hatched (%)                                    | 4/19                 | 21.05           | 0/0                  | 0.00    | 15/34                | 44.12            | 19/53                | 35.85           |
| Broods Fledged/ Successful Nest (%)                                | 2/5                  | 40.00           | 0/0                  | 0.00    | 8/11                 | 72.73            | 10/16                | 62.50           |
| Chicks Fledged/Pair                                                | 4/9                  | 0.44            | 0/1                  | 0.00    | 15/17                | 0.88             | 19/27                | 0.70            |

#### Continued.

<sup>a</sup> Number of eggs laid in the gull-removal area did not include the broken eggshells found on May 26, 1998.

<sup>b</sup> One first nest attempt in the reference area was found relocated 23 m from its original site after a flood. This relocated nest was not considered to be a second nest attempt. ° One egg in a nest in the gull-removal area was laid 1 m from the other 3 eggs, and was attended occasionally. This egg was not considered an

additional nest, but was considered an egg lost. <sup>d</sup> One egg in a nest in the gull-removal area was found lost before hatch was determined complete. This egg was assumed hatched.

| ar                                                                 | Gull-                | removal | Bu     | ffer Area | Reference<br>Area    |       | South Monomoy<br>Island |       |
|--------------------------------------------------------------------|----------------------|---------|--------|-----------|----------------------|-------|-------------------------|-------|
|                                                                    |                      | Area    |        |           |                      |       |                         |       |
| 1999                                                               |                      |         |        |           |                      |       |                         |       |
| Breeding Pairs                                                     | 9                    |         | 1      |           | 16                   |       | 20                      |       |
| Known Nest Attempts                                                |                      | 10      |        | 1         |                      | 20    |                         | 31    |
| 1st Attempts <sup>b</sup>                                          |                      | 9       |        | 1         |                      | 16    |                         | 26    |
| 2nd Attempts                                                       |                      | 1       | 0      |           | 4                    |       | 5                       |       |
| 3rd Attempts                                                       |                      | 0       | 0      |           | 0                    |       | 0                       |       |
| Nests Lost                                                         |                      | 5       | 0      |           | 8                    |       | 13                      |       |
| Successful Nests                                                   |                      | 5       |        | 1         |                      | 12    |                         | 18    |
| Eggs Laid                                                          |                      | 37      |        | 4         |                      | 77    |                         | 118   |
| Eggs Lost                                                          | 18                   |         | 0      |           | 32                   |       | 50                      |       |
| Eggs Hatched                                                       | 16                   |         | 4      |           | 43                   |       | 63                      |       |
| Eggs Left In Scrape After Hatch                                    |                      | 3       | 0      |           | 2                    |       | 5                       |       |
| Daily Survival of Nests<br>and Variance (Mayfield 1975)            | 0.9753<br>1.1892E-04 |         | 1.0000 |           | 0.9830<br>3.5674E-05 |       | 0.9813<br>2.6260E-05    |       |
| Chicks Fledged                                                     |                      | 5       |        | 0         |                      | 30    |                         | 35    |
| Daily Survival of Chicks<br>and Standard Error (Flint et al. 1995) | 0.9468<br>0.0152     |         | -      |           | 0.9840<br>0.0083     |       | 0.9726<br>0.0094        |       |
| Successful Nests/Nest Attempt (%)                                  | 5/10                 | 50.00   | 1/1    | 100.00    | 12/20                | 60.00 | 18/31                   | 58.06 |
| Eggs Laid/Nest Attempt                                             | 37/10                | 3.70    | 4/1    | 4.00      | 77/20                | 3.85  | 118/31                  | 3.81  |
| Eggs Hatched/Eggs Laid (%)                                         | 16/37                | 43.24   | 4/4    | 100.00    | 43/77                | 55.84 | 63/118                  | 53.39 |
| Eggs Hatched/Pair                                                  | 16/9                 | 1.78    | 4/1    | 4.00      | 43/16                | 2.69  | 63/26                   | 2.42  |
| Chicks Fledged/Eggs Hatched (%)                                    | 5/16                 | 31.25   | 0/4    | 0.00      | 30/43                | 69.77 | 35/63                   | 55.56 |
| Broods Fledged/ Successful Nest (%)                                | 3/5                  | 60.00   | 0/1    | 0.00      | 10/12                | 83.33 | 13/18                   | 72.22 |
| Chicks Fledged/Pair                                                | 5/9                  | 0.56    | 0/1    | 0.00      | 30/16                | 1.88  | 35/26                   | 1.35  |

Table 1, Continued. Summary of known Piping Plover reproductive success on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

#### Continued.

<sup>a</sup> Number of eggs laid in the gull-removal area did not include the broken eggshells found on May 26, 1998. <sup>b</sup> One first nest attempt in the reference area was found relocated 23 m from its original site after a flood. This relocated nest was not considered to be a second nest attempt.

° One egg in a nest in the gull-removal area was laid 1 m from the other 3 eggs, and was attended occasionally. This egg was not considered an additional nest, but was considered an egg lost. <sup>d</sup> One egg in a nest in the gull-removal area was found lost before hatch was determined complete. This egg was assumed hatched.

| ar                                                                 | Gull-                | removal | Buff | er Area | Reference<br>Area    |       | South Monomoy<br>Island |       |
|--------------------------------------------------------------------|----------------------|---------|------|---------|----------------------|-------|-------------------------|-------|
|                                                                    |                      | Area    |      |         |                      |       |                         |       |
| 2000                                                               |                      |         |      |         |                      |       |                         |       |
| Breeding Pairs                                                     | 7                    |         | 0    |         | 21                   |       | 28                      |       |
| Known Nest Attempts                                                |                      | 11      |      | 0       |                      | 28    |                         | 39    |
| 1st Attempts                                                       | 7                    |         | 0    |         | 21                   |       | 28                      |       |
| 2nd Attempts                                                       |                      | 4       | 0    |         | 7                    |       | 11                      |       |
| 3rd Attempts                                                       | 0                    |         | 0    |         | 0                    |       | 0                       |       |
| Nests Lost                                                         | 6                    |         | 0    |         | 11                   |       | 17                      |       |
| Successful Nests                                                   | 5                    |         | 0    |         | 17                   |       | 22                      |       |
| Eggs Laid <sup>°</sup>                                             |                      | 39      |      | 0       |                      | 99    |                         | 138   |
| Eggs Lost <sup>°</sup>                                             | 21                   |         | 0    |         | 33                   |       | 54                      |       |
| Eggs Hatched <sup>d</sup>                                          | 17                   |         | 0    |         | 62                   |       | 79                      |       |
| Eggs Left In Scrape After Hatch                                    | 1                    |         | 0    |         | 4                    |       | 5                       |       |
| Daily Survival of Nests<br>and Variance (Mayfield 1975)            | 0.9730<br>1.1793E-04 |         | -    |         | 0.9831<br>2.5673E-05 |       | 0.9805<br>2.1946E-05    |       |
| Chicks Fledged                                                     |                      | 9       |      | 0       |                      | 28    |                         | 37    |
| Daily Survival of Chicks<br>and Standard Error (Flint et al. 1995) | 0.9711<br>0.0207     |         | -    |         | 0.9604<br>0.0141     |       | 0.9630<br>0.0115        |       |
| Successful Nests/Nest Attempt (%)                                  | 5/11                 | 45.45   | 0/0  | 0.00    | 17/28                | 60.71 | 22/39                   | 56.41 |
| Eggs Laid/Nest Attempt                                             | 39/11                | 3.55    | 0/0  | 0.00    | 99/28                | 3.54  | 138/39                  | 3.54  |
| Eggs Hatched/Eggs Laid (%)                                         | 17/39                | 43.59   | 0/0  | 0.00    | 62/99                | 62.63 | 79/138                  | 57.25 |
| Eggs Hatched/Pair                                                  | 17/7                 | 2.43    | 0/0  | 0.00    | 62/21                | 2.95  | 79/28                   | 2.82  |
| Chicks Fledged/Eggs Hatched (%)                                    | 9/17                 | 52.94   | 0/0  | 0.00    | 28/62                | 45.16 | 37/79                   | 46.84 |
| Broods Fledged/ Successful Nest (%)                                | 4/5                  | 80.00   | 0/0  | 0.00    | 11/17                | 64.71 | 15/22                   | 68.18 |
| Chicks Fledged/Pair                                                | 9/7                  | 1.29    | 0/0  | 0.00    | 28/21                | 1.33  | 37/28                   | 1.32  |

Table 1, Continued. Summary of known Piping Plover reproductive success on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

#### Continued.

<sup>a</sup> Number of eggs laid in the gull-removal area did not include the broken eggshells found on May 26, 1998. <sup>b</sup> One first nest attempt in the reference area was found relocated 23 m from its original site after a flood. This relocated nest was not considered to be a second nest attempt.

° One egg in a nest in the gull-removal area was laid 1 m from the other 3 eggs, and was attended occasionally. This egg was not considered an additional nest, but was considered an egg lost. <sup>d</sup> One egg in a nest in the gull-removal area was found lost before hatch was determined complete. This egg was assumed hatched.

| Year                                                               | Gull   | removal           | Buf  | fer Area          | R       | eference          | South M |                   |
|--------------------------------------------------------------------|--------|-------------------|------|-------------------|---------|-------------------|---------|-------------------|
|                                                                    |        | Area              |      |                   |         | Area              |         | Island            |
| 1998-2000                                                          |        |                   |      |                   |         |                   |         |                   |
| Breeding Pairs                                                     |        | 25                |      | 2                 |         | 54                |         | 81                |
| Known Nest Attempts                                                |        | 33                |      | 3                 |         | 72                |         | 108               |
| 1st Attempts <sup>b</sup>                                          |        | 25                |      | 2                 |         | 54                |         | 81                |
| 2nd Attempts                                                       |        | 7                 |      | 1                 |         | 17                |         | 25                |
| 3rd Attempts                                                       |        | 1                 |      | 0                 |         | 1                 |         | 2                 |
| Nests Lost                                                         |        | 18                |      | 2                 |         | 32                |         | 52                |
| Successful Nests                                                   |        | 15                |      | 1                 |         | 40                |         | 56                |
| Eggs Laid <sup>a, c</sup>                                          |        | 112               |      | 11                |         | 266               |         | 389               |
| Eggs Lost <sup>c</sup>                                             |        | 56                |      | 7                 |         | 117               |         | 180               |
| Eggs Hatched <sup>d</sup>                                          |        | 52                |      | 4                 |         | 139               |         | 195               |
| Eggs Left In Scrape After Hatch                                    |        | 4                 |      | 0                 |         | 10                |         | 14                |
| Daily Survival of Nests<br>and Variance (Mayfield 1975)            | 4.8    | 0.9700<br>500E-05 | 1.72 | 0.9394<br>252E-03 | 1.1     | 0.9803<br>872E-05 | 9.9     | 0.9770<br>597E-06 |
| Chicks Fledged                                                     |        | 18                |      | 0                 |         | 73                |         | 91                |
| Daily Survival of Chicks<br>and Standard Error (Flint et al. 1995) |        | 0.9451<br>0.0178  |      | -                 |         | 0.9695<br>0.0071  |         | 0.9627<br>0.0070  |
| Successful Nests/Nest Attempt (%)                                  | 15/33  | 45.45             | 1/3  | 33.33             | 40/72   | 55.56             | 56/108  | 51.85             |
| Eggs Laid/Nest Attempt <sup>a</sup>                                | 112/33 | 3.39              | 11/3 | 3.67              | 266/72  | 3.69              | 389/108 | 3.60              |
| Eggs Hatched/Eggs Laid (%) <sup>a</sup>                            | 52/112 | 46.43             | 4/11 | 36.36             | 139/266 | 52.26             | 195/389 | 50.13             |
| Eggs Hatched/Pair                                                  | 52/25  | 2.08              | 4/2  | 2.00              | 139/54  | 2.57              | 195/81  | 2.41              |
| Chicks Fledged/Eggs Hatched (%)                                    | 18/52  | 34.62             | 0/4  | 0.00              | 73/139  | 52.52             | 91/195  | 46.67             |
| Broods Fledged/ Successful Nest (%)                                | 9/15   | 60.00             | 0/1  | 0.00              | 29/40   | 72.50             | 38/56   | 67.86             |
| Chicks Fledged/Pair                                                | 18/25  | 0.72              | 0/2  | 0.00              | 73/54   | 1.35              | 91/81   | 1.12              |

Table 1, Continued. Summary of known Piping Plover reproductive success on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

<sup>a</sup> Number of eggs laid in the gull-removal area did not include the broken eggshells found on May 26, 1998.

<sup>b</sup> One first nest attempt in the reference area was found relocated 23 m from its original site after a flood. This relocated nest was not considered to be a second nest attempt. ° One egg in a nest in the gull-removal area was laid 1 m from the other 3 eggs, and was attended occasionally. This egg was not considered an

additional nest, but was considered an egg lost. <sup>d</sup> One egg in a nest in the gull-removal area was found lost before hatch was determined complete. This egg was assumed hatched.

**Table 2.** Terms used to describe the management areas and Piping Plover nesting and foraging habitats on SouthMonomoy Island, Cape Cod, Massachusetts, 1998-2000.

| Backshore            | A zone of dry sand, shell, and/or cobble (<10% vegetative cover) between the high tide line and the toe of the dune, open vegetation zone (early successional habitat), or dense vegetation zone (late succession habitat).                                                            |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buffer Area          | The area defined as a buffer area to the gull-free area or Area B by USFWS. Management actions during 1998-2000 included suppressing productivity of gulls by puncturing gull eggs.                                                                                                    |
| Dense<br>Vegetation  | A zone of live and/or dead, thick and matted vegetation impermeable to Piping Plover chicks. Dense vegetation is mostly composed of American beach grass ( <i>Ammophila breviligulata</i> ) and characteristic of mid to late succession. Percent cover generally ranges from 90-100%. |
| Fresh Wrack          | Fresh, wet masses of organic matter, mostly composed of eelgrass ( <i>Zostera marina</i> ) deposited at the peak of the last high tide, normally associated with the mean high water line. Fresh wrack typically washes out with the following high tide.                              |
| Gull-removal<br>Area | The area defined as gull-free or Area A by USFWS. In 1996, USFWS management actions included the lethal removal of nesting gulls. Since removal, the USFWS has used harassment techniques to maintain this area free of nesting gulls.                                                 |
| Immature<br>Gulls    | Immature Great Black-backed Gulls and Immature Herring Gulls                                                                                                                                                                                                                           |
| Intertidal<br>Zone   | A zone between high and low tides with damp to saturated substrate.                                                                                                                                                                                                                    |
| Large Gulls          | Great Black-backed Gulls, Herring Gulls, and immature gulls of both species                                                                                                                                                                                                            |
| Nesting<br>Habitat   | The area where a Piping Plover nest was found, including all adjacent area up to the dense vegetation, to the waterline, and 500 meters on either side of the nest.                                                                                                                    |
| Ocean Side           | The beach area of South Monomoy Island that is in contact with the Atlantic Ocean. All area east of the northernmost and southernmost points of the island.                                                                                                                            |
| Old Wrack            | Any dry mass of organic matter, mostly composed of eelgrass, deposited during spring or storm tides. Typically located on the backshore or scattered among open vegetation.                                                                                                            |
| Open<br>Vegetation   | A zone of vegetation mostly composed of American beach grass ( <i>Ammophila breviligulata</i> ). Open vegetation is characteristic of early succession. Percent cover generally ranges from 10-90%.                                                                                    |
| Reference<br>Area    | Includes the area defined as the experimental control or Area C by USFWS as well as the remaining area of South Monomoy Island.                                                                                                                                                        |
| Sound Side           | The beach area of South Monomoy Island that is in contact with Nantucket Sound. All area west of the northernmost and southernmost points of the island.                                                                                                                               |
| Tidal Pond           | A brackish body of water connected to salt water and inundated by ocean tides but fed by fresh water.                                                                                                                                                                                  |
| Total Gulls          | The number of Large Gulls regardless of species                                                                                                                                                                                                                                        |
| Unused<br>Habitat    | The area not classified as "Nesting Habitat".                                                                                                                                                                                                                                          |

| Behavior Categories | Behaviors or Behavior Sequences                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Alert               | Undisturbed, standing still, and not foraging                                                                                                 |
| Brooding            | Adult brooding chick(s) or chick(s) being brooded by adult                                                                                    |
| Courting            | Displaying, making and maintaining nest scrapes, courtship flight, and copulating                                                             |
| Disturbed           | Crouching, standing disturbed, walking disturbed, running disturbed, or flying disturbed                                                      |
| Foraging            | Peck while standing, peck while walking, peck while running, glean, aerial snap, or foot tremble; standing, walking, or running between pecks |
| Moving              | Undisturbed and not foraging while walking, running, or flying                                                                                |
| Resting             | Sitting or preening                                                                                                                           |
|                     |                                                                                                                                               |

**Table 3.** Behavior categories used in the analyses of Piping Plover behavioral observations on South MonomoyIsland, Cape Cod, Massachusetts, 1998-2000.

**Table 4.** Mean counts of large gulls within 100 m of random points during the prenesting period, among the management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means with the same letters were not significantly different (P < 0.05).

| Year    | Management   |     | Total Large Gulls                            | Great Black-backed Gulls | Herring Gulls         | Immature Gulls      |
|---------|--------------|-----|----------------------------------------------|--------------------------|-----------------------|---------------------|
|         | <u>Area</u>  | n   | $\overline{x}$ SE                            | $\overline{x}$ SE        | $\overline{x}$ SE     | $\overline{x}$ SE   |
| 1999    |              |     |                                              |                          |                       |                     |
|         | Gull-removal | 54  | 9.69 B 2.41                                  | 2.72 B 0.70              | 6.54 2.17             | 0.43 0.13           |
|         | Buffer       | 54  | 20.93 A 3.01                                 | 17.09 A 2.50             | 3.52 0.87             | 0.31 0.17           |
|         | Reference    | 107 | 28.94 A 2.67                                 | 22.41 A 2.06             | 5.79 1.40             | 0.75 0.33           |
|         |              |     | <i>T</i> = -13.19, <i>P</i> < 0.0001         | T = -24.54, P < 0.0001   | T = 0.21, P = 0.48    | T = -0.22, P = 0.33 |
| 2000    |              |     |                                              |                          |                       |                     |
|         | Gull-removal | 58  | 2.02 B 0.47                                  | 0.93 B 0.22              | 0.81 B 0.27           | 0.28 0.12           |
|         | Buffer       | 58  | 12.03 A 1.72                                 | 7.45 A 1.08              | 4.41 A 0.97           | 0.17 0.07           |
|         | Reference    | 118 | 15.86 A 2.01                                 | 9.94 A 1.14              | 4.97 A 1.09           | 0.95 0.33           |
|         |              |     | <i>T</i> = <b>-18</b> .54, <i>P</i> < 0.0001 | T = -21.58, P < 0.0001   | T = -6.12, P = 0.0005 | T = -1.83, P = 0.06 |
| 1999-20 | 00           |     |                                              |                          |                       |                     |
|         | Gull-removal | 112 | 5.71 в 1.24                                  | 1.79 B 0.36              | 3.57 1.08             | 0.35 A 0.09         |
|         | Buffer       | 112 | 16.32 A 1.75                                 | 12.10 A 1.40             | 3.98 0.65             | 0.24 A 0.09         |
|         | Reference    | 225 | 22.08 A 1.70                                 | 15.87 A 1.22             | 5.36 0.88             | 0.85 A 0.23         |
|         |              |     | T = -28.59, P < 0.0001                       | T = -41.78, P < 0.0001   | T = -0.91, P = 0.15   | T = -1.97, P = 0.05 |

| Year  | Management<br>Area |     |                            | <u>P1</u>       | ots Wit                    | h Larg        | e Gulls              |               | Gre      | at Black        |               | <u>ts With</u><br>d Gulls |               | Plo  | ts With         | Herrin         | g Gulls          |               | Plots | With Ir       | nmatur  | e Gulls          |
|-------|--------------------|-----|----------------------------|-----------------|----------------------------|---------------|----------------------|---------------|----------|-----------------|---------------|---------------------------|---------------|------|-----------------|----------------|------------------|---------------|-------|---------------|---------|------------------|
|       |                    | n   | Obs.<br>Value <sup>a</sup> | (%)             | Exp.<br>Value <sup>b</sup> | (%)           | Partial $\chi^{2 c}$ | Obs.<br>Value | (%)      | Exp.<br>Value   |               | Partial $\chi^2$          | Obs.<br>Value | (%)  | Exp.<br>Value   | (%)            | Partial $\chi^2$ | Obs.<br>Value | (%)   | Exp.<br>Value |         | Partial $\chi^2$ |
| 1999  |                    |     |                            |                 |                            |               |                      |               |          |                 |               |                           |               |      |                 |                |                  |               |       |               |         |                  |
|       | Gull-removal       | 54  | 41                         | (76)            | 49                         | (91)          | 11.26                | 26            | (48)     | 44              | (81)          | 39.42                     | 30            | (56) | 30              | (56)           | 0.01             | 13            | (24)  | 9             | (17)    | 1.79             |
|       | Buffer             | 54  | 47                         | (87)            | 49                         | (91)          | 0.44                 | 45            | (83)     | 44              | (81)          | 0.13                      | 26            | (48) | 30              | (56)           | 1.45             | 6             | (11)  | 9             | (17)    | 1.41             |
|       | Reference          | 107 | 105                        | (98)            | 96                         | (90)          | 8.15                 | 104           | (97)     | 87              | (84)          | 17.64                     | 65            | (61) | 60              | (56)           | 0.87             | 18            | (17)  | 18            | (17)    | 0.01             |
|       |                    |     | di                         | $f=2, \chi^2$   | $^{2} = 19.8$              | 5, <i>P</i> < | 0.0001               | di            | f=2, γ   | $\chi^2 = 57.1$ | 9, <i>P</i> < | 0.0001                    |               | df=  | 2, $\chi^2 = 2$ | 2.33, P        | = 0.31           |               | df=   | 2, $\chi^2 =$ | 3.21, P | P = 0.20         |
| 2000  |                    |     |                            |                 |                            |               |                      |               |          |                 |               |                           |               |      |                 |                |                  |               |       |               |         |                  |
|       | Gull-removal       | 58  | 34                         | (59)            | 48                         | (83)          | 25.50                | 25            | (41)     | 43              | (74)          | 31.89                     | 19            | (33) | 28              | (48)           | 5.91             | 9             | (16)  | 9             | (16)    | < 0.01           |
|       | Buffer             | 58  | 51                         | (88)            | 48                         | (83)          | 0.88                 | 50            | (86)     | 43              | (74)          | 4.53                      | 30            | (52) | 28              | (48)           | 0.21             | 6             | (10)  | 9             | (16)    | 1.13             |
|       | Reference          | 118 | 110                        | (93)            | 98                         | (83)          | 8.31                 | 99            | (84)     | 87              | (74)          | 6.08                      | 65            | (55) | 58              | (49)           | 1.91             | 21            | (18)  | 18            | (15)    | 0.53             |
|       |                    |     | di                         | $f=2, \chi^2$   | $^{2} = 34.6$              | 9, <i>P</i> < | 0.0001               | di            | f=2, γ   | $\chi^2 = 42.5$ | 1, <i>P</i> < | 0.0001                    |               | df=  | 2, $\chi^2 = 1$ | 8.04, <i>P</i> | = 0.02           |               | df=   | 2, $\chi^2 =$ | 1.66, P | P = 0.44         |
| 1999- | -2000              |     |                            |                 |                            |               |                      |               |          |                 |               |                           |               |      |                 |                |                  |               |       |               |         |                  |
|       | Gull-removal       | 112 | 75                         | (67)            | 97                         | (87)          | 36.09                | 50            | (45)     | 87              | (78)          | 69.38                     | 49            | (44) | 59              | (53)           | 3.31             | 22            | (20)  | 18            | (16)    | 0.94             |
|       | Buffer             | 112 | 98                         | (88)            | 97                         | (87)          | 0.11                 | 95            | (85)     | 87              | (78)          | 3.44                      | 56            | (50) | 59              | (53)           | 0.25             | 12            | (3)   | 18            | (16)    | 2.53             |
|       | Reference          | 225 | 215                        | (96)            | 194                        | (86)          | 16.01                | 203           | (90)     | 174             | (77)          | 20.87                     | 130           | (58) | 118             | (52)           | 2.67             | 39            | (9)   | 37            | (16)    | 0.19             |
|       |                    |     | di                         | $f = 2, \chi^2$ | $^{2} = 52.2$              | 2, <i>P</i> < | 0.0001               | di            | f = 2, y | $\chi^2 = 93.6$ | 9, <i>P</i> < | 0.0001                    |               | df=  | 2, $\chi^2 =$   | 6.23, P        | = 0.04           |               | df=   | 2, $\chi^2 =$ | 3.66, P | P = 0.16         |

**Table 5.** Percent of random points with at least one gull present within 100 m during the prenesting period, among management areas, South Monomoy Island,Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Chi-square tests were used to test for differences in proportions.

<sup>a</sup> Observed number of random 100 m-radius plots with at least one gull present.
 <sup>b</sup> Expected number of random 100 m-radius plots with at least one gull present.
 <sup>c</sup> Partial Chi-square for observed vs. expected values for each management area.

| Year    | Management   |     | <u>Total Larg</u>          | ge Gulls            |                               | t <u>Black-</u><br>ed Gulls | Herrin         | ng Gulls | Immatu         | re Gulls |
|---------|--------------|-----|----------------------------|---------------------|-------------------------------|-----------------------------|----------------|----------|----------------|----------|
|         | <u>Area</u>  | n   | $\overline{x}$             | SE                  | $\frac{backe}{x}$             | SE                          | $\overline{x}$ | SE       | $\overline{x}$ | SE       |
| 1000    |              |     |                            |                     |                               |                             |                |          |                |          |
| 1999    |              |     |                            |                     |                               |                             |                |          |                |          |
|         | Gull-removal | 22  | 8.00                       | 3.77                | 0.41                          | 0.20                        | 6.59           | 2.90     | 1.00           | 0.95     |
|         | Reference    | 81  | 15.81                      | 3.64                | 5.58                          | 1.04                        | 9.01           | 2.59     | 1.22           | 0.58     |
|         |              |     | T = -0.33, I               | P = 0.25            | T = -8.07, P =                | 0.0002                      | T = 0.49, I    | P = 0.59 | T = 0.75, H    | P = 0.82 |
| 2000    |              |     |                            |                     |                               |                             |                |          |                |          |
|         | Gull-removal | 78  | 2.51                       | 0.45                | 0.55                          | 0.12                        | 1.79           | 0.39     | 0.17           | 0.05     |
|         | Reference    | 176 | 3.98                       | 1.19                | 1.42                          | 0.39                        | 2.27           | 0.80     | 0.29           | 0.09     |
|         |              |     | T = 0.10, I                | P = 0.40            | T = -4.10, P                  | = 0.008                     | T = -1.00, I   | p = 0.13 | T = 0.27, H    | P = 0.46 |
| 1999-20 | 000          |     |                            |                     |                               |                             |                |          |                |          |
|         | Gull-removal | 100 | 3.72                       | 0.92                | 0.52                          | 0.11                        | 2.85           | 0.72     | 0.35           | 0.21     |
|         | Reference    | 257 | 7.71                       | 1.44                | 2.73                          | 0.44                        | 4.39           | 1.00     | 0.58           | 0.19     |
|         |              |     | <i>T</i> = -1.38, <i>I</i> | <sup>p</sup> = 0.09 | <i>T</i> = -13.87, <i>P</i> < | 0.0001                      | T = -0.63, I   | p = 0.19 | T = 0.26, H    | P = 0.48 |

**Table 6.** Mean counts of large gulls within 100 m of Piping Plovers during the prenesting period, between the gullremoval and reference areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number plovers observed. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

**Table 7.** Percent of instantaneous observations of Piping Plovers with at least one gull present within 100 m during the prenesting period, between the gull 

 removal and reference areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of plovers observed. Chi 
 square tests were used to test for differences in proportions.

| Year Management<br>Area |     |                            | Plo    | ots Wit                  | h Large        | e Gulls             |               | Gree   | at Black        |                        | <u>ts With</u><br>d Gulls |               | <u>Plo</u> | ts With       | Herrir         | g Gulls                                          |               | Plots | With In         | nmatur         | e Gulls          |
|-------------------------|-----|----------------------------|--------|--------------------------|----------------|---------------------|---------------|--------|-----------------|------------------------|---------------------------|---------------|------------|---------------|----------------|--------------------------------------------------|---------------|-------|-----------------|----------------|------------------|
| <u>Alta</u>             | n   | Obs.<br>Value <sup>a</sup> | (%) V  | Exp.<br>alue             | (%)            | Partial $\chi^{2c}$ | Obs.<br>Value | (%)    | Exp.<br>Value   |                        | Partial $\chi^2$          | Obs.<br>Value | (%)        | Exp.<br>Value |                | $\begin{array}{c} Partial \\ \chi^2 \end{array}$ | Obs.<br>Value | (%)   | Exp.<br>Value   | (%)            | Partial $\chi^2$ |
| 1999                    |     |                            |        |                          |                |                     |               |        |                 |                        |                           |               |            |               |                |                                                  |               |       |                 |                |                  |
| Gull-removal            | 22  | 14                         | (64)   | 18                       | (82)           | 3.46                | 5             | (23)   | 14              | (64)                   | 14.52                     | 12            | (55)       | 12            | (55)           | 0.01                                             | 2             | (9)   | 3               | (14)           | 0.38             |
| Reference               | 81  | 68                         | (84)   | 64                       | (79)           | 0.94                | 59            | (73)   | 50              | (62)                   | 3.94                      | 43            | (53)       | 43            | (53)           | < 0.01                                           | 12            | (15)  | 11              | (14)           | 0.10             |
|                         |     |                            | df = 1 | $, \chi^2 = 2$           | 4.40, <i>P</i> | = 0.04              | d             | f=1,γ  | $\chi^2 = 18.4$ | <b>1</b> 7, <i>P</i> < | 0.0001                    |               | df=        | $1, \chi^2 =$ | 0.01, <i>I</i> | P = 0.90                                         |               | df=   | $1, \chi^2 = 0$ | ).48, <i>P</i> | = 0.49           |
| 2000                    |     |                            |        |                          |                |                     |               |        |                 |                        |                           |               |            |               |                |                                                  |               |       |                 |                |                  |
| Gull-removal            | 78  | 43                         | (55)   | 47                       | (60)           | 0.99                | 20            | (26)   | 30              | (38)                   | 5.83                      | 28            | (36)       | 22            | (28)           | 1.95                                             | 11            | (14)  | 10              | (13)           | 0.03             |
| Reference               | 176 | 111                        | (63)   | 107                      | (63)           | 0.44                | 79            | (45)   | 69              | (39)                   | 2.58                      | 45            | (26)       | 50            | (28)           | 0.86                                             | 23            | (13)  | 24              | (14)           | 0.02             |
|                         |     |                            | df = 1 | $, \chi^2 = 1$           | 1.43, <i>P</i> | = 0.23              |               | df = 1 | $1, \chi^2 = 8$ | .42, P                 | = 0.004                   |               | df=        | $1, \chi^2 =$ | 2.81, <i>P</i> | P = 0.09                                         |               | df=   | $1, \chi^2 = 0$ | 0.05, P        | = 0.82           |
| 1999-2000               |     |                            |        |                          |                |                     |               |        |                 |                        |                           |               |            |               |                |                                                  |               |       |                 |                |                  |
| Gull-removal            | 100 | 57                         | (57)   | 66                       | (66)           | 3.70                | 25            | (25)   | 46              | (46)                   | 17.20                     | 40            | (40)       | 36            | (36)           | 0.75                                             | 13            | (13)  | 13              | (13)           | 0.02             |
| Reference               | 257 | 179                        | (70)   | 170                      | (66)           | 1.44                | 138           | (54)   | 117             | (46)                   | 6.69                      | 88            | (34)       | 92            | (36)           | 0.29                                             | 35            | (14)  | 35              | (14)           | < 0.01           |
|                         |     |                            | df = 1 | , $\chi^2 = \frac{1}{2}$ | 5.14, <i>P</i> | = 0.02              | d             | f=1,γ  | $\chi^2 = 23.8$ | 39, <i>P</i> <         | 0.0001                    |               | df=        | 1, $\chi^2 =$ | 1.04, <i>I</i> | P = 0.31                                         |               | df=   | $1, \chi^2 = 0$ | 0.02, <i>P</i> | = 0.88           |

<sup>a</sup> Observed number of prenesting plovers with at least one gull present within 100 m. <sup>b</sup> Expected number of prenesting plovers with at least one gull present within 100 m. <sup>c</sup> Partial Chi-square for observed vs. expected values for each management area.

**Table 8.** Mean counts of large gulls within 100 m of Piping Plovers compared to mean counts of large gulls within 100 m of random points during the prenesting period, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of plovers observed or the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year  | Management<br>Area |     | Total Larg                    | ge Gulls |                                        | t Black-<br>ed Gulls | Herri          | ng Gulls  | Immatu         | re Gulls |
|-------|--------------------|-----|-------------------------------|----------|----------------------------------------|----------------------|----------------|-----------|----------------|----------|
|       | Alta               | n   | $\overline{x}$                | SE       | $\frac{\overline{back}}{\overline{x}}$ | SE                   | $\overline{x}$ | SE        | $\overline{x}$ | SE       |
| 1999  |                    |     |                               |          |                                        |                      |                |           |                |          |
| 1)))  | Gull-removal       |     |                               |          |                                        |                      |                |           |                |          |
|       | Piping Plovers     | 22  | 8.00                          | 3.77     | 0.41                                   | 0.20                 | 6.59           | 2.90      | 1.00           | 0.95     |
|       | Random Points      | 54  | 9.69                          | 2.41     | 2.72                                   | 0.70                 | 6.54           | 2.17      | 0.43           | 0.13     |
|       |                    |     | T = 0.13, I                   |          | T = -3.34, T                           |                      | T = 0.99,      |           | T = -0.32, T   |          |
|       | Reference          |     |                               |          | )                                      |                      |                |           | ,              |          |
|       | Piping Plovers     | 81  | 15.81                         | 3.64     | 5.58                                   | 1.04                 | 9.01           | 2.59      | 1.22           | 0.58     |
|       | Random Points      | 107 | 28.94                         | 2.67     | 22.41                                  | 2.06                 | 5.79           | 1.40      | 0.75           | 0.33     |
|       |                    | Т   | ′= <b>-</b> 17.28, <i>P</i> < | 0.0001   | <i>T</i> = -32.88, <i>P</i> <          | < 0.0001             | T = 0.06,      | P = 0.37  | T = 0.62, I    | P = 0.68 |
| 2000  |                    |     |                               |          |                                        |                      |                |           |                |          |
| 2000  | Gull-removal       |     |                               |          |                                        |                      |                |           |                |          |
|       | Piping Plovers     | 78  | 2.51                          | 0.45     | 0.55                                   | 0.12                 | 1.79           | 0.39      | 0.17           | 0.05     |
|       | Random Points      | 58  | 2.02                          | 0.47     | 0.93                                   | 0.22                 | 0.81           | 0.27      | 0.28           | 0.12     |
|       |                    |     | T = 0.20, I                   | p = 0.43 | T = -1.03, T                           | P = 0.12             | T = -2.22,     | P = 0.04  | T = 0.73, T    | P = 0.83 |
|       | Reference          |     |                               |          |                                        |                      |                |           |                |          |
|       | Piping Plovers     | 176 | 3.98                          | 1.19     | 1.42                                   | 0.39                 | 2.27           | 0.80      | 0.29           | 0.09     |
|       | Random Points      | 118 | 15.86                         | 2.01     | 9.94                                   | 1.14                 | 4.97           | 1.09      | 0.95           | 0.33     |
|       |                    | Т   | ′= <b>-</b> 47.57, <i>P</i> < | < 0.0001 | T = -64.70, P < -64.70                 | < 0.0001             | T = -10.01, P  | < 0.0001  | T = -2.71, I   | P = 0.02 |
| 1999- | 2000               |     |                               |          |                                        |                      |                |           |                |          |
|       | Gull-removal       |     |                               |          |                                        |                      |                |           |                |          |
|       | Piping Plovers     | 100 | 3.72                          | 0.92     | 0.52                                   | 0.11                 | 2.85           | 0.72      | 0.35           | 0.21     |
|       | Random Points      | 112 | 5.71                          | 1.24     | 1.79                                   | 0.36                 | 3.57           | 1.08      | 0.35           | 0.09     |
|       |                    |     | T = -0.82, I                  | P = 0.16 | T = -6.98, P =                         | = 0.0005             | T = 1.00,      | P = 1.00  | T = -0.48, I   | P = 0.21 |
|       | Reference          |     |                               |          |                                        |                      |                |           |                |          |
|       | Piping Plovers     | 257 | 7.71                          | 1.44     | 2.73                                   | 0.44                 | 4.39           | 1.00      | 0.58           | 0.19     |
|       | Random Points      | 225 | 22.08                         | 1.70     | 15.87                                  | 1.22                 | 5.36           | 0.88      | 0.85           | 0.23     |
|       |                    | Т   | = -66.66, <i>P</i> <          | 0.0001   | T = -95.51, P < -95.51                 | < 0.0001             | T = -5.36, P   | P = 0.002 | T = 0.02, T    | P = 0.36 |
|       |                    |     |                               |          |                                        |                      |                |           |                |          |

Table 9. Percent of instantaneous observations of Piping Plovers with at least one large gull present within 100 m compared to the percent of random points with at least one large gull present within 100 m, during the prenesting period, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of plovers observed or the number of random points. Chi-square tests were used to test for differences in proportions.

| <0.01 2   | (%) Exp. Partial<br>(%) Value (%) $\chi^2$<br>(9) 4 (18) 1.57                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | (9) 4 (18) 1 57                                                                                                                                                                                           |
|           | (9) 4 (18) 1.57                                                                                                                                                                                           |
|           | (9) 4 (18) 1.57                                                                                                                                                                                           |
| -0.01 12  | () 1 (10) 1.57                                                                                                                                                                                            |
| < 0.01 13 | (24) 11 (20) 0.64                                                                                                                                                                                         |
| p = 0.94  | $df = 1,  \chi^2 = 2.22,  P = 0.14$                                                                                                                                                                       |
|           |                                                                                                                                                                                                           |
| 0.63 12   | (15) 13 (16) 0.08                                                                                                                                                                                         |
| 0.48 18   | (17) 17 (16) 0.06                                                                                                                                                                                         |
| p = 0.29  | $df = 1, \chi^2 = 0.14, P = 0.71$                                                                                                                                                                         |
|           |                                                                                                                                                                                                           |
|           |                                                                                                                                                                                                           |
| 0.06 11   | (14) 11 (14) 0.02                                                                                                                                                                                         |
| 0.08 9    | (16) 9 (16) 0.03                                                                                                                                                                                          |
| p = 0.70  | $df = 1,  \chi^2 = 0.05,  P = 0.82$                                                                                                                                                                       |
|           |                                                                                                                                                                                                           |
| 10.55 23  | (13) 26 (15) 0.50                                                                                                                                                                                         |
| 15.73 21  | (18) 18 (15) 0.74                                                                                                                                                                                         |
| < 0.0001  | df = 1, $\chi^2$ = 1.24, P = 0.27                                                                                                                                                                         |
| D =       | $\begin{array}{cccc} 0.63 & 12 \\ 0.48 & 18 \\ = 0.29 \\ \end{array}$ $\begin{array}{cccc} 0.06 & 11 \\ 0.08 & 9 \\ = 0.70 \\ \end{array}$ $\begin{array}{ccccc} 10.55 & 23 \\ 15.73 & 21 \\ \end{array}$ |

# Continued.

<sup>a</sup> Observed number of random points and prenesting plovers with at least one gull present within 100 m.

<sup>b</sup> Expected number of random points and prenesting plovers with at least one gull present within 100 m. <sup>c</sup> Partial Chi-square for observed vs. expected values for Piping Plovers or Random Points.

Table 9, Continued. Percent of instantaneous observations of Piping Plovers with at least one large gull present within 100 m compared to the percent of random points with at least one large gull present within 100 m, during the prenesting period, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of plovers observed or the number of random points. Chi-square tests were used to test for differences in proportions.

| Year, Management Area |     |                            | Ī    | Plots Wi                   | th Larg | e Gulls                                             |               | Gre    | at Black        |                | t <u>s With</u><br>d Gulls |               | Plo   | ts With       | Herrin         | <u>g Gulls</u>                                   |               | Plots | With In       | nmatur  | re Gulls                                         |
|-----------------------|-----|----------------------------|------|----------------------------|---------|-----------------------------------------------------|---------------|--------|-----------------|----------------|----------------------------|---------------|-------|---------------|----------------|--------------------------------------------------|---------------|-------|---------------|---------|--------------------------------------------------|
|                       | n   | Obs.<br>Value <sup>a</sup> | (%)  | Exp.<br>Value <sup>b</sup> | (%)     | $\begin{array}{c} Partial \\ \chi^{2c} \end{array}$ | Obs.<br>Value | (%)    | Exp.<br>Value   |                | Partial $\chi^2$           | Obs.<br>Value | (%)   | Exp.<br>Value | (%)            | $\begin{array}{c} Partial \\ \chi^2 \end{array}$ | Obs.<br>Value | (%)   | Exp.<br>Value | (%)     | $\begin{array}{c} Partial \\ \chi^2 \end{array}$ |
| 1999-2000             |     |                            |      |                            |         |                                                     |               |        |                 |                |                            |               |       |               |                |                                                  |               |       |               |         |                                                  |
| Gull-removal          |     |                            |      |                            |         |                                                     |               |        |                 |                |                            |               |       |               |                |                                                  |               |       |               |         |                                                  |
| Piping Plovers        | 100 | 57                         | (57) | 62                         | (62)    | 1.18                                                | 25            | (25)   | 35              | (35)           | 4.71                       | 40            | (40)  | 42            | (42)           | 0.16                                             | 13            | (13)  | 17            | (17)    | 0.89                                             |
| Random Points         | 112 | 75                         | (67) | 70                         | (63)    | 1.05                                                | 50            | (45)   | 40              | (36)           | 4.21                       | 49            | (44)  | 47            | (42)           | 0.14                                             | 22            | (20)  | 18            | (16)    | 0.80                                             |
|                       |     |                            | df=  | $= 1, \chi^2 =$            | 2.23, F | P = 0.14                                            |               | df = 1 | $1, \chi^2 = 8$ | .92, P =       | = 0.003                    |               | df=   | $1, \chi^2 =$ | 0.31, P        | 9 = 0.58                                         |               | df=   | $1, \chi^2 =$ | 1.69, P | P = 0.19                                         |
| Reference             |     |                            |      |                            |         |                                                     |               |        |                 |                |                            |               |       |               |                |                                                  |               |       |               |         |                                                  |
| Piping Plovers        | 257 | 179                        | (70) | 210                        | (82)    | 25.18                                               | 138           | (54)   | 182             | (71)           | 36.10                      | 88            | (34)  | 116           | (45)           | 12.52                                            | 35            | (14)  | 39            | (15)    | 0.59                                             |
| Random Points         | 225 | 215                        | (96) | 184                        | (82)    | 28.76                                               | 203           | (90)   | 159             | (71)           | 41.24                      | 130           | (58)  | 102           | (45)           | 14.30                                            | 39            | (17)  | 35            | (16)    | 0.68                                             |
|                       |     | d                          | f=1, | $\chi^2 = 53.9$            | 95, P < | 0.0001                                              | d             | f=1, ; | $\chi^2 = 77.3$ | 34, <i>P</i> < | 0.0001                     | d             | f=1,γ | $x^2 = 26.8$  | 83, <i>P</i> < | 0.0001                                           |               | df=   | $1, \chi^2 =$ | 1.27, P | P = 0.26                                         |

<sup>a</sup> Observed number of random points and prenesting plovers with at least one gull present within 100 m.

<sup>b</sup> Expected number of random points and prenesting plovers with at least one gull present within 100 m. <sup>c</sup> Partial Chi-square for observed vs. expected values for Piping Plovers or Random Points.

| <u>Iabitat</u> | Year         |    | Ocean-side         | Transects     |    | Sound-side         | e Transects |
|----------------|--------------|----|--------------------|---------------|----|--------------------|-------------|
|                |              | n  | $\overline{X}$ (m) | SE            | n  | $\overline{x}$ (m) | SE          |
| ntertidal Zone |              |    |                    |               |    |                    |             |
|                | 1999         | 55 | 19.89              | 2.41          | 60 | 33.20              | 10.85       |
|                | 2000         | 71 | 22.00              | 2.36          | 67 | 40.00              | 13.61       |
|                |              |    |                    | P = 0.12      |    |                    | 6, P = 1.00 |
| Fresh Wrack    |              |    |                    |               |    |                    |             |
|                | 1999         | 55 | 0.60               | 0.37          | 60 | 1.45               | 0.43        |
|                | 2000         | 71 | 0.89               | 0.21          | 67 | 2.02               | 0.29        |
|                |              |    | T = -3.10          | ), $P = 0.02$ |    | T = -4.52,         | P = 0.005   |
| Backshore      |              |    |                    |               |    |                    |             |
|                | 1999         | 55 | 28.96              | 3.36          | 60 | 10.33              | 1.96        |
|                | 2000         | 71 | 23.66              | 2.13          | 67 | 13.88              | 2.10        |
|                |              |    | T = -0.72          | P = 0.17      |    | T = -0.6           | 3, P = 0.18 |
| Old Wrack      |              |    |                    |               |    |                    |             |
|                | 1999         | 55 | 0.20               | 0.09          | 60 | 2.67               | 0.30        |
|                | 2000         | 71 | 0.86               | 0.17          | 67 | 2.78               | 0.35        |
|                |              |    | T = -6.60, I       | P = 0.0009    |    | T = 0.8            | 0, P = 0.86 |
| Open Vegetatio | on           |    |                    |               |    |                    |             |
|                | 1999         | 55 | 15.71              | 1.93          | 60 | 5.13               | 1.32        |
|                | 2000         | 71 | 13.26              | 1.23          | 67 | 6.92               | 1.40        |
|                |              |    | T = 0.24           | 4, $P = 0.26$ |    | T = -0.1           | 1, P = 0.31 |
| idal Pond Inte | ertidal Zone |    |                    |               |    |                    |             |
|                | 1999         |    |                    |               | 60 | 10.16              | 4.84        |
|                | 2000         |    |                    |               | 67 | 5.17               | 1.63        |
|                |              |    |                    |               |    | T = 0.1            | 4, P = 0.31 |

**Table 10.** Mean width (m) of foraging habitats measured along random transects, among years, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| 'ear | <u>Habitat</u> | Management    |    | Ocean-side 7       | Transects <sup>a</sup> |    | Sound-side         | e Transects <sup>b</sup> |
|------|----------------|---------------|----|--------------------|------------------------|----|--------------------|--------------------------|
|      |                | Area          | n  | $\overline{x}$ (m) | SE                     | n  | $\overline{X}$ (m) | SE                       |
| 999  |                |               |    |                    |                        |    |                    |                          |
| ,,,  | Intertidal Zon | e             |    |                    |                        |    |                    |                          |
|      |                | Gull-removal  | 27 | 34.60 A            | 7.65                   | 32 | 111.54 A           | 25.45                    |
|      |                | Buffer        | 34 | 19.20 в            | 1.82                   | 24 | 115.50 A           | 34.42                    |
|      |                | Reference     | 59 | 17.34 В            | 1.21                   | 65 | 9.69               | в 3.08                   |
|      |                |               |    | T = -4.39,         | P = 0.002              |    | T = -15.46,        | <i>P</i> < 0.0001        |
|      | Fresh Wrack    |               |    |                    |                        |    |                    |                          |
|      |                | Gull-removal  | 27 | 0.57               | 0.24                   | 32 | 0.39               | в 0.16                   |
|      |                | Buffer        | 34 | 0.10               | 0.06                   | 24 | 1.35 A             | 0.39                     |
|      |                | Reference     | 59 | 0.49               | 0.34                   | 65 | 1.44 A             | 0.42                     |
|      |                |               |    | T = -0.98          |                        |    |                    | P = 0.01                 |
|      | Backshore      |               |    |                    |                        |    |                    |                          |
|      |                | Gull-removal  | 27 | 34.83 A            | 6.73                   | 32 | 3.37               | B 0.68                   |
|      |                | Buffer        | 34 | 27.64 в            | 1.85                   | 24 | 1.43               | C 0.49                   |
|      |                | Reference     | 59 | 23.85 A            | 2.70                   | 65 | 10.34 A            | 1.80                     |
|      |                |               |    | T = -4.63,         | P = 0.002              |    | T = -10.59,        | <i>P</i> < 0.0001        |
|      |                |               |    |                    |                        |    |                    |                          |
|      | Old Wrack      |               |    |                    |                        |    |                    |                          |
|      |                | Gull-removal  | 27 | 0.19               | 0.09                   | 32 | 0.55               | C 0.11                   |
|      |                | Buffer        | 34 | 0.06               | 0.04                   | 24 | 6.96 A             | 2.45                     |
|      |                | Reference     | 59 | 0.21               | 0.08                   | 65 |                    | в 0.26                   |
|      |                |               |    | T = 0.26           | , P = 0.49             |    | T = -21.84,        | <i>P</i> < 0.0001        |
|      | Open Vegetat   | ion           |    |                    |                        |    |                    |                          |
|      |                | Gull-removal  | 27 | 15.93 AB           | 2.65                   | 32 | 2.16               | в 0.75                   |
|      |                | Buffer        | 34 | 21.56 A            | 2.62                   | 24 | 0.20               | C 0.14                   |
|      |                | Reference     | 59 | 13.43 В            | 1.57                   | 65 | 6.39 A             | 1.29                     |
|      |                |               |    | T = -2.41          | P = 0.03               |    | T = -9.28,         | <i>P</i> < 0.0001        |
|      | Tidal Pond In  | tertidal Zone |    |                    |                        |    |                    |                          |
|      |                | Gull-removal  |    |                    |                        | 32 | 2.91               | 2.11                     |
|      |                | Buffer        |    |                    |                        | 24 | 0.19               | 0.19                     |
|      |                | Reference     |    |                    |                        | 65 | 9.38               | 4.48                     |
|      |                |               |    |                    |                        |    | T = -0.8           | B1, P = 0.17             |

**Table 11.** Mean width (m) of foraging habitats measured along random transects, among the management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means with the same letters were not significantly different (P < 0.05).

Continued.

<sup>a</sup> All beach area east of the northernmost tip and southernmost tip of South Monomoy Island.

<sup>b</sup> All beach area west of the northernmost tip and southernmost tip of South Monomoy Island.

| Year | Habitat        | Management    |    | Ocean-side Tr      | ansects <sup>a</sup> |    | Sound-side T       | ransectsb |
|------|----------------|---------------|----|--------------------|----------------------|----|--------------------|-----------|
|      |                | Area          | n  | $\overline{X}$ (m) | SE                   | n  | $\overline{x}$ (m) | SE        |
| 2000 |                |               |    |                    |                      |    |                    |           |
| 2000 | Intertidal Zon | e             |    |                    |                      |    |                    |           |
|      |                | Gull-removal  | 23 | 28.35              | 6.58                 | 32 | 112.26 A           | 28.73     |
|      |                | Buffer        | 28 | 24.43              | 2.37                 | 28 | 178.83 A           | 41.56     |
|      |                | Reference     | 57 | 20.36              | 1.40                 | 56 | 6.25 B             | 0.62      |
|      |                |               |    | T = -0.10, I       | p = 0.36             |    | T = -16.26, P      | < 0.0001  |
|      | Fresh Wrack    |               |    |                    |                      |    |                    |           |
|      | 110011 ((10011 | Gull-removal  | 23 | 0.78               | 0.42                 | 32 | 0.50 B             | 0.19      |
|      |                | Buffer        | 28 | 1.04               | 0.32                 | 28 | 3.22 A             | 0.91      |
|      |                | Reference     | 57 | 0.90               | 0.25                 | 56 | 2.30 A             | 0.33      |
|      |                |               |    | T = 0.37, I        | P = 0.55             |    | T = -10.98, P      | < 0.0001  |
|      | Backshore      |               |    |                    |                      |    |                    |           |
|      |                | Gull-removal  | 23 | 31.43 A            | 6.26                 | 32 | 4.53 B             | 0.66      |
|      |                | Buffer        | 28 | <b>19.90</b> В     | 1.98                 | 28 | 1.92 C             | 0.43      |
|      |                | Reference     | 57 | 23.43 В            | 1.73                 | 56 | 18.04 A            | 2.49      |
|      |                |               |    | T = -3.17, I       | p = 0.01             |    | T = -17.75, P      | < 0.0001  |
|      | Old Wrack      |               |    |                    |                      |    |                    |           |
|      |                | Gull-removal  | 23 | 1.00               | 0.26                 | 32 | 1.26 C             | 0.21      |
|      |                | Buffer        | 28 | 3.45               | 1.48                 | 28 | 4.21 B             | 0.36      |
|      |                | Reference     | 57 | 0.91               | 0.20                 | 56 | 3.40 A             | 0.42      |
|      |                |               |    | T = -1.71, I       | P = 0.07             |    | T = -13.74, P      | < 0.0001  |
|      | Open Vegetat   | tion          |    |                    |                      |    |                    |           |
|      |                | Gull-removal  | 23 | 19.15 AB           | 2.43                 | 32 | 1.49 B             | 0.76      |
|      |                | Buffer        | 28 | 27.35 A            | 8.83                 | 28 | 3.55 B             | 1.64      |
|      |                | Reference     | 57 | 13.50 B            | 1.46                 | 56 | 7.91 A             | 1.48      |
|      |                |               |    | T = -2.86, I       | P = 0.02             |    | T = -6.10, P       | = 0.0005  |
|      | Tidal Pond In  | tertidal Zone |    |                    |                      |    |                    |           |
|      |                | Gull-removal  |    |                    |                      | 32 | 0.00 B             | 0.00      |
|      |                | Buffer        |    |                    |                      | 28 | 0.91 B             | 0.70      |
|      |                | Reference     |    |                    |                      | 56 | 8.80 A             | 2.29      |
|      |                |               |    |                    |                      |    | T = -6.89, P       | = 0.0002  |

**Table 11, Continued.** Mean width (m) of foraging habitats measured along random transects, among the management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means with the same letters were not significantly different (P < 0.05).

# Continued.

<sup>a</sup> All beach area east of the northernmost tip and southernmost tip of South Monomoy Island.

<sup>b</sup> All beach area west of the northernmost tip and southernmost tip of South Monomoy Island.

| Year   | Habitat        | Management     |     | Ocean-side T       | ransects <sup>a</sup> |     | Sound-side Tr                 | ansects  |
|--------|----------------|----------------|-----|--------------------|-----------------------|-----|-------------------------------|----------|
|        |                | <u>Area</u>    | n   | $\overline{X}$ (m) | SE                    | n   | $\overline{x}$ (m)            | SE       |
| 1999-2 | 2000           |                |     |                    |                       |     |                               |          |
|        | Intertidal Zor | ne             |     |                    |                       |     |                               |          |
|        |                | Gull-removal   | 50  | 31.72 A            | 5.09                  | 64  | 111.90 A                      | 19.04    |
|        |                | Buffer         | 62  | 21.56 B            | 1.49                  | 52  | 149.60 A                      | 27.54    |
|        |                | Reference      | 116 | 18.82 B            | 0.93                  | 121 | 8.10 B                        | 1.68     |
|        |                |                |     | T = -5.09, F       | P = 0.001             |     | <i>T</i> = -32.59, <i>P</i> < | < 0.000  |
|        | Fresh Wrack    |                |     |                    |                       |     |                               |          |
|        |                | Gull-removal   | 50  | 0.67               | 0.23                  | 64  | 0.45 B                        | 0.12     |
|        |                | Buffer         | 62  | 0.53               | 0.16                  | 52  | 2.36 A                        | 0.53     |
|        |                | Reference      | 116 | 0.69               | 0.21                  | 121 | 1.84 A                        | 0.28     |
|        |                |                |     | T = 0.94,          | P = 0.89              |     | <i>T</i> = -12.90, <i>P</i> < | < 0.0001 |
|        | Backshore      |                |     |                    |                       |     |                               |          |
|        |                | Gull-removal   | 50  | 33.26 A            | 4.60                  | 64  | 3.95 В                        | 0.48     |
|        |                | Buffer         | 62  | 24.14 B            | 1.43                  | 52  | 1.69 C                        | 0.32     |
|        |                | Reference      | 116 | 23.65 C            | 1.61                  | 121 | 13.90 A                       | 1.5      |
|        |                |                |     | T = -6.45, P       | = 0.0003              |     | T = -26.23, P <               | < 0.0001 |
|        | Old Wrack      |                |     |                    |                       |     |                               |          |
|        |                | Gull-removal   | 50  | 0.56               | 0.14                  | 64  | 0.90 C                        | 0.13     |
|        |                | Buffer         | 62  | 1.59               | 4.21                  | 52  | 5.48 A                        | 1.1:     |
|        |                | Reference      | 116 | 0.55               | 0.11                  | 121 | 3.11 B                        | 0.24     |
|        |                |                |     | T = -0.45,         | P = 0.25              |     | <i>T</i> = -35.27, <i>P</i> < | < 0.0001 |
|        | Open Vegeta    | tion           |     |                    |                       |     |                               |          |
|        |                | Gull-removal   | 50  | 17.41 AB           | 1.81                  | 64  | 1.82 B                        | 0.53     |
|        |                | Buffer         | 62  | 24.17 A            | 4.21                  | 52  | 2.01 B                        | 0.91     |
|        |                | Reference      | 116 | 13.46 B            | 1.07                  | 121 | 7.09 A                        | 0.97     |
|        |                |                |     | T = -5.50, F       | P = 0.001             |     | <i>T</i> = -12.74, <i>P</i> < | < 0.0001 |
|        | Tidal Pond Ir  | ntertidal Zone |     |                    |                       |     |                               |          |
|        |                | Gull-removal   |     |                    |                       | 64  | 1.46 B                        | 1.06     |
|        |                | Buffer         |     |                    |                       | 52  | 0.57 B                        | 0.38     |
|        |                | Reference      |     |                    |                       | 121 | 9.11 A                        | 2.62     |
|        |                |                |     |                    |                       |     | T = -5.79, P =                | = 0.0008 |

**Table 11, Continued.** Mean width (m) of foraging habitats measured along random transects, among the management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means with the same letters were not significantly different (P < 0.05).

<sup>a</sup> All beach area east of the northernmost tip and southernmost tip of South Monomoy Island.

<sup>b</sup> All beach area west of the northernmost tip and southernmost tip of South Monomoy Island.

**Table 12.** Prenesting Piping Plover habitat use (%) between years by foraging, nonforaging, and plovers in all behaviors during the prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the total number of plovers observed in each behavior group. Chi-square tests were used to test for differences in proportions of use between years.

| Behavior, Habitat          |                              |        | 1999                     |            |                      |                         |        | 2000        |        |                  |
|----------------------------|------------------------------|--------|--------------------------|------------|----------------------|-------------------------|--------|-------------|--------|------------------|
|                            | Observed<br>Use <sup>a</sup> | (%)    | Exp.<br>Use <sup>b</sup> | (%)        | Partial $\chi^{2 c}$ | Observed<br>Use         | (%)    | Exp.<br>Use | (%)    | Partial $\chi^2$ |
| Foraging Plovers           | n = 113                      |        |                          |            |                      | n = 162                 |        |             |        |                  |
| Ocean Intertidal Zone      | 0                            | (0.0)  | 2                        | (1.8)      | 2.47                 | 6                       | (3.7)  | 4           | (2.5)  | 1.72             |
| Ocean Backshore            | 0                            | (0.0)  | 1                        | (0.9)      | 0.82                 | 2                       | (1.2)  | 1           | (0.6)  | 0.57             |
| Sound Intertidal Zone      | 38                           | (33.6) | 38                       | (33.6)     | < 0.01               | 55                      | (34.0) | 55          | (34.0) | < 0.01           |
| Sound Fresh Wrack          | 2                            | (1.8)  | 8                        | (7.1)      | 4.32                 | 17                      | (10.5) | 11          | (6.8)  | 3.01             |
| Sound Backshore            | 1                            | (0.9)  | 3                        | (2.7)      | 1.22                 | 6                       | (3.7)  | 4           | (2.5)  | 0.85             |
| Sound Old Wrack            | 0                            | (0.0)  | 0                        | (0.0)      | 0.41                 | 1                       | (0.6)  | 1           | (0.6)  | 0.29             |
| Tidal Pond Intertidal Zone | 72                           | (63.7) | 60                       | (53.1)     | 2.23                 | 75                      | (46.3) | 87          | (53.7) | 1.55             |
|                            |                              | ( )    | 1                        | · · · ·    |                      | 19.47, <i>P</i> = 0.0   |        |             |        |                  |
|                            | 140                          |        |                          |            |                      | 100                     |        |             |        |                  |
| Nonforaging Plovers        | n = 148                      | (1, 4) | 2                        | (1.4)      | <0.01                | n = 408                 | (1, 5) | (           | (1.5)  | <0.01            |
| Ocean Intertidal Zone      | 2                            | (1.4)  | 2                        | (1.4)      | < 0.01               | 6                       | (1.5)  | 6           | (1.5)  | < 0.01           |
| Ocean Fresh Wrack          | 0                            | (0.0)  | 1                        | (0.7)      | 1.06                 | 4                       | (1.0)  | 3           | (0.7)  | 0.39             |
| Ocean Backshore            | 37                           | (25.0) | 42                       | (28.4)     | 0.55                 | 120                     | (29.4) | 115         | (28.2) | 0.20             |
| Ocean Old Wrack            | 0                            | (0.0)  | 1                        | (0.7)      | 0.80                 | 3                       | (0.7)  | 2           | (0.5)  | 0.29             |
| Ocean Open Vegetation      | 0                            | (0.0)  | 4                        | (2.7)      | 3.73                 | 14                      | (3.4)  | 10          | (2.5)  | 1.35             |
| Sound Intertidal Zone      | 12                           | (8.1)  | 8                        | (5.4)      | 2.37                 | 17                      | (4.2)  | 21          | (5.1)  | 0.86             |
| Sound Fresh Wrack          | 0                            | (0.0)  | 2                        | (1.4)      | 1.60                 | 6                       | (1.5)  | 4           | (1.0)  | 0.58             |
| Sound Backshore            | 81                           | (54.7) | 76                       | (51.4)     | 0.35                 | 204                     | (50.0) | 209         | (51.2) | 0.13             |
| Sound Old Wrack            | 2                            | (1.4)  | 5                        | (3.4)      | 1.41                 | 15                      | (3.7)  | 12          | (2.9)  | 0.51             |
| Sound Open Vegetation      | 0                            | (0.0)  | 1                        | (0.7)      | 1.33                 | 5                       | (1.2)  | 4           | (1.0)  | 0.48             |
| Tidal Pond Intertidal Zone | 14                           | (9.5)  | 7                        | (4.7)      | 5.75                 | 14                      | (3.4)  | 21          | (5.1)  | 2.09             |
|                            |                              |        | n                        | n = 556, d | $f = 10, \chi^2 =$   | = 25.83, <i>P</i> = 0.0 | )04    |             |        |                  |
| Plovers In All Behaviors   | n = 261                      |        |                          |            |                      | n = 570                 |        |             |        |                  |
| Ocean Intertidal Zone      | 2                            | (0.8)  | 4                        | (1.5)      | 1.31                 | 12                      | (2.1)  | 10          | (1.8)  | 0.60             |
| Ocean Fresh Wrack          | 0                            | (0.0)  | 1                        | (0.4)      | 1.26                 | 4                       | (0.7)  | 3           | (0.5)  | 0.58             |
| Ocean Backshore            | 37                           | (14.2) | 50                       | (19.2)     | 3.35                 | 122                     | (21.4) | 109         | (19.1) | 1.54             |
| Ocean Old Wrack            | 0                            | (0.0)  | 1                        | (0.4)      | 0.94                 | 3                       | (0.5)  | 2           | (0.4)  | 0.43             |
| Ocean Open Vegetation      | 0                            | (0.0)  | 4                        | (1.5)      | 4.40                 | 14                      | (2.5)  | 10          | (1.8)  | 2.01             |
| Sound Intertidal Zone      | 50                           | (19.2) | 38                       | (14.6)     | 3.56                 | 72                      | (12.6) | 84          | (14.7) | 1.63             |
| Sound Fresh Wrack          | 2                            | (0.8)  | 8                        | (3.1)      | 4.36                 | 23                      | (4.0)  | 17          | (3.0)  | 2.00             |
| Sound Backshore            | 82                           | (31.4) | 92                       | (35.2)     | 1.03                 | 210                     | (36.8) | 200         | (35.1) | 0.47             |
| Sound Old Wrack            | 2                            | (0.8)  | 6                        | (2.3)      | 2.36                 | 16                      | (2.8)  | 12          | (2.1)  | 1.08             |
| Sound Open Vegetation      | 0                            | (0.0)  | 2                        | (0.8)      | 1.57                 | 5                       | (0.9)  | 3           | (0.5)  | 0.72             |
| Tidal Pond Intertidal Zone | 86                           | (33.0) | 55                       | (21.1)     | 17.53                | 89                      | (15.6) | 120         | (21.1) | 8.02             |
|                            | 50                           | (22.0) |                          |            |                      | 60.74, <i>P</i> < 0.0   |        | 120         | (=1.1) | 5.02             |

<sup>a</sup> Observed number of prenesting plovers within the habitat.

<sup>b</sup> Expected number of prenesting plovers within the habitat.

**Table 13.** Prenesting Piping Plover habitat use (%) between the management areas by foraging, nonforaging, and plovers in all behaviors during the prenesting period, by year, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the total number of plovers observed in each behavior group. Prenesting plovers were observed in all habitats included in analyses. Chi-square tests were used to test for differences in proportions between the management areas.

| Year, Behavior, Habitat        |                              | Gull-r  | emoval A                 | Area      |                      |                       | Refe    | rence Ar    | ea     |             |
|--------------------------------|------------------------------|---------|--------------------------|-----------|----------------------|-----------------------|---------|-------------|--------|-------------|
|                                | Observed<br>Use <sup>a</sup> | (%)     | Exp.<br>Use <sup>b</sup> | (%)       | Partial $\chi^{2c}$  | Observed<br>Use       | (%)     | Exp.<br>Use | (%)    | Partia<br>χ |
| 1999, Foraging Plovers         | n = 35                       |         |                          |           |                      | n = 78                |         |             |        |             |
| Sound Intertidal Zone          | 35                           | (100.0) | 12                       | (34.3)    | 45.85                | 3                     | (3.8)   | 26          | (33.3) | 20.57       |
| Sound Fresh Wrack              | 0                            | (0.0)   | 1                        | (2.9)     | 0.62                 | 2                     | (2.6)   | 1           | (1.3)  | 0.28        |
| Sound Backshore                | 0                            | (0.0)   | 0                        | (0.0)     | 0.31                 | 1                     | (1.3)   | 1           | (1.3)  | 0.14        |
| Tidal Pond Intertidal Zone     | 0                            | (0.0)   | 22                       | (62.9)    | 22.30                | 72                    | (92.3)  | 50          | (64.1) | 10.01       |
|                                |                              |         | n =                      | = 113, df | $=3, \chi^2 = 10$    | 00.08, P < 0.00       | 01      |             |        |             |
| 1999, Nonforaging Plovers      | n = 29                       |         |                          |           |                      | n = 119               |         |             |        |             |
| Ocean Intertidal Zone          | 2                            | (6.9)   | 0                        | (0.0)     | 6.60                 | 0                     | (0.0)   | 2           | (1.7)  | 1.61        |
| Ocean Backshore                | 23                           | (79.3)  | 7                        | (24.1)    | 34.22                | 14                    | (11.8)  | 30          | (25.2) | 8.34        |
| Sound Intertidal Zone          | 3                            | (10.3)  | 2                        | (6.9)     | 0.18                 | 9                     | (7.6)   | 10          | (8.4)  | 0.04        |
| Sound Backshore                | 1                            | (3.4)   | 16                       | (55.2)    | 13.94                | 80                    | (67.2)  | 65          | (54.6) | 3.40        |
| Sound Old Wrack                | 0                            | (0.0)   | 0                        | (0.0)     | 0.39                 | 2                     | (1.7)   | 2           | (1.7)  | 0.10        |
| Tidal Pond Intertidal Zone     | 0                            | (0.0)   | 3                        | (10.3)    | 2.74                 | 14                    | (11.87) | 11          | (9.2)  | 0.6         |
|                                |                              |         | n                        | = 148, df | $f = 5, \chi^2 = 72$ | 2.21, P < 0.000       | 01      |             |        |             |
| 1999, Plovers In All Behaviors | n = 64                       |         |                          |           |                      | n = 197               |         |             |        |             |
| Ocean Intertidal Zone          | 2                            | (3.1)   | 0                        | (0.0)     | 4.65                 | 0                     | (0.0)   | 2           | (1.0)  | 1.5         |
| Ocean Backshore                | 23                           | (35.9)  | 9                        | (14.1)    | 21.38                | 14                    | (7.1)   | 28          | (14.2) | 6.95        |
| Sound Intertidal Zone          | 38                           | (59.4)  | 12                       | (18.8)    | 54.26                | 12                    | (6.1)   | 38          | (19.3) | 17.50       |
| Sound Fresh Wrack              | 0                            | (0.0)   | 0                        | (0.0)     | 0.49                 | 2                     | (1.0)   | 2           | (1.0)  | 0.10        |
| Sound Backshore                | 1                            | (1.6)   | 20                       | (31.3)    | 18.2                 | 81                    | (41.1)  | 62          | (31.5) | 5.90        |
| Sound Old Wrack                | 0                            | (0.0)   | 0                        | (0.0)     | 0.49                 | 2                     | (1.0)   | 2           | (1.0)  | 0.10        |
| Tidal Pond Intertidal Zone     | 0                            | (0.0)   | 21                       | (32.8)    | 21.09                | 86                    | (43.7)  | 65          | (33.0) | 6.8         |
|                                |                              |         | n =                      | = 261, df | $= 6, \chi^2 = 15$   | 9.37, <i>P</i> < 0.00 | 01      |             |        |             |

## Continued.

<sup>a</sup> Observed number of prenesting plovers within the habitat.

<sup>b</sup> Expected number of prenesting plovers within the habitat.

Table 13, Continued. Prenesting Piping Plover habitat use (%) between the management areas by foraging, nonforaging, and plovers in all behaviors during the prenesting period, by year, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the total number of plovers observed in each behavior group. Prenesting plovers were observed in all habitats included in analyses. Chi-square tests were used to test for differences in proportions between the management areas.

| Year, Behavior, Habitat        | <u>(</u>                     | Gull-remo | val Area                 | L         |                    |                        | Reference | e Area      |        |                           |
|--------------------------------|------------------------------|-----------|--------------------------|-----------|--------------------|------------------------|-----------|-------------|--------|---------------------------|
|                                | Observed<br>Use <sup>a</sup> | (%)       | Exp.<br>Use <sup>b</sup> | (%)       | Partial            | Observed<br>Use        | (%)       | Exp.<br>Use | (%)    | Partial<br>χ <sup>2</sup> |
|                                | 0.50                         | (70)      | 0.50                     | (70)      | λ                  | 0.50                   | (70)      | 0.50        | (70)   | λ                         |
| 2000, Foraging Plovers         | n = 52                       |           |                          |           |                    | n = 110                |           |             |        |                           |
| Ocean Intertidal Zone          | 0                            | (0.0)     | 2                        | (3.8)     | 1.93               | 6                      | (5.5)     | 4           | (3.6)  | 0.91                      |
| Ocean Backshore                | 2                            | (3.8)     | 1                        | (1.9)     | 2.87               | 0                      | (0.0)     | 1           | (0.9)  | 1.36                      |
| Sound Intertidal Zone          | 48                           | (92.3)    | 18                       | (34.6)    | 52.16              | 7                      | (6.4)     | 37          | (33.6) | 24.66                     |
| Sound Fresh Wrack              | 0                            | (0.0)     | 5                        | (9.6)     | 5.46               | 17                     | (15.5)    | 12          | (10.9) | 2.58                      |
| Sound Backshore                | 2                            | (3.8)     | 2                        | (3.8)     | < 0.01             | 4                      | (3.6)     | 4           | (3.6)  | < 0.0                     |
| Sound Old Wrack                | 0                            | (0.0)     | 0                        | (0.0)     | 0.32               | 1                      | (0.9)     | 1           | (0.9)  | 0.15                      |
| Tidal Pond Intertidal Zone     | 0                            | (0.0)     | 24                       | (46.2)    | 24.07              | 75                     |           | 51          | (46.4) | 11.38                     |
|                                |                              |           | n =                      | = 162, df | $= 6, \chi^2 = 1$  | 27.85, <i>P</i> < 0.00 | 01        |             |        |                           |
| 2000, Nonforaging Plovers      | n = 116                      |           |                          |           |                    | n = 292                |           |             |        |                           |
| Ocean Intertidal Zone          | 5                            | (4.3)     | 2                        | (1.7)     | 6.36               | 1                      | (0.3)     | 4           | (1.4)  | 2.53                      |
| Ocean Fresh Wrack              | 4                            | (3.4)     | 1                        | (0.9)     | 7.21               | 0                      | (0.0)     | 3           | (1.0)  | 2.86                      |
| Ocean Backshore                | 86                           | (74.1)    | 34                       | (29.3)    | 78.90              | 34                     | (11.6)    | 86          | (29.5) | 31.34                     |
| Ocean Old Wrack                | 0                            | (0.0)     | 1                        | (0.9)     | 0.85               | 3                      | (1.0)     | 2           | (0.7)  | 0.34                      |
| Ocean Open Vegetation          | 9                            | (7.8)     | 4                        | (3.4)     | 6.33               | 5                      | (1.7)     | 10          | (3.4)  | 2.5                       |
| Sound Intertidal Zone          | 8                            | (6.9)     | 5                        | (4.3)     | 2.07               | 9                      | (3.1)     | 12          | (4.1)  | 0.82                      |
| Sound Fresh Wrack              | 0                            | (0.0)     | 2                        | (1.7)     | 1.71               | 6                      | (2.1)     | 4           | (1.4)  | 0.68                      |
| Sound Backshore                | 2                            | (1.7)     | 58                       | (50.0)    | 54.07              | 202                    | (69.2)    | 146         | (50.0) | 21.48                     |
| Sound Old Wrack                | 2                            | (1.7)     | 4                        | (3.4)     | 1.20               | 13                     | (4.5)     | 11          | (3.8)  | 0.48                      |
| Sound Open Vegetation          | 0                            | (0.0)     | 1                        | (0.9)     | 1.42               | 5                      | (1.7)     | 4           | (1.4)  | 0.56                      |
| Tidal Pond Intertidal Zone     | 0                            | (0.0)     | 4                        | (3.4)     | 3.98               | 14                     | (4.8)     | 10          | (3.4)  | 1.58                      |
|                                |                              |           | n =                      | 408, df   | = 10, $\chi^2 = 2$ | 229.29, $P < 0.00$     | 001       |             |        |                           |
| 2000, Plovers In All Behaviors | n = 168                      |           |                          |           |                    | n = 402                |           |             |        |                           |
| Ocean Intertidal Zone          | 5                            | (3.0)     | 4                        | (2.4)     | 3.54               | 7                      | (1.7)     | 8           | (2.0)  | 0.25                      |
| Ocean Fresh Wrack              | 4                            | (2.4)     | 1                        | (0.6)     | 6.75               | 0                      | (0.0)     | 3           | (0.7)  | 2.82                      |
| Ocean Backshore                | 88                           | (52.4)    | 36                       | (21.4)    | 75.32              | 34                     | (8.5)     | 86          | (21.4) | 31.48                     |
| Ocean Old Wrack                | 0                            | (0.0)     | 1                        | (0.6)     | 0.88               | 3                      | (0.7)     | 2           | (0.5)  | 0.37                      |
| Ocean Open Vegetation          | 9                            | (5.4)     | 4                        | (2.4)     | 5.76               | 5                      | (1.2)     | 10          | (2.5)  | 2.4                       |
| Sound Intertidal Zone          | 56                           | (33.3)    | 21                       | (12.5)    | 57.00              | 16                     | (4.0)     | 51          | (12.7) | 23.82                     |
| Sound Fresh Wrack              | 0                            | (0.0)     | 7                        | (4.2)     | 6.78               | 23                     | (5.7)     | 16          | (4.0)  | 2.83                      |
| Sound Backshore                | 4                            | (2.4)     | 62                       | (36.9)    | 54.15              | 206                    | (51.2)    | 148         | (36.8) | 22.63                     |
| Sound Old Wrack                | 2                            | (1.2)     | 5                        | (3.0)     | 1.56               | 14                     | (3.5)     | 11          | (2.7)  | 0.65                      |
| Sound Open Vegetation          | 0                            | (0.0)     | 1                        | (0.6)     | 1.47               | 5                      | (1.2)     | 4           | (1.0)  | 0.62                      |
| Tidal Pond Intertidal Zone     | 0                            | (0.0)     | 26                       | (15.5)    | 26.23              | 89                     | (22.1)    | 63          | (15.7) | 10.96                     |
|                                |                              | . /       | n =                      | . ,       |                    | 335.36, P < 0.00       | · /       |             | . /    |                           |

Continued.

<sup>&</sup>lt;sup>a</sup> Observed number of prenesting plovers within the habitat. <sup>b</sup> Expected number of prenesting plovers within the habitat.

**Table 13, Continued.** Prenesting Piping Plover habitat use (%) between the management areas by foraging, nonforaging, and plovers in all behaviors during the prenesting period, by year, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the total number of plovers observed in each behavior group. Prenesting plovers were observed in all habitats included in analyses. Chi-square tests were used to test for differences in proportions between the management areas.

| Year, Behavior, Habitat                  | (                            | Gull-remo   | val Area                 | Ļ         |                            |                               | Reference      | e Area      |                |                           |
|------------------------------------------|------------------------------|-------------|--------------------------|-----------|----------------------------|-------------------------------|----------------|-------------|----------------|---------------------------|
|                                          | Observed<br>Use <sup>a</sup> | (%)         | Exp.<br>Use <sup>b</sup> | (%)       | Partial $\chi^{2}^{\circ}$ | Observed<br>Use               | (%)            | Exp.<br>Use | (%)            | Partial<br>χ <sup>2</sup> |
| 1999-2000, Foraging Plovers              | n = 87                       |             |                          |           | ,,,                        | n = 188                       |                |             |                | ,,                        |
| Ocean Intertidal Zone                    | $n = \delta / 0$             | (0.0)       | 2                        | (2,2)     | 1.90                       | n - 188<br>6                  | (2, 2)         | 4           | (21)           | 0.88                      |
| Ocean Intertidal Zone<br>Ocean Backshore | 0                            | . /         | 2<br>1                   | (2.3)     | 2.95                       | 6<br>0                        | (3.2)          | 4           | (2.1)          |                           |
|                                          |                              | (2.3)       |                          | (1.1)     |                            | 0<br>10                       | (0.0)          |             | (0.5)          | 1.37                      |
| Sound Intertidal Zone                    | 83                           | (95.4)      | 29                       | (33.3)    | 97.57                      |                               | (5.3)          | 64          | (34.0)         | 45.1                      |
| Sound Fresh Wrack                        | 0                            | (0.0)       | 6                        | (6.9)     | 6.01                       | 19                            | (10.1)         | 13          | (6.9)          | 2.78                      |
| Sound Backshore                          | 2                            | (2.3)       | 2                        | (2.3)     | 0.02                       | 5                             | (2.7)          | 5           | (2.7)          | 0.0                       |
| Sound Old Wrack                          | 0                            | (0.0)       | 0                        | (0.0)     | 0.32                       | 1                             | (0.5)          | 1           | (0.5)          | 0.15                      |
| Tidal Pond Intertidal Zone               | 0                            | (0.0)       | 47                       | (54.0)    | 46.51                      | 147                           | (78.2)         | 100         | (53.2)         | 21.52                     |
|                                          |                              |             | n =                      | = 275, df | $= 6, \chi^2 = 22$         | 27.13, <i>P</i> < 0.00        | 01             |             |                |                           |
| 1999-2000, Nonforaging Plovers           | n = 145                      |             |                          |           |                            | n = 411                       |                |             |                |                           |
| Ocean Intertidal Zone                    | 7                            | (4.8)       | 2                        | (1.4)     | 11.57                      | 1                             | (0.2)          | 6           | (1.5)          | 4.08                      |
| Ocean Fresh Wrack                        | 4                            | (2.8)       | 1                        | (0.7)     | 8.38                       | 0                             | (0.0)          | 3           | (0.7)          | 2.90                      |
| Ocean Backshore                          | 109                          | (75.2)      | 41                       | (28.3)    | 113.12                     | 48                            | (11.7)         | 116         | (28.2)         | 39.9                      |
| Ocean Old Wrack                          | 0                            | (0.0)       | 1                        | (0.7)     | 0.78                       | 3                             | (0.7)          | 2           | (0.5)          | 0.28                      |
| Ocean Open Vegetation                    | 9                            | (6.2)       | 4                        | (2.8)     | 7.84                       | 5                             | (1.2)          | 10          | (2.4)          | 2.70                      |
| Sound Intertidal Zone                    | 11                           | (7.6)       | 8                        | (5.5)     | 1.56                       | 18                            | (4.4)          | 21          | (5.1)          | 0.5                       |
| Sound Fresh Wrack                        | 0                            | (0.0)       | 2                        | (1.4)     | 1.56                       | 6                             | (1.5)          | 4           | (1.0)          | 0.5                       |
| Sound Backshore                          | 3                            | (2.1)       | 74                       | (51.0)    | 68.45                      | 282                           | (68.6)         | 211         | (51.3)         | 24.1                      |
| Sound Old Wrack                          | 2                            | (1.4)       | 4                        | (2.8)     | 1.34                       | 15                            | (3.6)          | 13          | (3.2)          | 0.42                      |
| Sound Open Vegetation                    | 0                            | (0.0)       | 1                        | (0.7)     | 1.30                       | 5                             | (1.2)          | 4           | (1.0)          | 0.40                      |
| Tidal Pond Intertidal Zone               | 0                            | (0.0)       | 7                        | (4.8)     | 7.30                       | 28                            | (6.8)          | 21          | (5.1)          | 2.58                      |
|                                          |                              |             | n =                      | 556, df   | $= 10, \chi^2 = 3$         | 01.95, P < 0.00               | 001            |             |                |                           |
| 1999-2000, Plovers In All Behaviors      | n = 232                      |             |                          |           |                            | n = 599                       |                |             |                |                           |
| Ocean Intertidal Zone                    | n 252<br>7                   | (3.0)       | 4                        | (1.7)     | 2.45                       | n 377<br>7                    | (1.2)          | 10          | (1.7)          | 0.95                      |
| Ocean Fresh Wrack                        | 4                            | (3.0) (1.7) |                          | (0.4)     | 2.43<br>7.44               | 0                             | (1.2)<br>(0.0) | 3           | (1.7)<br>(0.5) | 2.88                      |
| Ocean Backshore                          |                              | (47.8)      | 44                       | (19.0)    | 99.95                      | 48                            | (8.0)          | 115         | (19.2)         | 38.7                      |
| Ocean Old Wrack                          | 0                            | (47.8)      |                          | (19.0)    | 0.84                       | 48                            | (0.5)          | 2           | · /            | 0.32                      |
|                                          | 9                            | · /         | 1                        | · /       |                            | 5                             |                |             | (0.3)          |                           |
| Ocean Open Vegetation                    | 9<br>94                      | (3.9)       | 4                        | (1.7)     | 6.63                       |                               | (0.8)          | 10          | (1.7)          | 2.5                       |
| Sound Intertidal Zone                    |                              | (40.5)      | 34                       | · /       | 105.48                     | 28                            | (4.7)          | 89          | (14.9)         | 40.8                      |
| Sound Fresh Wrack                        | 0                            | (0.0)       | 7                        | (3.0)     | 6.98                       | 25                            | (4.2)          | 18          | (3.0)          | 2.70                      |
| Sound Backshore                          | 5                            | (2.2)       | 82                       | (35.3)    | 71.83                      | 287                           | (47.9)         | 210         | (35.1)         | 27.82                     |
| Sound Old Wrack                          | 2                            | (0.9)       | 5                        | (2.2)     | 1.82                       | 16                            | (2.7)          | 13          | (2.2)          | 0.7                       |
| Sound Open Vegetation                    | 0                            | (0.0)       | 1                        | (0.4)     | 1.40                       | 5                             | (0.8)          | 4           | (0.7)          | 0.54                      |
| Tidal Pond Intertidal Zone               | 0                            | (0.0)       | 49                       | (21.1)    | 48.86                      | 175<br>90.66, <i>P</i> < 0.00 | (29.2)         | 126         | (21.0)         | 18.92                     |

<sup>a</sup> Observed number of prenesting plovers within the habitat.

<sup>b</sup> Expected number of prenesting plovers within the habitat.

**Table 14.** Availability (mean % of total beach width measured along random transects), and use (% of instantaneous observations of Piping Plovers in each habitat during the prenesting period), among habitats, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Chi-square tests for homogeneity were used to test if plovers were using habitat in proportion to availability. Confidence intervals were used to determine if habitats were used in greater proportion than availability ("P" = preferred) if habitats were used in less proportion than availability ("A" = avoided), or used in proportion to availability ("="; Neu et al. 1974, Marcum and Loftsgaarden 1980).

| Behavior, Habitat<br>Management Area | Ha             | abitat Availabili            | ty                           |                              | Habitat Us             | e by Piping                  | Plovers du        | iring the Pre         | enesting Period              |                              |                                       |
|--------------------------------------|----------------|------------------------------|------------------------------|------------------------------|------------------------|------------------------------|-------------------|-----------------------|------------------------------|------------------------------|---------------------------------------|
| 5                                    | <del>x</del> % | Lower<br>Confidence<br>Limit | Upper<br>Confidence<br>Limit | Observed<br>Use <sup>a</sup> | (%)                    | Expected<br>Use <sup>b</sup> | (%)               | Partial $\chi^{2 c}$  | Lower<br>Confidence<br>Limit | Upper<br>Confidence<br>Limit | <u>P</u> referred/<br><u>A</u> voided |
| Foraging, Gull-removal Area          |                |                              |                              |                              |                        |                              |                   |                       |                              |                              |                                       |
| Intertidal Zone                      | 59.00%         | 52.37%                       | 65.63%                       | 83                           | 95.40%                 | 51                           | 59.00%            | 19.54                 | 94.80%                       | 96.00%                       | Р                                     |
| Wrack                                | 3.93%          | 2.41%                        | 5.45%                        | 0                            | 0.00%                  | 3                            | 3.93%             | 3.42                  | 0.00%                        | 0.00%                        | А                                     |
| Backshore                            | 24.19%         | 19.33%                       | 29.05%                       | 4                            | 0.05%                  | 21                           | 24.19%            | 13.80                 | 4.00%                        | 5.20%                        | А                                     |
| Open Vegetation                      | 12.68%         | 9.31%                        | 16.05%                       | 0                            | 0.00%                  | 11                           | 12.69%            | 11.04                 | 0.00%                        | 0.00%                        | А                                     |
| Tidal Pond Intertidal Zone           | 0.20%          | -0.13%                       | 0.53%                        | 0                            | 0.00%                  | 0                            | 0.20%             | 0.17                  | 0.00%                        | 0.00%                        | =                                     |
|                                      |                | Transee                      | cts (n for availabi          | lity) = 114, Plovers (n f    | for use) = $8^{\circ}$ | 7, df = 4, $\chi$            | $^{2} = 47.97, 1$ | <sup>p</sup> < 0.0001 |                              |                              |                                       |
| Foraging, Reference Area             |                |                              |                              |                              |                        |                              |                   |                       |                              |                              |                                       |
| Intertidal Zone                      | 30.71%         | 27.81%                       | 33.60%                       | 16                           | 8.51%                  | 58                           | 30.71%            | 30.17                 | 8.14%                        | 8.88%                        | А                                     |
| Wrack                                | 11.73%         | 9.73%                        | 13.74%                       | 20                           | 10.64%                 | 22                           | 11.73%            | 0.19                  | 10.23%                       | 11.05%                       | =                                     |
| Backshore                            | 35.76%         | 33.24%                       | 38.27%                       | 5                            | 2.66%                  | 67                           | 35.76%            | 57.60                 | 2.45%                        | 2.87%                        | А                                     |
| Open Vegetation                      | 18.21%         | 15.99%                       | 20.42%                       | 0                            | 0.00%                  | 35                           | 18.76%            | 35.27                 | 0.00%                        | 0.00%                        | А                                     |
| Tidal Pond Intertidal Zone           | 3.60%          | 1.97%                        | 5.23%                        | 147                          | 78.19%                 | 7                            | 3.60%             | 2905.59               | 77.65%                       | 78.74%                       | Р                                     |
|                                      |                | Transects (                  | n for availability           | = 227, Plovers (n for u      | ise) = 188,            | $df = 4, \chi^2 =$           | 3028.82, 1        | <sup>p</sup> < 0.0001 |                              |                              |                                       |
| Foraging, South Monomoy Island       |                |                              |                              |                              |                        |                              |                   |                       |                              |                              |                                       |
| Intertidal Zone                      | 36.20%         | 32.71%                       | 39.68%                       | 99                           | 36.00%                 | 100                          | 36.20%            | 0.00                  | 35.57%                       | 36.43%                       | =                                     |
| Wrack                                | 10.35%         | 8.45%                        | 12.25%                       | 20                           | 7.27%                  | 28                           | 10.35%            | 2.52                  | 7.04%                        | 7.51%                        | А                                     |
| Backshore                            | 34.35%         | 31.64%                       | 37.06%                       | 9                            | 3.27%                  | 94                           | 34.35%            | 77.32                 | 3.11%                        | 3.43%                        | А                                     |
| Open Vegetation                      | 16.53%         | 14.39%                       | 18.66%                       | 0                            | 0.00%                  | 45                           | 16.53%            | 45.46                 | 0.00%                        | 0.00%                        | А                                     |
| Tidal Pond Intertidal Zone           | 2.57%          | 1.27%                        | 3.88%                        | 147                          | 53.45%                 | 7                            | 2.57%             | 2770.58               | 53.00%                       | 53.91%                       | Р                                     |
|                                      |                | Transects (                  | n for availability           | = 247, Plovers (n for u      | ise) = 275,            | $df = 4, \ \chi^2 =$         | 2895.88, 1        | <sup>p</sup> < 0.0001 |                              |                              |                                       |

## Continued.

<sup>a</sup> Observed number of prenesting plovers within the habitat.

<sup>b</sup> Expected number of prenesting plovers within the habitat, calculated by multiplying the number of plovers (n) by mean availability.

**Table 14, Continued.** Availability (mean % of total beach width measured along random transects), and use (% of instantaneous observations of Piping Plovers in each habitat during the prenesting period), among habitats, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Chi-square tests for homogeneity were used to test if plovers were using habitat in proportion to availability. Confidence intervals were used to determine if habitats were used in greater proportion than availability ("P" = preferred) if habitats were used in less proportion than availability ("A" = avoided), or used in proportion to availability ("="; Neu et al. 1974, Marcum and Loftsgaarden 1980).

| Behavior,<br>Management Area | Habitat                   | Ha               | ıbitat Availabili            | ty                           |                              | Habitat Us | e by Piping                  | Plovers du         | ring the Pre        | enesting Period              |                              |                       |
|------------------------------|---------------------------|------------------|------------------------------|------------------------------|------------------------------|------------|------------------------------|--------------------|---------------------|------------------------------|------------------------------|-----------------------|
| C                            |                           | $\overline{x}$ % | Lower<br>Confidence<br>Limit | Upper<br>Confidence<br>Limit | Observed<br>Use <sup>a</sup> | (%)        | Expected<br>Use <sup>b</sup> | (%)                | Partial $\chi^{2c}$ | Lower<br>Confidence<br>Limit | Upper<br>Confidence<br>Limit | Preferred/<br>Avoided |
| Nonforaging, Gull-           | removal Area              |                  |                              |                              |                              |            |                              |                    |                     |                              |                              |                       |
| In                           | itertidal Zone            | 59.00%           | 52.37%                       | 65.63%                       | 18                           | 12.41%     | 86                           | 59.00%             | 53.34               | 11.85%                       | 12.98%                       | А                     |
| W                            | /rack                     | 3.93%            | 2.41%                        | 5.45%                        | 6                            | 4.14%      | 6                            | 3.93%              | 0.02                | 3.80%                        | 4.48%                        | =                     |
| Ba                           | ackshore                  | 24.19%           | 19.33%                       | 29.05%                       | 112                          | 77.24%     | 35                           | 24.19%             | 168.73              | 76.52%                       | 77.96%                       | Р                     |
| Oj                           | pen Vegetation            | 12.68%           | 9.31%                        | 16.05%                       | 9                            | 6.21%      | 18                           | 12.69%             | 4.80                | 5.79%                        | 6.62%                        | А                     |
| Ti                           | idal Pond Intertidal Zone | 0.20%            | -0.13%                       | 0.53%                        | 0                            | 0.00%      | 0                            | 0.20%              | 0.29                | 0.00                         | 0.00%                        | =                     |
|                              |                           |                  | Transects                    | (n for availabili            | ity) = 114, Plovers (n for   | use) = 145 | , df = 4, $\chi^2$           | = 227.17, <i>P</i> | < 0.0001            |                              |                              |                       |
| Nonforaging, Refer           | rence Area                |                  |                              |                              |                              |            |                              |                    |                     |                              |                              |                       |
| In                           | itertidal Zone            | 30.71%           | 27.81%                       | 33.60%                       | 19                           | 4.62%      | 126                          | 30.71%             | 91.08               | 4.50%                        | 4.75%                        | А                     |
| W                            | Irack                     | 11.73%           | 9.73%                        | 13.74%                       | 24                           | 5.84%      | 48                           | 11.73%             | 12.16               | 5.70%                        | 5.98%                        | А                     |
| Ba                           | ackshore                  | 35.76%           | 33.24%                       | 38.27%                       | 330                          | 80.29%     | 147                          | 35.76%             | 227.92              | 80.05%                       | 80.53%                       | Р                     |
| Oj                           | pen Vegetation            | 18.21%           | 15.99%                       | 20.42%                       | 10                           | 2.43%      | 77                           | 18.76%             | 58.40               | 2.34%                        | 2.53%                        | А                     |
| Ti                           | idal Pond Intertidal Zone | 3.60%            | 1.97%                        | 5.23%                        | 28                           | 6.81%      | 15                           | 3.60%              | 11.78               | 6.66%                        | 6.96%                        | Р                     |
|                              |                           |                  | Transects                    | (n for availabili            | ity) = 227, Plovers (n for   | use) = 411 | , df = 4, $\chi^2$           | = 401.34, <i>P</i> | < 0.0001            |                              |                              |                       |
| Nonforaging, South           | h Monomoy Island          |                  |                              |                              |                              |            |                              |                    |                     |                              |                              |                       |
| In                           | itertidal Zone            | 36.20%           | 32.71%                       | 39.68%                       | 37                           | 6.65%      | 201                          | 36.20%             | 134.07              | 6.54%                        | 6.77%                        | А                     |
| W                            | /rack                     | 10.35%           | 8.45%                        | 12.25%                       | 30                           | 5.40%      | 58                           | 10.35%             | 13.19               | 5.29%                        | 5.50%                        | А                     |
| Ba                           | ackshore                  | 34.35%           | 31.64%                       | 37.06%                       | 442                          | 79.50%     | 191                          | 34.35%             | 329.91              | 79.32%                       | 79.68%                       | Р                     |
| Ol                           | pen Vegetation            | 16.53%           | 14.39%                       | 18.66%                       | 19                           | 3.42%      | 92                           | 16.53%             | 57.83               | 3.34%                        | 3.50%                        | А                     |
| Ti                           | idal Pond Intertidal Zone | 2.57%            | 1.27%                        | 3.88%                        | 28                           | 5.04%      | 14                           | 2.57%              | 13.16               | 4.94%                        | 5.13%                        | Р                     |
|                              |                           |                  | Transects                    | (n for availabili            | ity) = 247, Plovers (n for   | use) = 556 | , df = 4, $\chi^2$           | = 548.16, <i>P</i> | < 0.0001            |                              |                              |                       |

## Continued.

<sup>a</sup> Observed number of prenesting plovers within the habitat.

<sup>b</sup> Expected number of prenesting plovers within the habitat, calculated by multiplying the number of plovers (n) by mean availability.

**Table 14, Continued.** Availability (mean % of total beach width measured along random transects), and use (% of instantaneous observations of Piping Plovers in each habitat during the prenesting period), among habitats, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Chi-square tests for homogeneity were used to test if plovers were using habitat in proportion to availability. Confidence intervals were used to determine if habitats were used in greater proportion than availability ("P" = preferred) if habitats were used in less proportion than availability ("A" = avoided), or used in proportion to availability ("="; Neu et al. 1974, Marcum and Loftsgaarden 1980).

| Plover Behavior, Habitat<br>Management Area | Ha             | abitat Availabili            | ty                           |                              | Habitat Us    | e by Piping                  | Plovers du        | ring the Pre         | enesting Period              |                              |                                       |
|---------------------------------------------|----------------|------------------------------|------------------------------|------------------------------|---------------|------------------------------|-------------------|----------------------|------------------------------|------------------------------|---------------------------------------|
|                                             | <del>x</del> % | Lower<br>Confidence<br>Limit | Upper<br>Confidence<br>Limit | Observed<br>Use <sup>a</sup> | (%)           | Expected<br>Use <sup>b</sup> | (%)               | Partial $\chi^{2 c}$ | Lower<br>Confidence<br>Limit | Upper<br>Confidence<br>Limit | <u>P</u> referred/<br><u>A</u> voided |
| All Behaviors, Gull-removal Area            |                |                              |                              |                              |               |                              |                   |                      |                              |                              |                                       |
| Intertidal Zone                             | 59.00%         | 52.37%                       | 65.63%                       | 101                          | 43.53%        | 137                          | 59.00%            | 9.41                 | 43.00%                       | 44.07%                       | А                                     |
| Wrack                                       | 3.93%          | 2.41%                        | 5.45%                        | 6                            | 2.59%         | 9                            | 3.93%             | 1.07                 | 2.42%                        | 2.76%                        | =                                     |
| Backshore                                   | 24.19%         | 19.33%                       | 29.05%                       | 116                          | 50.00%        | 56                           | 24.19%            | 63.90                | 49.46%                       | 50.54%                       | Р                                     |
| Open Vegetation                             | 12.68%         | 9.31%                        | 16.05%                       | 9                            | 3.88%         | 29                           | 12.69%            | 14.18                | 3.67%                        | 4.09%                        | А                                     |
| Tidal Pond Intertidal Zone                  | 0.20%          | -0.13%                       | 0.53%                        | 0                            | 0.00%         | 0                            | 0.20%             | 0.46                 | 0.00%                        | 0.00%                        | =                                     |
|                                             |                | Transect                     | s (n for availability        | y) = 114, Plovers (n fo      | or use) = 232 | 2, df = 4, $\chi$            | $^{2} = 89.02, I$ | P < 0.0001           |                              |                              |                                       |
| All Behaviors, Reference Area               |                |                              |                              |                              |               |                              |                   |                      |                              |                              |                                       |
| Intertidal Zone                             | 30.71%         | 27.81%                       | 33.60%                       | 35                           | 5.84%         | 184                          | 30.71%            | 120.61               | 5.75%                        | 5.94%                        | А                                     |
| Wrack                                       | 11.73%         | 9.73%                        | 13.74%                       | 44                           | 7.35%         | 70                           | 11.73%            | 9.82                 | 7.24%                        | 7.45%                        | А                                     |
| Backshore                                   | 35.76%         | 33.24%                       | 38.27%                       | 335                          | 55.93%        | 214                          | 35.76%            | 68.12                | 55.72%                       | 56.13%                       | Р                                     |
| Open Vegetation                             | 18.21%         | 15.99%                       | 20.42%                       | 10                           | 1.67%         | 112                          | 18.76%            | 93.26                | 1.62%                        | 1.72%                        | А                                     |
| Tidal Pond Intertidal Zone                  | 3.60%          | 1.97%                        | 5.23%                        | 175                          | 29.22%        | 22                           | 3.60%             | 1091.76              | 29.03%                       | 29.40%                       | Р                                     |
|                                             |                | Transects (                  | n for availability)          | = 227, Plovers (n for u      | ise) = 599, d | $f = 4, \chi^2 =$            | 1383.57, <i>I</i> | P < 0.0001           |                              |                              |                                       |
| All Behaviors, South Monomoy Island         |                |                              |                              |                              |               |                              |                   |                      |                              |                              |                                       |
| Intertidal Zone                             | 36.20%         | 32.71%                       | 39.68%                       | 136                          | 16.37%        | 301                          | 36.20%            | 90.31                | 16.26%                       | 16.48%                       | А                                     |
| Wrack                                       | 10.35%         | 8.45%                        | 12.25%                       | 50                           | 6.02%         | 86                           | 10.35%            | 15.08                | 5.95%                        | 6.09%                        | А                                     |
| Backshore                                   | 34.35%         | 31.64%                       | 37.06%                       | 451                          | 54.27%        | 285                          | 34.35%            | 96.01                | 54.12%                       | 54.42%                       | Р                                     |
| Open Vegetation                             | 16.53%         | 14.39%                       | 18.66%                       | 19                           | 2.29%         | 137                          | 16.57%            | 101.99               | 2.24%                        | 2.33%                        | А                                     |
| Tidal Pond Intertidal Zone                  | 2.57%          | 1.27%                        | 3.88%                        | 175                          | 21.06%        | 21                           | 2.57%             | 1105.33              | 20.94%                       | 21.18%                       | Р                                     |
|                                             |                |                              |                              | r = 247, Plovers (n fo       |               | $, df = 4, \chi^2$           |                   |                      |                              |                              |                                       |

<sup>a</sup> Observed number of prenesting plovers within the habitat.

<sup>b</sup> Expected number of prenesting plovers within the habitat, calculated by multiplying the number of plovers (n) by mean availability.

**Table 15.** Mean percent time Piping Plovers were observed in different behaviors during 5-minute observations during the prenesting period, between the gullremoval and reference areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| <u>Year</u> <u>Area</u> |    | F                | oraging  | <u>D18</u>       | sturbed | <u>h</u>         | Resting |                  | Alert    | <u>N</u>         | Moving | <u>C</u>         | Courting |
|-------------------------|----|------------------|----------|------------------|---------|------------------|---------|------------------|----------|------------------|--------|------------------|----------|
|                         | n  | $\overline{x}$ % | SE       | $\overline{x}$ % | SE      | $\overline{x}$ % | SE      | $\overline{x}$ % | SE       | $\overline{x}$ % | SE     | $\overline{x}$ % | SE       |
| 1999                    |    |                  |          |                  |         |                  |         |                  |          |                  |        |                  |          |
| Gull-removal            | 21 | 45.36            | 10.54    | 5.91             | 3.18    | 18.57            | 7.57    | 23.97            | 7.44     | 3.97             | 1.47   | 2.22             | 1.92     |
| Reference               | 38 | 26.46            | 5.89     | 1.58             | 0.64    | 18.60            | 5.24    | 47.30            | 6.18     | 4.74             | 1.58   | 1.32             | 1.08     |
|                         |    | T = -1.31, P     | 9 = 0.09 | T = -0.71, P     | = 0.19  | T = 0.78, P      | = 0.89  | T = -2.94, P     | 9 = 0.02 | T = 0.40, P      | = 0.53 | T = 1.02, F      | °=0.86   |
| 2000                    |    |                  |          |                  |         |                  |         |                  |          |                  |        |                  |          |
| Gull-removal            | 32 | 28.35            | 7.39     | 5.10             | 2.86    | 25.83            | 6.72    | 34.51            | 7.41     | 6.21             | 2.10   | 0.00             | 0.00     |
| Reference               | 55 | 28.85            | 5.67     | 3.22             | 1.95    | 31.94            | 5.26    | 28.90            | 4.84     | 4.78             | 1.36   | 2.31             | 1.59     |
|                         |    | T = 0.74, P      | 9 = 1.00 | T = 0.50, P      | = 0.62  | T = 0.43, P      | = 0.54  | T = 0.33, P      | 9 = 0.47 | T = 0.26, P      | = 0.73 | T = -1.22, P     | °=0.12   |
| 1999-2000               |    |                  |          |                  |         |                  |         |                  |          |                  |        |                  |          |
| Gull-removal            | 53 | 35.09            | 6.16     | 5.42             | 2.12    | 22.95            | 5.02    | 30.33            | 5.36     | 5.32             | 1.39   | 0.88             | 0.76     |
| Reference               | 93 | 27.87            | 4.11     | 2.55             | 1.18    | 26.49            | 3.82    | 36.42            | 3.91     | 4.76             | 1.03   | 1.91             | 1.04     |
|                         |    | T = -0.01, P     | 9 = 0.32 | T = -0.66, P     | = 0.19  | T = 0.49, P      | = 0.58  | T = -0.14, P     | = 0.28   | T = 0.68, P      | = 0.77 | T = 0.53, F      | °=0.63   |

**Table 16.** Mean percent time Piping Plovers were observed disturbed by various sources during 5-minute observations during the prenesting period, between the gull-removal and reference areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year      | Area         |    | Great<br>backed                       | Black- | Herring          | <u>g Gulls</u> | Immature         | e Gulls | Piping ]         | Plovers |                  | Other <sup>a</sup> | Ur               | nknown   |
|-----------|--------------|----|---------------------------------------|--------|------------------|----------------|------------------|---------|------------------|---------|------------------|--------------------|------------------|----------|
|           |              | n  | $\frac{\overline{x}}{\overline{x}}$ % | SE     | $\overline{x}$ % | SE             | $\overline{x}$ % | SE      | $\overline{x}$ % | SE      | $\overline{x}$ % | SE                 | $\overline{x}$ % | SE       |
| 1999      |              |    |                                       |        |                  |                |                  |         |                  |         |                  |                    |                  |          |
|           | Gull-removal | 21 | 0.00                                  | 0.00   | 0.00             | 0.00           | 0.00             | 0.00    | 0.79             | 0.56    | 0.00             | 0.00               | 5.11             | 2.66     |
|           | Reference    | 38 | 0.00                                  | 0.00   | 0.00             | 0.00           | 0.00             | 0.00    | 0.09             | 0.09    | 0.00             | 0.00               | 1.49             | 0.64     |
|           |              |    |                                       | -      |                  | -              |                  | -       | T = -0.73, P     | = 0.20  |                  | -                  | T = -0.53, P     | P = 0.22 |
| 2000      |              |    |                                       |        |                  |                |                  |         |                  |         |                  |                    |                  |          |
|           | Gull-removal | 32 | 0.00                                  | 0.00   | 0.00             | 0.00           | 0.00             | 0.00    | 1.79             | 1.19    | 1.00             | 0.90               | 2.31             | 1.61     |
|           | Reference    | 55 | 0.00                                  | 0.00   | 0.00             | 0.00           | 0.00             | 0.00    | 1.30             | 1.24    | 0.00             | 0.00               | 1.92             | 0.96     |
|           |              |    |                                       | -      |                  | -              |                  | -       | T = 0.20, P      | = 0.52  | T = -1.75, P     | 9 = 0.05           | T = 0.81, P      | P = 0.83 |
| 1999-2000 |              |    |                                       |        |                  |                |                  |         |                  |         |                  |                    |                  |          |
|           | Gull-removal | 53 | 0.00                                  | 0.00   | 0.00             | 0.00           | 0.00             | 0.00    | 1.40             | 0.75    | 0.60             | 0.54               | 3.42             | 1.43     |
|           | Reference    | 93 | 0.00                                  | 0.00   | 0.00             | 0.00           | 0.00             | 0.00    | 0.80             | 0.73    | 0.00             | 0.00               | 1.74             | 0.62     |
|           |              |    |                                       | -      |                  | -              |                  | -       | T = -1.22, P     | = 0.11  | T = -1.77, F     | 9 = 0.05           | T = 0.18, P      | P = 0.42 |

<sup>a</sup> Other disturbances in the gull-removal area in 2000 include an airplane during one observation.

**Table 17.** Mean foraging rates (attempts per minute) of prenesting Piping Plovers in different habitats during 5minute observations, between the gull-removal and reference area (across rows) and among the habitats (down columns), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means for habitats with the same letters were not significantly different (P < 0.05). Statistical tests were not performed if n < 3. Habitats with n < 3 were not included in pair-wise comparisons.

|      |                                      | -  |                             | g Rates of Plove      | is Engage |                  |                      |                                       |
|------|--------------------------------------|----|-----------------------------|-----------------------|-----------|------------------|----------------------|---------------------------------------|
| Year | <u>Habitat</u>                       |    |                             | noval Area            |           |                  | eference Area        |                                       |
|      |                                      | n  | $\overline{x}$ %            | SE                    | n         | $\overline{x}$ % | SE                   | Contrasts Between<br>Management Areas |
| 1999 |                                      |    |                             |                       |           |                  |                      |                                       |
|      | Sound Fresh Wrack                    | 0  | -                           | -                     | 1         | 11.80            | -                    | -                                     |
|      | Sound Intertidal Zone                | 9  | 11.48 A                     | 1.79                  | 2         | 6.20             | 2.20                 | T = -0.37, P = 0.26                   |
|      | Tidal Pond Intertidal Zone           | 0  | -                           | -                     | 18        | 4.11 A           | 1.01                 | -                                     |
|      | Sound Old Wrack                      | 0  | -                           | -                     | 2         | 0.94             | 0.94                 | -                                     |
|      | Sound Backshore                      | 0  | -                           | -                     | 14        | 0.76 B           | 0.40                 | -                                     |
|      | Ocean Backshore                      | 11 | 0.45 B                      | 0.31                  | 7         | 0.00 B           | 0.00                 | T = -1.17, P = 0.12                   |
|      | Ocean Intertidal Zone                | 2  | 0.00                        | 0.00                  | 0         | -                | -                    | -                                     |
|      | Sound Open Vegetation                | 0  | -                           | -                     | 2         | 0.00             | 0.00                 | -                                     |
|      | Ocean Fresh Wrack                    | 0  | -                           | -                     | 0         | -                | -                    | -                                     |
|      | Ocean Old Wrack                      | 0  | -                           | -                     | 0         | -                | -                    | -                                     |
|      | Ocean Open Vegetation                | 0  | -                           | -                     | 0         | -                | -                    |                                       |
|      | Contrasts Within<br>Management Areas |    | <i>T</i> = -10.73, <i>I</i> | P < 0.0001            |           | <i>T</i> = -5.   | 09, <i>P</i> = 0.001 |                                       |
| 2000 |                                      |    |                             |                       |           |                  |                      |                                       |
|      | Ocean Intertidal Zone                | 2  | 16.54                       | 1.14                  | 3         | 19.32 A          | 1.27                 | -                                     |
|      | Tidal Pond Intertidal Zone           | 0  | -                           | -                     | 10        | 15.98 AB         | 4.81                 |                                       |
|      | Ocean Fresh Wrack                    | 1  | 0.00                        | -                     | 1         | 8.20             | -                    |                                       |
|      | Sound Fresh Wrack                    | 1  | 9.00                        | -                     | 5         | 6.28 B           | 1.71                 |                                       |
|      | Sound Intertidal Zone                | 10 | 11.60 A                     | 2.84                  | 2         | 4.57             | 4.57                 | T = 0.12, P = 0.49                    |
|      | Sound Old Wrack                      | 1  | 3.00                        | -                     | 6         | 3.68 BC          | CD 2.82              |                                       |
|      | Ocean Backshore                      | 19 | 0.16 B                      | 0.13                  | 7         | 0.49             | 0.25                 | T = -0.98, P = 0.14                   |
|      | Ocean Old Wrack                      | 1  | 0.00                        | -                     | 4         | 0.07             | CD 0.07              |                                       |
|      | Sound Backshore                      | 1  | 12.00                       | -                     | 24        | 0.54             | D 0.54               | -                                     |
|      | Ocean Open Vegetation                | 2  | 0.00                        | 0.00                  | 1         | 0.00             | -                    |                                       |
|      | Sound Open Vegetation                | 0  | -                           | -                     | 1         | 0.00             | -                    |                                       |
|      | Contrasts Within<br>Management Areas |    | T = -11.88, I               | <sup>p</sup> < 0.0001 |           | <i>T</i> = -9.3  | 2, <i>P</i> < 0.0001 |                                       |

Continued.

**Table 17, Continued.** Mean foraging rates (attempts per minute) of prenesting Piping Plovers in different habitats during 5-minute observations, between the gull-removal and reference area (across rows) and among the habitats (down columns), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means for habitats with the same letters were not significantly different (P < 0.05). Statistical tests were not performed if n < 3. Habitats with n < 3 were not included in pair-wise comparisons.

|       |                                      |    | Foraging         | g Rates of Plove  | rs Engage | d in All         | Behavio           | rs       |                                       |
|-------|--------------------------------------|----|------------------|-------------------|-----------|------------------|-------------------|----------|---------------------------------------|
| Year  | Habitat                              | -  | Gull-ren         | noval Area        |           |                  | Referen           | nce Area |                                       |
|       |                                      | n  | $\overline{x}$ % | SE                | n         | $\overline{x}$ % |                   | SE       | Contrasts Between<br>Management Areas |
| 1999- | 2000                                 |    |                  |                   |           |                  |                   |          |                                       |
|       | Ocean Intertidal Zone                | 4  | 8.27 A           | 4.80              | 3         | 19.32            | A                 | 1.27     | T = -1.21, P = 0.11                   |
|       | Sound Fresh Wrack                    | 1  | 9.00             | -                 | 6         | 7.20             | В                 | 1.67     | -                                     |
|       | Tidal Pond Intertidal Zone           | 0  | -                | -                 | 28        | 8.35             | BC                | 2.09     | -                                     |
|       | Ocean Fresh Wrack                    | 1  | 0.00             | -                 | 1         | 8.20             |                   | -        | -                                     |
|       | Sound Intertidal Zone                | 19 | 11.54 A          | 1.67              | 4         | 5.38             | BC                | 2.12     | T = -0.96, P = 0.14                   |
|       | Sound Old Wrack                      | 1  | 3.00             | -                 | 8         | 3.00             | CD                | 2.12     | -                                     |
|       | Sound Open Vegetation                | 0  | -                | -                 | 3         | 0.00             | CD                | 0.00     | -                                     |
|       | Ocean Backshore                      | 30 | 0.27 B           | 0.14              | 14        | 0.24             | D                 | 0.14     | T = 0.65, P = 0.71                    |
|       | Sound Backshore                      | 1  | 12.00            | -                 | 38        | 0.62             | D                 | 0.37     | -                                     |
|       | Ocean Old Wrack                      | 1  | 0.00             | -                 | 4         | 0.07             | D                 | 0.07     | -                                     |
|       | Ocean Open Vegetation                | 2  | 0.00             | 0.00              | 1         | 0.00             |                   | -        | -                                     |
|       | Contrasts Within<br>Management Areas |    | T=-14.43, I      | <i>P</i> < 0.0001 |           | T = 1            | 11.58, <i>P</i> < | < 0.0001 |                                       |

**Table 18.** Mean foraging rates (attempts per minute) of foraging prenesting Piping Plovers in different habitats during 5-minute observations, between the gull-removal and reference area (across rows) and among the habitats (down columns), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means for habitats with the same letters were not significantly different (P < 0.05). Statistical tests were not performed if n < 3. Habitats with n < 3 were not included in pair-wise comparisons.

|      |                                      | _ |                  | ates of Plovers Eng | gaged in I | Foraging         |          |                 |                                       |
|------|--------------------------------------|---|------------------|---------------------|------------|------------------|----------|-----------------|---------------------------------------|
| Year | Habitat                              |   | Gull-re          | moval Area          |            |                  | Referen  | nce Area        |                                       |
|      |                                      | n | $\overline{x}$ % | SE                  | n          | $\overline{x}$ % |          | SE              | Contrasts Betweer<br>Management Areas |
| 1999 |                                      |   |                  |                     |            |                  |          |                 |                                       |
|      | Sound Backshore                      | 0 | -                | -                   | 3          | 20.60            |          | 9.96            |                                       |
|      | Sound Fresh Wrack                    | 0 | -                | -                   | 1          | 11.80            |          | -               |                                       |
|      | Ocean Backshore                      | 3 | 14.13            | 8.10                | 0          | -                |          | -               |                                       |
|      | Tidal Pond Intertidal Zone           | 0 | -                | -                   | 13         | 9.16             |          | 0.92            |                                       |
|      | Sound Intertidal Zone                | 9 | 12.12            | 1.71                | 2          | 8.63             |          | 4.63            | T = 0.78, P = 0.77                    |
|      | Sound Old Wrack                      | 0 | -                | -                   | 1          | 2.50             |          | -               |                                       |
|      | Ocean Intertidal Zone                | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Ocean Fresh Wrack                    | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Ocean Old Wrack                      | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Ocean Open Vegetation                | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Sound Open Vegetation                | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Contrasts Within<br>Management Areas |   | T = 1.0          | 02, P = 0.91        |            | Т                | = -1.27, | <i>P</i> = 0.11 |                                       |
| 2000 |                                      |   |                  |                     |            |                  |          |                 |                                       |
|      | Ocean Intertidal Zone                | 2 | 22.97            | 7.57                | 3          | 27.72            | A        | 7.14            |                                       |
|      | Tidal Pond Intertidal Zone           | 0 | -                | -                   | 9          | 19.13            | AB       | 5.03            |                                       |
|      | Ocean Backshore                      | 2 | 20.25            | 3.75                | 0          | -                |          | -               |                                       |
|      | Sound Intertidal Zone                | 8 | 14.46            | 2.79                | 2          | 4.57             |          | 4.57            | T = -0.48, P = 0.26                   |
|      | Sound Backshore                      | 1 | 12.00            | -                   | 1          | 13.00            |          | -               |                                       |
|      | Sound Old Wrack                      | 1 | 3.00             | -                   | 2          | 12.49            |          | 4.73            |                                       |
|      | Ocean Fresh Wrack                    | 0 | -                | -                   | 1          | 8.20             |          | -               |                                       |
|      | Sound Fresh Wrack                    | 1 | 9.00             | -                   | 5          | 6.79             | В        | 2.05            |                                       |
|      | Ocean Old Wrack                      | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Ocean Open Vegetation                | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Sound Open Vegetation                | 0 | -                | -                   | 0          | -                |          | -               |                                       |
|      | Contrasts Within<br>Management Areas |   |                  | -                   |            | Т                | = -1.85, | <i>P</i> = 0.05 |                                       |

Continued.

**Table 18, Continued.** Mean foraging rates (attempts per minute) of foraging prenesting Piping Plovers in different habitats during 5-minute observations, between the gull-removal and reference area (across rows) and among the habitats (down columns), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means for habitats with the same letters were not significantly different (P < 0.05). Statistical tests were not performed if n < 3. Habitats with n < 3 were not included in pair-wise comparisons.

|       |                                      |    | Foraging Ra       | ates of Plovers En  | gaged in l | Foraging Beh     | avior Only     |                                       |
|-------|--------------------------------------|----|-------------------|---------------------|------------|------------------|----------------|---------------------------------------|
| Year  | Habitat                              | -  | Gull-re           | emoval Area         |            | Ret              | ference Area   |                                       |
|       |                                      | n  | $\overline{x} \%$ | SE                  | n          | $\overline{x}$ % | SE             | Contrasts Between<br>Management Areas |
| 1999- | 2000                                 |    |                   |                     |            |                  |                |                                       |
|       | Ocean Intertidal Zone                | 2  | 22.98             | 7.57                | 3          | 27.72            | 7.14           | -                                     |
|       | Sound Backshore                      | 1  | 12.00             | -                   | 4          | 18.70            | 7.29           | -                                     |
|       | Tidal Pond Intertidal Zone           | 0  | -                 | -                   | 22         | 13.24            | 2.32           | -                                     |
|       | Sound Old Wrack                      | 1  | 3.00              | -                   | 3          | 9.16             | 4.31           | -                                     |
|       | Ocean Fresh Wrack                    | 0  | -                 | -                   | 1          | 8.20             | -              | -                                     |
|       | Sound Fresh Wrack                    | 1  | 9.00              | -                   | 6          | 7.63             | 1.87           | -                                     |
|       | Sound Intertidal Zone                | 17 | 13.22             | 1.57                | 4          | 6.60             | 2.90           | T = -0.88, P = 0.16                   |
|       | Ocean Backshore                      | 5  | 16.58             | 4.83                | 0          | -                | -              | -                                     |
|       | Ocean Old Wrack                      | 0  | -                 | -                   | 0          | -                | -              | -                                     |
|       | Ocean Open Vegetation                | 0  | -                 | -                   | 0          | -                | -              | -                                     |
|       | Sound Open Vegetation                | 0  | -                 | -                   | 0          | -                | -              | -                                     |
|       | Contrasts Within<br>Management Areas |    | T=0.              | 54, <i>P</i> = 0.63 |            | T = -1.          | 11, $P = 0.13$ |                                       |

| Year      | Management   |    | <u>Total L</u> | arge Gulls    | Great Black-ba | cked Gulls        | Her            | ring Gulls | Imma           | ture Gulls        |
|-----------|--------------|----|----------------|---------------|----------------|-------------------|----------------|------------|----------------|-------------------|
|           | <u>Area</u>  | n  | $\overline{x}$ | SE            | $\overline{x}$ | SE                | $\overline{x}$ | SE         | $\overline{x}$ | SE                |
| 1999      |              |    |                |               |                |                   |                |            |                |                   |
| 1777      | Gull-removal | 10 | 1.35           | 0.34          | 0.70           | 0.14              | 0.54           | 0.21       | 0.11           | 0.05              |
|           | Buffer       | 1  | 15.42          | -             | 11.21          | -                 | 1.71           | -          | 2.50           | -                 |
|           | Reference    | 21 | 10.43          | 2.16          | 7.08           | 1.50              | 1.73           | 0.50       | 1.62           | 0.49              |
|           |              |    | T = -4.68,     | , P = 0.004   | T = -4.87,     | P = 0.004         | T = -2.84      | P = 0.02   | T = -2.86      | P = 0.02          |
| 2000      |              |    |                |               |                |                   |                |            |                |                   |
|           | Gull-removal | 11 | 2.64           | 1.09          | 0.64           | 0.18              | 0.53           | 0.17       | 1.46           | 0.79              |
|           | Buffer       | 0  | -              | -             | -              | -                 | -              | -          | -              | -                 |
|           | Reference    | 28 | 7.00           | 1.24          | 4.43           | 0.87              | 0.98           | 0.32       | 1.59           | 0.34              |
|           |              |    | T = -3.76      | 6, $P = 0.01$ | T = -6.55, I   | P = 0.0007        | T = 0.32       | P = 0.53   | T = 0.41       | , <i>P</i> = 0.55 |
| 1999-2000 |              |    |                |               |                |                   |                |            |                |                   |
|           | Gull-removal | 21 | 2.03           | 0.60          | 0.67           | 0.11              | 0.54           | 0.13       | 0.82           | 0.43              |
|           | Buffer       | 1  | 15.42          | -             | 11.21          | -                 | 1.71           | -          | 2.50           | -                 |
|           | Reference    | 49 | 8.47           | 1.18          | 5.57           | 0.82              | 1.30           | 0.28       | 1.60           | 0.28              |
|           |              |    | T = -2.39      | P = 0.04      | T = -10.79, I  | <i>P</i> < 0.0001 | T = -2.17      | P = 0.04   | T = -2.39      | P = 0.04          |

**Table 19.** Mean counts of large gulls within 100 m of Piping Plover nests, among the management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

**Table 20.** Mean counts of large gulls within 100 m of Piping Plover nests compared to mean counts of large gulls within 100 m of random points, during the nesting period, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests or the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year | Management               |     | Total Larg     | ge Gulls       |                   | Black-         | Herrin         | ig Gulls | Immatu         | re Gulls |
|------|--------------------------|-----|----------------|----------------|-------------------|----------------|----------------|----------|----------------|----------|
|      | Area                     | n   | $\overline{x}$ | SE             | $\frac{backe}{x}$ | ed Gulls<br>SE | $\overline{x}$ | SE       | $\overline{x}$ | SE       |
| 1999 |                          |     |                |                |                   |                |                |          |                |          |
| Gu   | ıll-removal              |     |                |                |                   |                |                |          |                |          |
|      | Nests                    | 10  | 1.35           | 0.34           | 0.70              | 0.14           | 0.54           | 0.21     | 0.11           | 0.05     |
|      | Random Points            | 134 | 3.87           | 0.61           | 1.64              | 0.22           | 1.46           | 0.25     | 0.77           | 0.30     |
|      |                          |     | Т              | =-1.78         | Т                 | = -1.96        | Т              | = -0.79  | Т              | =-0.68   |
|      |                          |     | Ì              | P = 0.06       | I                 | P = 0.05       | I              | P = 0.15 | 1              | P = 0.13 |
| Bu   | ıffer                    |     |                |                |                   |                |                |          |                |          |
|      | Nests                    | 1   | 15.42          | -              | 11.21             | -              | 1.71           | -        | 2.50           | -        |
|      | Random Points            | 132 | 23.11          | 1.88           | 16.62             | 1.36           | 5.95           | 0.84     | 0.53           | 0.14     |
| Re   | ference                  |     |                |                |                   |                |                |          |                |          |
|      | Nests                    | 21  | 10.43          | 2.16           | 7.08              | 1.50           | 1.73           | 0.50     | 1.62           | 0.49     |
|      | Random Points            | 263 | 34.30          | 1.79           | 27.95             | 1.55           | 4.81           | 0.66     | 1.54           | 0.33     |
|      |                          |     | T              | = -10.55       | T =               | -11.64         | Т              | = -2.20  | Т              | = -1.00  |
|      |                          |     | <i>P</i> <     | < 0.0001       | <i>P</i> <        | 0.0001         | I              | P = 0.04 | 1              | P = 0.12 |
| So   | uth Monomoy <sup>a</sup> |     |                |                |                   |                |                |          |                |          |
|      | Nests                    | 32  | 7.75           | 1.62           | 5.22              | 1.12           | 1.35           | 0.35     | 1.18           | 0.35     |
|      | Random Points            | 243 | 31.59          | 1.98           | 24.74             | 1.70           | 5.20           | 0.71     | 1.65           | 0.37     |
|      |                          |     | T              | <b>-</b> 14.04 | <i>T</i> =        | -13.70         | Т              | = -4.43  | Т              | =-0.35   |
|      |                          |     | <i>P</i> <     | < 0.0001       | P <               | 0.0001         | Р              | = 0.006  | 1              | P = 0.24 |

# Continued.

**Table 20, Continued.** Mean counts of large gulls within 100 m of Piping Plover nests compared to mean counts of large gulls within 100 m of random points, during the nesting period, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests or the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year Management            |     | Total Larg     | e Gulls |                   | Black-         | Herrin         | g Gulls  | Immatu         | re Gulls        |
|----------------------------|-----|----------------|---------|-------------------|----------------|----------------|----------|----------------|-----------------|
| Area                       | n   | $\overline{x}$ | SE      | $\frac{backe}{x}$ | ed Gulls<br>SE | $\overline{x}$ | SE       | $\overline{x}$ | SE              |
| 2000                       |     |                |         |                   |                |                |          |                |                 |
| Gull-removal               |     |                |         |                   |                |                |          |                |                 |
| Nests                      | 11  | 2.64           | 1.09    | 064               | 0.18           | 0.53           | 0.17     | 1.46           | 0.79            |
| Random Points              | 139 | 3.42           | 0.66    | 1.38              | 0.27           | 0.72           | 0.15     | 1.32           | 0.47            |
|                            |     | Т              | = 0.27  | Т                 | = -1.20        | Т              | = -1.45  | Т              | =-0.36          |
|                            |     | Р              | = 0.42  | F                 | P = 0.10       | Ι              | P = 0.08 | Ι              | P = 0.16        |
| Buffer                     |     |                |         |                   |                |                |          |                |                 |
| Nests                      | 0   | -              | -       | -                 | -              | -              | -        | -              | -               |
| Random Points              | 141 | 23.21          | 2.04    | 14.24             | 1.13           | 6.60           | 0.82     | 2.37           | 0.55            |
| Reference                  |     |                |         |                   |                |                |          |                |                 |
| Nests                      | 28  | 7.00           | 1.24    | 4.43              | 0.87           | 0.98           | 0.32     | 1.59           | 0.34            |
| Random Points              | 276 | 26.76          | 2.34    | 20.06             | 1.90           | 5.62           | 0.92     | 1.08           | 0.28            |
| Tundoni i onito            | 270 |                | -10.29  |                   | -10.34         |                | = -3.26  |                | = <b>-</b> 9.73 |
|                            |     |                | 0.0001  |                   | 0.0001         |                | P = 0.02 |                | 0.0001          |
| South Monomoy <sup>a</sup> |     |                |         |                   |                |                |          |                |                 |
| Nests                      | 39  | 5.77           | 0.99    | 3.36              | 0.68           | 0.85           | 0.23     | 1.55           | 0.33            |
| Random Points              | 328 | 22.13          | 1.51    | 16.41             | 1.18           | 4.54           | 0.71     | 1.18           | 0.26            |
|                            |     | T =            | -12.56  | T =               | -13.09         | Т              | = -4.75  | Т              | = -8.62         |
|                            |     | P <            | 0.0001  | <i>P</i> <        | 0.0001         | Р              | = 0.005  |                | 0.0002          |

# Continued.

**Table 20, Continued.** Mean counts of large gulls within 100 m of Piping Plover nests compared to mean counts of large gulls within 100 m of random points, during the nesting period, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests or the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year Management            |     | Total Larg     | ge Gulls         |                   | t Black-       | Herrin         | g Gulls  | Immatu         | re Gulls |
|----------------------------|-----|----------------|------------------|-------------------|----------------|----------------|----------|----------------|----------|
| Area                       | n   | $\overline{x}$ | SE               | $\frac{backe}{x}$ | ed Gulls<br>SE | $\overline{x}$ | SE       | $\overline{x}$ | SE       |
| 1999-2000                  |     |                |                  |                   |                |                |          |                |          |
| Gull-removal               |     |                |                  |                   |                |                |          |                |          |
| Nests                      | 21  | 2.03           | 0.60             | 0.67              | 0.11           | 0.54           | 0.13     | 0.82           | 0.43     |
| Random Points              | 273 | 3.64           | 0.45             | 1.51              | 0.17           | 1.08           | 0.14     | 1.05           | 0.28     |
|                            |     | Т              | '= -0.94         | Т                 | =-3.54         | Т              | = -1.98  | Т              | =-0.24   |
|                            |     | i i            | P = 0.13         | 1                 | P = 0.01       | F              | P = 0.05 | 1              | P = 0.22 |
| Buffer                     |     |                |                  |                   |                |                |          |                |          |
| Nests                      | 1   | 15.42          | -                | 11.21             | -              | 1.71           | -        | 2.50           | -        |
| Random Points              | 273 | 23.16          | 1.39             | 15.39             | 0.88           | 6.29           | 0.59     | 1.48           | 0.30     |
| Reference                  |     |                |                  |                   |                |                |          |                |          |
| Nests                      | 49  | 8.47           | 1.18             | 5.57              | 0.82           | 1.30           | 0.28     | 1.60           | 0.28     |
| Random Points              | 539 | 30.44          | 1.49             | 23.91             | 1.24           | 5.23           | 0.57     | 1.30           | 0.21     |
|                            |     | T              | = <b>-</b> 21.23 |                   | -22.33         | Т              | = -5.58  | Т              | = -8.93  |
|                            |     | <i>P</i> <     | < 0.0001         | <i>P</i> <        | 0.0001         | P              | = 0.002  |                | 0.0001   |
| South Monomoy <sup>a</sup> |     |                |                  |                   |                |                |          |                |          |
| Nests                      | 71  | 6.66           | 0.91             | 4.20              | 0.63           | 1.08           | 0.20     | 1.38           | 0.24     |
| Random Points              | 571 | 26.15          | 1.22             | 19.95             | 1.01           | 4.82           | 0.51     | 1.38           | 0.22     |
|                            |     | T              | = -25.55         | T=                | -25.75         | Т              | = -9.11  | Т              | = -7.13  |
|                            |     | <i>P</i> <     | < 0.0001         | <i>P</i> <        | 0.0001         | P =            | 0.0001   | <i>P</i> =     | 0.0006   |

**Table 21.** Mean counts of large gulls within 100 m of random points in nesting areas compared to mean counts of large gulls within 100 m of random points in unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

|     | Management                 |     | <u>Total I</u> | arge Gulls        | Great Black-ba | cked Gulls        | He             | rring Gulls       | Imma           | ature Gulls |
|-----|----------------------------|-----|----------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|-------------|
|     | Area                       | n   | $\overline{x}$ | SE                | $\overline{x}$ | SE                | $\overline{x}$ | SE                | $\overline{x}$ | SE          |
|     |                            |     |                |                   |                |                   |                |                   |                |             |
| 999 |                            |     |                |                   |                |                   |                |                   |                |             |
|     | Gull-removal               |     |                |                   |                |                   |                |                   |                |             |
|     | Nesting Area               | 131 | 3.79           | 0.62              | 1.61           | 0.22              | 1.41           | 0.25              | 0.76           | 0.31        |
|     | Unused Area                | 3   | 7.33           | 1.45              | 3.00           | 1.15              | 3.33           | 1.33              | 1.00           | 0.58        |
|     |                            |     | T = -2.3       | 9, $P = 0.04$     | T = -0.4       | 7, $P = 0.21$     | T = -1.53      | 8, $P = 0.06$     | T = -0.61      | 1, P = 0.05 |
|     | Buffer                     |     |                |                   |                |                   |                |                   |                |             |
|     | Nesting Area               | 70  | 12.66          | 1.90              | 9.99           | 1.50              | 2.13           | 1.50              | 2.13           | 0.65        |
|     | Unused Area                | 62  | 34.90          | 2.70              | 24.11          | 1.95              | 10.27          | 1.47              | 0.52           | 0.16        |
|     |                            |     | T = -29.27, .  | <i>P</i> < 0.0001 | T = -26.53,    | <i>P</i> < 0.0001 | T = -22.34, I  | <i>P</i> < 0.0001 | T = -0.03      | 3, P = 0.35 |
|     | Reference                  |     |                |                   |                |                   |                |                   |                |             |
|     | Nesting Area               | 143 | 23.64          | 2.04              | 19.52          | 1.71              | 2.45           | 0.40              | 1.67           | 0.55        |
|     | Unused Area                | 120 | 47.01          | 2.66              | 38.00          | 2.42              | 7.63           | 1.33              | 1.38           | 0.29        |
|     |                            |     | T = -31.61,    | <i>P</i> < 0.0001 | T = -25.31,    | <i>P</i> < 0.0001 | T = -11.05,    | <i>P</i> < 0.0001 |                | 4, P = 0.19 |
|     | South Monomoy <sup>a</sup> |     |                |                   |                |                   |                |                   |                |             |
|     | Nesting Area               | 134 | 19.43          | 2.19              | 14.84          | 1.80              | 2.63           | 0.42              | 1.95           | 0.64        |
|     | Unused Area                | 109 | 46.54          | 2.92              | 36.90          | 2.66              | 8.36           | 1.45              | 1.28           | 0.29        |
|     |                            |     | T = -36.62,    |                   | T = -33.13,    |                   | T = -11.49, I  |                   |                | 7, P = 0.15 |

Continued.

**Table 21, Continued.** Mean counts of large gulls within 100 m of random points in nesting areas compared to mean counts of large gulls within 100 m of random points in unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| 'ear | <u>Management</u><br>Area  |     | <u>Total L</u>     | arge Gulls        | Great Black-ba | cked Gulls        | He             | rring Gulls       | Imma           | ature Gulls |
|------|----------------------------|-----|--------------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|-------------|
|      | Alea                       | n   | $\overline{x}$     | SE                | $\overline{x}$ | SE                | $\overline{x}$ | SE                | $\overline{x}$ | SE          |
| 000  |                            |     |                    |                   |                |                   |                |                   |                |             |
| 000  | ~ " .                      |     |                    |                   |                |                   |                |                   |                |             |
|      | Gull-removal               |     |                    |                   |                |                   |                |                   |                |             |
|      | Nesting Area               | 132 | 3.48               | 0.69              | 1.39           | 0.28              | 0.71           | 0.15              | 1.38           | 0.49        |
|      | Unused Area                | 7   | 2.29               | 0.68              | 1.29           | 0.36              | 0.86           | 0.46              | 0.14           | 0.14        |
|      |                            |     | $T = -0.3^{\circ}$ | 7, $P = 0.19$     | T = -0.7       | 6, P = 0.14       | T = 0.44       | 4, $P = 0.54$     | T = -0.19      | P = 0.13    |
|      | Buffer                     |     |                    |                   |                |                   |                |                   |                |             |
|      | Nesting Area               | 0   | -                  | -                 | -              | -                 | -              | -                 | -              | -           |
|      | Unused Area                | 141 | 23.21              | 2.04              | 14.24          | 1.13              | 6.60           | 0.82              | 2.37           | 0.55        |
|      | Reference                  |     |                    |                   |                |                   |                |                   |                |             |
|      | Nesting Area               | 150 | 16.50              | 3.38              | 11.18          | 2.75              | 4.07           | 0.94              | 1.25           | 0.38        |
|      | Unused Area                | 126 | 38.97              | 2.82              | 30.63          | 2.75              | 7.47           | 1.66              | 0.87           | 0.41        |
|      | Olused Area                | 120 | T = -44.55, T      |                   | T = -53.19, T  |                   |                | $P_{P} = 0.02$    |                | 5, P = 0.29 |
|      | South Monomoy <sup>a</sup> |     |                    |                   |                |                   |                |                   |                |             |
|      | Nesting Area               | 171 | 10.54              | 1.30              | 6.91           | 0.90              | 2.29           | 0.50              | 1.35           | 0.38        |
|      | Unused Area                | 157 | 34.75              | 2.45              | 26.75          | 1.96              | 6.99           | 1.36              | 1.01           | 0.37        |
|      |                            |     | T = -56.59, T      | <i>P</i> < 0.0001 | T = -60.61, T  | <i>P</i> < 0.0001 | T = -10.89,    | <i>P</i> < 0.0001 | T = 0.20       | P = 0.44    |

## Continued.

**Table 21, Continued.** Mean counts of large gulls within 100 m of random points in nesting areas compared to mean counts of large gulls within 100 m of random points in unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Year    | Management                 |     | <u>Total I</u> | arge Gulls        | Great Black-ba             | cked Gulls        | He             | rring Gulls       | Imma           | ature Gulls |
|---------|----------------------------|-----|----------------|-------------------|----------------------------|-------------------|----------------|-------------------|----------------|-------------|
|         | Area                       | n   | $\overline{x}$ | SE                | $\overline{x}$             | SE                | $\overline{x}$ | SE                | $\overline{x}$ | SE          |
| 1999-20 | 000                        |     |                |                   |                            |                   |                |                   |                |             |
| 1777-20 | Gull-removal               |     |                |                   |                            |                   |                |                   |                |             |
|         | Nesting Area               | 263 | 3.63           | 0.46              | 1.50                       | 0.18              | 1.06           | 0.15              | 1.07           | 0.29        |
|         | Unused Area                | 10  | 3.80           | 0.98              | 1.80                       | 0.47              | 1.60           | 0.60              | 0.40           | 0.22        |
|         |                            |     |                | 6, P = 0.14       |                            | 1, P = 0.13       |                | 1, P = 0.18       | T = -0.07      | P = 0.17    |
|         | Buffer                     |     |                |                   |                            |                   |                |                   |                |             |
|         | Nesting Area               | 70  | 12.66          | 1.90              | 9.99                       | 1.50              | 2.13           | 0.65              | 0.54           | 0.23        |
|         | Unused Area                | 203 | 26.78          | 1.68              | 17.26                      | 1.04              | 7.72           | 0.73              | 1.80           | 0.39        |
|         |                            |     | T = -15.71,    | <i>P</i> < 0.0001 | T = -12.68,                | <i>P</i> < 0.0001 | T = -15.00, I  | <i>P</i> < 0.0001 | T = -2.66      | 5, P = 0.03 |
|         | Reference                  |     |                |                   |                            |                   |                |                   |                |             |
|         | Nesting Area               | 293 | 19.98          | 2.01              | 15.25                      | 1.65              | 3.28           | 0.52              | 1.46           | 0.33        |
|         | Unused Area                | 246 | 42.89          | 1.95              | 34.23                      | 1.66              | 7.55           | 1.07              | 1.11           | 0.25        |
|         |                            |     | T = -73.69,    | <i>P</i> < 0.0001 | <i>T</i> = -72.85,         | <i>P</i> < 0.0001 | T = -12.62,    | <i>P</i> < 0.0001 | T = 0.40       | P = 0.54    |
|         | South Monomoy <sup>a</sup> |     |                |                   |                            |                   |                |                   |                |             |
|         | Nesting Area               | 305 | 14.45          | 1.23              | 10.40                      | 0.96              | 2.44           | 0.34              | 1.61           | 0.35        |
|         | Unused Area                | 266 | 39.58          | 1.90              | 30.91                      | 1.61              | 7.55           | 1.00              | 1.12           | 0.25        |
|         |                            |     | T = -88.21,    | P < 0.0001        | <i>T</i> = <b>-</b> 87.68, | <i>P</i> < 0.0001 | T = -22.49, I  | P < 0.0001        | T = 0.23       | P = 0.45    |

**Table 22.** Percent of random points with at least one gull present within 100 m, during the nesting period, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Chi-square tests were used to test for differences in proportions. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Year | Management                 |     | <u>P</u> | Plots W            | ith Large | e Gulls | ~    | -                |                         | s With                | Plo  | ots With | h Herrir | n <u>g Gulls</u> | Pl  | ots Wit | h Immat | ure Gulls       |
|------|----------------------------|-----|----------|--------------------|-----------|---------|------|------------------|-------------------------|-----------------------|------|----------|----------|------------------|-----|---------|---------|-----------------|
|      | Area                       |     |          | Obs.               | Evn       | . Row   | Gro  | eat Blac<br>Obs. | <u>k-backec</u><br>Exp. | <u>l Gulls</u><br>Row |      | Obs.     | Exp.     | Row              |     | Obs.    | Evn     | Row $\chi^2$    |
|      |                            | n   | % ι      | /alue <sup>b</sup> | Value     |         | %    | Value            |                         | $\chi^2$              | %    | Value    |          |                  | %   | Value   |         | ιτοw χ          |
| 1999 |                            |     |          |                    |           |         |      |                  |                         |                       |      |          |          |                  |     |         |         |                 |
|      | Gull-removal               |     |          |                    |           |         |      |                  |                         |                       |      |          |          |                  |     |         |         |                 |
|      | Nesting Area               | 131 | 70%      | 92                 | 93        | 0.03    | 54%  | 71               | 72                      | 0.06                  | 44%  | 57       | 59       | 0.08             | 14% | 18      | 20      | 0.14            |
|      | Unused Area                | 3   | 100%     | 3                  | 2         | 1.23    | 100% | 3                | 2                       | 2.43                  | 100% | 3        | 1        | 3.70             | 67% | 2       | 0       | 6.33            |
|      |                            |     |          |                    |           | df = 1  |      |                  |                         | df = 1                |      |          |          | df = 1           |     |         |         | df = 1          |
|      |                            |     |          |                    | $\chi^2$  | = 1.26  |      |                  | $\chi^2$                | = 2.49                |      |          |          | $^{2} = 3.78$    |     |         |         | $\chi^2=6.47$   |
|      |                            |     |          |                    | Р         | = 0.26  |      |                  | Р                       | = 0.11                |      |          | 1        | P = 0.05         |     |         |         | P = 0.01        |
|      | Buffer                     |     |          |                    |           |         |      |                  |                         |                       |      |          |          |                  |     |         |         |                 |
|      | Nesting Area               | 70  | 93%      | 65                 | 67        | 1.09    | 91%  | 64               | 66                      | 1.49                  | 47%  | 33       | 47       | 12.01            | 14% | 10      | 13      | 0.71            |
|      | Unused Area                | 62  | 98%      | 61                 | 59        | 1.23    | 98%  | 61               | 59                      | 1.68                  | 89%  | 55       | 41       | 13.56            | 23% | 14      | 11      | 0.71            |
|      |                            |     |          |                    |           | df = 1  |      |                  |                         | df = 1                |      |          |          | df = 1           |     |         |         | df = 1          |
|      |                            |     |          |                    | $\chi^2$  | = 2.32  |      |                  | $\chi^2$                | = 3.17                |      |          | $\chi^2$ | = 25.56          |     |         |         | $\chi^2 = 1.52$ |
|      |                            |     |          |                    | Р         | = 0.13  |      |                  | Р                       | = 0.08                |      |          | P        | < 0.0001         |     |         |         | P = 0.22        |
|      | Reference                  |     |          |                    |           |         |      |                  |                         |                       |      |          |          |                  |     |         |         |                 |
|      | Nesting Area               | 143 | 94%      | 134                | 138       | 2.43    | 99%  | 119              | 115                     | 3.83                  | 53%  | 76       | 88       | 3.92             | 24% | 34      | 43      | 2.67            |
|      | Unused Area                | 120 | 99%      | 119                | 115       | 2.78    | 92%  | 132              | 136                     | 3.22                  | 71%  | 85       | 73       |                  | 38% | 45      | 36      | 3.18            |
|      |                            |     |          |                    |           | df = 1  |      |                  |                         | df = 1                |      |          |          | df = 1           |     |         |         | df = 1          |
|      |                            |     |          |                    |           | = 5.32  |      |                  | 70                      | = 7.05                |      |          |          | $^{2} = 8.60$    |     |         |         | $\chi^2 = 5.85$ |
|      |                            |     |          |                    | Р         | = 0.02  |      |                  | <i>P</i> =              | 0.008                 |      |          | Р        | = 0.003          |     |         |         | P = 0.02        |
|      | South Monomoy <sup>a</sup> |     |          |                    |           |         |      |                  |                         |                       |      |          |          |                  |     |         |         |                 |
|      | Nesting Area               | 134 | 86%      | 115                | 122       | 5.20    | 79%  | 106              | 117                     | 9.05                  | 57%  | 77       | 85       |                  | 23% | 31      | 39      | 2.40            |
|      | Unused Area                | 109 | 98%      | 107                | 100       | 6.40    | 98%  | 107              |                         | 11.13                 | 71%  | 77       | 69       |                  | 37% | 40      | 32      | 2.95            |
|      |                            |     |          |                    |           | df = 1  |      |                  |                         | df = 1                |      |          |          | df = 1           |     |         |         | df = 1          |
|      |                            |     |          |                    |           | 11.60   |      |                  |                         | 20.18                 |      |          |          | $^{2} = 4.50$    |     |         |         | $\chi^2 = 5.35$ |
|      |                            |     |          |                    | P = 0     | 0.0007  |      |                  | P < 0                   | 0.0001                |      |          | 1        | P = 0.03         |     |         |         | P = 0.02        |

## Continued.

<sup>a</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

<sup>b</sup> Observed number of prenesting plovers with at least one gull present within 100 m.

<sup>c</sup> Expected number of prenesting plovers with at least one gull present within 100 m.

<sup>d</sup> Partial Chi-square for observed vs. expected values for each management area.

**Table 22, Continued.** Percent of random points with at least one gull present within 100 m, during the nesting period, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Chi-square tests were used to test for differences in proportions. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Year | Management                 |     |     | Plots W                    | ith Large    | Gulls     | ~   |               |                                 | s With                                  | Plo | ots With      | Herrin        | g Gulls       | Plots | With I        | mmatur        | e Gulls                                 |
|------|----------------------------|-----|-----|----------------------------|--------------|-----------|-----|---------------|---------------------------------|-----------------------------------------|-----|---------------|---------------|---------------|-------|---------------|---------------|-----------------------------------------|
|      | Area                       | n   | %   | Obs.<br>Value <sup>b</sup> | Exp<br>Value | $x^{2} d$ |     | obs.<br>Value | <u>k-backe</u><br>Exp.<br>Value | <u>d Gulls</u><br>Row<br>χ <sup>2</sup> | %   | Obs.<br>Value | Exp.<br>Value | $Row \chi^2$  | %     | Obs.<br>Value | Exp.<br>Value | $\frac{Row}{\chi^2}$                    |
| 2000 |                            |     |     | value                      | value        | λ         |     |               |                                 | λ                                       |     |               |               | 70            |       |               |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|      | Gull-removal               |     |     |                            |              |           |     |               |                                 |                                         |     |               |               |               |       |               |               |                                         |
|      | Nesting Area               | 132 | 58% | 77                         | 78           | 0.02      | 44% | 58            | 60                              | 0.10                                    | 24% | 32            | 33            | 0.06          | 19%   | 25            | 25            | 0.005                                   |
|      | Unused Area                | 7   | 71% | 5                          | 4            | 0.45      | 71% | 5             | 3                               | 1.93                                    | 43% | 3             | 2             | 1.16          | 14%   | 1             | 1             | 0.09                                    |
|      |                            |     |     |                            |              | df = 1    |     |               |                                 | df = 1                                  |     |               |               | df = 1        |       |               |               | df = 1                                  |
|      |                            |     |     |                            | $\chi^2$     | = 0.47    |     |               | $\chi^2$                        | = 2.03                                  |     |               | χ             | $^{2} = 1.22$ |       |               | $\chi^2$      | = 0.09                                  |
|      |                            |     |     |                            | Р            | = 0.49    |     |               | Р                               | = 0.15                                  |     |               | ŀ             | P = 0.27      |       |               | Р             | = 0.76                                  |
|      | Buffer                     |     |     |                            |              |           |     |               |                                 |                                         |     |               |               |               |       |               |               |                                         |
|      | Nesting Area               | 0   | -   | -                          | -            | -         | -   | -             | -                               | -                                       | -   | -             | -             | -             | -     | -             | -             | -                                       |
|      | Unused Area                | 141 | 97% | 137                        | 137          | 0.00      | 96% | 136           | 136                             | 0.00                                    | 62% | 88            | 88            | 0.00          | 31%   | 43            | 43            | 0.00                                    |
|      |                            |     |     |                            |              | -         |     |               |                                 | -                                       |     |               |               | -             |       |               |               | -                                       |
|      | Reference                  |     |     |                            |              |           |     |               |                                 |                                         |     |               |               |               |       |               |               |                                         |
|      | Nesting Area               | 150 | 91% | 136                        | 142          | 4.44      | 83% | 125           | 135                             | 7.00                                    | 54% | 81            | 80            | 0.01          | 23%   | 34            | 30            | 0.71                                    |
|      | Unused Area                | 126 | 99% | 125                        | 136          | 5.28      | 98% | 123           | 113                             | 8.33                                    | 53% | 67            | 68            | 0.01          | 17%   | 21            | 25            | 0.84                                    |
|      |                            |     |     |                            |              | df = 1    |     |               |                                 | df = 1                                  |     |               |               | df = 1        |       |               |               | df = 1                                  |
|      |                            |     |     |                            | $\chi^2$     | = 9.72    |     |               | χ <sup>2</sup> =                | = 15.33                                 |     |               | χ             | $^{2} = 0.02$ |       |               | $\chi^2$      | = 1.55                                  |
|      |                            |     |     |                            | P =          | 0.002     |     |               | P <                             | 0.0001                                  |     |               | ŀ             | P = 0.89      |       |               | Р             | = 0.21                                  |
|      | South Monomoy <sup>a</sup> |     |     |                            |              |           |     |               |                                 |                                         |     |               |               |               |       |               |               |                                         |
|      | Nesting Area               | 171 | 82% | 140                        | 154          | 12.30     | 73% | 124           | 144                             | 17.34                                   | 47% | 80            | 87            | 1.00          | 24%   | 41            | 36            | 0.89                                    |
|      | Unused Area                | 157 | 99% | 155                        | 141          | 13.40     | 97% | 152           | 132                             | 18.89                                   | 55% | 86            | 79            | 1.09          | 18%   | 28            | 33            | 0.97                                    |
|      |                            |     |     |                            |              | df = 1    |     |               |                                 | df = 1                                  |     |               |               | df = 1        |       |               |               | df = 1                                  |
|      |                            |     |     |                            | $\chi^2 =$   | 25.70     |     |               | χ <sup>2</sup> =                | = 36.23                                 |     |               | χ             | $^{2} = 2.09$ |       |               | $\chi^2$      | = 1.86                                  |
|      |                            |     |     |                            | P < 0        | 0.0001    |     |               | P <                             | 0.0001                                  |     |               | ŀ             | P = 0.15      |       |               | Р             | = 0.17                                  |

#### Continued.

<sup>a</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

<sup>b</sup> Observed number of prenesting plovers with at least one gull present within 100 m.

<sup>c</sup> Expected number of prenesting plovers with at least one gull present within 100 m.

<sup>d</sup> Partial Chi-square for observed vs. expected values for each management area.

**Table 22, Continued.** Percent of random points with at least one gull present within 100 m, during the nesting period, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Chi-square tests were used to test for differences in proportions. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Year   | Management                 |     | ]   | Plots Wi           | ith Large          | Gulls      |     |                  |                         | s With                | <u>P1</u> | ots With | n Herrin | g Gulls       | Plot | s With I | mmatur   | e Gulls  |
|--------|----------------------------|-----|-----|--------------------|--------------------|------------|-----|------------------|-------------------------|-----------------------|-----------|----------|----------|---------------|------|----------|----------|----------|
|        | Area                       |     |     | Obs.               | Fvn                | Row        | Gre | eat Blac<br>Obs. | <u>k-backed</u><br>Exp. | <u>I Gulls</u><br>Row |           | Obs.     | Exp.     | Row           |      | Obs.     | Exp.     | Row      |
|        |                            | n   | %   | Value <sup>b</sup> | Value <sup>c</sup> | $\chi^2 d$ | %   | Value            |                         | $\chi^2$              | %         | Value    |          | $\chi^2$      | %    |          | Value    | $\chi^2$ |
| 1999-2 | 000                        |     |     |                    |                    |            |     |                  |                         |                       |           |          |          |               |      |          |          |          |
|        | Gull-removal               |     |     |                    |                    |            |     |                  |                         |                       |           |          |          |               |      |          |          |          |
|        | Nesting Area               | 263 | 64% | 169                | 171                | 0.04       | 49% | 129              | 132                     | 0.14                  | 34%       | 89       | 92       | 0.11          | 16%  | 43       | 44       | 0.05     |
|        | Unused Area                | 10  | 80% | 8                  | 6                  | 1.00       | 80% | 8                | 5                       | 3.56                  | 60%       | 6        | 3        | 2.80          | 30%  | 3        | 2        | 1.23     |
|        |                            |     |     |                    |                    | df = 1     |     |                  |                         | df = 1                |           |          |          | df = 1        |      |          |          | df = 1   |
|        |                            |     |     |                    | $\chi^2$           | = 1.05     |     |                  | $\chi^2$                | = 3.69                |           |          | χ        | $^{2} = 2.91$ |      |          | $\chi^2$ | = 1.28   |
|        |                            |     |     |                    | P                  | = 0.31     |     |                  | Р                       | = 0.05                |           |          | ŀ        | P = 0.09      |      |          | Р        | = 0.26   |
|        | Buffer                     |     |     |                    |                    |            |     |                  |                         |                       |           |          |          |               |      |          |          |          |
|        | Nesting Area               | 70  | 93% | 65                 | 67                 | 2.40       | 91% | 64               | 67                      | 2.90                  | 47%       | 33       | 45       | 9.17          | 14%  | 10       | 17       | 3.98     |
|        | Unused Area                | 203 | 98% | 198                | 169                | 0.83       | 97% | 197              | 194                     | 1.00                  | 70%       | 143      | 131      | 3.16          | 28%  | 57       | 50       | 1.37     |
|        |                            |     |     |                    |                    | df = 1     |     |                  |                         | df = 1                |           |          |          | df = 1        |      |          |          | df = 1   |
|        |                            |     |     |                    | $\chi^2$           | = 3.23     |     |                  | $\chi^2$                | = 3.91                |           |          | $\chi^2$ | = 12.34       |      |          | $\chi^2$ | = 5.35   |
|        |                            |     |     |                    | P                  | = 0.07     |     |                  | Р                       | = 0.05                |           |          | P =      | 0.0004        |      |          | Р        | = 0.02   |
|        | Reference                  |     |     |                    |                    |            |     |                  |                         |                       |           |          |          |               |      |          |          |          |
|        | Nesting Area               | 293 | 92% | 270                | 279                | 6.83       | 88% | 257              | 271                     | 10.10                 | 54%       | 157      | 168      | 1.68          | 23%  | 68       | 73       | 0.43     |
|        | Unused Area                | 246 | 99% | 244                | 235                | 8.14       | 98% | 242              | 228                     | 12.02                 | 62%       | 152      | 141      | 2.00          | 27%  | 66       | 61       | 0.51     |
|        |                            |     |     |                    |                    | df = 1     |     |                  |                         | df = 1                |           |          |          | df = 1        |      |          |          | df = 1   |
|        |                            |     |     |                    | $\chi^2 =$         | 14.97      |     |                  | $\chi^2 =$              | 22.12                 |           |          | χ        | $^{2} = 3.68$ |      |          | $\chi^2$ | = 0.94   |
|        |                            |     |     |                    | P = (              | 0.0001     |     |                  | P <                     | 0.0001                |           |          | F        | P = 0.06      |      |          | Р        | = 0.33   |
|        | South Monomoy <sup>a</sup> |     |     |                    |                    |            |     |                  |                         |                       |           |          |          |               |      |          |          |          |
|        | Nesting Area               | 305 | 84% | 255                | 276                | 17.14      | 75% | 230              | 261                     | 25.95                 | 51%       | 157      | 171      | 2.58          | 24%  | 72       | 75       | 0.14     |
|        | Unused Area                | 266 | 99% | 262                | 241                | 19.65      | 97% | 259              | 228                     | 29.76                 | 61%       | 163      | 149      | 2.96          | 26%  | 68       | 65       | 0.16     |
|        |                            |     |     |                    |                    | df = 1     |     |                  |                         | df = 1                |           |          |          | df = 1        |      |          |          | df = 1   |
|        |                            |     |     |                    | $\chi^2 =$         | 36.79      |     |                  | χ <sup>2</sup> =        | 55.71                 |           |          | χ        | $^{2} = 5.54$ |      |          | $\chi^2$ | = 0.29   |
|        |                            |     |     |                    | P < 0              | 0.0001     |     |                  | P <                     | 0.0001                |           |          | F        | P = 0.02      |      |          | Р        | = 0.59   |

<sup>a</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

<sup>b</sup> Observed number of prenesting plovers with at least one gull present within 100 m.

<sup>c</sup> Expected number of prenesting plovers with at least one gull present within 100 m.

<sup>d</sup> Partial Chi-square for observed vs. expected values for each management area.

**Table 23.** Mean width (m) of foraging habitats on random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Habitat               |    | Gull-remov     | al Area  |     | Buff                        | er Area  |    | Referen        | ce Area  | Sou | th Monomoy     | Island a |
|-----------------------|----|----------------|----------|-----|-----------------------------|----------|----|----------------|----------|-----|----------------|----------|
|                       | n  | $\overline{x}$ | SE       | n   | $\overline{x}$              | SE       | n  | $\overline{x}$ | SE       | n   | $\overline{x}$ | SE       |
| Ocean Intertidal Zone |    |                |          |     |                             |          |    |                |          |     |                |          |
| Nesting Area          | 48 | 32.06          | 5.29     | 34  | 19.20                       | 1.82     | 64 | 17.88          | 1.23     | 72  | 21.78          | 2.78     |
| Unused Area           | 2  | 23.72          | 10.35    | 28  | 24.43                       | 2.37     | 52 | 19.98          | 1.41     | 54  | 20.15          | 1.39     |
|                       |    | T = 0.26, H    | P = 0.37 |     | T = -1.19, P                | P = 0.11 |    | T = 0.23, I    | P = 0.44 |     | T = -0.04, H   | P = 0.35 |
| Ocean Fresh Wrack     |    |                |          |     |                             |          |    |                |          |     |                |          |
| Nesting Area          | 48 | 0.69           | 0.24     | 34  | 0.10                        | 0.06     | 64 | 0.84           | 0.34     | 72  | 0.88           | 0.31     |
| Unused Area           | 2  | 0.00           | 0.00     | 28  | 1.04                        | 0.32     | 52 | 0.51           | 0.22     | 54  | 0.61           | 0.22     |
|                       |    | T = -0.29, H   | P = 0.16 | Т   | = <b>-</b> 5.53, <i>P</i> = | = 0.002  |    | T = 0.08, I    | P = 0.39 |     | T = 0.06, H    | P = 0.37 |
| Ocean Backshore       |    |                |          |     |                             |          |    |                |          |     |                |          |
| Nesting Area          | 48 | 34.11          | 4.75     | 34  | 27.64                       | 1.85     | 64 | 26.40          | 2.11     | 72  | 30.10          | 2.80     |
| Unused Area           | 2  | 13.04          | 0.30     | 28  | 19.90                       | 1.98     | 52 | 20.26          | 2.40     | 54  | 20.47          | 2.20     |
|                       |    | T = -0.75, H   | P = 0.20 | Т   | = -4.63, P =                | = 0.005  |    | T = -3.21, I   | P = 0.02 |     | T = -3.99, P   | = 0.008  |
| Ocean Old Wrack       |    |                |          |     |                             |          |    |                |          |     |                |          |
| Nesting Area          | 48 | 0.54           | 0.14     | 34  | 0.06                        | 0.04     | 64 | 0.63           | 0.17     | 72  | 0.66           | 0.16     |
| Unused Area           | 2  | 1.00           | 1.00     | 28  | 3.45                        | 1.48     | 52 | 0.45           | 0.13     | 54  | 0.46           | 0.13     |
|                       |    | T = 1.06, H    | P = 0.97 | T = | <b>-8</b> .01, <i>P</i> <   | 0.0001   |    | T = 0.51, I    | P = 0.60 |     | T = 0.36, H    | P = 0.50 |
| Ocean Open Vegetation |    |                |          |     |                             |          |    |                |          |     |                |          |
| Nesting Area          | 48 | 17.24          | 1.88     | 34  | 21.56                       | 2.62     | 64 | 16.07          | 1.49     | 72  | 17.20          | 1.53     |
| Unused Area           | 2  | 21.63          | 3.85     | 28  | 27.35                       | 8.83     | 52 | 10.26          | 1.43     | 54  | 10.50          | 1.39     |
|                       |    | T = -0.15, H   | P = 0.41 |     | T = -1.38, P                | P = 0.09 |    | T = -3.62, I   | P = 0.01 |     | T = -4.56, P   | = 0.005  |

## Continued.

**Table 23, Continued.** Mean width (m) of foraging habitats on random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Habitat                    |    | Gull-remov           | al Area  |    | Buff           | er Area |     | Referen                    | ce Area  | Sout       | h Monomoy                   | / Island <sup>a</sup> |
|----------------------------|----|----------------------|----------|----|----------------|---------|-----|----------------------------|----------|------------|-----------------------------|-----------------------|
|                            | n  | $\overline{x}$       | SE       | n  | $\overline{x}$ | SE      | n   | $\overline{x}$             | SE       | n          | $\overline{x}$              | SE                    |
| Sound Intertidal Zone      |    |                      |          |    |                |         |     |                            |          |            |                             |                       |
| Nesting Area               | 62 | 99.72                | 16.75    | 0  | -              | -       | 65  | 6.35                       | 0.63     | 67         | 39.88                       | 13.49                 |
| Unused Area                | 2  | 489.36               | 230.91   | 52 | 149.60         | 27.54   | 56  | 10.12                      | 3.56     | 60         | 33.35                       | 11.05                 |
|                            |    | T = -2.75, H         | P = 0.03 |    |                | -       |     | T = 0.52, I                | P = 0.62 |            | T = 0.62, L                 | P = 0.69              |
| Sound Fresh Wrack          |    |                      |          |    |                |         |     |                            |          |            |                             |                       |
| Nesting Area               | 62 | 0.46                 | 0.13     | 0  | -              | -       | 65  | 1.85                       | 0.47     | 67         | 1.43                        | 0.43                  |
| Unused Area                | 2  | 0.00                 | 0.00     | 52 | 2.36           | 0.53    | 56  | 1.82                       | 0.25     | 60         | 2.11                        | 0.26                  |
|                            |    | T = -0.35, H         | P = 0.11 |    |                | -       |     | T = -1.32, I               | P = 0.10 | Т          | = <b>-8</b> .07, <i>P</i> = | = 0.0002              |
| Sound Backshore            |    |                      |          |    |                |         |     |                            |          |            |                             |                       |
| Nesting Area               | 62 | 3.89                 | 0.49     | 0  | -              | -       | 65  | 20.48                      | 2.55     | 67         | 18.01                       | 2.49                  |
| Unused Area                | 2  | 5.68                 | 2.16     | 52 | 1.69           | 0.32    | 56  | 6.27                       | 0.64     | 60         | 5.71                        | 0.60                  |
|                            |    | T = 0.32, I          | P = 0.55 |    |                | -       | T = | <b>-16.50</b> , <i>P</i> < | 0.0001   | T =        | <b>-14.18</b> , <i>P</i> <  | < 0.0001              |
| Sound Old Wrack            |    |                      |          |    |                |         |     |                            |          |            |                             |                       |
| Nesting Area               | 62 | 0.92                 | 0.13     | 0  | -              | -       | 65  | 3.41                       | 0.38     | 67         | 2.57                        | 0.36                  |
| Unused Area                | 2  | 0.35                 | 0.35     | 52 | 5.48           | 1.15    | 56  | 2.77                       | 0.27     | 60         | 2.90                        | 0.29                  |
|                            |    | T = 0.13, I          | P = 0.48 |    |                | -       |     | T = -0.77, I               | P = 0.16 |            | T = -1.46, I                | P = 0.08              |
| Sound Open Vegetation      |    |                      |          |    |                |         |     |                            |          |            |                             |                       |
| Nesting Area               | 62 | 1.54                 | 0.45     | 0  | -              | -       | 65  | 11.74                      | 1.58     | 67         | 9.45                        | 1.58                  |
| Unused Area                | 2  | 10.46                | 10.46    | 52 | 2.01           | 0.91    | 56  | 1.70                       | 0.30     | 60         | 2.30                        | 0.80                  |
|                            |    | T = 1.36, I          | P = 1.00 |    |                | -       | T = | <b>-22.34</b> , <i>P</i> < | 0.0001   | T =        | <b>-11.53</b> , <i>P</i> <  | < 0.0001              |
| Tidal Pond Intertidal Zone |    |                      |          |    |                |         |     |                            |          |            |                             |                       |
| Nesting Area               | 62 | 0.00                 | 0.00     | 0  | -              | -       | 65  | 16.96                      | 4.68     | 67         | 14.26                       | 4.49                  |
| Unused Area                | 2  | 46.60                | 13.26    | 52 | 0.57           | 0.38    | 56  | 0.00                       | 0.00     | 60         | 0.00                        | 0.00                  |
|                            | Т  | = -44.18, <i>P</i> < | 0.0001   |    |                | -       | T = | <b>-13.16</b> , <i>P</i> < | 0.0001   | <i>T</i> = | -10.45, P <                 | < 0.0001              |

Table 24. Mean counts of total arthropods trapped during 3-hour trapping periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Management Area and Habitat |          | Total A        | Arthropods   | a          |
|-----------------------------|----------|----------------|--------------|------------|
|                             | <u>n</u> | $\overline{x}$ |              | SE         |
| Gull-removal Area           |          |                |              |            |
| Sound Fresh Wrack           | 27       | 66.44          | A            | 12.61      |
| Tidal Pond Intertidal Zone  | 2        | 49.50          | AB           | 41.50      |
| Ocean Fresh Wrack           | 23       | 30.00          | AB           | 5.19       |
| Sound Old Wrack             | 42       | 41.17          | ABC          | 8.40       |
| Sound Backshore             | 54       | 43.69          | ABC          | 9.23       |
| Sound Intertidal Zone       | 46       | 33.02          | ABC          | 5.16       |
| Ocean Old Wrack             | 25       | 25.00          | BC           | 4.26       |
| Sound Open Vegetation       | 21       | 18.57          | BCD          | 3.29       |
| Ocean Intertidal Zone       | 49       | 14.84          | CD           | 2.45       |
| Ocean Open Vegetation       | 55       | 13.07          | CD           | 1.74       |
| Ocean Backshore             | 54       | 12.11          | D            | 1.97       |
|                             |          |                | F = 6.77, P  | P < 0.0001 |
| ference Area                |          |                |              |            |
| Sound Fresh Wrack           | 95       | 69.44          | A            | 21.91      |
| ound Intertidal Zone        | 86       | 33.94          | A            | 4.12       |
| Ocean Fresh Wrack           | 48       | 19.90          | A            | 2.21       |
| Sound Old Wrack             | 131      | 31.90          | В            | 10.42      |
| Tidal Pond Intertidal Zone  | 28       | 18.96          | В            | 4.96       |
| Ocean Open Vegetation       | 114      | 12.83          | BC           | 1.27       |
| Ocean Old Wrack             | 36       | 18.03          | BC           | 4.57       |
| Sound Open Vegetation       | 88       | 12.49          | BCD          | 1.48       |
| Ocean Intertidal Zone       | 106      | 12.73          | BCD          | 1.59       |
| Sound Backshore             | 133      | 41.59          | CD           | 22.90      |
| Ocean Backshore             | 134      | 10.34          | D            | 1.22       |
|                             |          | 1              | F = 13.24, P | P < 0.0001 |

<sup>a</sup> Total Arthropods includes Amphipoda, Arachnida, Coleoptera, Diptera, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera. <sup>b</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

**Table 25.** Mean counts of Diptera, Coleoptera, Amphipoda, and other arthropods trapped during 3-hour trapping periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Management Area and Arthropod Order | Habitat                    |          |                |             |          |
|-------------------------------------|----------------------------|----------|----------------|-------------|----------|
|                                     |                            | <u>n</u> | $\overline{x}$ |             | SE       |
| Gull-removal, Diptera               | Tidal Pond Intertidal Zone | 2        | 48.50          | A           | 40.50    |
|                                     | Sound Fresh Wrack          | 27       | 43.56          | A           | 10.94    |
|                                     | Ocean Fresh Wrack          | 23       | 19.17          | A           | 2.46     |
|                                     | Sound Old Wrack            | 42       | 32.93          | AB          | 6.69     |
|                                     | Ocean Old Wrack            | 25       | 19.80          | ABC         | 3.82     |
|                                     | Sound Backshore            | 54       | 29.44          | ABC         | 7.34     |
|                                     | Sound Intertidal Zone      | 46       | 26.41          | ABC         | 4.90     |
|                                     | Sound Open Vegetation      | 21       | 14.76          | ABC         | 2.92     |
|                                     | Ocean Open Vegetation      | 55       | 9.91           | BC          | 1.51     |
|                                     | Ocean Intertidal Zone      | 49       | 10.10          | BC          | 1.75     |
|                                     | Ocean Backshore            | 54       | 9.02           | С           | 1.45     |
|                                     |                            |          |                | F = 5.54, P | < 0.0001 |
| Gull-removal, Coleoptera            | Sound Fresh Wrack          | 27       | 14.37          | A           | 6.37     |
|                                     | Sound Backshore            | 54       | 12.44          | AB          | 4.57     |
|                                     | Sound Open Vegetation      | 21       | 2.29           | ABC         | 0.67     |
|                                     | Ocean Fresh Wrack          | 23       | 7.74           | ABC         | 3.70     |
|                                     | Sound Intertidal Zone      | 46       | 3.02           | ABC         | 0.95     |
|                                     | Sound Old Wrack            | 42       | 6.71           | ABC         | 2.96     |
|                                     | Ocean Old Wrack            | 25       | 3.36           | ABC         | 1.28     |
|                                     | Ocean Intertidal Zone      | 49       | 2.12           | ABC         | 0.68     |
|                                     | Ocean Backshore            | 54       | 2.43           | ABC         | 1.25     |
|                                     | Tidal Pond Intertidal Zone | 2        | 0.50           | BC          | 0.50     |
|                                     | Ocean Open Vegetation      | 55       | 1.24           | С           | 0.40     |
|                                     |                            |          |                | F = 3.23, P | = 0.0005 |
| Gull-removal, Amphipoda             | Sound Fresh Wrack          | 27       | 6.48           | A           | 2.61     |
|                                     | Ocean Fresh Wrack          | 23       | 2.26           | A           | 0.79     |
|                                     | Ocean Intertidal Zone      | 49       | 2.24           | AB          | 0.64     |
|                                     | Sound Intertidal Zone      | 46       | 2.52           | AB          | 0.93     |
|                                     | Sound Old Wrack            | 42       | 0.88           | AB          | 0.23     |
|                                     | Sound Backshore            | 54       | 0.80           | ABC         | 0.22     |
|                                     | Ocean Old Wrack            | 25       | 0.84           | BCD         | 0.51     |
|                                     | Ocean Backshore            | 54       | 0.06           | CD          | 0.06     |
|                                     | Ocean Open Vegetation      | 55       | 0.02           | CD          | 0.02     |
|                                     | Tidal Pond Intertidal Zone | 2        | 0.00           | D           | 0.00     |
|                                     | Sound Open Vegetation      | 21       | 0.00           | D           | 0.00     |
|                                     |                            |          |                | F = 8.65, P | < 0.0001 |

Continued.

<sup>a</sup> Other Arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

**Table 25, Continued.** Mean counts of Diptera, Coleoptera, Amphipoda, and other arthropods trapped during 3-hour trapping periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Management Area and Arthropod Order | Habitat                    |          |                |              |          |
|-------------------------------------|----------------------------|----------|----------------|--------------|----------|
|                                     |                            | <u>n</u> | $\overline{x}$ |              | SE       |
| Gull-removal, Other <sup>a</sup>    | Ocean Open Vegetation      | 55       | 1.91           | A            | 0.28     |
|                                     | Sound Open Vegetation      | 21       | 1.52           | AB           | 0.43     |
|                                     | Ocean Old Wrack            | 25       | 1.00           | ABC          | 0.24     |
|                                     | Sound Fresh Wrack          | 27       | 6.48           | ABC          | 2.61     |
|                                     | Sound Backshore            | 54       | 1.00           | ABC          | 0.25     |
|                                     | Ocean Fresh Wrack          | 23       | 0.83           | ABC          | 0.26     |
|                                     | Tidal Pond Intertidal Zone | 2        | 0.50           | ABC          | 0.50     |
|                                     | Sound Old Wrack            | 42       | 0.64           | BC           | 0.20     |
|                                     | Sound Intertidal Zone      | 46       | 1.07           | BC           | 0.51     |
|                                     | Ocean Backshore            | 54       | 0.61           | BC           | 0.16     |
|                                     | Ocean Intertidal Zone      | 49       | 0.37           | С            | 0.16     |
|                                     |                            |          |                | F = 4.88, P  | < 0.0001 |
| Buffer, Diptera                     | Sound Fresh Wrack          | 26       | 147.50         | A            | 53.08    |
|                                     | Sound Old Wrack            | 53       | 49.06          | AB           | 9.81     |
|                                     | Sound Intertidal Zone      | 28       | 31.64          | ABC          | 5.89     |
|                                     | Sound Open Vegetation      | 21       | 49.05          | BC           | 19.51    |
|                                     | Tidal Pond Intertidal Zone | 4        | 18.75          | BC           | 6.50     |
|                                     | Ocean Old Wrack            | 18       | 15.56          | BC           | 2.77     |
|                                     | Sound Backshore            | 27       | 48.33          | BC           | 18.69    |
|                                     | Ocean Fresh Wrack          | 12       | 10.83          | CD           | 1.85     |
|                                     | Ocean Open Vegetation      | 60       | 7.97           | DE           | 1.26     |
|                                     | Ocean Intertidal Zone      | 45       | 8.60           | Е            | 2.12     |
|                                     | Ocean Backshore            | 60       | 9.30           | Е            | 3.33     |
|                                     |                            |          | 1              | F = 13.70, P | < 0.0001 |
| Buffer, Coleoptera                  | Sound Fresh Wrack          | 26       | 32.65          | A            | 15.42    |
|                                     | Sound Old Wrack            | 53       | 44.58          | AB           | 27.65    |
|                                     | Sound Backshore            | 27       | 8.74           | ABC          | 4.24     |
|                                     | Ocean Fresh Wrack          | 12       | 4.33           | ABCD         | 2.23     |
|                                     | Tidal Pond Intertidal Zone | 4        | 3.75           | BCDE         | 2.59     |
|                                     | Sound Intertidal Zone      | 28       | 8.39           | BCDE         | 3.52     |
|                                     | Ocean Old Wrack            | 18       | 1.39           | CDE          | 0.48     |
|                                     | Sound Open Vegetation      | 21       | 1.00           | CDE          | 0.28     |
|                                     | Ocean Backshore            | 60       | 1.53           | DE           | 0.51     |
|                                     | Ocean Open Vegetation      | 60       | 0.97           | E            | 0.31     |
|                                     | Ocean Intertidal Zone      | 45       | 0.71           | Е            | 0.24     |
|                                     |                            |          |                | F = 7.21, P  | < 0.0001 |

## Continued.

<sup>a</sup> Other Arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

**Table 25, Continued.** Mean counts of Diptera, Coleoptera, Amphipoda, and other arthropods trapped during 3-hour trapping periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Management Area and Arthropod Order | Habitat                    |          |                |              |          |
|-------------------------------------|----------------------------|----------|----------------|--------------|----------|
|                                     |                            | <u>n</u> | $\overline{x}$ |              | SE       |
| Buffer, Amphipoda                   | Sound Old Wrack            | 53       | 10.13          | A            | 3.22     |
|                                     | Sound Fresh Wrack          | 26       | 85.96          | A            | 72.86    |
|                                     | Ocean Intertidal Zone      | 45       | 1.24           | AB           | 0.33     |
|                                     | Sound Backshore            | 27       | 4.00           | BC           | 3.70     |
|                                     | Sound Open Vegetation      | 21       | 0.19           | С            | 0.15     |
|                                     | Ocean Fresh Wrack          | 12       | 0.25           | С            | 0.25     |
|                                     | Sound Intertidal Zone      | 28       | 0.11           | С            | 0.08     |
|                                     | Ocean Old Wrack            | 18       | 0.17           | С            | 0.17     |
|                                     | Ocean Backshore            | 60       | 0.02           | С            | 0.02     |
|                                     | Tidal Pond Intertidal Zone | 4        | 0.00           | С            | 0.00     |
|                                     | Ocean Open Vegetation      | 60       | 0.00           | С            | 0.00     |
|                                     |                            |          | I              | F = 12.58, P | < 0.0001 |
| Buffer, Other <sup>a</sup>          | Sound Open Vegetation      | 21       | 4.76           | A            | 1.40     |
|                                     | Tidal Pond Intertidal Zone | 4        | 0.75           | AB           | 0.25     |
|                                     | Sound Backshore            | 27       | 1.81           | AB           | 0.47     |
|                                     | Sound Old Wrack            | 53       | 4.83           | AB           | 1.92     |
|                                     | Ocean Open Vegetation      | 60       | 1.18           | AB           | 0.30     |
|                                     | Sound Fresh Wrack          | 26       | 4.54           | AB           | 2.27     |
|                                     | Sound Intertidal Zone      | 28       | 1.32           | BC           | 0.59     |
|                                     | Ocean Old Wrack            | 18       | 0.56           | BC           | 0.22     |
|                                     | Ocean Backshore            | 60       | 0.15           | С            | 0.05     |
|                                     | Ocean Fresh Wrack          | 12       | 0.08           | С            | 0.08     |
|                                     | Ocean Intertidal Zone      | 45       | 0.04           | С            | 0.03     |
|                                     |                            |          |                | F = 6.84, P  | < 0.0001 |
| Reference, Diptera                  | Sound Fresh Wrack          | 95       | 43.27          | A            | 19.36    |
|                                     | Ocean Fresh Wrack          | 48       | 15.38          | A            | 1.94     |
|                                     | Sound Old Wrack            | 131      | 19.45          | В            | 6.27     |
|                                     | Ocean Old Wrack            | 36       | 15.19          | В            | 4.01     |
|                                     | Ocean Open Vegetation      | 114      | 10.50          | BC           | 1.12     |
|                                     | Tidal Pond Intertidal Zone | 28       | 16.79          | BCD          | 4.87     |
|                                     | Sound Open Vegetation      | 88       | 10.53          | BCDE         | 1.45     |
|                                     | Ocean Backshore            | 134      | 8.92           | BCDE         | 1.13     |
|                                     | Sound Intertidal Zone      | 86       | 9.20           | CDE          | 1.90     |
|                                     | Sound Backshore            | 133      | 27.04          | DE           | 19.15    |
|                                     | Ocean Intertidal Zone      | 106      | 7.11           | Е            | 0.92     |
|                                     |                            |          |                | F = 8.39, P  | < 0.0001 |

Continued.

<sup>a</sup> Other Arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

**Table 25, Continued.** Mean counts of Diptera, Coleoptera, Amphipoda, and other arthropods trapped during 3-hour trapping periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Management Area and Arthropod Order | Habitat                    |          |                |                             |        |
|-------------------------------------|----------------------------|----------|----------------|-----------------------------|--------|
|                                     |                            | <u>n</u> | $\overline{x}$ |                             | SE     |
| Reference, Coleoptera               | Sound Fresh Wrack          | 95       | 18.39          | A                           | 8.35   |
|                                     | Sound Intertidal Zone      | 86       | 5.64           | AB                          | 1.55   |
|                                     | Ocean Fresh Wrack          | 48       | 2.19           | AB                          | 0.74   |
|                                     | Sound Backshore            | 133      | 13.97          | AB                          | 8.12   |
|                                     | Ocean Old Wrack            | 36       | 2.14           | AB                          | 0.99   |
|                                     | Sound Old Wrack            | 131      | 11.43          | ABC                         | 6.38   |
|                                     | Tidal Pond Intertidal Zone | 28       | 1.25           | ABC                         | 0.45   |
|                                     | Sound Open Vegetation      | 88       | 0.91           | BCD                         | 0.18   |
|                                     | Ocean Open Vegetation      | 114      | 0.73           | CD                          | 0.21   |
|                                     | Ocean Intertidal Zone      | 106      | 0.92           | D                           | 0.29   |
|                                     | Ocean Backshore            | 134      | 0.63           | D                           | 0.17   |
|                                     |                            |          |                | <i>F</i> = 4.93, <i>P</i> < | 0.0001 |
| Reference, Amphipoda                | Sound Intertidal Zone      | 86       | 18.81          | A                           | 3.25   |
|                                     | Sound Fresh Wrack          | 95       | 7.47           | A                           | 1.67   |
|                                     | Ocean Intertidal Zone      | 106      | 4.50           | В                           | 1.12   |
|                                     | Ocean Fresh Wrack          | 48       | 1.94           | В                           | 0.53   |
|                                     | Sound Old Wrack            | 131      | 0.69           | С                           | 0.16   |
|                                     | Sound Backshore            | 133      | 0.29           | CD                          | 0.07   |
|                                     | Ocean Old Wrack            | 36       | 0.14           | DE                          | 0.07   |
|                                     | Tidal Pond Intertidal Zone | 28       | 0.36           | DE                          | 0.27   |
|                                     | Sound Open Vegetation      | 88       | 0.02           | Е                           | 0.01   |
|                                     | Ocean Open Vegetation      | 114      | 0.02           | E                           | 0.02   |
|                                     | Ocean Backshore            | 134      | 0.00           | E                           | 0.00   |
|                                     |                            |          | 1              | F = 56.12, P <              | 0.0001 |
| Reference, Other <sup>a</sup>       | Ocean Open Vegetation      | 114      | 1.59           | А                           | 0.25   |
|                                     | Sound Open Vegetation      | 88       | 1.03           | AB                          | 0.17   |
|                                     | Tidal Pond Intertidal Zone | 28       | 0.57           | BC                          | 0.19   |
|                                     | Ocean Old Wrack            | 36       | 0.56           | CD                          | 0.23   |
|                                     | Ocean Backshore            | 134      | 0.80           | CDE                         | 0.26   |
|                                     | Ocean Fresh Wrack          | 48       | 0.40           | CDEF                        | 0.18   |
|                                     | Sound Backshore            | 133      | 0.29           | CDEF                        | 0.05   |
|                                     | Sound Old Wrack            | 131      | 0.34           | DEF                         | 0.09   |
|                                     | Sound Intertidal Zone      | 86       | 0.29           | DEF                         | 0.10   |
|                                     | Ocean Intertidal Zone      | 106      | 0.20           | EF                          | 0.05   |
|                                     | Sound Fresh Wrack          | 95       | 0.32           | F                           | 0.17   |
|                                     |                            |          | 1              | F = 10.35, P <              | 0.0001 |

Continued.

<sup>a</sup> Other Arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

**Table 25, Continued.** Mean counts of Diptera, Coleoptera, Amphipoda, and other arthropods trapped during 3-hour trapping periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Management Area and Arthropod Order    | Habitat                    |          |                |              |          |
|----------------------------------------|----------------------------|----------|----------------|--------------|----------|
|                                        |                            | <u>n</u> | $\overline{x}$ |              | SE       |
| South Monomoy, <sup>b</sup> Diptera    | Sound Fresh Wrack          | 101      | 48.64          | A            | 18.41    |
|                                        | Ocean Fresh Wrack          | 65       | 17.09          | A            | 1.62     |
|                                        | Ocean Old Wrack            | 52       | 19.02          | AB           | 3.25     |
|                                        | Sound Old Wrack            | 140      | 22.28          | BC           | 6.02     |
|                                        | Sound Open Vegetation      | 81       | 13.03          | CD           | 2.07     |
|                                        | Ocean Open Vegetation      | 139      | 10.71          | CD           | 1.02     |
|                                        | Tidal Pond Intertidal Zone | 24       | 13.92          | CD           | 4.49     |
|                                        | Sound Intertidal Zone      | 98       | 13.07          | CD           | 2.15     |
|                                        | Sound Backshore            | 140      | 32.45          | D            | 18.38    |
|                                        | Ocean Backshore            | 156      | 9.52           | D            | 1.04     |
|                                        | Ocean Intertidal Zone      | 125      | 8.54           | D            | 0.93     |
|                                        |                            |          |                | F = 8.57, P  | < 0.0001 |
| South Monomoy, <sup>b</sup> Coleoptera | Sound Fresh Wrack          | 101      | 18.85          | A            | 7.87     |
|                                        | Ocean Fresh Wrack          | 65       | 4.32           | AB           | 1.43     |
|                                        | Sound Backshore            | 140      | 15.89          | AB           | 7.85     |
|                                        | Sound Intertidal Zone      | 98       | 5.74           | AB           | 1.43     |
|                                        | Sound Old Wrack            | 140      | 11.84          | AB           | 6.01     |
|                                        | Ocean Old Wrack            | 52       | 2.60           | BC           | 0.85     |
|                                        | Tidal Pond Intertidal Zone | 24       | 1.54           | BCD          | 0.62     |
|                                        | Sound Open Vegetation      | 81       | 1.09           | BCD          | 0.22     |
|                                        | Ocean Open Vegetation      | 139      | 0.91           | CD           | 0.22     |
|                                        | Ocean Intertidal Zone      | 125      | 1.14           | D            | 0.28     |
|                                        | Ocean Backshore            | 156      | 1.21           | D            | 0.45     |
|                                        |                            |          |                | F = 6.44, P  | < 0.0001 |
| South Monomoy, <sup>b</sup> Amphipoda  | Sound Intertidal Zone      | 98       | 16.01          | A            | 2.91     |
|                                        | Sound Fresh Wrack          | 101      | 8.16           | A            | 1.78     |
|                                        | Ocean Intertidal Zone      | 125      | 4.26           | В            | 0.97     |
|                                        | Ocean Fresh Wrack          | 65       | 2.02           | В            | 0.44     |
|                                        | Sound Old Wrack            | 140      | 1.28           | С            | 0.49     |
|                                        | Sound Backshore            | 140      | 0.35           | CD           | 0.08     |
|                                        | Ocean Old Wrack            | 52       | 0.54           | DE           | 0.26     |
|                                        | Tidal Pond Intertidal Zone | 24       | 0.13           | EF           | 0.13     |
|                                        | Sound Open Vegetation      | 81       | 0.02           | F            | 0.02     |
|                                        | Ocean Open Vegetation      | 139      | 0.02           | F            | 0.02     |
|                                        | Ocean Backshore            | 156      | 0.03           | F            | 0.02     |
|                                        |                            |          | 1              | F = 48.49, P | < 0.0001 |

## Continued.

<sup>a</sup> Other Arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

Table 25, Continued. Mean counts of Diptera, Coleoptera, Amphipoda, and other arthropods trapped during 3hour trapping periods in habitats along random transects, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. ANOVAs were conducted on ranked values of the samples. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Management Area and Arthropod Order            | Habitat                    |          |                |              |          |
|------------------------------------------------|----------------------------|----------|----------------|--------------|----------|
|                                                |                            | <u>n</u> | $\overline{x}$ |              | SE       |
| South Monomoy, <sup>b</sup> Other <sup>a</sup> | Ocean Open Vegetation      | 139      | 1.51           | А            | 0.19     |
| South Monomoy, Other                           | Sound Open Vegetation      | 81       | 1.51           | A            | 0.28     |
|                                                | Ocean Old Wrack            | 52       | 0.83           | В            | 0.20     |
|                                                | Tidal Pond Intertidal Zone | 24       | 0.50           | BC           | 0.19     |
|                                                | Ocean Fresh Wrack          | 65       | 0.55           | BCD          | 0.16     |
|                                                | Sound Backshore            | 140      | 0.43           | CD           | 0.08     |
|                                                | Ocean Backshore            | 156      | 0.77           | CD           | 0.23     |
|                                                | Sound Old Wrack            | 140      | 1.18           | CD           | 0.44     |
|                                                | Sound Fresh Wrack          | 101      | 1.08           | CD           | 0.58     |
|                                                | Sound Intertidal Zone      | 98       | 0.39           | CD           | 0.12     |
|                                                | Ocean Intertidal Zone      | 125      | 0.19           | D            | 0.04     |
|                                                |                            |          | F              | F = 12.52, P | < 0.0001 |

<sup>a</sup> Other Arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera. <sup>b</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the

island.

**Table 26.** Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. *P*-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and Habitat         |    | Total A        | rthropods |                | <u>Diptera</u> | <u>Cc</u>      | oleoptera | Am             | <u>phipoda</u> |                | Other 5  |
|-------------------------------------|----|----------------|-----------|----------------|----------------|----------------|-----------|----------------|----------------|----------------|----------|
| _                                   | n  | $\overline{x}$ | SE        | $\overline{x}$ | SE             | $\overline{x}$ | SE        | $\overline{x}$ | SE             | $\overline{x}$ | SE       |
| Gull-removal, Ocean Intertidal Zone |    |                |           |                |                |                |           |                |                |                |          |
| Nesting Area                        | 47 | 15.06          | 2.54      | 10.26          | 1.82           | 2.21           | 0.70      | 2.23           | 0.66           | 0.36           | 0.16     |
| Unused Area                         | 2  | 9.50           | 7.50      | 6.50           | 5.50           | 0.00           | 0.00      | 2.50           | 2.50           | 0.50           | 0.50     |
|                                     |    |                | P = 0.90  |                | P = 0.96       |                | P = 0.27  |                | P = 0.76       |                | P = 0.35 |
| Gull-removal, Ocean Fresh Wrack     |    |                |           |                |                |                |           |                |                |                |          |
| Nesting Area                        | 23 | 30.00          | 5.19      | 19.17          | 2.46           | 7.74           | 3.70      | 2.26           | 0.79           | 0.83           | 0.24     |
| Unused Area                         | 0  | -              | -         | -              | -              | -              | -         | -              | -              | -              | -        |
| Gull-removal, Ocean Backshore       |    |                |           |                |                |                |           |                |                |                |          |
| Nesting Area                        | 53 | 12.09          | 2.01      | 8.94           | 1.48           | 2.47           | 1.28      | 0.06           | 0.06           | 0.62           | 0.17     |
| Unused Area                         | 1  | 13.00          | -         | 13.00          | -              | 0.00           | -         | 0.00           | -              | 0.00           | -        |
|                                     |    |                | P = 0.68  |                | P = 0.46       |                | P = 0.46  |                | P = 0.89       |                | P = 0.54 |
| Gull-removal, Ocean Old Wrack       |    |                |           |                |                |                |           |                |                |                |          |
| Nesting Area                        | 24 | 25.46          | 4.42      | 20.04          | 3.98           | 3.50           | 1.32      | 0.88           | 0.53           | 1.04           | 0.25     |
| Unused Area                         | 1  | 14.00          | -         | 14.00          | -              | 0.00           | -         | 0.00           | -              | 0.00           | -        |
|                                     |    |                | P = 0.68  |                | P = 0.94       |                | P = 0.40  |                | P = 0.62       |                | P = 0.33 |
| Gull-removal, Ocean Open Vegetation |    |                |           |                |                |                |           |                |                |                |          |
| Nesting Area                        | 53 | 13.08          | 1.79      | 9.89           | 1.55           | 1.26           | 0.41      | 0.02           | 0.02           | 1.91           | 0.29     |
| Unused Area                         | 2  | 13.00          | 10.00     | 10.50          | 7.50           | 0.50           | 0.50      | 0.00           | 0.00           | 2.00           | 2.00     |
|                                     |    |                | P = 0.82  |                | P = 0.79       |                | P = 0.81  |                | P = 0.85       |                | P = 0.98 |

## Continued.

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

**Table 26, Continued.** Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. *P*-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and Ha   | <u>abitat</u>     |    | Total A        | rthropods |                | <u>Diptera</u> | <u>C</u>       | oleoptera       | A              | nphipoda |                | Other    |
|--------------------------|-------------------|----|----------------|-----------|----------------|----------------|----------------|-----------------|----------------|----------|----------------|----------|
|                          |                   | n  | $\overline{x}$ | SE        | $\overline{x}$ | SE             | $\overline{x}$ | SE              | $\overline{x}$ | SE       | $\overline{x}$ | SE       |
| Gull-removal, Sound Inte | ertidal Zone      |    |                |           |                |                |                |                 |                |          |                |          |
|                          | Nesting Area      | 44 | 33.02          | 5.33      | 26.14          | 5.05           | 3.14           | 0.99            | 2.64           | 0.97     | 1.11           | 0.53     |
|                          | Unused Area       | 2  | 33.00          | 26.00     | 32.50          | 26.50          | 0.50           | 0.50            | 0.00           | 0.00     | 0.00           | 0.00     |
|                          |                   |    |                | P = 0.81  |                | P = 0.79       |                | P = 0.46        |                | P = 0.29 |                | P = 0.35 |
| Gull-removal, Sound Fres | sh Wrack          |    |                |           |                |                |                |                 |                |          |                |          |
|                          | Nesting Area      | 27 | 66.44          | 12.61     | 43.56          | 10.94          | 14.37          | 6.37            | 6.48           | 2.61     | 2.04           | 1.01     |
|                          | Unused Area       | 0  | -              | -         | -              | -              | -              | -               | -              | -        | -              |          |
| Gull-removal, Sound Bac  | ckshore           |    |                |           |                |                |                |                 |                |          |                |          |
|                          | Nesting Area      | 52 | 44.94          | 9.55      | 30.29          | 7.60           | 12.87          | 4.74            | 0.83           | 0.23     | 0.96           | 0.26     |
|                          | Unused Area       | 2  | 11.00          | 1.00      | 7.50           | 0.50           | 1.50           | 1.50            | 0.00           | 0.00     | 2.00           | 1.00     |
|                          |                   |    |                | P = 0.35  |                | P = 0.32       |                | P = 0.64        |                | P = 0.32 |                | P = 0.11 |
| Gull-removal, Sound Old  | Wrack             |    |                |           |                |                |                |                 |                |          |                |          |
|                          | Nesting Area      | 41 | 42.10          | 8.55      | 33.68          | 6.81           | 6.88           | 3.03            | 0.90           | 0.23     | 0.63           | 0.2      |
|                          | Unused Area       | 1  | 3.00           | -         | 2.00           | -              | 0.00           | -               | 0.00           | -        | 1.00           |          |
|                          |                   |    |                | P = 0.22  |                | P = 0.20       |                | <i>P</i> = 0.33 |                | P = 0.45 |                | P = 0.26 |
| Gull-removal, Sound Ope  | en Vegetation     |    |                |           |                |                |                |                 |                |          |                |          |
|                          | Nesting Area      | 20 | 18.45          | 3.45      | 14.80          | 3.07           | 2.35           | 0.70            | 0.00           | 0.00     | 1.30           | 0.38     |
|                          | Unused Area       | 1  | 21.00          | -         | 14.00          | -              | 1.00           | -               | 0.00           | -        | 6.00           |          |
|                          |                   |    |                | P = 0.62  |                | P = 0.87       |                | <i>P</i> = 0.93 |                | P = 1.00 |                | P = 0.10 |
| Gull-removal, Tidal Pond | l Intertidal Zone |    |                |           |                |                |                |                 |                |          |                |          |
|                          | Nesting Area      | 0  | -              | -         | -              | -              | -              | -               | -              | -        | -              |          |
|                          | Unused Area       | 2  | 49.50          | 41.50     | 48.50          | 40.50          | 0.50           | 0.50            | 0.00           | 0.00     | 0.50           | 0.50     |

## Continued.

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

**Table 26, Continued.** Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. *P*-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and I    | <u>Habitat</u> |    | Total Art      | thropods |                | <u>Diptera</u> | <u>Cc</u>      | oleoptera | Am             | <u>iphipoda</u> |                | Other    |
|--------------------------|----------------|----|----------------|----------|----------------|----------------|----------------|-----------|----------------|-----------------|----------------|----------|
|                          |                | n  | $\overline{x}$ | SE       | $\overline{x}$ | SE             | $\overline{x}$ | SE        | $\overline{x}$ | SE              | $\overline{x}$ | SI       |
| Buffer, Ocean Intertidal | Zone           |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 30 | 6.70           | 1.86     | 4.90           | 1.73           | 0.57           | 0.32      | 1.20           | 0.43            | 0.03           | 0.03     |
|                          | Unused Area    | 15 | 18.40          | 5.00     | 16.00          | 4.92           | 1.00           | 0.31      | 1.33           | 0.54            | 0.07           | 0.0      |
|                          |                |    |                | P = 0.03 |                | P = 0.03       |                | P = 0.01  |                | P = 0.49        |                | P = 0.6  |
| Buffer, Ocean Fresh Wr   | ack            |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 3  | 17.33          | 6.06     | 14.00          | 3.51           | 3.33           | 3.33      | 0.00           | 0.00            | 0.00           | 0.0      |
|                          | Unused Area    | 9  | 14.89          | 3.27     | 9.78           | 2.17           | 4.67           | 2.85      | 0.33           | 0.33            | 0.11           | 0.1      |
|                          |                |    |                | P = 0.64 |                | P = 0.31       |                | P = 0.63  |                | P = 0.56        |                | P = 0.50 |
| Buffer, Ocean Backshor   | re             |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 32 | 6.44           | 1.78     | 5.13           | 1.52           | 1.22           | 0.64      | 0.03           | 0.03            | 0.06           | 0.04     |
|                          | Unused Area    | 28 | 16.21          | 6.88     | 14.07          | 6.88           | 1.89           | 0.80      | 0.00           | 0.00            | 0.25           | 0.1      |
|                          |                |    |                | P = 0.05 |                | P = 0.10       |                | P = 0.30  |                | P = 0.35        |                | P = 0.03 |
| Buffer, Ocean Old Wrad   | ck             |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 4  | 19.50          | 6.64     | 17.00          | 5.45           | 1.25           | 0.95      | 0.75           | 0.75            | 0.50           | 0.50     |
|                          | Unused Area    | 14 | 17.14          | 3.70     | 15.14          | 3.30           | 1.43           | 0.57      | 0.00           | 0.00            | 0.57           | 0.2      |
|                          |                |    |                | P = 0.52 |                | P = 0.52       |                | P = 0.91  |                | P = 0.06        |                | P = 0.80 |
| Buffer, Ocean Open Ve    | getation       |    |                |          |                |                |                |           |                |                 |                |          |
| -                        | Nesting Area   | 33 | 8.48           | 1.54     | 7.03           | 1.42           | 0.88           | 0.31      | 0.00           | 0.00            | 0.58           | 0.10     |
|                          | Unused Area    | 27 | 12.11          | 2.53     | 9.11           | 2.20           | 1.07           | 0.57      | 0.00           | 0.00            | 1.93           | 0.62     |
|                          |                |    |                | P = 0.23 |                | P = 0.36       |                | P = 0.68  |                | P = 1.00        |                | P = 0.02 |

## Continued.

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

Table 26, Continued. Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. P-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and H      | abitat       |    | Total A        | .rthropods |                | Diptera  | <u>C</u>       | Coleoptera | An             | nphipoda  |                | Other <sup>a</sup> |
|----------------------------|--------------|----|----------------|------------|----------------|----------|----------------|------------|----------------|-----------|----------------|--------------------|
|                            |              | n  | $\overline{x}$ | SE         | $\overline{x}$ | SE       | $\overline{x}$ | SE         | $\overline{x}$ | SE        | $\overline{x}$ | SE                 |
| Buffer, Sound Intertidal 2 | Zone         |    |                |            |                |          |                |            |                |           |                |                    |
|                            | Nesting Area | 1  | 44.00          | -          | 44.00          | -        | 0.00           | -          | 0.00           | -         | 0.00           | -                  |
|                            | Unused Area  | 27 | 41.37          | 7.93       | 31.19          | 6.09     | 8.70           | 3.64       | 0.11           | 0.08      | 1.37           | 0.61               |
|                            |              |    |                | P = 0.76   |                | P = 0.42 |                | P = 0.41   |                | P = 0.78  |                | P = 0.50           |
| Buffer, Sound Fresh Wra    | ick          |    |                |            |                |          |                |            |                |           |                |                    |
|                            | Nesting Area | 0  | -              | -          | -              | -        | -              | -          | -              | -         | -              | -                  |
|                            | Unused Area  | 26 | 270.65         | 124.76     | 147.50         | 53.08    | 32.65          | 15.42      | 85.96          | 72.86     | 4.54           | 2.27               |
| Buffer, Sound Backshore    | •            |    |                |            |                |          |                |            |                |           |                |                    |
|                            | Nesting Area | 1  | 23.00          | -          | 17.00          | -        | 6.00           | -          | 0.00           | -         | 0.00           | -                  |
|                            | Unused Area  | 26 | 64.42          | 19.86      | 49.54          | 19.39    | 8.85           | 4.41       | 4.15           | 3.84      | 1.88           | 0.48               |
|                            |              |    |                | P = 0.95   |                | P = 0.70 |                | P = 0.43   |                | P = 0.68  |                | P = 0.34           |
| Buffer, Sound Old Wrack    | k            |    |                |            |                |          |                |            |                |           |                |                    |
|                            | Nesting Area | 2  | 24.50          | 12.50      | 13.00          | 4.00     | 10.50          | 7.50       | 0.50           | 0.50      | 0.50           | 0.50               |
|                            | Unused Area  | 51 | 111.90         | 31.89      | 50.47          | 10.15    | 45.92          | 28.73      | 10.51          | 3.34      | 5.00           | 1.99               |
|                            |              |    |                | P = 0.41   |                | P = 0.29 |                | P = 0.33   |                | P = 0.59  |                | P = 0.74           |
| Buffer, Sound Open Veg     | etation      |    |                |            |                |          |                |            |                |           |                |                    |
|                            | Nesting Area | 1  | 15.00          | -          | 13.00          | -        | 0.00           | -          | 1.00           | -         | 1.00           | -                  |
|                            | Unused Area  | 20 | 57.00          | 20.28      | 50.85          | 20.43    | 1.05           | 0.29       | 0.15           | 0.15      | 4.95           | 1.46               |
|                            |              |    |                | P = 0.41   |                | P = 0.87 |                | P = 0.37   | 1              | P = 0.004 |                | P = 0.86           |
| Buffer, Tidal Pond Interti | idal Zone    |    |                |            |                |          |                |            |                |           |                |                    |
|                            | Nesting Area | 1  | 35.00          | -          | 23.00          | -        | 11.00          | -          | 0.00           | -         | 1.00           | -                  |
|                            | Unused Area  | 3  | 19.33          | 9.74       | 17.33          | 8.97     | 1.33           | 1.33       | 0.00           | 0.00      | 0.67           | 0.33               |
|                            |              |    |                | P = 0.18   |                | P = 0.65 |                | P = 0.16   |                | P = 1.00  |                | P = 0.56           |

## Continued.

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera. <sup>b</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

**Table 26, Continued.** Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. *P*-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and H    | <u>Iabitat</u> |    | Total Ar       | thropods |                | <u>Diptera</u> | <u>Cc</u>      | oleoptera | An             | <u>iphipoda</u> |                | Other    |
|--------------------------|----------------|----|----------------|----------|----------------|----------------|----------------|-----------|----------------|-----------------|----------------|----------|
|                          |                | n  | $\overline{x}$ | SE       | $\overline{x}$ | SE             | $\overline{x}$ | SE        | $\overline{x}$ | SE              | $\overline{x}$ | SI       |
| Reference, Ocean Interti | dal Zone       |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 63 | 13.29          | 2.17     | 8.37           | 1.42           | 0.83           | 0.30      | 3.94           | 1.36            | 0.16           | 0.0      |
|                          | Unused Area    | 43 | 11.91          | 2.33     | 5.28           | 0.84           | 1.05           | 0.56      | 5.33           | 1.93            | 0.26           | 0.0      |
|                          |                |    |                | P = 0.45 |                | P = 0.34       |                | P = 0.72  |                | P = 0.51        |                | P = 0.2  |
| Reference, Ocean Fresh   | Wrack          |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 29 | 22.03          | 3.23     | 16.55          | 2.76           | 3.10           | 1.18      | 2.14           | 0.69            | 0.24           | 0.0      |
|                          | Unused Area    | 19 | 16.63          | 2.56     | 13.58          | 2.56           | 0.79           | 0.29      | 1.63           | 0.86            | 0.63           | 0.42     |
|                          |                |    |                | P = 0.49 |                | P = 0.74       |                | P = 0.22  |                | P = 0.14        |                | P = 0.63 |
| Reference, Ocean Backs   | hore           |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 75 | 9.68           | 1.30     | 8.07           | 1.07           | 0.83           | 0.29      | 0.00           | 0.00            | 0.79           | 0.42     |
|                          | Unused Area    | 59 | 11.19          | 2.24     | 10.00          | 2.17           | 0.37           | 0.12      | 0.00           | 0.00            | 0.81           | 0.2      |
|                          |                |    |                | P = 0.93 |                | P = 0.93       |                | P = 0.20  |                | P = 1.00        |                | P = 0.29 |
| Reference, Ocean Old W   | /rack          |    |                |          |                |                |                |           |                |                 |                |          |
|                          | Nesting Area   | 19 | 16.00          | 5.82     | 11.95          | 4.06           | 3.58           | 1.83      | 0.21           | 0.12            | 0.26           | 0.13     |
|                          | Unused Area    | 17 | 20.29          | 7.32     | 18.82          | 7.23           | 0.53           | 0.19      | 0.06           | 0.19            | 0.88           | 0.47     |
|                          |                |    |                | P = 0.65 |                | P = 0.57       |                | P = 0.16  |                | P = 0.34        |                | P = 0.19 |
| Reference, Ocean Open    | Vegetation     |    |                |          |                |                |                |           |                |                 |                |          |
| -                        | Nesting Area   | 69 | 13.97          | 1.90     | 11.43          | 1.66           | 0.88           | 0.31      | 0.03           | 0.03            | 1.62           | 0.3      |
|                          | Unused Area    | 45 | 11.09          | 1.35     | 9.07           | 1.23           | 0.49           | 0.23      | 0.00           | 0.00            | 1.53           | 0.42     |
|                          |                |    |                | P = 0.70 |                | P = 0.81       |                | P = 0.16  |                | P = 0.42        |                | P = 0.64 |

## Continued.

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

Table 26, Continued. Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. P-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and H     | <u>abitat</u> |    | Total A        | rthropods |                | Diptera   | <u>C</u>       | oleoptera | An             | 1phipoda |                | Other <sup>a</sup> |
|---------------------------|---------------|----|----------------|-----------|----------------|-----------|----------------|-----------|----------------|----------|----------------|--------------------|
|                           |               | n  | $\overline{x}$ | SE        | $\overline{x}$ | SE        | $\overline{x}$ | SE        | $\overline{x}$ | SE       | $\overline{x}$ | SE                 |
| Reference, Sound Intertic | lal Zone      |    |                |           |                |           |                |           |                |          |                |                    |
|                           | Nesting Area  | 45 | 31.73          | 5.13      | 6.80           | 1.19      | 4.31           | 2.07      | 20.20          | 4.95     | 0.42           | 0.17               |
|                           | Unused Area   | 41 | 36.37          | 6.59      | 11.83          | 3.75      | 7.10           | 2.34      | 17.29          | 4.16     | 0.15           | 0.08               |
|                           |               |    |                | P = 0.95  |                | P = 0.65  |                | P = 0.08  |                | P = 0.97 |                | P = 0.12           |
| Reference, Sound Fresh V  | Wrack         |    |                |           |                |           |                |           |                |          |                |                    |
|                           | Nesting Area  | 47 | 42.98          | 9.80      | 25.03          | 8.44      | 8.70           | 4.13      | 9.07           | 2.94     | 0.17           | 0.09               |
|                           | Unused Area   | 48 | 95.35          | 42.18     | 61.13          | 37.43     | 27.88          | 15.99     | 5.90           | 1.64     | 0.46           | 0.32               |
|                           |               |    |                | P = 0.99  |                | P = 0.68  |                | P = 0.65  |                | P = 0.77 |                | P = 0.74           |
| Reference, Sound Backsh   | nore          |    |                |           |                |           |                |           |                |          |                |                    |
|                           | Nesting Area  | 66 | 9.58           | 2.15      | 5.60           | 1.18      | 3.51           | 1.37      | 0.19           | 0.07     | 0.28           | 0.08               |
|                           | Unused Area   | 67 | 73.12          | 45.24     | 48.16          | 37.97     | 24.27          | 16.02     | 0.39           | 0.11     | 0.30           | 0.07               |
|                           |               |    |                | P = 0.02  |                | P = 0.006 |                | P = 0.34  |                | P = 0.21 |                | P = 0.82           |
| Reference, Sound Old W    | rack          |    |                |           |                |           |                |           |                |          |                |                    |
|                           | Nesting Area  | 62 | 14.73          | 3.37      | 12.06          | 3.19      | 2.00           | 0.64      | 0.56           | 0.21     | 0.10           | 0.05               |
|                           | Unused Area   | 69 | 47.33          | 19.44     | 26.09          | 11.54     | 19.90          | 12.05     | 0.80           | 0.24     | 0.55           | 0.16               |
|                           |               |    |                | P = 0.01  |                | P = 0.02  |                | P = 0.02  |                | P = 0.30 | Р              | = 0.0002           |
| Reference, Sound Open V   | Vegetation    |    |                |           |                |           |                |           |                |          |                |                    |
|                           | Nesting Area  | 56 | 12.34          | 2.14      | 10.64          | 2.12      | 0.80           | 0.18      | 0.01           | 0.01     | 0.88           | 0.18               |
|                           | Unused Area   | 32 | 12.75          | 1.68      | 10.34          | 1.50      | 1.09           | 0.39      | 0.03           | 0.03     | 1.28           | 0.34               |
|                           |               |    |                | P = 0.11  |                | P = 0.09  |                | P = 0.77  |                | P = 0.67 |                | P = 0.62           |
| Reference, Tidal Pond In  | tertidal Zone |    |                |           |                |           |                |           |                |          |                |                    |
|                           | Nesting Area  | 28 | 18.96          | 4.96      | 16.79          | 4.87      | 1.25           | 0.45      | 0.36           | 0.27     | 0.57           | 0.19               |
|                           | Unused Area   | 0  | -              | -         | -              | -         | -              | -         | -              | -        | -              | -                  |

## Continued.

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera. <sup>b</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

**Table 26, Continued.** Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. *P*-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and Habitat                       |    | Total Art      | hropods  |                | <u>Diptera</u> | <u>C</u>       | oleoptera | Am             | <u>phipoda</u> |                | Other    |
|---------------------------------------------------|----|----------------|----------|----------------|----------------|----------------|-----------|----------------|----------------|----------------|----------|
|                                                   | n  | $\overline{x}$ | SE       | $\overline{x}$ | SE             | $\overline{x}$ | SE        | $\overline{x}$ | SE             | $\overline{x}$ | SI       |
| South Monomoy, <sup>b</sup> Ocean Intertidal Zone |    |                |          |                |                |                |           |                |                |                |          |
| Nesting Area                                      | 82 | 14.78          | 1.92     | 9.85           | 0.31           | 1.18           | 0.31      | 3.57           | 1.08           | 0.17           | 0.0      |
| Unused Area                                       | 43 | 12.88          | 2.38     | 6.02           | 1.02           | 1.05           | 0.56      | 5.58           | 1.92           | 0.23           | 0.0      |
|                                                   |    |                | P = 0.53 |                | P = 0.17       |                | P = 0.48  |                | P = 0.91       |                | P = 0.53 |
| South Monomoy, <sup>b</sup> Ocean Fresh Wrack     |    |                |          |                |                |                |           |                |                |                |          |
| Nesting Area                                      | 44 | 27.43          | 3.30     | 18.66          | 2.09           | 6.02           | 2.07      | 2.20           | 0.54           | 0.55           | 0.15     |
| Unused Area                                       | 21 | 16.76          | 2.32     | 13.81          | 2.34           | 0.76           | 0.27      | 1.62           | 0.78           | 0.57           | 0.38     |
|                                                   |    |                | P = 0.07 |                | P = 0.18       |                | P = 0.05  |                | P = 0.09       |                | P = 0.46 |
| South Monomoy, <sup>b</sup> Ocean Backshore       |    |                |          |                |                |                |           |                |                |                |          |
| Nesting Area                                      | 94 | 11.63          | 1.41     | 9.07           | 1.04           | 1.74           | 0.74      | 0.04           | 0.03           | 0.77           | 0.34     |
| Unused Area                                       | 62 | 11.37          | 2.16     | 10.19          | 2.10           | 0.40           | 0.12      | 0.00           | 0.00           | 0.77           | 0.20     |
|                                                   |    |                | P = 0.68 |                | P = 0.83       |                | P = 0.11  |                | P = 0.25       |                | P = 0.30 |
| South Monomoy, <sup>b</sup> Ocean Old Wrack       |    |                |          |                |                |                |           |                |                |                |          |
| Nesting Area                                      | 34 | 24.03          | 4.35     | 18.91          | 3.50           | 3.59           | 1.26      | 0.79           | 0.39           | 0.74           | 0.19     |
| Unused Area                                       | 18 | 21.00          | 6.94     | 19.22          | 6.83           | 0.72           | 0.27      | 0.06           | 0.06           | 1.00           | 0.40     |
|                                                   |    |                | P = 0.36 |                | P = 0.57       |                | P = 0.33  |                | P = 0.09       |                | P = 0.83 |
| South Monomoy, <sup>b</sup> Ocean Open Vegetation |    |                |          |                |                |                |           |                |                |                |          |
| Nesting Area                                      | 92 | 14.26          | 1.59     | 11.58          | 1.40           | 1.13           | 0.31      | 0.03           | 0.02           | 1.52           | 0.20     |
| Unused Area                                       | 47 | 10.96          | 1.33     | 9.00           | 1.21           | 0.47           | 0.23      | 0.00           | 0.00           | 1.49           | 0.4      |
|                                                   |    |                | P = 0.49 |                | P = 0.64       |                | P = 0.06  |                | P = 0.31       |                | P = 0.19 |

## Continued.

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

**Table 26, Continued.** Mean counts of arthropods trapped during 3-hour trapping periods in habitats along random transects, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects that included the habitat. *P*-values were obtained from Wilcoxon Rank-sum tests. Nesting area is defined as all beach area within 500 m of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Management Area and Habitat                            |    | Total A        | thropods |                | Diptera         | <u>C</u>       | oleoptera       | At             | mphipoda        |                | Other    |
|--------------------------------------------------------|----|----------------|----------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|----------|
|                                                        | n  | $\overline{x}$ | SE       | $\overline{x}$ | SE              | $\overline{x}$ | SE              | $\overline{x}$ | SE              | $\overline{x}$ | SI       |
| South Monomoy, <sup>b</sup> Sound Intertidal Zone      |    |                |          |                |                 |                |                 |                |                 |                |          |
| Nesting Area                                           | 53 | 32.94          | 4.66     | 11.42          | 2.29            | 4.57           | 1.87            | 16.43          | 4.28            | 0.53           | 0.20     |
| Unused Area                                            | 45 | 37.89          | 6.13     | 15.02          | 3.85            | 7.13           | 2.19            | 15.51          | 3.87            | 0.22           | 0.09     |
|                                                        |    |                | P = 077  |                | P = 0.88        |                | P = 0.12        |                | P = 0.70        |                | P = 0.46 |
| South Monomoy, <sup>b</sup> Sound Fresh Wrack          |    |                |          |                |                 |                |                 |                |                 |                |          |
| Nesting Area                                           | 48 | 53.40          | 10.75    | 32.86          | 9.59            | 10.29          | 4.26            | 9.61           | 3.06            | 0.63           | 0.2      |
| Unused Area                                            | 53 | 97.87          | 38.42    | 62.92          | 34.04           | 26.60          | 14.49           | 6.85           | 1.96            | 1.49           | 1.09     |
|                                                        |    |                | P = 0.81 |                | P = 0.79        |                | P = 0.57        |                | <i>P</i> = 0.85 |                | P = 0.1  |
| South Monomoy, <sup>b</sup> Sound Backshore            |    |                |          |                |                 |                |                 |                |                 |                |          |
| Nesting Area                                           | 69 | 25.96          | 7.39     | 16.86          | 5.82            | 8.36           | 3.41            | 0.33           | 0.12            | 0.42           | 0.12     |
| Unused Area                                            | 71 | 71.62          | 42.71    | 47.59          | 35.84           | 23.21          | 15.12           | 0.38           | 0.10            | 0.44           | 0.10     |
|                                                        |    |                | P = 0.21 |                | <i>P</i> = 0.13 |                | P = 0.62        |                | P = 0.62        |                | P = 0.6  |
| South Monomoy, <sup>b</sup> Sound Old Wrack            |    |                |          |                |                 |                |                 |                |                 |                |          |
| Nesting Area                                           | 65 | 22.37          | 5.47     | 17.31          | 4.30            | 4.18           | 1.68            | 0.68           | 0.21            | 0.20           | 0.1      |
| Unused Area                                            | 75 | 48.88          | 17.94    | 26.59          | 10.62           | 18.47          | 11.09           | 1.80           | 0.90            | 2.03           | 0.8      |
|                                                        |    |                | P = 0.02 |                | P = 0.04        |                | <i>P</i> = 0.19 |                | P = 0.28        | Р              | = 0.0004 |
| South Monomoy, <sup>b</sup> Sound Open Vegetation      |    |                |          |                |                 |                |                 |                |                 |                |          |
| Nesting Area                                           | 49 | 13.55          | 2.35     | 11.34          | 2.24            | 1.10           | 0.27            | 0.02           | 0.02            | 1.09           | 0.2      |
| Unused Area                                            | 32 | 19.00          | 4.34     | 15.63          | 3.95            | 1.06           | 0.39            | 0.31           | 0.03            | 2.28           | 0.6      |
|                                                        |    |                | P = 0.06 |                | P = 0.06        |                | P = 0.92        |                | P = 0.76        |                | P = 0.33 |
| South Monomoy, <sup>b</sup> Tidal Pond Intertidal Zone |    |                |          |                |                 |                |                 |                |                 |                |          |
| Nesting Area                                           | 24 | 16.08          | 4.58     | 13.92          | 4.49            | 1.54           | 0.62            | 0.13           | 0.13            | 0.50           | 0.1      |
| Unused Area                                            | 0  | -              | -        | -              | -               | -              | -               | -              | -               | -              |          |

<sup>a</sup> Other arthropods (< 5%) includes Arachnida, Homoptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Siphonoptera, and Zoraptera.

| Candidate Variable                      |     |                |       |         |        |         |
|-----------------------------------------|-----|----------------|-------|---------|--------|---------|
|                                         | n   | $\overline{x}$ | SE    | Minimum | Median | Maximum |
| South Monomoy Island Model <sup>a</sup> |     |                |       |         |        |         |
| *Distance to Moist Substrate (m)        | 219 | 718.8          | 42.35 | 5.0     | 600.0  | 1930.0  |
| Access to Sound                         | 219 | 0.5            | 0.03  | 0.0     | 1.0    | 1.0     |
| Intertidal Zone (m)                     | 219 | 34.8           | 5.21  | 0.0     | 15.8   | 774.8   |
| Fresh Wrack (m)                         | 219 | 1.4            | 0.19  | 0.0     | 0.5    | 24.1    |
| *Backshore (m)                          | 219 | 19.9           | 1.41  | 0.0     | 11.9   | 98.0    |
| Old Wrack (m)                           | 219 | 1.7            | 0.16  | 0.0     | 1.1    | 14.2    |
| *Open Vegetation (m)                    | 219 | 10.0           | 0.81  | 0.0     | 5.2    | 53.6    |
| Reference Area Model <sup>a</sup>       |     |                |       |         |        |         |
| Distance to Moist Substrate (m)         | 164 | 916.6          | 47.02 | 5.0     | 1125.0 | 1930.0  |
| Access to Sound                         | 164 | 0.5            | 0.04  | 0.0     | 1.0    | 1.0     |
| Intertidal Zone (m)                     | 164 | 20.6           | 2.30  | 0.0     | 13.0   | 246.4   |
| Fresh Wrack (m)                         | 164 | 1.5            | 0.24  | 0.0     | 0.6    | 24.1    |
| *Backshore (m)                          | 164 | 19.9           | 1.41  | 0.0     | 13.3   | 80.7    |
| Old Wrack (m)                           | 164 | 1.9            | 0.19  | 0.0     | 1.3    | 14.2    |
| *Open Vegetation (m)                    | 164 | 9.9            | 0.92  | 0.0     | 4.8    | 53.6    |
| *Number of Great Black-backed Gulls     | 164 | 24.7           | 2.15  | 0.0     | 17.0   | 196.0   |

**Table 27.** Candidate variables measured along random transects used to construct logistic regression models to predict Piping Plover nesting areas vs. unused areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

\* Variables that were significant  $(P \le 0.05)$  in the logistic regression models.

$$a \theta = 1 / (1 + \exp \left[ - (\beta_0 + \sum_{i=1}^{n} \beta_j X_{ij}) \right])$$
  $i = 1, 2, ..., n$ 

 $\theta$  = Probability that plover(s) will nest in the area (nesting area),  $\beta_0$  = beta value of the intercept,  $\beta_j$  = beta value of the j dependent variables, and  $X_{ij}$  = data values for the k independent variables.

Table 28. Logistic regression parameter estimates based on transect data for predicting Piping Plover nesting areas vs. unused areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| Model                                                          | Variable                                                                                             | β                                      | SE                                   | Wald $\chi^2$                           | 1                                  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------|
| South Monomoy Isla                                             | and Model (n = 219) <sup>a</sup>                                                                     |                                        |                                      |                                         |                                    |
| 500-m Nesting Area                                             |                                                                                                      |                                        |                                      |                                         |                                    |
|                                                                | Intercept                                                                                            | -0.2650                                | 0.2639                               | 1.0082                                  | 0.315                              |
|                                                                | Backshore (m)                                                                                        | 0.0307                                 | 0.0103                               | 8.9715                                  | 0.002                              |
|                                                                | Distance to Moist Substrate (m)                                                                      | -0.0006                                | 0.0002                               | 6.7635                                  | 0.009                              |
|                                                                | Open Vegetation (m)                                                                                  | 0.0348                                 | 0.0157                               | 4.9128                                  | 0.026                              |
| 100-m Nesting Area                                             |                                                                                                      |                                        |                                      |                                         |                                    |
|                                                                | Intercept                                                                                            | -2.4639                                | 0.4020                               | 37.5724                                 | < 0.000                            |
|                                                                | Backshore (m)                                                                                        | 0.0601                                 | 0.0121                               | 24.7665                                 | < 0.000                            |
|                                                                | Distance to Moist Substrate (m)                                                                      | -0.0011                                | 0.0004                               | 8.9153                                  | 0.002                              |
|                                                                | Open Vegetation (m)                                                                                  | 0.0444                                 | 0.0175                               | 6.4400                                  | 0.011                              |
|                                                                |                                                                                                      |                                        |                                      |                                         |                                    |
| Reference Area Moo                                             | del (n = 164) <sup>a</sup>                                                                           |                                        |                                      |                                         |                                    |
|                                                                | lel (n = 164) <sup>a</sup>                                                                           |                                        |                                      |                                         |                                    |
|                                                                | del (n = 164) <sup>a</sup><br>Intercept                                                              | -0.7463                                | 0.3311                               | 5.0808                                  | 0.024                              |
|                                                                |                                                                                                      | -0.7463<br>0.0506                      | 0.3311<br>0.0138                     | 5.0808<br>13.5052                       |                                    |
|                                                                | Intercept                                                                                            |                                        |                                      |                                         | 0.000                              |
|                                                                | Intercept<br>Backshore (m)                                                                           | 0.0506                                 | 0.0138                               | 13.5052                                 | 0.000<br>0.000                     |
| Reference Area Moo<br>500-m Nesting Area<br>100-m Nesting Area | Intercept<br>Backshore (m)<br>Number of Great Black-backed Gulls                                     | 0.0506<br>-0.0325                      | 0.0138<br>0.0092                     | 13.5052<br>12.5965                      | 0.024<br>0.000<br>0.000<br>0.025   |
| 500-m Nesting Area                                             | Intercept<br>Backshore (m)<br>Number of Great Black-backed Gulls                                     | 0.0506<br>-0.0325                      | 0.0138<br>0.0092                     | 13.5052<br>12.5965                      | 0.000<br>0.000                     |
| 500-m Nesting Area                                             | Intercept<br>Backshore (m)<br>Number of Great Black-backed Gulls<br>Open Vegetation (m)              | 0.0506<br>-0.0325<br>0.0436            | 0.0138<br>0.0092<br>0.0195           | 13.5052<br>12.5965<br>4.9778            | 0.000<br>0.000<br>0.025            |
| 500-m Nesting Area                                             | Intercept<br>Backshore (m)<br>Number of Great Black-backed Gulls<br>Open Vegetation (m)<br>Intercept | 0.0506<br>-0.0325<br>0.0436<br>-2.7996 | 0.0138<br>0.0092<br>0.0195<br>0.5226 | 13.5052<br>12.5965<br>4.9778<br>28.7024 | 0.000<br>0.000<br>0.025<br>< 0.000 |

\*  $\theta = 1 / (1 + \exp \left[-(\beta_0 + \sum_{j=1}^k \beta_j X_{ij})\right])$  i = 1, 2, ..., n $\theta = \text{Probability that plover(s) will nest in the area (nesting area), <math>\beta_0 = \text{beta value of the intercept, } \beta_j = \text{beta value of the j dependent variables, and}$  $X_{ij}$  = data values for the k independent variables.

**Table 29.** Percent of transects predicted correctly and incorrectly as nesting area or unused area by logistic regression models, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

| P<br>Model           | robability<br>Level <sup>a</sup> | Observed |     | Dr      | edicted |          |
|----------------------|----------------------------------|----------|-----|---------|---------|----------|
| Widdel               | Level                            | Observed |     | Correct |         | ncorrect |
|                      |                                  | n        | n   | %       | n       | %        |
| South Monomoy Island | Model                            |          |     |         |         |          |
| 500-m Nesting Area   | 0.55                             |          |     |         |         |          |
|                      | Nesting Area                     | 118      | 68  | 57.6    | 50      | 42.4     |
|                      | Unused Area                      | 101      | 78  | 77.2    | 23      | 22.7     |
|                      | Total                            | 219      | 146 | 66.7    | 73      | 33.3     |
| 100-m Nesting Area   | 0.44                             |          |     |         |         |          |
|                      | Nesting Area                     | 51       | 29  | 56.9    | 22      | 43.1     |
|                      | Unused Area                      | 168      | 159 | 94.6    | 9       | 5.4      |
|                      | Total                            | 219      | 188 | 85.8    | 31      | 14.2     |
| Reference Area Model |                                  |          |     |         |         |          |
| 500-m Nesting Area   | 0.51                             |          |     |         |         |          |
| 0                    | Nesting Area                     | 77       | 51  | 66.2    | 26      | 33.8     |
|                      | Unused Area                      | 87       | 74  | 85.1    | 13      | 14.9     |
|                      | Total                            | 164      | 125 | 76.2    | 39      | 23.8     |
| 100-m Nesting Area   | 0.43                             |          |     |         |         |          |
|                      | Nesting Area                     | 36       | 24  | 66.7    | 12      | 33.3     |
|                      | Unused Area                      | 128      | 118 | 92.2    | 10      | 7.8      |
|                      | Total                            | 164      | 142 | 86.6    | 22      | 13.4     |

<sup>a</sup> Probability level corresponding to the greatest value of "percent correct" listed in the classification table (an option of PROC LOGISTIC, SAS). The probability level is used as a cut-off point for determining the percent correctly and incorrectly classified based on the predicted values.

**Table 30.** Mean percent time incubating Piping Plovers were disturbed by various sources during 5-minute behavioral observations, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of 5-minute observations because individuals were not marked. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year      | <u>Management</u><br>Area |    | <u>Great Black-</u><br>backed Gull | Herring Gull        | Immature Gull         | <u>American</u><br>Oystercatcher | Tern Spp.             | Piping Plover         | Other <sup>a</sup>    | <u>Unknown</u>        |
|-----------|---------------------------|----|------------------------------------|---------------------|-----------------------|----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|           |                           | n  | <del>x</del> (%) SE                | <del>x</del> (%) SE | $\overline{x}$ (%) SE | $\overline{x}$ (%) SE            | $\overline{x}$ (%) SE | $\overline{x}$ (%) SE | $\overline{x}$ (%) SE | $\overline{x}$ (%) SE |
| 1999      |                           |    |                                    |                     |                       |                                  |                       |                       |                       |                       |
|           | Gull-removal              | 3  | 0.00 0.00                          | 0.00 0.00           | 0.00 0.00             | 0.00 0.00                        | 0.00 0.00             | 0.00 0.00             | 0.00 0.00             | 2.08 2.08             |
|           | Buffer                    | 1  | 0.00 -                             | 0.00 -              | 0.00 -                | 0.00 -                           | 0.00 -                | 0.00 -                | 0.00 -                | 2.22 -                |
|           | Reference                 | 17 | 0.00 0.00                          | 0.00 0.00           | 0.00 0.00             | 0.00 0.00                        | 0.00 0.00             | 0.00 0.00             | 0.00 0.00             | 0.20 0.13             |
|           |                           |    | -                                  | -                   | -                     | -                                | -                     | -                     | -                     | T = 0.93              |
|           |                           |    |                                    |                     |                       |                                  |                       |                       |                       | P = 1.00              |
| 2000      |                           |    |                                    |                     |                       |                                  |                       |                       |                       |                       |
|           | Gull-removal              | 7  | 0.13 0.13                          | 0.03 0.03           | 0.00 0.00             | 0.16 0.16                        | 0.16 0.16             | 0.00 0.00             | 0.19 0.16             | 0.58 0.30             |
|           | Buffer                    | 0  |                                    |                     |                       |                                  |                       |                       |                       |                       |
|           | Reference                 | 23 | 0.30 0.20                          | 0.07 0.04           | 0.00 0.00             | 0.24 0.18                        | 0.09 0.09             | 0.006 0.006           | 0.00 0.00             | 1.58 1.17             |
|           |                           |    | T = 0.75                           | T = 0.17            | -                     | T = 0.72                         | T = 0.94              | T < 0.0001            | T = -3.59             | T = -0.47             |
|           |                           |    | P = 0.80                           | <i>P</i> = 0.43     |                       | P = 0.76                         | <i>P</i> = 0.93       | <i>P</i> < 0.0001     | <i>P</i> = 0.01       | P = 0.23              |
| 1999-2000 | )                         |    |                                    |                     |                       |                                  |                       |                       |                       |                       |
|           | Gull-removal              | 10 | 0.09 0.09                          | 0.02 0.02           | 0.00 0.00             | 0.11 0.11                        | 0.11 0.11             | 0.00 0.00             | 0.13 0.11             | 1.03 0.62             |
|           | Buffer                    | 1  | 0.00 -                             | 0.00 -              | 0.00 -                | 0.00 -                           | 0.00 -                | 0.00 -                | 0.00 -                | 2.22 -                |
|           | Reference                 | 40 | 0.17 0.12                          | 0.04 0.02           | 0.00 0.00             | 0.14 0.10                        | 0.05 0.05             | 0.003 0.003           | 0.00 0.00             | 0.99 0.68             |
|           |                           |    | T = 0.84                           | T = 0.26            | -                     | T = 0.76                         | T = 0.96              | T = 0.00              | T = -4.25             | T = -0.22             |
|           |                           |    | P = 1.00                           | P = 0.45            |                       | P = 0.88                         | P = 1.00              | <i>P</i> < 0.0001     | P = 0.007             | P = 0.28              |

<sup>a</sup> Other disturbances in the gull-removal area in 2000 include a Willet (57.1%), a Northern Harrier (14.3%), and a pedestrian (14.3%).

**Table 31.** Mayfield daily and interval survival rate estimates (Mayfield 1975) for Piping Plover nests on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. Chi-square tests were used to test for differences in survival among the years. Survival rates with the same letters were not significantly different (*z*-tests, P < 0.05).

| Year      | Number of<br>Nests | Daily<br>Survival | Variance          | Bias Adjusted<br>Interval Survival <sup>a</sup> |
|-----------|--------------------|-------------------|-------------------|-------------------------------------------------|
|           |                    |                   |                   |                                                 |
| 1998      | 38                 | 0.9681 B          | 4.4735E-05        | 0.3234                                          |
| 1999      | 31                 | 0.9813 A          | 2.6260E-05        | 0.5192                                          |
| 2000      | 39                 | 0.9805 A          | 2.1946E-05        | 0.5053                                          |
|           |                    |                   | df = 2            |                                                 |
|           |                    |                   | $\chi^2 = 109.95$ |                                                 |
|           |                    |                   | <i>P</i> < 0.0001 |                                                 |
| 1998-2000 | 108                | 0.9770            | 9.9597E-06        | 0.4503                                          |

<sup>a</sup> The probability that a nest initiated will survive to hatching, bias adjusted (Heisey and Fuller 1985).

| Year      | N          | umber of<br>Nests | Daily<br>Survival | Variance          | Bias Adjusted<br>Interval Survival <sup>a</sup> |
|-----------|------------|-------------------|-------------------|-------------------|-------------------------------------------------|
| 1998      |            |                   |                   |                   |                                                 |
|           | Exclosed   | 20                | 0.9874            | 2.5930E-05        | 0.6411                                          |
|           | Unexclosed | 18                | 0.9245            | 3.2913E-04        | 0.0544                                          |
|           |            |                   |                   | <i>z</i> = 14.21  |                                                 |
|           |            |                   |                   | <i>P</i> < 0.0001 |                                                 |
| 1999      |            |                   |                   |                   |                                                 |
|           | Exclosed   | 17                | 0.9827            | 4.2145E-05        | 0.5384                                          |
|           | Unexclosed | 14                | 0.9795            | 6.8459E-05        | 0.4751                                          |
|           |            |                   |                   | z = 1.18          |                                                 |
|           |            |                   |                   | <i>P</i> = 0.12   |                                                 |
| 2000      |            |                   |                   |                   |                                                 |
|           | Exclosed   | 17                | 0.9981            | 3.6212E-06        | 0.9353                                          |
|           | Unexclosed | 22                | 0.9538            | 1.2711E-04        | 0.1847                                          |
|           |            |                   |                   | z = 18.10         |                                                 |
|           |            |                   |                   | <i>P</i> < 0.0001 |                                                 |
| 1998-2000 |            |                   |                   |                   |                                                 |
|           | Exclosed   | 54                | 0.9900            | 7.0016E-06        | 0.7089                                          |
|           | Unexclosed | 54                | 0.9554            | 5.0071E-05        | 0.2053                                          |
|           |            |                   |                   | <i>z</i> = 33.65  |                                                 |
|           |            |                   |                   | <i>P</i> < 0.0001 |                                                 |

**Table 32.** Mayfield daily and interval survival rate estimates (Mayfield 1975) for exclosed and unexclosed Piping Plover nests on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. *Z*-tests were used to test for differences in survival between exclosed and unexclosed nests.

<sup>a</sup> The probability that a nest initiated will survive to hatching, bias adjusted (Heisey and Fuller 1985).

|        |                    |    |                   | All Nests             |                                                       |      | Ex                | closed Nests          |                                                       |    | Une               | exclosed Nests        |                                                       |
|--------|--------------------|----|-------------------|-----------------------|-------------------------------------------------------|------|-------------------|-----------------------|-------------------------------------------------------|----|-------------------|-----------------------|-------------------------------------------------------|
| Year   | Management<br>Area | n  | Daily<br>Survival | Variance              | Bias<br>Adjusted<br>Interval<br>Survival <sup>a</sup> | n    | Daily<br>Survival | Variance              | Bias<br>Adjusted<br>Interval<br>Survival <sup>a</sup> | n  | Daily<br>Survival | Variance              | Bias<br>Adjusted<br>Interval<br>Survival <sup>a</sup> |
| 1998   |                    |    |                   |                       |                                                       |      |                   |                       |                                                       |    |                   |                       |                                                       |
|        | Gull-removal       | 12 | 0.9600            | 2.1943E-04            | 0.2162                                                | 8    | 0.9825            | 1.0080E-04            | 0.5158                                                | 4  | 0.0000            | -                     | -                                                     |
|        | Buffer             | 2  | 0.7500            | 2.3438E-02            | -0.0013                                               | 1    | 0.8571            | 1.7493E-02            | -0.0053                                               | 1  | 0.0000            | -                     | -                                                     |
|        | Reference          | 24 | 0.9744            | 4.9277E-05            | 0.4014                                                | 11   | 0.9933            | 2.2074E-05            | 0.7866                                                | 13 | 0.9469            | 2.4307E-04            | 0.1325                                                |
|        |                    | df | $=2, \chi^2 = 22$ | .09, <i>P</i> < 0.001 |                                                       | df = | $=2, \chi^2 = 15$ | .42, <i>P</i> < 0.001 |                                                       |    |                   | -                     |                                                       |
|        |                    |    | <i>z</i> = -3     | .19, <i>P</i> < 0.001 |                                                       |      | <i>z</i> = -2     | .83, $P = 0.002$      |                                                       |    |                   |                       |                                                       |
| 1999   |                    |    |                   |                       |                                                       |      |                   |                       |                                                       |    |                   |                       |                                                       |
|        | Gull-removal       | 10 | 0.9753            | 1.1892E-04            | 0.3974                                                | 4    | 0.9773            | 2.5239E-04            | 0.3898                                                | 6  | 0.9738            | 2.2283E-04            | 0.3520                                                |
|        | Buffer             | 1  | 1.0000            | -                     | 1.0000                                                | 1    | 1.0000            | -                     | 1.0000                                                | 0  | -                 | -                     | -                                                     |
|        | Reference          | 20 | 0.9830            | 3.5674E-05            | 0.5459                                                | 12   | 0.9828            | 5.8031E-05            | 0.5360                                                | 8  | 0.9832            | 9.2573E-05            | 0.5318                                                |
|        |                    |    | z = -             | 2.08, P = 0.02        |                                                       |      | <i>z</i> = -      | 0.67, P = 0.25        |                                                       |    | z = -             | 1.35, P = 0.09        |                                                       |
| 2000   |                    |    |                   |                       |                                                       |      |                   |                       |                                                       |    |                   |                       |                                                       |
|        | Gull-removal       | 11 | 0.9730            | 1.1793E-04            | 0.3672                                                | 3    | 1.0000            | 0.0000E-00            | 1.0000                                                | 8  | 0.9547            | 3.2628E-04            | 0.1653                                                |
|        | Buffer             | 0  | -                 | -                     | -                                                     | 0    | -                 | -                     | -                                                     | 0  | -                 | -                     | -                                                     |
|        | Reference          | 28 | 0.9831            | 2.5673E-05            | 0.5509                                                | 14   | 0.9977            | 5.2726E-06            | 0.9220                                                | 14 | 0.9533            | 2.0816E-04            | 0.1712                                                |
|        |                    |    | <i>z</i> = -2     | .96, $P = 0.002$      |                                                       |      | z = 3.7           | 75, <i>P</i> < 0.0002 |                                                       |    | z =               | 0.19, P = 0.42        |                                                       |
| 1998-2 | 2000               |    |                   |                       |                                                       |      |                   |                       |                                                       |    |                   |                       |                                                       |
|        | Gull-removal       | 33 | 0.9700            | 4.8500E-05            | 0.3447                                                | 15   | 0.9857            | 4.0462E-05            | 0.5979                                                | 18 | 0.9482            | 1.9588E-04            | 0.1439                                                |
|        | Buffer             | 3  | 0.9394            | 1.7252E-03            | -0.0116                                               | 2    | 0.9688            | 9.4604E-04            | 0.1476                                                | 1  | 0.0000            | -                     | -                                                     |
|        | Reference          | 72 | 0.9803            | 1.1872E-05            | 0.5051                                                | 37   | 0.9922            | 7.5404E-06            | 0.7630                                                | 35 | 0.9600            | 6.4105E-05            | 0.2396                                                |
|        |                    | df | $=2, \chi^2 = 88$ | .75, <i>P</i> < 0.001 |                                                       | df = | $=2, \chi^2 = 25$ | .13, <i>P</i> < 0.001 |                                                       |    | z = -3            | .31, <i>P</i> < 0.001 |                                                       |
|        |                    |    | <i>z</i> = -8.0   | 06, <i>P</i> < 0.0001 |                                                       |      | <i>z</i> = -3.8   | 32, <i>P</i> < 0.0002 |                                                       |    |                   |                       |                                                       |
|        |                    |    |                   |                       |                                                       |      |                   |                       |                                                       |    |                   |                       |                                                       |

**Table 33.** Mayfield daily and interval survival rate estimates (Mayfield 1975) for Piping Plover nests, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of nests. Chi-square tests were used to test for differences in survival among the management areas. *Z*-tests were used to test for differences in survival between the gull-removal area and the reference area.

<sup>a</sup> The probability that a nest initiated will survive to hatching, bias adjusted (Heisey and Fuller 1985).

| Year            | Management   |    | Hatched | De | epredated | Sto | orm Tide/  |                    | andoned/       |   | Unknown | <u>Tc</u> | tal Nests |
|-----------------|--------------|----|---------|----|-----------|-----|------------|--------------------|----------------|---|---------|-----------|-----------|
|                 | Area         | n  | %       | n  | %         | n   | Flood<br>% | <u>Covere</u><br>n | ed w/sand<br>% | n | %       | n         | %         |
|                 |              |    |         |    |           |     |            |                    |                |   |         |           |           |
| 1998            |              |    |         |    |           |     |            |                    |                |   |         |           |           |
| All Nests       |              |    |         |    |           |     |            |                    |                |   |         |           |           |
|                 | Gull-removal | 5  | 41.7%   | 2  | 16.7%     | 2   | 16.7%      | 3                  | 25.0%          | 0 | 0.0%    | 12        | 100%      |
|                 | Buffer       | 0  | 0.0%    | 0  | 0.0%      | 0   | 0.0%       | 1                  | 50.0%          | 1 | 50.0%   | 2         | 100%      |
|                 | Reference    | 11 | 45.8%   | 4  | 16.7%     | 1   | 4.2%       | 1                  | 4.2%           | 7 | 29.2%   | 24        | 100%      |
| Exclosed Nests  |              |    |         |    |           |     |            |                    |                |   |         |           |           |
|                 | Gull-removal | 5  | 62.5%   | 0  | 0.0%      | 1   | 12.5%      | 2                  | 25.0%          | 0 | 0.0%    | 8         | 100%      |
|                 | Buffer       | 0  | 0.0%    | 0  | 0.0%      | 0   | 0.0%       | 1                  | 100.0%         | 0 | 0.0%    | 1         | 100%      |
|                 | Reference    | 9  | 81.8%   | 0  | 0.0%      | 1   | 9.1%       | 1                  | 9.1%           | 0 | 0.0%    | 11        | 100%      |
| Unexclosed Nest | S            |    |         |    |           |     |            |                    |                |   |         |           |           |
|                 | Gull-removal | 0  | 0.0%    | 2  | 50.0%     | 1   | 25.0%      | 1                  | 25.0%          | 0 | 0.0%    | 4         | 100%      |
|                 | Buffer       | 0  | 0.0%    | 0  | 0.0%      | 0   | 0.0%       | 0                  | 0.0%           | 1 | 100.0%  | 1         | 100%      |
|                 | Reference    | 2  | 15.4%   | 4  | 30.8%     | 0   | 0.0%       | 0                  | 0.0%           | 7 | 53.8%   | 13        | 100%      |

# Table 34. Fate of Piping Plover nests, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

**Continued.** <sup>a</sup> 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test. <sup>b</sup> Abandoned after adult female was found dead in the exclosure.

| Year             | <u>Management</u><br>Area |    | Hatched | De | predated | Sto | <u>rm Tide/</u><br>Flood |                | andoned/<br>d w/sand  | <u>I</u> | <u>Jnknown</u> | To | tal Nests |
|------------------|---------------------------|----|---------|----|----------|-----|--------------------------|----------------|-----------------------|----------|----------------|----|-----------|
|                  | Alta                      | n  | %       | n  | %        | n   | <u>11000</u><br>%        | n              | <u>d w/salid</u><br>% | n        | %              | n  | %         |
| 1999             |                           |    |         |    |          |     |                          |                |                       |          |                |    |           |
| All Nests        |                           |    |         |    |          |     |                          |                |                       |          |                |    |           |
|                  | Gull-removal              | 5  | 50.0%   | 2  | 20.0%    | 0   | 0.0%                     | 3              | 30.0%                 | 0        | 0.0%           | 10 | 100%      |
|                  | Buffer                    | 1  | 100.0%  | 0  | 0.0%     | 0   | 0.0%                     | 0              | 0.0%                  | 0        | 0.0%           | 1  | 100%      |
|                  | Reference                 | 12 | 60.0%   | 0  | 0.0%     | 1   | 5.0%                     | 4 <sup>b</sup> | 20.0%                 | 3        | 15.0%          | 20 | 100%      |
| Exclosed Nests   |                           |    |         |    |          |     |                          |                |                       |          |                |    |           |
|                  | Gull-removal              | 2  | 50.0%   | 0  | 0.0%     | 0   | 0.0%                     | 2              | 50.0%                 | 0        | 0.0%           | 4  | 100%      |
|                  | Buffer                    | 1  | 100.0%  | 0  | 0.0%     | 0   | 0.0%                     | 0              | 0.0%                  | 0        | 0.0%           | 1  | 100%      |
|                  | Reference                 | 7  | 58.3%   | 0  | 0.0%     | 1   | 8.3%                     | 4 <sup>b</sup> | 33.3%                 | 0        | 0.0%           | 12 | 100%      |
| Unexclosed Nests |                           |    |         |    |          |     |                          |                |                       |          |                |    |           |
|                  | Gull-removal              | 3  | 50.0%   | 2  | 33.3%    | 0   | 0.0%                     | 1              | 16.7%                 | 0        | 0.0%           | 6  | 100%      |
|                  | Buffer                    |    | -       |    | -        |     | -                        |                | -                     |          | -              |    | -         |
|                  | Reference                 | 5  | 62.5%   | 0  | 0.0%     | 0   | 0.0%                     | 0              | 0.0%                  | 3        | 37.5%          | 8  | 100%      |
|                  |                           |    |         |    |          |     |                          |                |                       |          |                |    |           |

Table 34, Continued. Fate of Piping Plover nests by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

**Continued.** <sup>a</sup> 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test. <sup>b</sup> Abandoned after adult female was found dead in the exclosure.

| Year             | <u>Management</u><br>Area |    | Hatched | De | predated | Sto | <u>rm Tide/</u><br>Flood |   | andoned/<br>d w/sand | <u>L</u> | nknown | Tot | tal Nests |
|------------------|---------------------------|----|---------|----|----------|-----|--------------------------|---|----------------------|----------|--------|-----|-----------|
|                  |                           | n  | %       | n  | %        | n   | %                        | n | %                    | n        | %      | n   | %         |
| 2000             |                           |    |         |    |          |     |                          |   |                      |          |        |     |           |
| All Nests        |                           |    |         |    |          |     |                          |   |                      |          |        |     |           |
|                  | Gull-removal              | 5  | 45.5%   | 3  | 27.3%    | 1   | 9.1%                     | 1 | 9.1%                 | 1        | 9.1%   | 11  | 100%      |
|                  | Buffer                    |    | -       |    | -        |     | -                        |   | -                    |          | -      |     | -         |
|                  | Reference                 | 17 | 60.7%   | 3  | 10.7%    | 2   | 7.1%                     | 3 | 10.7%                | 3        | 10.7%  | 28  | 100%      |
| Exclosed Nests   |                           |    |         |    |          |     |                          |   |                      |          |        |     |           |
|                  | Gull-removal              | 3  | 100.0%  | 0  | 0.0%     | 0   | 0.0%                     | 0 | 0.0%                 | 0        | 0.0%   | 3   | 100%      |
|                  | Buffer                    |    | -       |    | -        |     | -                        |   | -                    |          | -      |     | -         |
|                  | Reference                 | 13 | 92.9%   | 0  | 0.0%     | 0   | 0.0%                     | 1 | 7.1%                 | 0        | 0.0%   | 14  | 100%      |
| Unexclosed Nests |                           |    |         |    |          |     |                          |   |                      |          |        |     |           |
|                  | Gull-removal              | 2  | 25.0%   | 3  | 37.5%    | 1   | 12.5%                    | 1 | 12.5%                | 1        | 12.5%  | 8   | 100%      |
|                  | Buffer                    |    | -       |    | -        |     | -                        |   | -                    |          | -      |     | -         |
|                  | Reference                 | 4  | 28.6%   | 3  | 21.4%    | 2   | 14.3%                    | 2 | 14.3%                | 3        | 21.4%  | 14  | 100%      |

# Table 34, Continued. Fate of Piping Plover nests by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

**Continued.** <sup>a</sup> 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test. <sup>b</sup> Abandoned after adult female was found dead in the exclosure.

| Year             | Management            |                                                  | Hatched               | De | predated | Sto | orm Tide/  |                | andoned/      | -  | Unknown | To | tal Nests |
|------------------|-----------------------|--------------------------------------------------|-----------------------|----|----------|-----|------------|----------------|---------------|----|---------|----|-----------|
|                  | Area                  |                                                  | 0/                    |    | %        |     | Flood<br>% |                | d w/sand<br>% |    | %       |    | 0/        |
|                  |                       | n                                                | %                     | n  | 70       | n   | %          | n              | %0            | n  | %0      | n  | %         |
| 1998-2000        |                       |                                                  |                       |    |          |     |            |                |               |    |         |    |           |
| All Nests        |                       |                                                  |                       |    |          |     |            |                |               |    |         |    |           |
|                  | Gull-removal          | 15                                               | 45.5%                 | 7  | 21.2%    | 3   | 9.1%       | 7              | 21.2%         | 1  | 3.0%    | 33 | 100%      |
|                  | Buffer                | 1                                                | 33.3%                 | 0  | 0.0%     | 0   | 0.0%       | 1              | 33.3%         | 1  | 33.3%   | 3  | 100%      |
|                  | Reference             | 40                                               | 55.6%                 | 7  | 9.7%     | 4   | 5.6%       | 8 <sup>b</sup> | 11.1%         | 13 | 18.1%   | 72 | 100%      |
|                  | Nest Success, Gull-r  | emoval vs. Referen<br>df = 1, $\chi^2 = 0.93$ ,  | nce Area:<br>P = 0.34 |    |          |     |            |                |               |    |         |    |           |
| Exclosed Nests   |                       |                                                  |                       |    |          |     |            |                |               |    |         |    |           |
|                  | Gull-removal          | 10                                               | 66.7%                 | 0  | 0.0%     | 1   | 6.7%       | 4              | 26.7%         | 0  | 0.0%    | 15 | 100%      |
|                  | Buffer                | 1                                                | 50.0%                 | 0  | 0.0%     | 0   | 0.0%       | 1              | 50.0%         | 0  | 0.0%    | 2  | 100%      |
|                  | Reference             | 29                                               | 78.4%                 | 0  | 0.0%     | 2   | 5.4%       | 6 <sup>b</sup> | 16.2%         | 0  | 0.0%    | 37 | 100%      |
|                  | (Nest Success, Gull-r | emoval vs. Referen<br>If = 1, $\chi^2$ = 0.78, P |                       |    |          |     |            |                |               |    |         |    |           |
| Unexclosed Nests |                       |                                                  |                       |    |          |     |            |                |               |    |         |    |           |
|                  | Gull-removal          | 5                                                | 27.8%                 | 7  | 38.9%    | 2   | 11.1%      | 3              | 16.7%         | 1  | 5.6%    | 18 | 100%      |
|                  | Buffer                | 0                                                | 0.0%                  | 0  | 0.0%     | 0   | 0.0%       | 0              | 0.0%          | 1  | 100.0%  | 1  | 100%      |
|                  | Reference             | 11                                               | 31.4%                 | 7  | 20.0%    | 2   | 5.7%       | 2              | 5.7%          | 13 | 37.1%   | 35 | 100%      |
|                  | Nest Success, Gull-r  | emoval vs. Referen<br>df = 1, $\chi^2 = 0.08$ ,  | P = 0.78              |    |          |     |            |                |               |    |         |    |           |

Table 34, Continued. Fate of Piping Plover nests by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

<sup>a</sup> 25% of the cells have expected counts less than 5. Chi-Square may not be a valid test. <sup>b</sup> Abandoned after adult female was found dead in the exclosure.

| Year       | $\frac{Management}{Area} (n = number of nests lost to known$ | Depredated | l by Gull | Depredated b | <u>y Coyote</u> De | predated by An<br>Oysten | nerican<br>catcher | Unidentifi | edated by<br>ed Avian<br>Predator | <u>Stc</u> | orm Tide/<br>Flood |   | andoned/<br>d w/sand |
|------------|--------------------------------------------------------------|------------|-----------|--------------|--------------------|--------------------------|--------------------|------------|-----------------------------------|------------|--------------------|---|----------------------|
|            | causes or abandoned)                                         | n          | %         | n            | %                  | n                        | %                  | n          | %                                 | n          | %                  | n | %                    |
| 1998       |                                                              |            |           |              |                    |                          |                    |            |                                   |            |                    |   |                      |
| All Nests  |                                                              |            |           |              |                    |                          |                    |            |                                   |            |                    |   |                      |
|            | Gull-removal $(n = 7)$                                       | 1          | 14.3%     | 0            | 0.0%               | 0                        | 0.0%               | 1          | 14.3%                             | 2          | 28.6%              | 3 | 42.9%                |
|            | Buffer $(n = 1)$                                             | 0          | 0.0%      | 0            | 0.0%               | 0                        | 0.0%               | 0          | 0.0%                              | 0          | 0.0%               | 1 | 100.0%               |
|            | Reference $(n = 6)$                                          | 1          | 16.7%     | 2            | 33.3%              | 0                        | 0.0%               | 1          | 16.7%                             | 1          | 16.7%              | 1 | 16.7%                |
| Exclosed 1 | Nests                                                        |            |           |              |                    |                          |                    |            |                                   |            |                    |   |                      |
|            | Gull-removal $(n = 3)$                                       | 0          | 0.0%      | 0            | 0.0%               | 0                        | 0.0%               | 0          | 0.0%                              | 1          | 33.3%              | 2 | 66.7%                |
|            | Buffer $(n = 1)$                                             | 0          | 0.0%      | 0            | 0.0%               | 0                        | 0.0%               | 0          | 0.0%                              | 0          | 0.0%               | 1 | 100.0%               |
|            | Reference $(n = 2)$                                          | 0          | 0.0%      | 0            | 0.0%               | 0                        | 0.0%               | 0          | 0.0%                              | 1          | 50.0%              | 1 | 50.0%                |
| Unexclose  | d Nests                                                      |            |           |              |                    |                          |                    |            |                                   |            |                    |   |                      |
|            | Gull-removal $(n = 4)$                                       | 1          | 25.0%     | 0            | 0.0%               | 0                        | 0.0%               | 1          | 25.0%                             | 1          | 25.0%              | 1 | 25.0%                |
|            | Buffer $(n = 0)$                                             | 0          | 0.0%      | 0            | 0.0%               | 0                        | 0.0%               | 0          | 0.0%                              | 0          | 0.0%               | 0 | 0.0%                 |
|            | Reference $(n = 4)$                                          | 1          | 25.0%     | 2            | 50.0%              | 0                        | 0.0%               | 1          | 25.0%                             | 0          | 0.0%               | 0 | 0.0%                 |
|            |                                                              |            |           |              |                    |                          |                    |            |                                   |            |                    |   |                      |

# Table 35. Number of Piping Plover nests abandoned or lost to known causes, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

# Continued.

| Year       | <u>Management</u><br><u>Area</u> (n = number of<br>nests lost to known<br>causes or abandoned) | Depredated | <u>l by Gull</u> | Depredated by | <u>Coyote</u> De | epredated by An<br>Oyster |      | Unidentifie | lated by<br>d Avian<br>Predator | <u>Stc</u> | o <u>rm Tide/</u><br>Flood |                | andoned/<br>d w/sand |
|------------|------------------------------------------------------------------------------------------------|------------|------------------|---------------|------------------|---------------------------|------|-------------|---------------------------------|------------|----------------------------|----------------|----------------------|
|            | causes of abandoned)                                                                           | n          | %                | n             | %                | n                         | %    | n           | %                               | n          | %                          | n              | %                    |
| 1999       |                                                                                                |            |                  |               |                  |                           |      |             |                                 |            |                            |                |                      |
| All Nests  |                                                                                                |            |                  |               |                  |                           |      |             |                                 |            |                            |                |                      |
|            | Gull-removal $(n = 5)$                                                                         | 2          | 40.0%            | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 0          | 0.0%                       | 3              | 60.0%                |
|            | Buffer $(n = 0)$                                                                               | 0          | 0.0%             | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 0          | 0.0%                       | 0              | 0.0%                 |
|            | Reference $(n = 5)$                                                                            | 0          | 0.0%             | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 1          | 20.0%                      | 4 <sup>a</sup> | 80.0%                |
| Exclosed 1 | Nests                                                                                          |            |                  |               |                  |                           |      |             |                                 |            |                            |                |                      |
|            | Gull-removal $(n = 2)$                                                                         | 0          | 0.0%             | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 0          | 0.0%                       | 2              | 100.0%               |
|            | Buffer $(n = 0)$                                                                               | 0          | 0.0%             | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 0          | 0.0%                       | 0              | 0.0%                 |
|            | Reference $(n = 5)$                                                                            | 0          | 0.0%             | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 1          | 20.0%                      | 4 <sup>a</sup> | 80.0%                |
| Unexclose  | d Nests                                                                                        |            |                  |               |                  |                           |      |             |                                 |            |                            |                |                      |
|            | Gull-removal (n = 3)<br>Buffer                                                                 | 2          | 66.7%<br>-       | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 0          | 0.0%                       | 1              | 33.3%                |
|            | Reference $(n = 0)$                                                                            | 0          | 0.0%             | 0             | 0.0%             | 0                         | 0.0% | 0           | 0.0%                            | 0          | 0.0%                       | 0              | 0.0%                 |

Table 35, Continued. Number of Piping Plover nests abandoned or lost to known causes, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

# Continued.

| Year       | <u>Management</u><br><u>Area</u> (n = number of<br>nests lost to known<br>causes or abandoned) | Depredated | <u>by Gull</u> | Depredated by | Coyote Dep |   | merican<br>ccatcher | Unidentifie | edated by<br>ed Avian<br>Predator | <u>Sto</u> | o <u>rm Tide/</u><br>Flood |   | andoned/<br>d w/sand |
|------------|------------------------------------------------------------------------------------------------|------------|----------------|---------------|------------|---|---------------------|-------------|-----------------------------------|------------|----------------------------|---|----------------------|
|            | causes of abandoned)                                                                           | n          | %              | n             | %          | n | %                   | n           | %                                 | n          | %                          | n | %                    |
| 2000       |                                                                                                |            |                |               |            |   |                     |             |                                   |            |                            |   |                      |
| All Nests  |                                                                                                |            |                |               |            |   |                     |             |                                   |            |                            |   |                      |
|            | Gull-removal (n = 5)<br>Buffer                                                                 | 0          | 0.0%           | 0             | 0.0%       | 1 | 20.0%               | 2           | 40.0%                             | 1          | 20.0%                      | 1 | 20.0%                |
|            | Reference $(n = 8)$                                                                            | 0          | 0.0%           | 0             | 0.0%       | 1 | 12.5%               | 2           | 25.0%                             | 2          | 25.0%                      | 3 | 37.5%                |
| Exclosed N | Vests                                                                                          |            |                |               |            |   |                     |             |                                   |            |                            |   |                      |
|            | Gull-removal (n = 0)<br>Buffer                                                                 | 0          | 0.0%           | 0             | 0.0%       | 0 | 0.0%                | 0           | 0.0%                              | 0          | 0.0%                       | 0 | 0.0%                 |
|            | Reference $(n = 1)$                                                                            | 0          | 0.0%           | 0             | 0.0%       | 0 | 0.0%                | 0           | 0.0%                              | 0          | 0.0%                       | 1 | 100.0%               |
| Unexclosed | d Nests                                                                                        |            |                |               |            |   |                     |             |                                   |            |                            |   |                      |
|            | Gull-removal (n = 5)<br>Buffer                                                                 | 0          | 0.0%           | 0             | 0.0%       | 1 | 20.0%               | 2           | 40.0%<br>-                        | 1          | 20.0%                      | 1 | 20.0%                |
|            | Reference $(n = 7)$                                                                            | 0          | 0.0%           | 0             | 0.0%       | 1 | 14.3%               | 2           | 28.6%                             | 2          | 28.6%                      | 2 | 28.6%                |

Table 35, Continued. Number of Piping Plover nests abandoned or lost to known causes, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

# Continued.

| Year       | <u>Management</u><br><u>Area</u> (n = number of<br>nests lost to known<br>causes or abandoned) | Depredated | <u>l by Gull</u> | Depredated by | y Coyote Der | oredated by An<br>Oyster | <u>nerican</u><br>catcher | Unidentifi | edated by<br>ed Avian<br>Predator | Sto | <u>rm Tide/</u><br>Flood |                | andoned/<br>d w/sand |
|------------|------------------------------------------------------------------------------------------------|------------|------------------|---------------|--------------|--------------------------|---------------------------|------------|-----------------------------------|-----|--------------------------|----------------|----------------------|
|            | eduses of abalidonedy                                                                          | n          | %                | n             | %            | n                        | %                         | n          | %                                 | n   | %                        | n              | %                    |
| 1998-2000  | )                                                                                              |            |                  |               |              |                          |                           |            |                                   |     |                          |                |                      |
| All Nests  |                                                                                                |            |                  |               |              |                          |                           |            |                                   |     |                          |                |                      |
|            | Gull-removal (n = 17)                                                                          | 3          | 17.6%            | 0             | 0.0%         | 1                        | 5.9%                      | 3          | 17.6%                             | 3   | 17.6%                    | 7              | 41.2%                |
|            | Buffer $(n = 1)$                                                                               | 0          | 0.0%             | 0             | 0.0%         | 0                        | 0.0%                      | 0          | 0.0%                              | 0   | 0.0%                     | 1              | 100.0%               |
|            | Reference $(n = 19)$                                                                           | 1          | 5.3%             | 2             | 10.5%        | 1                        | 5.3%                      | 3          | 15.8%                             | 4   | 21.1%                    | 8 <sup>a</sup> | 42.1%                |
| Exclosed 1 | Nests                                                                                          |            |                  |               |              |                          |                           |            |                                   |     |                          |                |                      |
|            | Gull-removal $(n = 5)$                                                                         | 0          | 0.0%             | 0             | 0.0%         | 0                        | 0.0%                      | 0          | 0.0%                              | 1   | 20.0%                    | 4              | 80.0%                |
|            | Buffer $(n = 1)$                                                                               | 0          | 0.0%             | 0             | 0.0%         | 0                        | 0.0%                      | 0          | 0.0%                              | 0   | 0.0%                     | 1              | 100.0%               |
|            | Reference (n = 8)                                                                              | 0          | 0.0%             | 0             | 0.0%         | 0                        | 0.0%                      | 0          | 0.0%                              | 2   | 25.0%                    | 6 <sup>a</sup> | 75.0%                |
| Unexclose  | ed Nests                                                                                       |            |                  |               |              |                          |                           |            |                                   |     |                          |                |                      |
|            | Gull-removal $(n = 12)$                                                                        | 3          | 25.0%            | 0             | 0.0%         | 1                        | 8.3%                      | 3          | 25.0%                             | 2   | 16.7%                    | 3              | 25.0%                |
|            | Buffer $(n = 0)$                                                                               | 0          | 0.0%             | 0             | 0.0%         | 0                        | 0.0%                      | 0          | 0.0%                              | 0   | 0.0%                     | 0              | 0.0%                 |
|            | Reference $(n = 11)$                                                                           | 1          | 9.1%             | 2             | 18.2%        | 1                        | 9.1%                      | 3          | 27.3%                             | 2   | 18.2%                    | 2              | 18.2%                |
|            |                                                                                                |            |                  |               |              |                          |                           |            |                                   |     |                          |                |                      |
|            |                                                                                                |            |                  |               |              |                          |                           |            |                                   |     |                          |                |                      |

Table 35, Continued. Number of Piping Plover nests abandoned or lost to known causes, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

| Year | <u>Management</u><br>Area |    | Total Large    | e Gulls | <u>Great I</u><br>backed      |        | Herrin         | <u>g Gulls</u> | Immatur        | e Gulls  |
|------|---------------------------|----|----------------|---------|-------------------------------|--------|----------------|----------------|----------------|----------|
|      | <u>nicu</u>               | n  | $\overline{x}$ | SE      | $\frac{backed}{\overline{x}}$ | SE     | $\overline{x}$ | SE             | $\overline{x}$ | SE       |
| 1999 |                           |    |                |         |                               |        |                |                |                |          |
| 1999 | Gull-removal              |    |                |         |                               |        |                |                |                |          |
|      | Successful                | 5  | 1.34           | 0.71    | 0.58                          | 0.25   | 0.55           | 0.40           | 0.21           | 0.08     |
|      | Unsuccessful              | 5  | 1.34           | 0.13    | 0.82                          | 0.15   | 0.55           | 0.40           | 0.02           | 0.00     |
|      | onsuccession              | 5  | T = -0.92, P   |         | T = -0.21, P =                |        | T = 0.49, F    |                | T = -2.05, P   |          |
|      | Buffer                    |    |                |         |                               |        |                |                |                |          |
|      | Successful                | 1  | 15.42          | _       | 11.21                         | _      | 1.71           | -              | 2.50           | _        |
|      | Unsuccessful              | 0  | -              | _       | -                             | _      | -              | _              | 2.50           | _        |
|      | Chisaccessia              | 0  |                | -       |                               | -      |                | -              |                | -        |
|      | Reference                 |    |                |         |                               |        |                |                |                |          |
|      | Successful                | 12 | 9.21           | 2.65    | 6.27                          | 1.98   | 1.23           | 0.17           | 1.71           | 0.69     |
|      | Unsuccessful              | 8  | 10.33          | 3.70    | 7.21                          | 2.44   | 1.78           | 0.97           | 1.34           | 0.79     |
|      |                           |    | T = 0.57, P    |         | T = 0.36, P =                 |        | T = 0.08, P    |                | T = 0.88, P    |          |
|      | South Monomoy             |    |                |         |                               |        |                |                |                |          |
|      | Successful                | 18 | 7.37           | 2.00    | 4.96                          | 1.49   | 1.07           | 0.17           | 1.34           | 0.49     |
|      | Unsuccessful              | 13 | 6.88           | 2.55    | 4.75                          | 1.71   | 1.29           | 0.61           | 0.83           | 0.51     |
|      |                           |    | T = 0.47, P    | = 0.58  | T = 0.56, P =                 | = 0.64 | T = -0.16, P   | P = 0.30       | T = 0.37, P    | 9 = 0.53 |
| 2000 |                           |    |                |         |                               |        |                |                |                |          |
|      | Gull-removal              |    |                |         |                               |        |                |                |                |          |
|      | Successful                | 5  | 2.03           | 1.10    | 0.76                          | 0.29   | 0.48           | 0.23           | 0.80           | 0.60     |
|      | Unsuccessful              | 6  | 3.14           | 1.85    | 0.55                          | 0.24   | 0.58           | 0.26           | 2.01           | 1.39     |
|      |                           |    | T = 0.61, P    | = 0.69  | T = 0.38, P =                 | = 0.57 | T = 1.01, P    | P = 0.89       | T = 0.64, P    | P = 0.70 |
|      | Buffer                    |    |                |         |                               |        |                |                |                |          |
|      | Successful                | 0  | -              | -       | -                             | -      | -              | -              | -              | -        |
|      | Unsuccessful              | 0  | -              | -       | -                             | -      | -              | -              | -              | -        |
|      |                           |    |                | -       |                               | -      |                | -              |                | -        |
|      | Reference                 |    |                |         |                               |        |                |                |                |          |
|      | Successful                | 17 | 7.13           | 1.94    | 4.67                          | 1.30   | 1.23           | 0.51           | 1.23           | 0.32     |
|      | Unsuccessful              | 11 | 6.79           | 1.12    | 4.07                          | 1.01   | 0.59           | 0.15           | 2.14           | 0.71     |
|      |                           |    | T = 0.25, P    | = 0.45  | T = 0.50, P =                 | = 0.60 | T = 0.21, P    | P = 0.52       | T = -0.16, P   | r = 0.32 |

**Table 36.** Mean counts of large gulls within 100 m of successful vs. unsuccessful nests, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

Continued.

| Year   | Management    |    | Total Large    | e Gulls |                    | Black-               | Herrin         | <u>g Gulls</u> | Immatur        | e Gulls  |
|--------|---------------|----|----------------|---------|--------------------|----------------------|----------------|----------------|----------------|----------|
|        | Area          | n  | $\overline{x}$ | SE      | $\frac{backed}{x}$ | <u>d Gulls</u><br>SE | $\overline{x}$ | SE             | $\overline{x}$ | SE       |
| 2000   |               |    |                |         |                    |                      |                |                |                |          |
| 2000   | South Monomoy |    |                |         |                    |                      |                |                |                |          |
|        | Successful    | 22 | 5.97           | 1.58    | 3.78               | 1.06                 | 1.06           | 0.40           | 1.13           | 0.28     |
|        | Unsuccessful  | 17 | 5.51           | 1.04    | 2.82               | 0.77                 | 0.59           | 0.40           | 2.10           | 0.28     |
|        | onsuccession  | 17 | T = 0.61, P    |         | T = 0.44, P        |                      | T = 0.41, P    |                | T = -0.35, P   |          |
| 1999-2 | 000           |    |                |         |                    |                      |                |                |                |          |
|        | Gull-removal  |    |                |         |                    |                      |                |                |                |          |
|        | Successful    | 10 | 1.69           | 0.63    | 0.67               | 0.18                 | 0.51           | 0.22           | 0.50           | 0.30     |
|        | Unsuccessful  | 11 | 2.33           | 1.01    | 0.67               | 0.15                 | 0.55           | 0.16           | 1.11           | 0.79     |
|        |               |    | T = 0.87, P    | = 0.83  | T = 0.66, P        | = 0.72               | T = 0.63, P    | 9 = 0.69       | T = 0.32, P    | 9 = 0.54 |
|        | Buffer        |    |                |         |                    |                      |                |                |                |          |
|        | Successful    | 1  | 15.42          | -       | 11.21              | -                    | 1.71           | -              | 2.50           | -        |
|        | Unsuccessful  | 0  | -              | -       | -                  | -                    | -              | -              | -              | -        |
|        |               |    |                | -       |                    | -                    |                | -              |                | -        |
|        | Reference     |    |                |         |                    |                      |                |                |                |          |
|        | Successful    | 29 | 7.99           | 1.56    | 5.33               | 1.11                 | 1.23           | 0.30           | 1.43           | 0.34     |
|        | Unsuccessful  | 19 | 8.28           | 1.68    | 5.39               | 1.20                 | 1.09           | 0.43           | 1.80           | 0.52     |
|        |               |    | T = 0.67, P    | = 0.73  | T = 0.40, P        | = 0.53               | T = 0.85, F    | P = 0.81       | T = 0.60, P    | 9 = 0.67 |
|        | South Monomoy |    |                |         |                    |                      |                |                |                |          |
|        | Successful    | 40 | 6.60           | 1.24    | 4.31               | 0.88                 | 1.06           | 0.23           | 1.23           | 0.26     |
|        | Unsuccessful  | 30 | 6.10           | 1.23    | 3.66               | 0.86                 | 0.89           | 0.28           | 1.55           | 0.44     |
|        |               |    | T = 0.81, P    | = 0.88  | T = 0.43, P        | = 0.55               | T = 0.67, P    | P = 0.72       | T = 0.50, P    | = 0.59   |

**Table 36, Continued.** Mean counts of large gulls within 100 m of successful vs. unsuccessful nests, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year    | <u>Management</u><br>Area |    | Total Larg     | ge Gulls |                                     | t <u>Black-</u><br>d Gulls | Herrin         | ng Gulls | Immatu         | re Gulls |
|---------|---------------------------|----|----------------|----------|-------------------------------------|----------------------------|----------------|----------|----------------|----------|
|         | Incu                      | n  | $\overline{x}$ | SE       | $\frac{\overline{x}}{\overline{x}}$ | SE                         | $\overline{x}$ | SE       | $\overline{x}$ | SE       |
| 1999    |                           |    |                |          |                                     |                            |                |          |                |          |
|         | Gull-removal              | 5  | 0.84           | 0.23     | 0.48                                | 0.17                       | 0.28           | 0.11     | 0.09           | 0.05     |
|         | Buffer                    | 1  | 0.25           | -        | 0.25                                | -                          | 0.00           | -        | 0.00           | -        |
|         | Reference                 | 12 | 5.68           | 1.73     | 4.15                                | 1.38                       | 1.24           | 0.44     | 0.28           | 0.15     |
|         |                           |    | T = -1.82, I   | P = 0.06 | T = -1.81, I                        | P = 0.06                   | T = -1.42, I   | P = 0.09 | T = -0.09, H   | P = 0.36 |
| 2000    |                           |    |                |          |                                     |                            |                |          |                |          |
|         | Gull-removal              | 5  | 4.37           | 0.88     | 1.22                                | 0.28                       | 0.80           | 0.28     | 2.44           | 0.47     |
|         | Buffer                    | 0  | -              | -        | -                                   | -                          | -              | -        | -              | -        |
|         | Reference                 | 17 | 5.07           | 1.28     | 3.57                                | 0.90                       | 1.08           | 0.41     | 0.42           | 0.23     |
|         |                           |    | T = -0.44, I   | P = 0.24 | T = -1.10, H                        | P = 0.12                   | T = 0.03, I    | P = 0.38 | T = -7.33, P = | 0.0003   |
| 1999-20 | 000                       |    |                |          |                                     |                            |                |          |                |          |
|         | Gull-removal              | 10 | 2.60           | 0.73     | 0.80                                | 0.19                       | 0.54           | 0.17     | 1.26           | 0.45     |
|         | Buffer                    | 1  | 0.25           | -        | 0.25                                | -                          | 0.00           | -        | 0.00           | -        |
|         | Reference                 | 29 | 5.33           | 1.02     | 3.81                                | 0.76                       | 1.15           | 0.30     | 0.36           | 0.15     |
|         |                           |    | T = -1.01, H   | P = 0.13 | T = -3.21, H                        | P = 0.02                   | T = -0.30, I   | P = 0.27 | T = -2.97, H   | P = 0.02 |

**Table 37.** Mean counts of large gulls within 100 m of Piping Plover broods, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area.

| Year | Management<br>Area |     | Total Larg                   | ge Gulls            | <u>Grea</u><br>back                 | <u>t Black-</u><br>ed Gulls | Herri          | ng Gulls | Immatu         | re Gulls |
|------|--------------------|-----|------------------------------|---------------------|-------------------------------------|-----------------------------|----------------|----------|----------------|----------|
|      | <u>nicu</u>        | n   | $\overline{x}$               | SE                  | $\frac{\overline{x}}{\overline{x}}$ | SE                          | $\overline{x}$ | SE       | $\overline{x}$ | SE       |
| 1999 |                    |     |                              |                     |                                     |                             |                |          |                |          |
|      | Gull-removal       |     |                              |                     |                                     |                             |                |          |                |          |
|      | Broods             | 5   | 0.84                         | 0.23                | 0.48                                | 0.17                        | 0.28           | 0.11     | 0.09           | 0.05     |
|      | Random Points      | 106 | 2.86                         | 0.66                | 1.28                                | 0.23                        | 1.10           | 0.23     | 0.47           | 0.33     |
|      |                    |     | T = -1.06, I                 | p = 0.11            | T = -0.80, I                        | P = 0.15                    | T = -0.93, I   | P = 0.13 | T = -0.37, I   | P = 0.11 |
|      | Buffer             |     |                              |                     |                                     |                             |                |          |                |          |
|      | Broods             | 1   | 0.25                         | -                   | 0.25                                | -                           | 0.00           | -        | 0.00           | -        |
|      | Random Points      | 104 | 17.54                        | 1.78                | 12.62                               | 1.26                        | 4.37           | 0.80     | 0.56           | 0.17     |
|      |                    |     |                              | -                   |                                     | -                           |                | -        |                | -        |
|      | Reference          |     |                              |                     |                                     |                             |                |          |                |          |
|      | Broods             | 12  | 5.68                         | 1.73                | 4.15                                | 1.38                        | 1.24           | 0.44     | 0.28           | 0.15     |
|      | Random Points      | 210 | 31.84                        | 2.04                | 26.19                               | 1.81                        | 3.79           | 0.70     | 1.86           | 0.38     |
|      |                    |     | <i>T</i> = -8.18, <i>P</i> = | = 0.0002            | <i>T</i> = -7.92, <i>P</i> =        | = 0.0002                    | T = -0.96, T   | P = 0.12 | T = -1.14, I   | P = 0.11 |
| 2000 |                    |     |                              |                     |                                     |                             |                |          |                |          |
| 2000 | Gull-removal       |     |                              |                     |                                     |                             |                |          |                |          |
|      | Broods             | 5   | 4.37                         | 0.89                | 1.12                                | 0.28                        | 0.80           | 0.28     | 2.44           | 0.47     |
|      | Random Points      | 105 | 4.65                         | 0.94                | 1.80                                | 0.38                        | 0.99           | 0.29     | 1.86           | 0.62     |
|      |                    |     | T = -1.23, I                 | <sup>p</sup> = 0.09 | T = -0.65, T                        | P = 0.14                    | T = -0.79, T   | P = 0.13 | T = -3.33, I   | P = 0.02 |
|      | Buffer             |     |                              |                     |                                     |                             |                |          |                |          |
|      | Broods             | 0   | -                            | -                   | -                                   | -                           | -              | -        | -              | -        |
|      | Random Points      | 107 | 30.28                        | 3.19                | 17.21                               | 1.51                        | 9.73           | 1.72     | 3.34           | 0.71     |
|      |                    |     |                              | -                   |                                     | -                           |                | -        |                | -        |
|      | Reference          |     |                              |                     |                                     |                             |                |          |                |          |
|      | Broods             | 17  | 5.07                         | 1.28                | 3.57                                | 0.90                        | 1.08           | 0.41     | 0.42           | 0.23     |
|      | Random Points      | 216 |                              | 2.94                | 25.01                               | 2.38                        | 6.72           | 1.15     | 2.13           | 0.45     |
|      |                    |     | T = -10.63, P < -10.63       | 0.0001              | T = -10.27, P < -10.27              | < 0.0001                    | T = -1.88, T   | P = 0.06 | T = -0.91, I   | P = 0.13 |

**Table 38.** Mean counts of large gulls within 100 m of Piping Plover broods vs. random points, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods or the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year  | Management<br>Area |     | <u>Total Larg</u>      | ge Gulls |                                     | <u>t Black-</u><br>ed Gulls | Herrir         | n <u>g Gulls</u> | Immatur        | re Gulls |
|-------|--------------------|-----|------------------------|----------|-------------------------------------|-----------------------------|----------------|------------------|----------------|----------|
|       | <u>nicu</u>        | n   | $\overline{x}$         | SE       | $\frac{\overline{x}}{\overline{x}}$ | SE                          | $\overline{x}$ | SE               | $\overline{x}$ | SE       |
| 1999- | 2000               |     |                        |          |                                     |                             |                |                  |                |          |
| 1999- | Gull-removal       |     |                        |          |                                     |                             |                |                  |                |          |
|       |                    | 10  | 2 (0                   | 0.72     | 0.00                                | 0.10                        | 0.54           | 0.17             | 1.20           | 0.45     |
|       | Broods             | 10  | 2.60                   | 0.73     | 0.80                                | 0.19                        | 0.54           | 0.17             | 1.26           | 0.45     |
|       | Random Points      | 211 | 3.75                   | 0.58     | 1.54                                | 0.22                        | 1.05           | 0.18             | 1.16           | 0.35     |
|       |                    |     | T = -0.32, H           | P = 0.21 | T = -1.17, I                        | P = 0.10                    | T = -1.01, I   | P = 0.12         | T = -2.28, F   | P = 0.04 |
|       | Buffer             |     |                        |          |                                     |                             |                |                  |                |          |
|       | Broods             | 1   | 0.25                   | -        | 0.25                                | -                           | 0.00           | -                | 0.00           | -        |
|       | Random Points      | 211 | 24.00                  | 1.89     | 14.95                               | 1.00                        | 7.09           | 0.97             | 1.97           | 0.38     |
|       |                    |     |                        | -        |                                     | -                           |                | -                |                | -        |
|       | Reference          |     |                        |          |                                     |                             |                |                  |                |          |
|       | Broods             | 29  | 5.33                   | 1.02     | 3.81                                | 0.76                        | 1.15           | 0.30             | 0.36           | 0.15     |
|       | Random Points      | 426 | 32.86                  | 1.80     | 25.59                               | 1.50                        | 5.27           | 0.68             | 2.00           | 0.29     |
|       |                    | Т   | r = -19.56, <i>P</i> < | 0.0001   | <i>T</i> = -18.81, <i>P</i> <       | < 0.0001                    | T = -2.86, I   | p = 0.02         | T = -2.16, H   | P = 0.04 |

**Table 38, Continued.** Mean counts of large gulls within 100 m of Piping Plover broods vs. random points, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods or the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

**Table 39.** Percent time Piping Plover broods spent in different behaviors during 5-minute behavioral observations, by age group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Means with the same letters were not significantly different (P < 0.05).

| Management Age Group |    | Fora                   | ging   | Distu            | irbed    | Rest             | ing      |                   | Alert     | Mov               | ing      | Broo                   | oding    |
|----------------------|----|------------------------|--------|------------------|----------|------------------|----------|-------------------|-----------|-------------------|----------|------------------------|----------|
| <u>Area</u>          | n  | $\overline{x}$ %       | SE     | $\overline{x}$ % | SE       | $\overline{x}$ % | SE       | $\overline{x} \%$ | SE        | $\overline{x} \%$ | SE       | $\overline{x}$ %       | SI       |
|                      |    |                        |        |                  |          |                  |          |                   |           |                   |          |                        |          |
| Gull-removal         |    |                        |        |                  |          |                  |          |                   |           |                   |          |                        |          |
| 0-2 Days             | 10 | 46.15 A                | 14.10  | 2.69             | 1.30     | 7.35 A           | 3.52     | 6.93 A            | 3.41      | <b>1.93</b> В     | 1.09     | 34.96 A                | 11.1     |
| 3 – 10 Days          | 9  | 56.53 A                | 11.57  | 1.98             | 1.75     | 13.03 A          | 5.57     | 10.53 A           | 3.03      | 6.29 A            | 1.69     | 11.62 A                | 4.62     |
| 11 – 25 Days         | 9  | 58.07 A                | 9.12   | 2.90             | 1.84     | 12.39 A          | 3.29     | 19.91 A           | 6.41      | 5.43 A            | 1.23     | 1.29 B                 | 1.29     |
|                      |    | T = -5.55, P =         | 0.0005 | T = -1.09, I     | P = 0.13 | T = -2.32,       | P = 0.03 | T = -3.65, P      | 9 = 0.006 | T = -5.06, P =    | = 0.0009 | T = -5.22, P =         | = 0.0007 |
| Buffer               |    |                        |        |                  |          |                  |          |                   |           |                   |          |                        |          |
| 0-2 Days             | 1  | 0.00                   | -      | 0.00             | -        | 0.00             | -        | 0.00              | -         | 0.00              | -        | 100.00                 |          |
| 3 – 10 Days          | 1  | 100.00                 | -      | 0.00             | -        | 0.00             | -        | 0.00              | -         | 0.00              | -        | 0.00                   |          |
| 11 – 25 Days         | 0  | -                      | -      | -                | -        | -                | -        | -                 | -         | -                 | -        | -                      |          |
| Reference            |    |                        |        |                  |          |                  |          |                   |           |                   |          |                        |          |
| 0-2 Days             | 34 | 36.82 B                | 5.66   | 2.61 A           | 0.70     | 8.27             | 1.95     | 10.64             | 2.47      | 5.08              | 1.14     | 36.58 A                | 5.10     |
| 3 – 10 Days          | 31 | 75.23 A                | 4.15   | 3.95 A           | 1.62     | 4.83             | 1.57     | 7.11              | 1.72      | 3.02              | 0.58     | 5.87 B                 | 1.74     |
| 11 – 25 Days         | 29 | 70.60 A                | 4.07   | 0.86 B           | 0.18     | 8.09             | 1.57     | 12.84             | 2.71      | 6.00              | 1.08     | 1.61 C                 | 0.72     |
|                      |    | T = -14.64, P < -14.64 | 0.0001 | T2.12, I         | p = 0.04 | T = -0.86, L     | P = 0.16 | T = -0.18,        | P = 0.33  | T = -1.14, T      | P = 0.12 | T = -19.63, P < -19.63 | < 0.000  |
| South Monomoy Island |    |                        |        |                  |          |                  |          |                   |           |                   |          |                        |          |
| 0-2 Days             | 45 | 38.07 B                | 5.32   | 2.57             | 0.60     | 7.88             | 1.66     | 9.58              | 2.02      | 4.27              | 0.92     | 37.62 A                | 4.73     |
| 3 – 10 Days          | 41 | 71.73 A                | 4.20   | 3.42             | 1.28     | 6.51             | 1.75     | 7.69              | 1.47      | 3.67              | 0.61     | 6.99 B                 | 1.68     |
| 11 – 25 Days         | 38 | 67.64 A                | 3.82   | 1.34             | 0.46     | 9.11             | 1.44     | 14.51             | 2.57      | 5.87              | 0.87     | 1.53 C                 | 0.62     |
| 2                    |    | T = -13.77, P <        | 0.0001 | T = -1.55, T     | P = 0.08 | T = -1.15        | P = 0.12 | T = -1.42         | P = 0.09  | T = -1.39         | P = 0.09 | T = -24.82, P < -24.82 | < 0.000  |

| Age Group  | Behavior  |    |                  |      |
|------------|-----------|----|------------------|------|
|            |           | n  | $\overline{x}$ % | SE   |
| 0-2 Days   |           |    |                  |      |
| ·, ·       | Foraging  | 45 | 38.07            | 5.32 |
|            | Disturbed | 45 | 2.57             | 0.60 |
|            | Resting   | 45 | 7.88             | 1.66 |
|            | Alert     | 45 | 9.58             | 2.02 |
|            | Moving    | 45 | 4.27             | 0.92 |
|            | Brooding  | 45 | 37.62            | 4.73 |
| 3-10 Days  |           |    |                  |      |
|            | Foraging  | 41 | 71.73            | 4.20 |
|            | Disturbed | 41 | 3.42             | 1.28 |
|            | Resting   | 41 | 6.51             | 1.75 |
|            | Alert     | 41 | 7.69             | 1.47 |
|            | Moving    | 41 | 3.67             | 0.61 |
|            | Brooding  | 41 | 6.99             | 1.68 |
| 11-25 Days |           |    |                  |      |
|            | Foraging  | 38 | 67.64            | 3.82 |
|            | Disturbed | 38 | 1.34             | 0.46 |
|            | Resting   | 38 | 9.11             | 1.44 |
|            | Alert     | 38 | 14.51            | 2.57 |
|            | Moving    | 38 | 5.87             | 0.87 |
|            | Brooding  | 38 | 1.53             | 0.62 |
| 3-25 Days  |           |    |                  |      |
|            | Foraging  | 44 | 71.67            | 3.37 |
|            | Disturbed | 44 | 2.06             | 0.56 |
|            | Resting   | 44 | 7.22             | 1.17 |
|            | Alert     | 44 | 10.87            | 1.80 |
|            | Moving    | 44 | 4.41             | 0.56 |
|            | Brooding  | 44 | 3.79             | 0.88 |
| 0-25 Days  |           |    |                  |      |
|            | Foraging  | 50 | 61.08            | 3.70 |
|            | Disturbed | 50 | 2.53             | 0.50 |
|            | Resting   | 50 | 7.65             | 1.01 |
|            | Alert     | 50 | 11.17            | 1.72 |
|            | Moving    | 50 | 4.78             | 0.72 |
|            | Brooding  | 50 | 12.80            | 2.43 |

**Table 40.** Percent time Piping Plover broods spent in different behaviors during 5-minute behavioral observations, by age group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods.

**Table 41.** Percent time Piping Plover broods spent in different behaviors during 5-minute behavioral observations, by age group and management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area.

| Age          | Management   |    | F                | oraging  | Di               | sturbed | I                | Resting |                  | Alert  | <u>]</u>                           | Moving   | B                | rooding  |
|--------------|--------------|----|------------------|----------|------------------|---------|------------------|---------|------------------|--------|------------------------------------|----------|------------------|----------|
| <u>Group</u> | <u>Area</u>  | n  | $\overline{x}$ % | SE       | $\overline{x}$ % | SE      | $\overline{x}$ % | SE      | $\overline{x}$ % | SE     | $\overline{x}$ %                   | SE       | $\overline{x}$ % | SE       |
| 0 – 2 Day    | s            |    |                  |          |                  |         |                  |         |                  |        |                                    |          |                  |          |
|              | Gull-removal | 10 | 46.15            | 14.10    | 2.69             | 1.30    | 7.35             | 3.52    | 6.93             | 3.41   | 1.93                               | 1.09     | 34.96            | 11.11    |
|              | Buffer       | 1  | 0.00             | -        | 0.00             | -       | 0.00             | -       | 0.00             | -      | 0.00                               | -        | 100.00           | -        |
|              | Reference    | 34 | 36.82            | 5.66     | 2.61             | 0.70    | 8.27             | 1.95    | 10.64            | 2.47   | 5.08                               | 1.14     | 36.58            | 5.10     |
|              |              |    | T = 0.39, F      | P = 0.53 | T = 0.71, P      | = 0.76  | T = 0.89, P      | = 1.00  | T = 0.35, P      | = 0.51 | T = -1.03, F                       | P = 0.13 | T = 0.91, I      | P = 1.00 |
| 3 – 10 Da    | ys           |    |                  |          |                  |         |                  |         |                  |        |                                    |          |                  |          |
|              | Gull-removal | 9  | 56.53            | 11.57    | 1.98             | 1.75    | 13.03            | 5.57    | 10.53            | 3.03   | 6.29                               | 1.69     | 11.62            | 4.62     |
|              | Buffer       | 1  | 100.00           | -        | 0.00             | -       | 0.00             | -       | 0.00             | -      | 0.00                               | -        | 0.00             | -        |
|              | Reference    | 31 | 75.23            | 4.15     | 3.95             | 1.62    | 4.83             | 1.57    | 7.11             | 1.72   | 3.02                               | 0.58     | 5.87             | 1.74     |
|              |              |    | T = -2.07, F     | P = 0.05 | T = 0.04, P      | = 0.38  | T = -1.07, P     | = 0.12  | T = -0.10, P     | = 0.32 | <i>T</i> = <b>-1</b> .56, <i>F</i> | P = 0.08 | T = -0.13, I     | P = 0.30 |
| 11 – 25 E    | ays          |    |                  |          |                  |         |                  |         |                  |        |                                    |          |                  |          |
|              | Gull-removal | 9  | 58.07            | 9.12     | 2.90             | 1.84    | 12.39            | 3.29    | 19.91            | 6.41   | 5.43                               | 1.23     | 1.29             | 1.29     |
|              | Buffer       | 0  | -                | -        | -                | -       | -                | -       | -                | -      | -                                  | -        | -                | -        |
|              | Reference    | 29 | 70.60            | 4.07     | 0.86             | 0.18    | 8.09             | 1.57    | 12.84            | 2.71   | 6.00                               | 1.08     | 1.61             | 0.72     |
|              |              |    | T = -1.44, P     | P = 0.09 | T = -0.11, P     | = 0.31  | T = 0.02, P      | = 0.36  | T = 0.22, P      | = 0.45 | T = 0.55, F                        | P = 0.63 | T = 0.69, I      | P = 0.75 |

**Table 41, Continued.** Percent time Piping Plover broods spent in different behaviors during 5-minute behavioral observations, by age group and management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area.

| Age       | Management   |    | Fo               | oraging | Di               | sturbed | I                | Resting |                  | Alert  | <u>l</u>         | Moving   | B                | rooding  |
|-----------|--------------|----|------------------|---------|------------------|---------|------------------|---------|------------------|--------|------------------|----------|------------------|----------|
| Group     | Area         | n  | $\overline{x}$ % | SE      | $\overline{x}$ % | SE      | $\overline{x}$ % | SE      | $\overline{x}$ % | SE     | $\overline{x}$ % | SE       | $\overline{x}$ % | SE       |
| 3 – 25 Da | iys          |    |                  |         |                  |         |                  |         |                  |        |                  |          |                  |          |
|           | Gull-removal | 10 | 61.65            | 9.34    | 2.06             | 1.00    | 10.55            | 2.86    | 15.55            | 4.62   | 5.25             | 1.18     | 4.83             | 2.16     |
|           | Buffer       | 1  | 100.00           | -       | 0.00             | -       | 0.00             | -       | 0.00             | -      | 0.00             | -        | 0.00             | -        |
|           | Reference    | 33 | 73.84            | 3.33    | 2.12             | 0.69    | 6.39             | 1.25    | 9.78             | 1.91   | 4.29             | 0.65     | 3.59             | 0.98     |
|           |              |    | T = -1.41, P     | = 0.09  | T = 0.54, P      | = 0.63  | T = -0.53, P     | = 0.21  | T = -0.43, P     | = 0.23 | T = 0.36, F      | P = 0.52 | T = 0.71, F      | P = 0.77 |
| 0 – 25 Da | ays          |    |                  |         |                  |         |                  |         |                  |        |                  |          |                  |          |
|           | Gull-removal | 12 | 61.57            | 8.60    | 2.99             | 1.20    | 8.91             | 2.49    | 12.63            | 3.31   | 4.11             | 0.96     | 9.78             | 3.12     |
|           | Buffer       | 1  | 50.00            | -       | 0.00             | -       | 0.00             | -       | 0.00             | -      | 0.00             | -        | 50.00            | -        |
|           | Reference    | 37 | 61.22            | 4.22    | 2.44             | 0.55    | 7.44             | 1.10    | 10.99            | 2.06   | 5.13             | 0.92     | 12.77            | 2.97     |
|           |              |    | T = -0.63, P     | = 0.19  | T = 0.59, P      | = 0.66  | T = 0.83, P      | = 0.92  | T = 0.15, P      | = 0.41 | T = 0.70, F      | P = 0.75 | T = -0.22, F     | 9 = 0.29 |

Table 42. Percent time Piping Plover broods were disturbed by gulls and unknown sources during 5-minute behavioral observations, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area.

| Year      | <u>Management</u><br>Area |    | <u>Great B</u><br>backed        |      | Herring          | <u>g Gulls</u> | Immatur          | e Gulls | Laughing         | <u>g Gulls</u> | Unk            | nown <sup>a</sup> | Total Distur     | bance <sup>b</sup> |
|-----------|---------------------------|----|---------------------------------|------|------------------|----------------|------------------|---------|------------------|----------------|----------------|-------------------|------------------|--------------------|
|           | <u>Alta</u>               | n  | $\frac{backed}{\overline{x}}$ % | SE   | $\overline{x}$ % | SE             | $\overline{x}$ % | SE      | $\overline{x}$ % | SE             | <del>x</del> % | SE                | $\overline{x}$ % | SE                 |
| 1999      |                           |    |                                 |      |                  |                |                  |         |                  |                |                |                   |                  |                    |
|           | Gull-removal              | 5  | 0.21                            | 0.21 | 0.00             | 0.00           | 0.00             | 0.00    | 0.00             | 0.00           | 0.73           | 0.41              | 2.30             | 1.29               |
|           | Buffer                    | 1  | 0.00                            | -    | 0.00             | -              | 0.00             | -       | 0.00             | -              | 0.00           | -                 | 0.00             | -                  |
|           | Reference                 | 12 | 0.18                            | 0.08 | 0.11             | 0.06           | 0.00             | 0.00    | 0.00             | 0.00           | 0.34           | 0.15              | 2.35             | 1.18               |
|           |                           |    | T = 0.75, P =                   | 0.77 | T = -1.18, P     | = 0.11         |                  | -       |                  | -              | T = 0.54, P    | = 0.63            | T = 1.24, P      | 9 = 0.98           |
| 2000      |                           |    |                                 |      |                  |                |                  |         |                  |                |                |                   |                  |                    |
|           | Gull-removal              | 5  | 0.00                            | 0.00 | 0.00             | 0.00           | 0.00             | 0.00    | 0.00             | 0.00           | 0.34           | 0.23              | 4.75             | 2.40               |
|           | Buffer                    | 0  | -                               | -    | -                | -              | -                | -       | -                | -              | -              | -                 | -                | -                  |
|           | Reference                 | 17 | 0.10                            | 0.08 | 0.12             | 0.09           | 0.02             | 0.01    | 0.00             | 0.00           | 0.28           | 0.10              | 2.80             | 0.84               |
|           |                           |    | T = -0.52, P =                  | 0.21 | T = -0.47, P     | = 0.22         | T = -0.28, P     | = 0.26  |                  | -              | T = 1.03, P    | = 1.00            | T = 0.53, P      | 9 = 0.63           |
| 1999-2000 |                           |    |                                 |      |                  |                |                  |         |                  |                |                |                   |                  |                    |
|           | Gull-removal              | 10 | 0.11                            | 0.11 | 0.00             | 0.00           | 0.00             | 0.00    | 0.00             | 0.00           | 0.53           | 0.23              | 3.53             | 1.35               |
|           | Buffer                    | 1  | 0.00                            | -    | 0.00             | -              | 0.00             | -       | 0.00             | -              | 0.00           | -                 | 0.00             | -                  |
|           | Reference                 | 29 | 0.13                            | 0.06 | 0.11             | 0.06           | 0.01             | 0.01    | 0.00             | 0.00           | 0.31           | 0.08              | 2.62             | 0.68               |
|           |                           |    | T = 0.52, P =                   | 0.62 | T = -1.57, P     | = 0.08         | T = -0.34, P     | = 0.29  |                  | -              | T = 0.56, P    | = 0.64            | T = 0.46, P      | = 0.58             |

<sup>a</sup> Unknown is not limited to gull species.
 <sup>b</sup> Total Disturbance includes disturbance by gulls and other species.

**Table 43.** Percent time Piping Plover broods were disturbed by various sources other than gulls and unknown sources during 5-minute behavioral observations, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area.

| Year      | Management   |    | Piping Plovers      | <u>American</u><br>Oystercatchers                 | Common Terns         | Least Terns          | Pedestrians          | Other <sup>a</sup>  |
|-----------|--------------|----|---------------------|---------------------------------------------------|----------------------|----------------------|----------------------|---------------------|
|           | Area         | n  | $\overline{x}$ % SE | $\frac{\text{OysterCatchers}}{\overline{x}\%}$ SE | $\overline{X}$ % SE  | $\overline{x} \%$ SE | $\overline{x} \%$ SE | $\overline{x}$ % SE |
| 1999      |              |    |                     |                                                   |                      |                      |                      |                     |
|           | Gull-removal | 5  | 1.03 0.89           | 0.00 0.00                                         | 0.33 0.20            | 0.00 0.00            | 0.00 0.00            | 0.00 0.00           |
|           | Buffer       | 1  | 0.00 -              | 0.00 -                                            | 0.00 -               | 0.00 -               | 0.00 -               | 0.00 -              |
|           | Reference    | 12 | 0.05 0.03           | 0.22 0.20                                         | 0.02 0.02            | 1.22 1.22            | 0.13 0.13            | 0.08 0.05           |
|           |              |    | T = -1.07, P = 0.13 | T = -0.41, P = 0.28                               | T = -2.00, P = 0.05  | -                    | -                    | T = -0.77, P = 0.18 |
| 2000      |              |    |                     |                                                   |                      |                      |                      |                     |
|           | Gull-removal | 5  | 1.31 0.95           | 0.05 0.05                                         | 2.95 2.60            | 0.00 0.00            | 0.11 0.11            | 0.00 0.00           |
|           | Buffer       | 0  |                     |                                                   |                      |                      |                      |                     |
|           | Reference    | 17 | 1.30 0.87           | 0.36 0.16                                         | 0.10 0.10            | 0.41 0.41            | 0.04 0.04            | 0.08 0.05           |
|           |              |    | T = 1.02, P = 1.00  | T = -0.56, P = 0.21                               | T = -2.24, P = 0.04  | -                    | T = 0.91, P = 1.00   | T = -0.50, P = 0.22 |
| 1999-2000 |              |    |                     |                                                   |                      |                      |                      |                     |
|           | Gull-removal | 10 | 1.17 0.62           | 0.02 0.02                                         | 1.64 1.30            | 0.00 0.00            | 0.05 0.05            | 0.00 0.00           |
|           | Buffer       | 1  | 0.00 -              | 0.00 -                                            | 0.00 -               | 0.00 -               | 0.00 -               | 0.00 -              |
|           | Reference    | 29 | 0.78 0.52           | 0.30 0.12                                         | 0.07 0.06            | 0.74 0.55            | 0.08 0.06            | 0.08 0.04           |
|           |              |    | T = 0.19, P = 0.30  | T = -1.06, P = 0.13                               | T = -5.52, P = 0.002 | T = -0.34, P = 0.29  | T = 0.84, P = 0.84   | T = -1.29, P = 0.10 |

<sup>a</sup> Other disturbances in the reference area in 1999 include a Horned Lark (60%), a Red-winged Blackbird (20%), and an airplane (20%). Other disturbances in the reference area in 2000 include a helicopter on two occasions (87.5%) and a Semipalmated Plover (12.5%).

**Table 44.** Percent time Piping Plover broods of ages 0-25 days spent in different habitats during 5-minute behavioral observations) by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. ANOVAs were conducted on ranked values of brood use. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Access Group                     | Habitat               |    |                  |                   |
|----------------------------------|-----------------------|----|------------------|-------------------|
|                                  |                       | n  | $\overline{x}$ % | SE                |
| Access to Ocean Only             |                       |    |                  |                   |
|                                  | Ocean Backshore       | 13 | 45.99 A          | 7.81              |
|                                  | Ocean Open Vegetation | 13 | 24.32 В          | 7.22              |
|                                  | Ocean Old Wrack       | 13 | 19.64 BC         | 7.98              |
|                                  | Ocean Intertidal Zone | 13 | 5.92 CD          | 3.16              |
|                                  | Ocean Fresh Wrack     | 13 | 4.12 D           | 1.83              |
|                                  |                       |    | F = 8.07, I      | P < 0.0001        |
| Access to Ocean and Sound        |                       |    |                  |                   |
|                                  | Sound Intertidal Zone | 5  | 30.28            | 18.13             |
|                                  | Sound Backshore       | 5  | 14.28            | 7.75              |
|                                  | Sound Old Wrack       | 5  | 14.25            | 7.43              |
|                                  | Ocean Open Vegetation | 5  | 11.48            | 7.38              |
|                                  | Sound Open Vegetation | 5  | 10.32            | 6.12              |
|                                  | Ocean Fresh Wrack     | 5  | 7.35             | 5.60              |
|                                  | Ocean Backshore       | 5  | 6.48             | 6.01              |
|                                  | Ocean Old Wrack       | 5  | 3.30             | 3.30              |
|                                  | Ocean Intertidal Zone | 5  | 1.24             | 0.87              |
|                                  | Sound Fresh Wrack     | 5  | 1.02             | 1.02              |
|                                  |                       |    | F = 0.91         | , <i>P</i> = 0.53 |
| Access to Ocean and Seal Carcass |                       |    |                  |                   |
|                                  | Ocean Backshore       | 4  | 53.69 A          | 6.78              |
|                                  | Seal Carcass          | 4  | 16.08 B          | 2.30              |
|                                  | Ocean Open Vegetation | 4  | 13.52 BC         | 3.96              |
|                                  | Ocean Intertidal Zone | 4  | 13.12 BCD        | 7.58              |
|                                  | Ocean Old Wrack       | 4  | 1.71 CD          | 1.12              |
|                                  | Ocean Fresh Wrack     | 4  | 1.89 D           | 1.89              |
|                                  |                       |    | F = 7.10, I      | P = 0.0008        |

**Table 44, Continued.** Percent time Piping Plover broods of ages 0-25 days spent in different habitats during 5minute behavioral observations) by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. ANOVAs were conducted on ranked values of brood use. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Access Group                 | <u>Habitat</u>                    |    |                  |                   |
|------------------------------|-----------------------------------|----|------------------|-------------------|
|                              |                                   | n  | $\overline{x}$ % | SE                |
| Access to Sound and Tidal Po | nd Intertidal Zone                |    |                  |                   |
|                              | Tidal Pond Intertidal Zone        | 25 | 40.40 A          | 5.19              |
|                              | Sound Backshore                   | 25 | 30.78 A          | 4.87              |
|                              | Sound Open Vegetation             | 25 | 8.51 B           | 2.03              |
|                              | Sound Old Wrack                   | 25 | 9.23 B           | 1.93              |
|                              | Sound Fresh Wrack                 | 25 | 8.23 B           | 2.07              |
|                              | Sound Intertidal Zone             | 25 | 2.77 C           | 0.82              |
|                              |                                   |    | F = 20.99,       | <i>P</i> < 0.0001 |
| Access to Sound, Tidal Pond  | Intertidal Zone, and Seal Carcass |    |                  |                   |
|                              | Seal Carcass                      | 3  | 26.05            | 12.85             |
|                              | Sound Old Wrack                   | 3  | 24.24            | 12.58             |
|                              | Sound Backshore                   | 3  | 24.20            | 5.84              |
|                              | Tidal Pond Intertidal Zone        | 3  | 14.01            | 3.72              |
|                              | Sound Fresh Wrack                 | 3  | 5.27             | 3.03              |
|                              | Sound Open Vegetation             | 3  | 5.00             | 4.18              |
|                              | Sound Intertidal Zone             | 3  | 1.23             | 0.62              |
|                              |                                   |    | F = 2.5          | 54, $P = 0.07$    |
|                              |                                   |    |                  |                   |

**Table 45.** Percent time Piping Plover broods of ages 3-25 days spent in different habitats during 5-minute behavioral observations, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. ANOVAs were conducted on ranked values of brood use. Means are listed in order of ranks. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Access Group                     | Habitat               |    |                   |                   |
|----------------------------------|-----------------------|----|-------------------|-------------------|
|                                  |                       | n  | $\overline{x}$ %  | SE                |
| Access to Ocean Only             |                       |    |                   |                   |
|                                  | Ocean Backshore       | 10 | 45.91 A           | 7.50              |
|                                  | Ocean Open Vegetation | 10 | 23.00 В           | 5.47              |
|                                  | Ocean Old Wrack       | 10 | 15.06 BC          | 5.83              |
|                                  | Ocean Intertidal Zone | 10 | 9.72 BC           | 4.75              |
|                                  | Ocean Fresh Wrack     | 10 | 6.31 C            | 3.45              |
|                                  |                       |    | F = 7.60, L       | <i>P</i> < 0.0001 |
| Access to Ocean and Sound        |                       |    |                   |                   |
|                                  | Ocean Intertidal Zone | 5  | 29.73             | 18.45             |
|                                  | Sound Fresh Wrack     | 5  | 19.19             | 16.96             |
|                                  | Ocean Old Wrack       | 5  | 14.86             | 7.53              |
|                                  | Sound Open Vegetation | 5  | 8.61              | 5.34              |
|                                  | Ocean Backshore       | 5  | 8.57              | 7.16              |
|                                  | Sound Backshore       | 5  | 7.19              | 7.19              |
|                                  | Sound Old Wrack       | 5  | 3.89              | 3.89              |
|                                  | Ocean Open Vegetation | 5  | 3.78              | 2.39              |
|                                  | Sound Intertidal Zone | 5  | 3.09              | 2.59              |
|                                  | Ocean Fresh Wrack     | 5  | 1.09              | 1.09              |
|                                  |                       |    | $F = 0.5^{\circ}$ | 7, P = 0.81       |
| Access to Ocean and Seal Carcass |                       |    |                   |                   |
|                                  | Ocean Backshore       | 4  | 51.22 A           | 7.03              |
|                                  | Seal Carcass          | 4  | 17.38 B           | 2.42              |
|                                  | Ocean Open Vegetation | 4  | 12.39 BC          | 4.66              |
|                                  | Ocean Intertidal Zone | 4  | 15.10 BC          | 8.72              |
|                                  | Ocean Old Wrack       | 4  | 1.85 C            | 1.21              |
|                                  | Ocean Fresh Wrack     | 4  | 2.05 C            | 2.05              |
|                                  |                       |    | F = 6.11          | P = 0.002         |

**Table 45, Continued.** Percent time Piping Plover broods of ages 3-25 days spent in different habitats during 5minute behavioral observations, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. ANOVAs were conducted on ranked values of brood use. Means are listed in order of rank. Ranks with the same letters were not significantly different (P < 0.05, Fischer's LSD).

| Access Group                   | <u>Habitat</u>                  |    |                  |            |
|--------------------------------|---------------------------------|----|------------------|------------|
|                                |                                 | n  | $\overline{x}$ % | SE         |
| Access to Sound and Tidal Pon  | d Intertidal Zone               |    |                  |            |
|                                | Tidal Pond Intertidal Zone      | 22 | 40.49 A          | 5.93       |
|                                | Sound Backshore                 | 22 | 27.94 A          | 5.18       |
|                                | Sound Old Wrack                 | 22 | 10.42 B          | 2.22       |
|                                | Sound Fresh Wrack               | 22 | 9.69 B           | 2.34       |
|                                | Sound Open Vegetation           | 22 | 7.84 BC          | 2.03       |
|                                | Sound Intertidal Zone           | 22 | 3.54 C           | 1.00       |
|                                |                                 |    | F = 14.87, I     | P < 0.0001 |
| Access to Sound, Tidal Pond In | tertidal Zone, and Seal Carcass |    |                  |            |
|                                | Sound Backshore                 | 3  | 24.69 A          | 3.53       |
|                                | Sound Old Wrack                 | 3  | 23.02 AB         | 11.23      |
|                                | Seal Carcass                    | 3  | 29.47 ABC        | 14.51      |
|                                | Tidal Pond Intertidal Zone      | 3  | 11.64 ABCD       | 3.64       |
|                                | Sound Fresh Wrack               | 3  | 6.10 BCD         | 3.43       |
|                                | Sound Open Vegetation           | 3  | 3.65 CD          | 2.73       |
|                                | Sound Intertidal Zone           | 3  | 1.44 D           | 0.72       |
|                                |                                 |    | F = 2.88         | P = 0.05   |

**Table 46.** Brood habitat use in proportion to availability (Compositional Analysis, Aebischer 1993) for broods of ages 0-25 days, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects or the number of broods.

|                                  | Availab | oility <sup>a</sup> |                    | Use                 | b                |                      |                   |
|----------------------------------|---------|---------------------|--------------------|---------------------|------------------|----------------------|-------------------|
| Access Habitat<br>Group          | n       | $\overline{x}$ %    | SE                 | n                   | $\overline{x}$ % | SE                   | Rank <sup>c</sup> |
| Access to Ocean Only             |         |                     |                    |                     |                  |                      |                   |
| Ocean Old Wrack                  | 47      | 0.88                | 0.29               | 13                  | 19.64            | 7.98                 | 1 A               |
| Ocean Backshore                  | 47      | 41.69               | 3.03               | 13                  | 45.99            | 7.81                 | 2 A               |
| Ocean Open Vegetation            | 47      | 26.75               | 1.93               | 13                  | 24.32            | 7.22                 | 3 AB              |
| Ocean Fresh Wrack                | 47      | 1.39                | 0.58               | 13                  | 4.12             | 1.83                 | 4 BC              |
| Ocean Intertidal Zone            | 47      | 29.29               | 3.19               | 13                  | 5.94             | 3.16                 | 5 C               |
|                                  |         |                     |                    |                     | Wilks'           | $\lambda = 0.317, .$ | F = 4.86, P = 0.0 |
| Access to Ocean and Sound        |         |                     |                    |                     |                  |                      |                   |
| Sound Old Wrack                  | 41      | 1.30                | 0.49               | 5                   | 14.25            | 7.43                 | 1                 |
| Sound Intertidal Zone            | 41      | 24.05               | 5.98               | 5                   | 30.28            | 18.13                | 2                 |
| Sound Open Vegetation            | 41      | 2.60                | 1.77               | 5                   | 10.32            | 6.12                 | 3                 |
| Sound Backshore                  | 41      | 7.84                | 2.97               | 5                   | 14.28            | 7.75                 | 4                 |
| Ocean Fresh Wrack                | 41      | 1.25                | 0.65               | 5                   | 7.35             | 5.60                 | 5                 |
| Ocean Old Wrack                  | 41      | 0.81                | 0.31               | 5                   | 3.30             | 3.30                 | 6                 |
| Sound Fresh Wrack                | 41      | 0.80                | 0.30               | 5                   | 1.02             | 1.02                 | 7                 |
| Ocean Open Vegetation            | 41      | 16.76               | 2.65               | 5                   | 11.48            | 7.38                 | 8                 |
| Ocean Intertidal Zone            | 41      | 17.66               | 4.04               | 5                   | 1.24             | 0.87                 | 9                 |
| Ocean Backshore                  | 41      | 26.94               | 4.51               | 5                   | 6.48             | 6.01                 | 10                |
|                                  | N       | o multivaria        | ate tests performe | d for Intercept due | to insuffic      | ient error de        | egrees of freedon |
| Access to Ocean and Seal Carcass |         |                     |                    |                     |                  |                      |                   |
| Seal Carcass                     | 26      | 0.01                | 0.00               | 4                   | 16.08            | 2.30                 | 1                 |
| Ocean Backshore                  | 26      | 46.75               | 4.56               | 4                   | 53.69            | 6.78                 | 2                 |
| Ocean Open Vegetation            | 26      | 25.18               | 1.92               | 4                   | 13.52            | 3.96                 | 3                 |
| Ocean Old Wrack                  | 26      | 0.95                | 0.43               | 4                   | 1.71             | 1.12                 | 4                 |
| Ocean Fresh Wrack                | 26      | 0.75                | 0.22               | 4                   | 1.89             | 1.89                 | 5                 |
| Ocean Intertidal Zone            | 26      | 26.36               | 4.72               | 4                   | 13.12            | 7.58                 | 6                 |

Continued.

<sup>a</sup> Availability is based on measurements of habitats on random transects.

<sup>b</sup> Use is based on 5-minute behavioral observations of broods.

<sup>c</sup> A habitat rank of 1 = the most preferred habitat based on use and availability.

**Table 46, Continued.** Brood habitat use in proportion to availability (Compositional Analysis, Aebischer 1993) for broods of ages 0-25 days, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects or the number of broods.

|                                           | Availab         | oility <sup>a</sup> |                   | Use                  | b              |               |                    |
|-------------------------------------------|-----------------|---------------------|-------------------|----------------------|----------------|---------------|--------------------|
| Access Habitat<br>Group                   | n               | $\overline{x}$ %    | SE                | n                    | <del>x</del> % | SE            | Rank <sup>c</sup>  |
| Access to Sound and Tidal Pond Intertidal | Zone            |                     |                   |                      |                |               |                    |
| Tidal Pond Intertidal Zone                | 31              | 20.70               | 4.09              | 25                   | 40.40          | 5.19          | 1 A                |
| Sound Backshore                           | 31              | 38.94               | 3.72              | 25                   | 30.78          | 4.87          | 2 AB               |
| Sound Fresh Wrack                         | 31              | 2.18                | 0.81              | 25                   | 8.23           | 2.07          | 3 B                |
| Sound Open Vegetation                     | 31              | 15.77               | 2.56              | 25                   | 8.51           | 2.03          | 4 B                |
| Sound Old Wrack                           | 31              | 5.65                | 1.11              | 25                   | 9.23           | 1.93          | 5 B                |
| Sound Intertidal Zone                     | 31              | 16.77               | 3.88              | 25                   | 2.77           | 0.82          | 6 C                |
|                                           |                 |                     |                   |                      | Wilks' λ       | = 0.369, F =  | = 6.83, P = 0.0007 |
| Access to Sound, Tidal Pond Intertidal Zo | ne and Seal Car | rcass               |                   |                      |                |               |                    |
| Seal Carcass                              | 30              | 0.01                | 0.00              | 3                    | 26.05          | 12.85         | 1                  |
| Sound Old Wrack                           | 30              | 9.55                | 1.77              | 3                    | 24.24          | 12.58         | 2                  |
| Tidal Pond Intertidal Zone                | 30              | 14.34               | 3.48              | 3                    | 14.01          | 3.72          | 3                  |
| Sound Backshore                           | 30              | 32.36               | 3.15              | 3                    | 24.20          | 5.84          | 4                  |
| Sound Open Vegetation                     | 30              | 28.56               | 4.40              | 3                    | 5.00           | 4.18          | 5                  |
| Sound Fresh Wrack                         | 30              | 4.74                | 1.20              | 3                    | 5.27           | 3.03          | 6                  |
| Sound Intertidal Zone                     | 30              | 10.45               | 1.66              | 3                    | 1.23           | 0.62          | 7                  |
|                                           | N               | o multivaria        | te tests performe | ed for Intercept due | to insuffici   | ient error de | egrees of freedom. |

<sup>a</sup> Availability is based on measurements of habitats on random transects.

<sup>b</sup> Use is based on 5-minute behavioral observations of broods.

<sup>c</sup> A habitat rank of 1 = the most preferred habitat based on use and availability.

Table 47. Brood habitat use in proportion to availability (Compositional Analysis, Aebischer 1993) for broods of ages 3-25 days, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects or the number of broods for which 5-minute behavioral observations were conducted.

|                                  | Availab | oility <sup>a</sup> |                    | Use                 |                  |                       |                   |
|----------------------------------|---------|---------------------|--------------------|---------------------|------------------|-----------------------|-------------------|
| Access Habitat<br>Group          | n       | $\overline{x}$ %    | SE                 | n                   | $\overline{x}$ % | SE                    | Rank <sup>c</sup> |
| Access to Ocean Only             |         |                     |                    |                     |                  |                       |                   |
| Ocean Backshore                  | 47      | 41.69               | 3.03               | 10                  | 46.34            | 7.54                  | 1                 |
| Ocean Old Wrack                  | 47      | 0.88                | 0.29               | 10                  | 14.49            | 5.94                  | 2                 |
| Ocean Open Vegetation            | 47      | 26.75               | 1.93               | 10                  | 23.06            | 5.49                  | 3                 |
| Ocean Fresh Wrack                | 47      | 1.39                | 0.58               | 10                  | 6.38             | 3.45                  | 4                 |
| Ocean Intertidal Zone            | 47      | 29.29               | 3.19               | 10                  | 9.72             | 4.75                  | 5                 |
|                                  |         |                     |                    |                     | Wilks'           | $\lambda = 0.476,  .$ | F = 1.65, P = 0.5 |
| Access to Ocean and Sound        |         |                     |                    |                     |                  |                       |                   |
| Sound Old Wrack                  | 41      | 1.30                | 0.49               | 5                   | 14.86            | 7.53                  | 1                 |
| Ocean Fresh Wrack                | 41      | 1.25                | 0.65               | 5                   | 19.19            | 16.96                 | 2                 |
| Sound Intertidal Zone            | 41      | 24.05               | 5.98               | 5                   | 29.73            | 18.45                 | 3                 |
| Sound Open Vegetation            | 41      | 2.60                | 1.77               | 5                   | 3.78             | 2.39                  | 4                 |
| Sound Backshore                  | 41      | 7.84                | 2.97               | 5                   | 8.57             | 7.16                  | 5                 |
| Ocean Old Wrack                  | 41      | 0.81                | 0.31               | 5                   | 3.89             | 3.89                  | 6                 |
| Sound Fresh Wrack                | 41      | 0.80                | 0.30               | 5                   | 1.09             | 1.09                  | 7                 |
| Ocean Open Vegetation            | 41      | 16.76               | 2.65               | 5                   | 8.61             | 5.34                  | 8                 |
| Ocean Intertidal Zone            | 41      | 17.66               | 4.04               | 5                   | 3.09             | 2.59                  | 9                 |
| Ocean Backshore                  | 41      | 26.94               | 4.51               | 5                   | 7.19             | 7.19                  | 10                |
|                                  | N       | o multivaria        | ate tests performe | d for Intercept due | to insuffici     | ient error de         | egrees of freedo  |
| Access to Ocean and Seal Carcass |         |                     |                    |                     |                  |                       |                   |
| Seal Carcass                     | 26      | 0.01                | 0.00               | 4                   | 17.63            | 2.37                  | 1                 |
| Ocean Backshore                  | 26      | 46.75               | 4.56               | 4                   | 51.75            | 6.58                  | 2                 |
| Ocean Old Wrack                  | 26      | 0.95                | 0.43               | 4                   | 1.85             | 1.21                  | 3                 |
| Ocean Open Vegetation            | 26      | 25.18               | 1.92               | 4                   | 12.75            | 4.91                  | 4                 |
| Ocean Fresh Wrack                | 26      | 0.75                | 0.22               | 4                   | 2.05             | 2.05                  | 5                 |
| Ocean Intertidal Zone            | 26      | 26.36               | 4.72               | 4                   | 13.97            | 8.14                  | 6                 |

## Continued.

<sup>a</sup> Availability is based on measurements of habitats on random transects. <sup>b</sup> Use is based on 5-minute behavioral observations of broods.

<sup>c</sup> A habitat rank of 1 = the most preferred habitat based on use and availability.

Table 47, Continued. Brood habitat use in proportion to availability (Compositional Analysis, Aebischer 1993) for broods of ages 3-25 days, by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of transects or the number of broods for which 5-minute behavioral observations were conducted.

|                                           | Availab        | oility <sup>a</sup> |                   | Use                  | ь                |               |                     |  |
|-------------------------------------------|----------------|---------------------|-------------------|----------------------|------------------|---------------|---------------------|--|
| Access Habitat<br>Group                   | n              | $\overline{x}$ %    | SE                | n                    | $\overline{x}$ % | SE            | Rank <sup>c</sup>   |  |
| Access to Sound and Tidal Pond Intertidal | Zone           |                     |                   |                      |                  |               |                     |  |
| Tidal Pond Intertidal Zone                | 31             | 20.70               | 4.09              | 22                   | 40.54            | 5.93          | 1 A                 |  |
| Sound Backshore                           | 31             | 38.94               | 3.72              | 22                   | 27.77            | 5.18          | 2 AB                |  |
| Sound Fresh Wrack                         | 31             | 2.18                | 0.81              | 22                   | 9.75             | 2.35          | 3 AB                |  |
| Sound Old Wrack                           | 31             | 5.65                | 1.11              | 22                   | 10.44            | 2.22          | 4 B                 |  |
| Sound Open Vegetation                     | 31             | 15.77               | 2.56              | 22                   | 7.86             | 2.03          | 5 B                 |  |
| Sound Intertidal Zone                     | 31             | 16.77               | 3.88              | 22                   | 3.56             | 1.00          | 6 C                 |  |
|                                           |                |                     |                   |                      | Wilks' λ         | L = 0.424, F  | r = 4.62, P = 0.008 |  |
| Access to Sound, Tidal Pond Intertidal Zo | ne and Seal Ca | cass                |                   |                      |                  |               |                     |  |
| Seal Carcass                              | 30             | 0.01                | 0.00              | 3                    | 29.47            | 14.51         | 1                   |  |
| Sound Old Wrack                           | 30             | 9.55                | 1.77              | 3                    | 23.02            | 11.23         | 2                   |  |
| Sound Backshore                           | 30             | 32.36               | 3.15              | 3                    | 24.69            | 3.53          | 3                   |  |
| Tidal Pond Intertidal Zone                | 30             | 14.34               | 3.48              | 3                    | 11.64            | 3.64          | 4                   |  |
| Sound Open Vegetation                     | 30             | 28.56               | 4.40              | 3                    | 3.65             | 2.73          | 5                   |  |
| Sound Fresh Wrack                         | 30             | 4.74                | 1.20              | 3                    | 6.10             | 3.43          | 6                   |  |
| Sound Intertidal Zone                     | 30             | 10.45               | 1.66              | 3                    | 1.44             | 0.72          | 7                   |  |
|                                           | N              | o multivaria        | ate tests perform | ed for Intercept due | to insuffic      | ient error de | egrees of freedom   |  |

<sup>a</sup> Availability is based on measurements of habitats on random transects.

<sup>b</sup> Use is based on 5-minute behavioral observations of broods.
 <sup>c</sup> A habitat rank of 1 = the most preferred habitat based on use and availability.

**Table 48.** Mean foraging rates (attempts per minute) of Piping Plover broods in different habitats during 5-minute behavioral observations, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Habitats were included in analyses only if n > 2. Means with the same letters were not significantly different.

| Age Group | Habitat                    |    |                  |           |
|-----------|----------------------------|----|------------------|-----------|
|           |                            | n  | $\overline{x}$ % | SE        |
| 0-2 Days  |                            |    |                  |           |
| 0-2 Days  | Seal Carcass               | 1  | 19.00 -          |           |
|           | Tidal Pond Intertidal Zone | 14 | 5.46 A           | 0.93      |
|           | Ocean Old Wrack            | 5  | 4.39 A           | 0.87      |
|           | Sound Intertidal Zone      | 2  | 4.38 -           | 1.3       |
|           | Ocean Intertidal Zone      | 2  | 3.72 -           | 0.7       |
|           | Sound Fresh Wrack          | 4  | 3.59 AB          | 1.4       |
|           | Sound Old Wrack            | 7  | 1.66 B           | 0.5       |
|           | Ocean Open Vegetation      | 10 | 1.46 B           | 0.82      |
|           | Ocean Backshore            | 15 | 1.45 B           | 0.48      |
|           | Sound Open Vegetation      | 10 | 1.30 B           | 0.8       |
|           | Ocean Fresh Wrack          | 1  | 1.03 -           |           |
|           | Sound Backshore            | 18 | 0.96 B           | 0.2       |
|           |                            |    |                  | T = -6.2  |
|           |                            |    | P                | P < 0.000 |
|           |                            |    |                  |           |
| 3-10 Days |                            |    |                  |           |
|           | Tidal Pond Intertidal Zone | 20 | 12.56 A          | 2.20      |
|           | Seal Carcass               | 6  | 6.61 AB          | 1.08      |
|           | Ocean Fresh Wrack          | 7  | 6.56 ABC EF      | 2.78      |
|           | Sound Intertidal Zone      | 12 | 6.70 BCD         | 1.14      |
|           | Ocean Intertidal Zone      | 8  | 5.84 BCD         | 1.0       |
|           | Sound Fresh Wrack          | 9  | 4.75 BCD         | 0.7       |
|           | Ocean Old Wrack            | 7  | 4.43 CD F        | GH 2.8    |
|           | Sound Old Wrack            | 19 | 3.72 DEF         | G 0.5     |
|           | Sound Open Vegetation      | 17 | 3.43 DEF         | н 0.8     |
|           | Sound Backshore            | 21 | 2.94 F           | GH 0.6    |
|           | Ocean Backshore            | 14 | 1.59             | GH 0.4    |
|           | Ocean Open Vegetation      | 10 | 1.53             | н 0.3     |
|           |                            |    | ,                | T = -11.3 |
|           |                            |    |                  |           |

**Table 48, Continued.** Mean foraging rates (attempts per minute) of Piping Plover broods in different habitats during 5-minute behavioral observations, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Habitats were included in analyses only if n > 2. Means with the same letters were not significantly different.

| Age Group  | Habitat                    |    |                  |       |        |
|------------|----------------------------|----|------------------|-------|--------|
|            |                            | n  | $\overline{x}$ % |       | SE     |
| 11-25 Days |                            |    |                  |       |        |
|            | Sound Fresh Wrack          | 16 | 11.89 Z          | ł     | 1.20   |
|            | Tidal Pond Intertidal Zone | 17 | 11.01 Z          | ł     | 1.35   |
|            | Seal Carcass               | 6  | 8.93 Z           | AB    | 0.93   |
|            | Ocean Intertidal Zone      | 6  | 6.71             | BCDE  | 1.26   |
|            | Sound Intertidal Zone      | 16 | 6.13             | BC E  | 0.97   |
|            | Sound Old Wrack            | 19 | 4.97             | CDE   | 0.52   |
|            | Sound Backshore            | 22 | 3.89             | DEF   | 0.59   |
|            | Ocean Old Wrack            | 9  | 3.83             | EF    | 1.00   |
|            | Ocean Fresh Wrack          | 4  | 2.47             | EFG   | 1.16   |
|            | Sound Open Vegetation      | 16 | 2.31             | FG    | 0.67   |
|            | Ocean Open Vegetation      | 12 | 2.15             | FG    | 0.54   |
|            | Ocean Backshore            | 15 | 1.80             | G     | 0.34   |
|            |                            |    |                  | T =   | -16.8  |
|            |                            |    |                  | P <   | 0.0001 |
|            |                            |    |                  |       |        |
| 3-25 Days  |                            |    |                  |       |        |
| 2          | Tidal Pond Intertidal Zone | 24 | 11.57 Z          | ł     | 1.16   |
|            | Sound Fresh Wrack          | 18 | 10.36 Z          | Ŧ     | 1.07   |
|            | Seal Carcass               | 7  | 8.06 Z           | AB    | 0.95   |
|            | Sound Intertidal Zone      | 19 | 6.47             | BC    | 0.71   |
|            | Ocean Intertidal Zone      | 9  | 5.70             | BCD   | 1.06   |
|            | Ocean Old Wrack            | 11 | 5.06             | CD FG | 1.81   |
|            | Sound Old Wrack            | 22 | 4.77             | DE    | 0.48   |
|            | Ocean Fresh Wrack          | 8  | 3.61             | DEF   | 0.73   |
|            | Sound Backshore            | 25 | 3.54             | EF    | 0.47   |
|            | Sound Open Vegetation      | 24 | 2.85             | FG    | 0.62   |
|            | Ocean Open Vegetation      | 14 | 2.18             | FG    | 0.38   |
|            | Ocean Backshore            | 17 | 1.61             | G     | 0.30   |
|            |                            |    |                  | T =   | -21.2  |
|            |                            |    |                  |       |        |

**Table 48, Continued.** Mean foraging rates (attempts per minute) of Piping Plover broods in different habitats during 5-minute behavioral observations, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances. Habitats were included in analyses only if n > 2. Means with the same letters were not significantly different.

| Age Group | Habitat                    |    |                  |     |        |
|-----------|----------------------------|----|------------------|-----|--------|
|           |                            | n  | $\overline{x}$ % |     | SE     |
|           |                            |    |                  |     |        |
| 0-25 Days |                            |    |                  |     |        |
|           | Sound Fresh Wrack          | 19 | 10.07 A          |     | 1.06   |
|           | Tidal Pond Intertidal Zone | 27 | 9.87 A           |     | 0.93   |
|           | Seal Carcass               | 7  | 8.19 AB          |     | 0.90   |
|           | Sound Intertidal Zone      | 21 | 6.28 B           |     | 0.67   |
|           | Ocean Intertidal Zone      | 9  | 5.60 BC          | 3   | 1.02   |
|           | Sound Old Wrack            | 23 | 4.50             | 3   | 0.48   |
|           | Ocean Old Wrack            | 13 | 4.99             | CD  | 1.51   |
|           | Ocean Fresh Wrack          | 8  | 3.52             | CDE | 0.76   |
|           | Sound Backshore            | 29 | 2.86             | DE  | 0.43   |
|           | Sound Open Vegetation      | 26 | 2.06             | ΕF  | 0.44   |
|           | Ocean Open Vegetation      | 16 | 2.06             | EF  | 0.49   |
|           | Ocean Backshore            | 19 | 1.59             | F   | 0.27   |
|           |                            |    |                  | T = | -23.10 |
|           |                            |    |                  | P < | 0.0001 |

**Table 49.** Mean foraging rates (attempts per minute) of Piping Plover broods of all ages in different habitats during 5-minute behavioral observations in the gull-removal area vs. the reference area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Habitat                    | G | ull-remova       | al Area |    | Reference        | e Area |                                  |
|----------------------------|---|------------------|---------|----|------------------|--------|----------------------------------|
|                            | n | $\overline{x}$ % | SE      | n  | $\overline{x}$ % | SE     | MRPP T Statistic<br>and P-values |
|                            | _ |                  |         | _  |                  |        |                                  |
| Ocean Intertidal Zone      | 2 | 7.50             | 1.50    | 7  | 5.06             | 1.21   | T = 0.25, P = 0.41               |
| Ocean Fresh Wrack          | 4 | 3.46             | 1.34    | 4  | 3.57             | 0.95   | T = 1.11, P = 0.89               |
| Ocean Backshore            | 8 | 1.58             | 0.45    | 10 | 1.71             | 0.38   | T = 1.01, P = 1.00               |
| Ocean Old Wrack            | 7 | 5.53             | 2.70    | 6  | 4.35             | 1.23   | T = 0.95, P = 0.91               |
| Ocean Open Vegetation      | 8 | 2.80             | 0.82    | 8  | 1.32             | 0.44   | T = -0.98, P = 0.14              |
| Sound Intertidal Zone      | 4 | 7.70             | 1.79    | 17 | 5.94             | 0.71   | T = 0.40, P = 0.56               |
| Sound Fresh Wrack          | 1 | 7.85             | -       | 18 | 10.20            | 1.11   | -                                |
| Sound Backshore            | 3 | 3.07             | 1.24    | 26 | 2.84             | 0.47   | T = 0.97, P = 0.96               |
| Sound Old Wrack            | 2 | 5.83             | 1.15    | 21 | 4.38             | 0.51   | T = 0.13, P = 0.47               |
| Sound Open Vegetation      | 4 | 2.30             | 1.96    | 22 | 2.01             | 0.41   | T = 0.78, P = 0.79               |
| Tidal Pond Intertidal Zone | 0 | -                | -       | 27 | 9.87             | 0.93   | -                                |
| Seal Carcass               | 2 | 9.47             | 1.27    | 5  | 7.68             | 1.14   | T = -0.09, P = 0.36              |
|                            |   |                  |         |    |                  |        |                                  |

| Year | <u>Management</u><br>Area |    | Total Large    | e Gulls | Great<br>backed               | Black- | Herring        | g Gulls | Immatur        | e Gulls  |
|------|---------------------------|----|----------------|---------|-------------------------------|--------|----------------|---------|----------------|----------|
| _    | Alta                      | n  | $\overline{x}$ | SE      | $\frac{backet}{\overline{x}}$ | SE     | $\overline{x}$ | SE      | $\overline{x}$ | SE       |
| 1999 |                           |    |                |         |                               |        |                |         |                |          |
| 1777 | Gull-removal              |    |                |         |                               |        |                |         |                |          |
|      | Successful                | 3  | 0.84           | 0.33    | 0.54                          | 0.29   | 0.25           | 0.19    | 0.05           | 0.03     |
|      | Unsuccessful              | 2  | 0.84           | 0.44    | 0.39                          | 0.19   | 0.31           | 0.11    | 0.14           | 0.14     |
|      |                           |    |                | -       |                               | -      |                | -       |                | -        |
|      | Buffer                    |    |                |         |                               |        |                |         |                |          |
|      | Successful                | 0  | -              | -       | -                             | -      | -              | -       | -              | -        |
|      | Unsuccessful              | 1  | 0.25           | -       | 0.25                          | -      | 0.00           | -       | 0.00           | -        |
|      | Reference                 |    |                |         |                               |        |                |         |                |          |
|      | Successful                | 10 | 5.50           | 1.94    | 4.25                          | 1.63   | 0.94           | 0.27    | 0.31           | 0.18     |
|      | Unsuccessful              | 2  | 6.58           | 5.15    | 3.70                          | 2.41   | 2.74           | 2.60    | 0.14           | 0.14     |
|      |                           |    | T = 0.90, P    | = 0.83  | T = 0.49, P                   | = 0.60 | T = 1.19, P    | = 1.00  | T = 0.27, P    | 9 = 0.45 |
|      | South Monomoy Island      |    |                |         |                               |        |                |         |                |          |
|      | Successful                | 13 | 4.43           | 1.58    | 3.39                          | 1.32   | 0.78           | 0.22    | 0.25           | 0.14     |
|      | Unsuccessful              | 5  | 3.02           | 2.19    | 1.68                          | 1.12   | 1.22           | 1.03    | 0.11           | 0.07     |
|      |                           |    | T = 0.60, P    | = 0.67  | T = 0.26, P                   | = 0.49 | T = 0.69, P    | = 0.73  | T = 0.05, P    | 9 = 0.41 |
| 2000 |                           |    |                |         |                               |        |                |         |                |          |
|      | Gull-removal              |    |                |         |                               |        |                |         |                |          |
|      | Successful                | 4  | 4.71           | 1.04    | 1.15                          | 0.36   | 1.01           | 0.25    | 2.55           | 0.58     |
|      | Unsuccessful              | 1  | 3.00           | -       | 1.00                          | -      | 0.00           | -       | 2.00           | -        |
|      |                           |    |                | -       |                               | -      |                | -       |                | -        |
|      | Reference                 |    |                |         |                               |        |                |         |                |          |
|      | Successful                | 11 | 5.26           | 1.84    | 3.74                          | 1.24   | 0.96           | 0.49    | 0.56           | 0.35     |
|      | Unsuccessful              | 6  | 4.74           | 1.55    | 3.27                          | 1.25   | 1.31           | 0.80    | 0.17           | 0.11     |
|      |                           |    | T = 0.40, P    | = 0.55  | T = 0.62, P                   | = 0.69 | T = 0.52, P    | = 0.63  | T = 0.02, P    | 9 = 0.43 |
|      | South Monomoy Island      |    |                |         |                               |        |                |         |                |          |
|      | Successful                | 15 | 5.11           | 1.36    | 3.05                          | 0.96   | 0.97           | 0.36    | 1.09           | 0.37     |
|      | Unsuccessful              | 7  | 4.49           | 1.34    | 2.94                          | 1.10   | 1.12           | 0.70    | 0.43           | 0.28     |
|      |                           |    | T = 0.52, P    | = 0.62  | T = 0.71, P                   | = 0.75 | T = 0.10, P    | = 0.43  | T = -0.23, P   | r = 0.29 |

**Table 50.** Mean counts of large gulls within 100 m of successful vs. unsuccessful broods, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| ear Manag | ement          |    | Total Large    | e Gulls |                               | Black-               | Herrin         | g Gulls  | Immatur        | e Gull   |
|-----------|----------------|----|----------------|---------|-------------------------------|----------------------|----------------|----------|----------------|----------|
| Area      |                | n  | $\overline{x}$ | SE      | $\frac{backed}{\overline{x}}$ | <u>l Gulls</u><br>SE | $\overline{x}$ | SE       | $\overline{x}$ | SI       |
| 999-2000  |                |    |                |         |                               |                      |                |          |                |          |
| Gull-re   | moval          |    |                |         |                               |                      |                |          |                |          |
|           | Successful     | 7  | 3.05           | 0.97    | 0.89                          | 0.25                 | 0.68           | 0.21     | 1.48           | 0.59     |
|           | Unsuccessful   | 3  | 1.56           | 0.76    | 0.59                          | 0.23                 | 0.21           | 0.12     | 0.76           | 0.64     |
|           |                |    | T = 0.02, P    | = 0.40  | T = 0.22, P                   | = 0.48               | T = -0.63, P   | P = 0.21 | T = 0.46, P    | P = 0.60 |
| Buffer    |                |    |                |         |                               |                      |                |          |                |          |
|           | Successful     | 0  | -              | -       | -                             | -                    | -              | -        | -              |          |
|           | Unsuccessful   | 1  | 0.25           | -       | 0.25                          | -                    | 0.00           | -        | 0.00           |          |
| Refere    | nce            |    |                |         |                               |                      |                |          |                |          |
|           | Successful     | 21 | 5.38           | 1.30    | 3.98                          | 0.99                 | 0.95           | 0.28     | 0.44           | 0.20     |
|           | Unsuccessful   | 8  | 5.20           | 1.53    | 3.37                          | 1.02                 | 1.66           | 0.80     | 0.16           | 0.08     |
|           |                |    | T = 0.37, P    | = 0.52  | T = 0.33, P                   | = 0.50               | T = -0.48, P   | P = 0.23 | T = -0.08, P   | P = 0.34 |
| South M   | Monomoy Island |    |                |         |                               |                      |                |          |                |          |
|           | Successful     | 28 | 4.79           | 1.02    | 3.21                          | 0.78                 | 0.89           | 0.22     | 0.70           | 0.22     |
|           | Unsuccessful   | 12 | 3.88           | 1.16    | 2.42                          | 0.78                 | 1.16           | 0.56     | 0.30           | 0.17     |
|           |                |    | T = 0.54, P    | = 0.62  | T = 0.49, P                   | = 0.59               | T = -0.70, P   | P = 0.18 | T = -0.27, P   | P = 0.27 |

**Table 50, Continued.** Mean counts of large gulls within 100 m of successful vs. unsuccessful broods, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

**Table 51.** Prefledging daily and interval survival rate estimates (Flint et al. 1995) and chicks fledged/pair, by year, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. Chi-square tests were used to test for differences in survival among the years (Sauer and Williams 1989).

| Year      | Breeding<br>Pairs | Broods | Chicks<br>Hatched | Chicks<br>Fledged | Daily<br>Survival | SE     | Interval<br>Survival <sup>a</sup>            | Chicks Fledged<br>per<br>Breeding Pair |
|-----------|-------------------|--------|-------------------|-------------------|-------------------|--------|----------------------------------------------|----------------------------------------|
| 1998      | 27                | 16     | 53                | 19 35.8%          | 0.9459            | 0.0176 | 0.2490                                       | 0.70                                   |
| 1999      | 26                | 18     | 63                | 35 55.6%          | 0.9726            | 0.0094 | 0.4999                                       | 1.35                                   |
| 2000      | 28                | 22     | 79                | 37 46.8%          | 0.9630            | 0.0115 | $0.3901$ $df = 2$ $\chi^2 = 1.86$ $P = 0.39$ | 1.32                                   |
| 1998-2000 | 81                | 56     | 195               | 91 46.7%          | 0.9627            | 0.0070 | 0.3867                                       | 1.12                                   |

<sup>a</sup> The probability that a chick will survive to fledge.

| Area         | Breeding<br>Pairs | Broods | Chicks<br>Hatched |    | Chicks<br>Fledged | Daily<br>Survival | SE     | Interval<br>Survival <sup>a</sup> | Chicks Fledged<br>per<br>Breeding Pair |
|--------------|-------------------|--------|-------------------|----|-------------------|-------------------|--------|-----------------------------------|----------------------------------------|
|              |                   |        |                   |    |                   |                   |        |                                   |                                        |
| Gull-Removal | 9                 | 5      | 19                | 4  | 21.1%             | 0.8900            | 0.0736 | 0.0543                            | 0.44                                   |
| Reference    | 17                | 11     | 34                | 15 | 44.1%             | 0.9614            | 0.0151 | 0.3737                            | 0.88                                   |
|              |                   |        |                   |    |                   |                   |        | <i>z</i> = -0.95                  |                                        |
|              |                   |        |                   |    |                   |                   |        | <i>P</i> = 0.17                   |                                        |
|              |                   |        |                   |    |                   |                   |        |                                   |                                        |
| Gull-Removal | 9                 | 5      | 16                | 5  | 31.3%             | 0.9468            | 0.0152 | 0.2547                            | 0.56                                   |
| Reference    | 16                | 12     | 43                | 30 | 69.8%             | 0.9840            | 0.0083 | 0.6675                            | 1.88                                   |
|              |                   |        |                   |    |                   |                   |        | <i>z</i> = -2.14                  |                                        |
|              |                   |        |                   |    |                   |                   |        | <i>P</i> = 0.02                   |                                        |
|              |                   |        |                   |    |                   |                   |        |                                   |                                        |
| Gull-Removal | 7                 | 5      | 17                | 9  | 52.9%             | 0.9711            | 0.0207 | 0.4804                            | 1.29                                   |
| Reference    | 21                | 17     | 62                | 28 | 45.2%             | 0.9604            | 0.0141 | 0.3646                            | 1.33                                   |
|              |                   |        |                   |    |                   |                   |        | <i>z</i> = 0.43                   |                                        |
|              |                   |        |                   |    |                   |                   |        | <i>P</i> = 0.33                   |                                        |
| 2000         |                   |        |                   |    |                   |                   |        |                                   |                                        |
| Gull-Removal | 25                | 15     | 52                | 18 | 34.6%             | 0.9451            | 0.0178 | 0.2440                            | 0.72                                   |
| Reference    | 54                | 40     | 139               | 73 | 52.5%             | 0.9695            | 0.0071 | 0.4607                            | 1.35                                   |
|              |                   |        |                   |    |                   |                   |        | <i>z</i> = -1.27                  |                                        |
|              |                   |        |                   |    |                   |                   |        | P = 0.10                          |                                        |

**Table 52.** Prefledging daily and interval survival rate estimates (Flint et al. 1995) and chicks fledged/pair, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. *Z*-tests were used to test for differences in survival between the gull-removal area and the reference area (Sauer and Williams 1989).

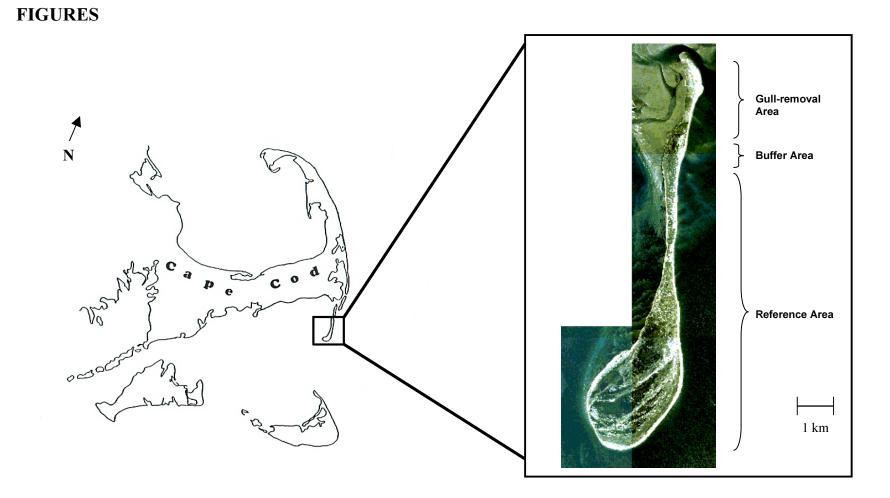
<sup>a</sup> The probability that a chick will survive to fledge.

| Access Group                                                  | n <sup>a</sup> | Daily    | SE     | Interval        |
|---------------------------------------------------------------|----------------|----------|--------|-----------------|
|                                                               |                | Survival |        | Survival        |
| Access to Ocean Only                                          | 13             | 0.9502   | 0.0205 | 0.2788          |
| Access to Ocean and Sound                                     | 5              | 0.9392   | 0.0201 | 0.2086          |
| Access to Ocean and Seal Carcass                              | 4              | 0.9765   | 0.0108 | 0.5515          |
| Access to Sound and Tidal Pond Intertidal Zone                | 25             | 0.9682   | 0.0095 | 0.4456          |
| Access to Sound, Tidal Pond Intertidal Zone, and Seal Carcass | 3              | 0.9706   | 0.0239 | 0.4741          |
|                                                               |                |          |        | df = 4          |
|                                                               |                |          |        | $\chi^2 = 3.38$ |
|                                                               |                |          |        | P = 0.50        |
|                                                               |                |          |        |                 |
| Access to Seal Carcass                                        | 7              | 0.9741   | 0.0103 | 0.5187          |
| Access to Tidal Pond Intertidal Zone                          | 28             | 0.9682   | 0.0095 | 0.4456          |
| All other Broods                                              | 18             | 0.9473   | 0.0161 | 0.2583          |
|                                                               |                |          |        | df = 2          |
|                                                               |                |          |        | $\chi^2 = 1.99$ |
|                                                               |                |          |        | P = 0.37        |

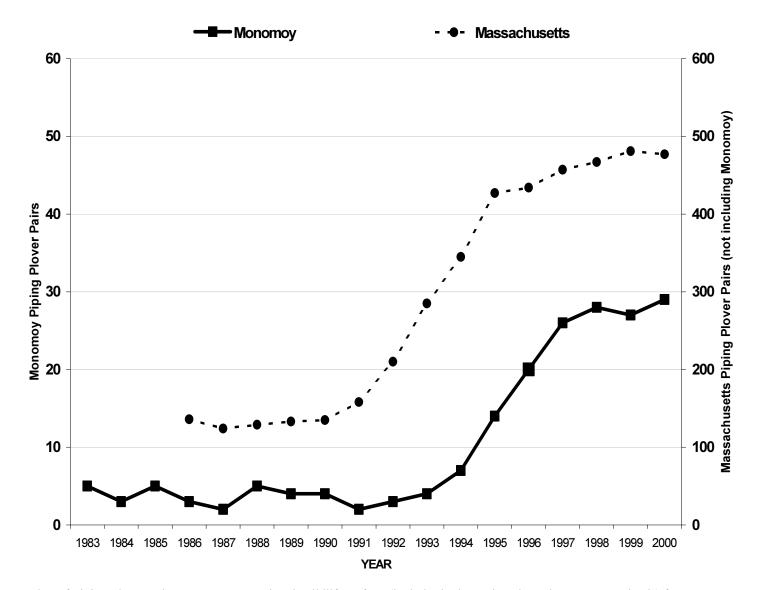
**Table 53.** Prefledging daily and interval survival rate estimates (Flint et al. 1995), by access group, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. The sample size (n) equals the number of broods. Chi-square tests were used to test for differences in survival among the access groups (Sauer and Williams 1989).

<sup>a</sup> Sample sizes do not include 3 broods from the gull-removal area and 3 broods from the reference area in 1998, because the access group could not be determined.

|               |                    | This Study<br>South Monomoy Island, MA |                  |           | Loegering                          |                  |                                     | Elias-Gerken<br>Long Island, NY |                  |     | Kuklinski<br>Cape Hatteras, NC<br>1996 |                  |     | Houghton |                  |       |  |
|---------------|--------------------|----------------------------------------|------------------|-----------|------------------------------------|------------------|-------------------------------------|---------------------------------|------------------|-----|----------------------------------------|------------------|-----|----------|------------------|-------|--|
|               |                    |                                        |                  |           | Assateague Island, MD<br>1988-1990 |                  | West Hampton Dunes, NY<br>1993-2000 |                                 |                  |     |                                        |                  |     |          |                  |       |  |
|               |                    | 1998-2000                              |                  | 1992-1993 |                                    |                  |                                     |                                 |                  |     |                                        |                  |     |          |                  |       |  |
|               |                    | n                                      | $\overline{x}$ % | SE        | n                                  | $\overline{x}$ % | SE                                  | n                               | $\overline{x}$ % | SE  | n                                      | $\overline{x}$ % | SE  | n        | $\overline{x}$ % | SE    |  |
| Ocean         |                    | -                                      | -                | -         | 21                                 | 5.9              | 1.3                                 | -                               | -                | -   | -                                      | -                | -   | 57       | 4.5              | 0.450 |  |
|               | Intertidal Zone    | 8                                      | 5.84             | 1.09      | -                                  | -                | -                                   | 13                              | 7                | 1.2 | -                                      | -                | -   | 41       | 5.4              | 0.660 |  |
|               | Fresh Wrack        | 7                                      | 6.56             | 2.78      | -                                  | -                | -                                   | 17                              | 6                | 0.9 | -                                      | -                | -   | 41       | 5.6              | 0.542 |  |
|               | Backshore          | 14                                     | 1.59             | 0.46      | -                                  | -                | -                                   | 24                              | 4                | 0.6 | 2                                      | 5.2              | 3.0 | 41       | 2.8              | 0.762 |  |
|               | Old Wrack          | 7                                      | 4.43             | 2.87      | -                                  | -                | -                                   | 27                              | 4                | 0.6 | -                                      | -                | -   | 42       | 4.7              | 0.785 |  |
|               | Open Vegetation    | 10                                     | 1.53             | 0.36      |                                    |                  |                                     | 49                              | 5                | 0.6 | 8                                      | 3.8              | 1.3 | 13       | 1.1              | 0.615 |  |
| Sound/Bay     |                    | -                                      | -                | -         | 9                                  | 13.3             | 1.1                                 | -                               | -                | -   | -                                      | -                | -   | 84       | 7.6              | 0.575 |  |
|               | Intertidal Zone    | 12                                     | 6.7              | 1.14      | -                                  | -                | -                                   | 4                               | 9                | 1.7 | -                                      | -                | -   | 77       | 9.6              | 0.686 |  |
|               | Fresh Wrack        | 9                                      | 4.75             | 0.79      | -                                  | -                | -                                   | 3                               | 6                | 1.4 | -                                      | -                | -   | 54       | 8.4              | 0.939 |  |
|               | Backshore          | 21                                     | 2.94             | 0.61      | -                                  | -                | -                                   | 3                               | 5                | 0.3 | -                                      | -                | -   | 28       | 2.2              | 0.576 |  |
|               | Old Wrack          | 19                                     | 3.72             | 0.58      | -                                  | -                | -                                   | 3                               | 5                | 1.2 | -                                      | -                | -   | 38       | 4.8              | 0.594 |  |
|               | Open Vegetation    | 17                                     | 3.43             | 0.83      | -                                  | -                | -                                   | 2                               | 4                | 2.5 | -                                      | -                | -   | 52       | 4.1              | 0.664 |  |
|               | Wet Sand Flat      | -                                      | -                | -         | -                                  | -                | -                                   | -                               | -                | -   | 7                                      | 14.6             | 2.0 | -        | -                | -     |  |
| Ephemeral Po  | ool                | -                                      | -                | -         | -                                  | -                | -                                   | 44                              | 13               | 0.9 | 1                                      | 6.2              | -   | 10       | 14.1             | 4.398 |  |
| Tidal Pond Ir | ntertidal Zone     | 20                                     | 12.56            | 2.20      | -                                  | -                | -                                   | -                               | -                | -   | -                                      | -                | -   | -        | -                | -     |  |
| Seal Carcass  |                    | 6                                      | 6.61             | 1.08      | -                                  | -                | -                                   | -                               | -                | -   | -                                      | -                | -   | -        | -                | -     |  |
| Interior      |                    | -                                      | -                | -         | 11                                 | 10.8             | 1.6                                 | -                               | -                | -   | -                                      | -                | -   | -        | -                | -     |  |
|               | Interdune/overwash | -                                      | -                | -         | -                                  | -                | -                                   | 6                               | 7                | 2.2 | 7                                      | 8.6              | 1.6 | -        | -                | -     |  |


**Table 54.** Mean foraging rates (attempts per minute) of Piping Plover broods of ages 3-10 days in different habitats during behavioral observations from other Piping Plover studies on the Atlantic Coast. The sample size (n) equals the number of broods)

| Year           | Gull-removal<br>Area | Buffer Area |              | Reference           | Area             | Monomoy NWR                |                         |                            |                         |
|----------------|----------------------|-------------|--------------|---------------------|------------------|----------------------------|-------------------------|----------------------------|-------------------------|
|                |                      |             | Powder Hole  | Ocean/<br>South Tip | Overwash<br>Area | Reference<br>Area<br>Total | South Monomoy<br>Island | North<br>Monomoy<br>Island | Monomoy<br>NWR<br>Total |
| Breeding Pairs |                      |             |              |                     |                  |                            |                         |                            |                         |
| 1991           | 0                    | 0           | 2            | 0                   | 0                | 2                          | 2                       | 0                          | 2                       |
| 1992           | 0                    | 0           | 3            | 0                   | 0                | 3                          | 3                       | 0                          | 3                       |
| 1993           | 2                    | 0           | 2            | 0                   | 0                | 2                          | 4                       | 0                          | 4                       |
| 1994           | 3                    | 0           | 4            | 0                   | 0                | 4                          | 7                       | 0                          | 7                       |
| 1995           | 3                    | 1           | 6            | 3                   | 1                | 10                         | 14                      | 0                          | 14                      |
| 1996           | 5                    | 1           | 8            | 5                   | 0                | 13                         | 19                      | 1                          | 20                      |
| 1997           | 8                    | 1           | 10           | 5                   | 1                | 16                         | 25                      | 1                          | 26                      |
| 1998           | 9                    | 1           | 10           | 5                   | 2                | 17                         | 27                      | 1                          | 28                      |
| 1999           | 9                    | 1           | 11           | 4                   | 1                | 16                         | 26                      | 1                          | 27                      |
| 2000           | 7                    | 0           | 14           | 6                   | 1                | 21                         | 28                      | 2                          | 30                      |
| Chicks fledged | /Pair                |             |              |                     |                  |                            |                         |                            |                         |
| 1991           | -                    | -           | 0/2 (0.00)   | -                   | -                | 0/2 (0.00)                 | 0/2 (0.00)              | -                          | 0/2 (0.00)              |
| 1992           | -                    | -           | 4/3 (1.33)   | -                   | -                | 4/3 (1.33)                 | 4/3 (1.33)              | -                          | 4/3 (1.33)              |
| 1993           | 4/2 (2.00)           | -           | 4/2 (2.00)   | -                   | -                | 4/2 (2.00)                 | 8/4 (2.00)              | -                          | 8/4 (2.00)              |
| 1994           | 3/3 (1.00)           | -           | 7/4 (1.75)   | -                   | -                | 7/4 (1.75)                 | 11/7 (1.57)             | -                          | 11/7 (1.57)             |
| 1995           | 3/3 (1.00)           | 0/1 (0.00)  | 5/6 (0.83)   | 5/3 (1.67)          | 0/1 (0.00)       | 10/10 (1.00)               | 13/14 (0.93)            | -                          | 13/14 (0.93)            |
| 1996           | 10/5 (2.00)          | 0/1 (0.00)  | 19/8 (2.38)  | 13/5 (2.60)         | -                | 32/13 (2.46)               | 42/19 (2.21)            | 0/1 (0.00)                 | 42/20 (2.10)            |
| 1997           | 16/8 (2.00)          | 2/1 (2.00)  | 19/10 (1.90) | 7/5 (1.40)          | 0/1 (0.00)       | 26/16 (1.63)               | 44/25 (1.76)            | 2/1 (2.00)                 | 46/26 (1.77)            |
| 1998           | 4/9 (0.44)           | 0/0 (0.00)  | 11/10 (1.10) | 4/5 (0.80)          | 0/2 (0.00)       | 15/17 (0.88)               | 19/27 (0.70)            | 4/1 (4.00)                 | 23/28 (0.82)            |
| 1999           | 5/9 (0.55)           | 0/0 (0.00)  | 20/11 (1.82) | 10/4 (2.50)         | 0/1 (0.00)       | 30/16 (1.88)               | 35/26 (1.35)            | 3/1 (3.00)                 | 38/27 (1.41)            |
| 2000           | 9/7 (1.29)           | -           | 23/14 (1.64) | 5/6 (0.83)          | 0/1 (0.00)       | 28/21 (1.33)               | 37/28 (1.32)            | 3/2 (1.50)                 | 40/30 (1.33             |


**Table 55.** Number of breeding pairs and overall productivity (chicks fledged/breeding pair) of Piping Plovers at Monomoy National Wildlife Refuge, Chatham, Massachusetts, 1991-2000. Data prior to 1998 were obtained from census forms and maps prepared by USFWS for Massachusetts Division of Fish and Wildlife.

**Table 56.** Number of breeding pairs and overall productivity (chicks fledged/breeding pair) of Piping Plovers at Monomoy National Wildlife Refuge, Chatham, Massachusetts, South Beach, Chatham, Massachusetts, the state of Massachusetts, and New England, 1991-2000. Data from Monomoy National Wildlife Refuge prior to 1998 were obtained from census forms and maps prepared by USFWS for Massachusetts Division of Fisheries and Wildlife. Data from Monomoy National Wildlife. Data from South Beach were obtained from Massachusetts Division of Fisheries and Wildlife. Data from Massachusetts and New England were obtained from USFWS (Status Update, USFWS 2002).

| Year                | M                       | onomoy NWR                 |              | South Beach,<br>Chatham, MA | Massachusetts | New England |  |
|---------------------|-------------------------|----------------------------|--------------|-----------------------------|---------------|-------------|--|
|                     | South Monomoy<br>Island | North<br>Monomoy<br>Island | Total        |                             |               |             |  |
| Breeding Pairs      |                         |                            |              |                             |               |             |  |
| 1991                | 2                       | 0                          | 2            | 5                           | 160           | 240         |  |
| 1992                | 3                       | 0                          | 3            | 8                           | 213           | 293         |  |
| 1993                | 4                       | 0                          | 4            | 13                          | 289           | 370         |  |
| 1994                | 7                       | 0                          | 7            | 15                          | 352           | 449         |  |
| 1995                | 14                      | 0                          | 14           | 30                          | 441           | 552         |  |
| 1996                | 19                      | 1                          | 20           | 32                          | 454           | 590         |  |
| 1997                | 25                      | 1                          | 26           | 35                          | 483           | 619         |  |
| 1998                | 27                      | 1                          | 28           | 40                          | 495           | 62          |  |
| 1999                | 26                      | 1                          | 27           | 41                          | 501           | 62          |  |
| 2000                | 28                      | 2                          | 30           | 34                          | 496           | 62.         |  |
| Chicks Fledged/Pair |                         |                            |              |                             |               |             |  |
| 1991                | 0/2 (0.00)              | -                          | 0/2 (0.00)   | 12/5 (2.40)                 |               |             |  |
| 1992                | 4/3 (1.33)              | -                          | 4/3 (1.33)   | 13/8 (1.63)                 | 2.03          | 1.9         |  |
| 1993                | 8/4 (2.00)              | -                          | 8/4 (2.00)   | 28/13 (2.15)                | 1.92          | 1.8         |  |
| 1994                | 11/7 (1.57)             | -                          | 11/7 (1.57)  | 24/15 (1.60)                | 1.80          | 1.8         |  |
| 1995                | 13/14 (0.93)            | -                          | 13/14 (0.93) | 37/30 (1.23)                | 1.62          | 1.6         |  |
| 1996                | 42/19 (2.21)            | 0/1 (0.00)                 | 42/20 (2.10) | 43/32 (1.34)                | 1.35          | 1.4         |  |
| 1997                | 44/25 (1.76)            | 2/1 (2.00)                 | 46/26 (1.77) | 31/35 (0.89)                | 1.33          | 1.3         |  |
| 1998                | 19/27 (0.70)            | 4/1 (4.00)                 | 23/28 (0.82) | 30/40 (0.75)                | 1.50          | 1.4         |  |
| 1999                | 35/26 (1.35)            | 3/1 (3.00)                 | 38/27 (1.41) | 27/41 (0.66)                | 1.60          | 1.6         |  |
| 2000                | 37/28 (1.32)            | 3/2 (1.50)                 | 40/30 (1.33  | 17/34 (0.50)                | 1.09          | 1.1         |  |



**Figure 1.** Location of South Monomoy Island on Cape Cod, Massachusetts, and management areas used in this study based on the 1996 USFWS Restoration of Avian Diversity project. (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.)



**Figure 2.** Number of Piping Plover pairs at Monomoy National Wildlife Refuge (includes both North and South Monomoy Islands) from 1983 to 2000 (with larger square marking the year of gull removal, and number of Piping Plover pairs in Massachusetts (not including the Monomoy Islands) from 1986 to 2000 (USFWS 2002).

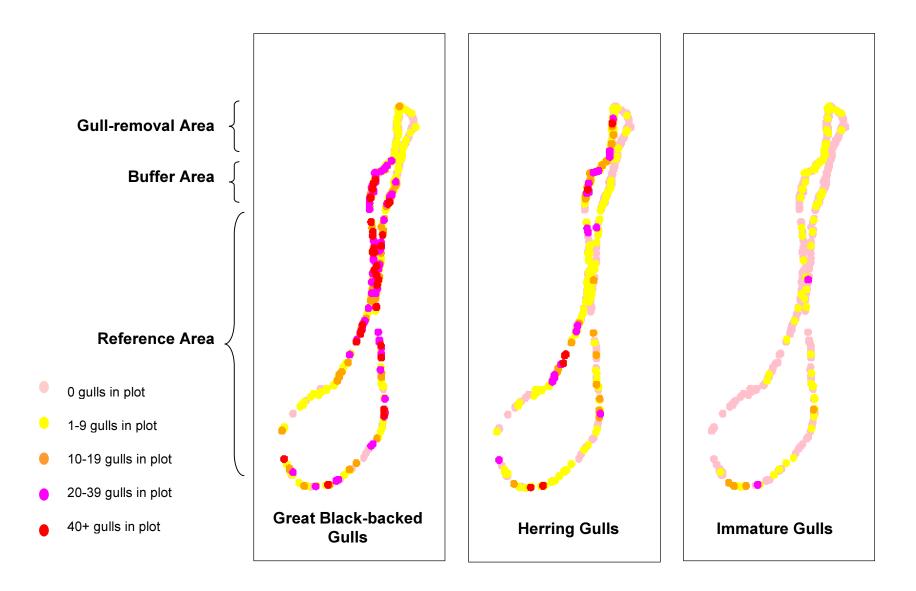
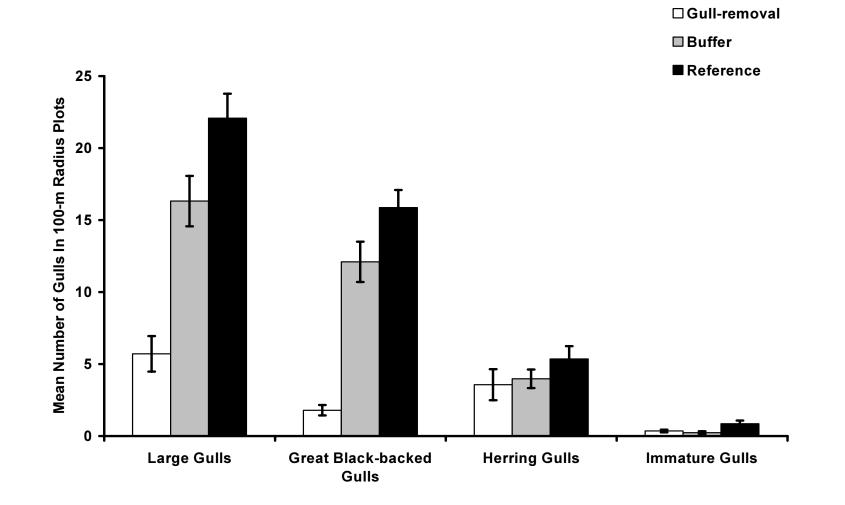
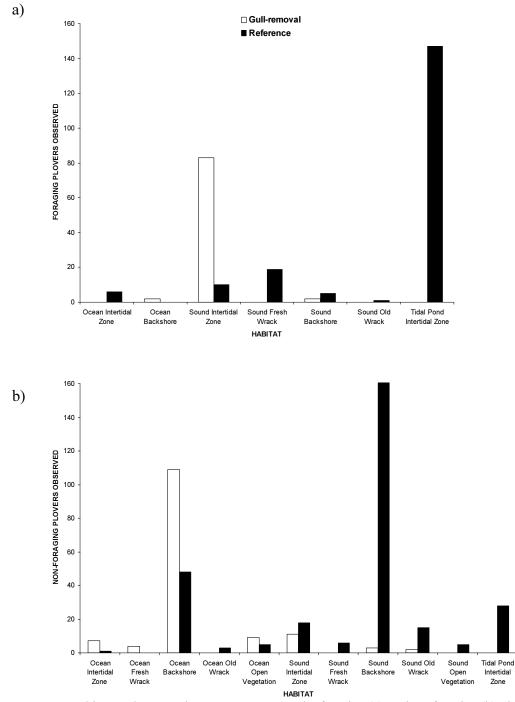
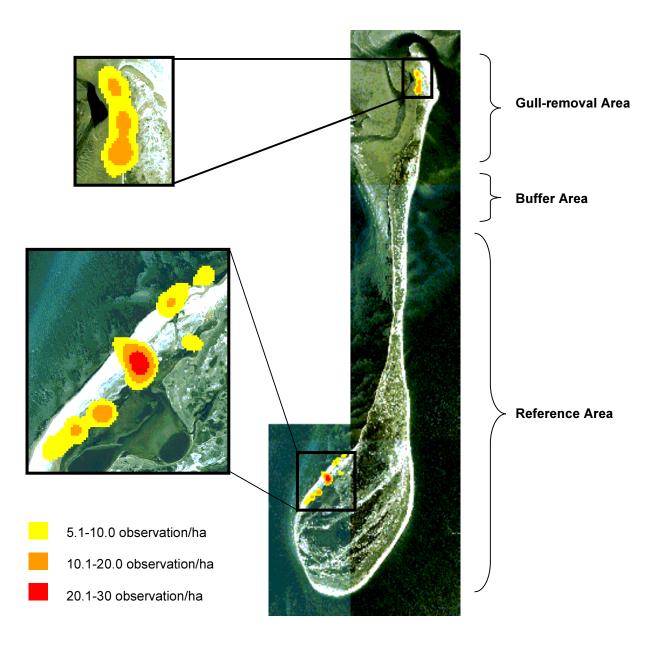
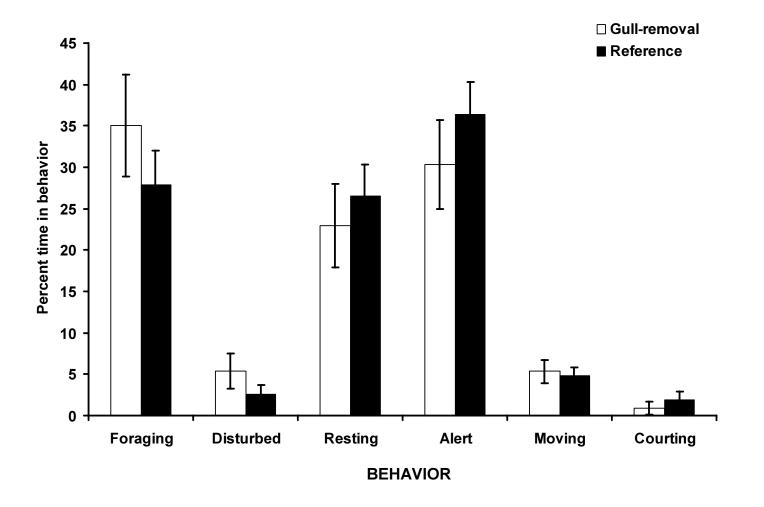



Figure 3. Relative gull abundance and distribution based on counts of gulls in random 100 m-radius plots, during the Piping Plover prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000.

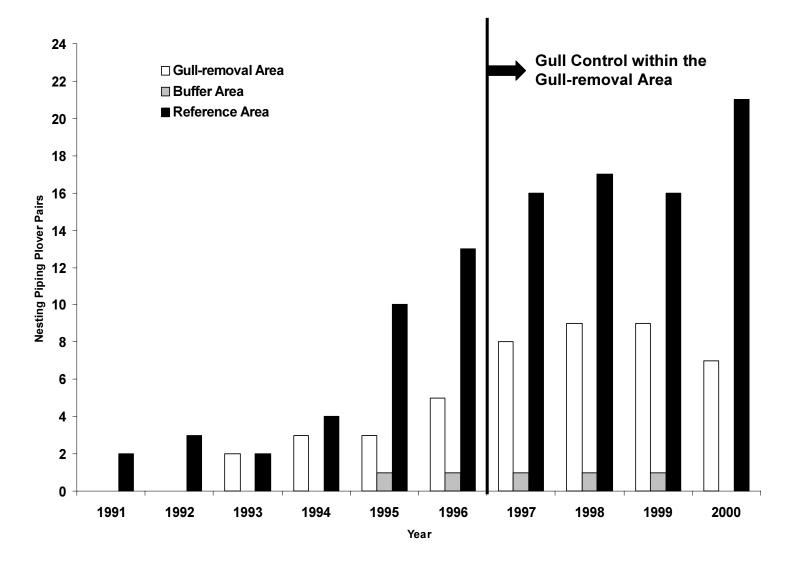





Figure 4. Relative gull abundance among the management areas based on mean counts of gulls in random 100 m-radius plots, during the Piping Plover prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean.

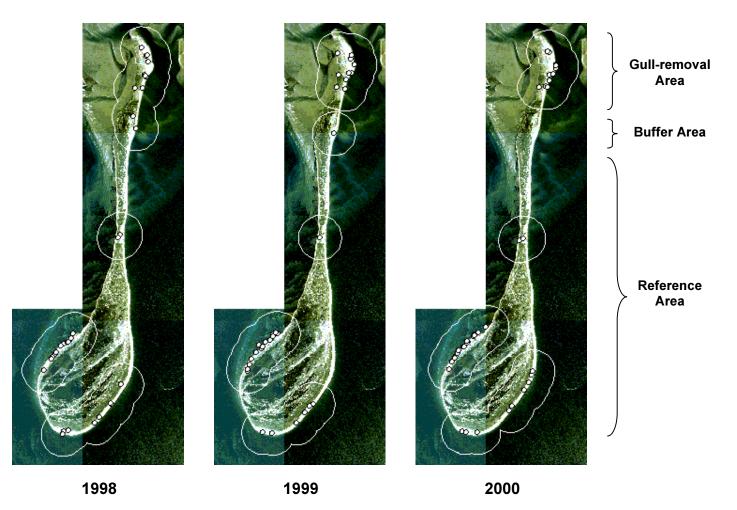



**Figure 5.** Mean width of habitats (m) measured along random transects, among the management areas (gull-removal: n = 50, buffer: n = 62, reference: n = 116), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean. For each habitat where a difference was found among the management areas (MRPP,  $P \le 0.05$ ), pairwise comparisons were conducted. Bars labeled with the same letters within the same habitat were not significantly different (MRPP,  $P \ge 0.5$ ).

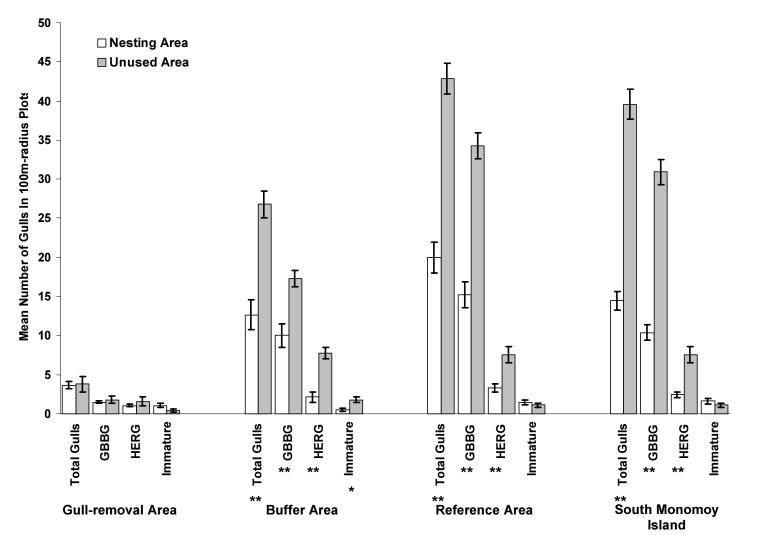



**Figure 6.** Habitat use between the management areas by foraging (a), and nonforaging (b) Piping Plovers during the prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Both foraging and nonforaging plovers did not use habitat in equal proportions between the management areas (foraging: n = 275, df = 6, = 227.13, P < 0.0001 with the largest partial chi-square statistics for sound intertidal zone and tidal pond intertidal zone habitats; nonforaging: n = 556, df = 6, = 301.95, P < 0.0001 with the largest partial chi-square statistics for ocean and sound backshore habitats). Missing columns represent zero plovers observed in the habitat.

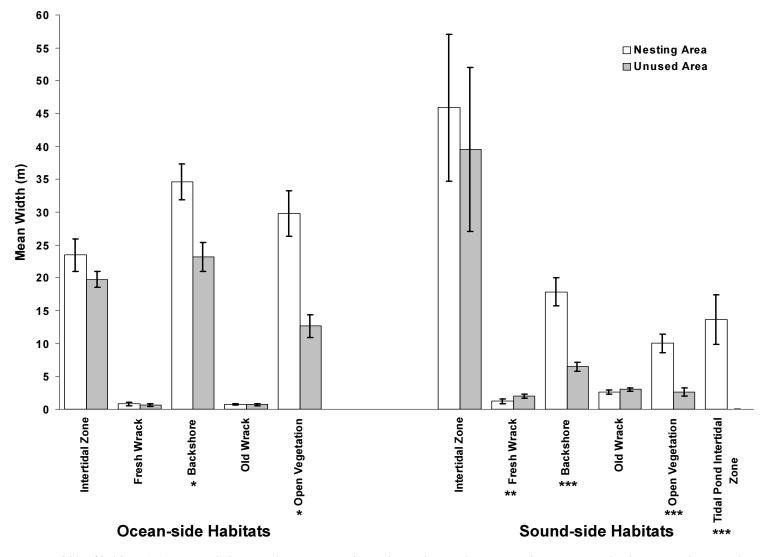



**Figure 7.** Approximate locations and frequency of observations of foraging Piping Plovers observed throughout the prenesting period, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. ArcView 3.1 was used to generate Kernal density estimates of observations per ha (search radius = 100 m, cell size = 10, rows = 1200, columns = 800). Locations of observations were obtained using Garmin 12 hand-held GPS units. Upper left shows observations of plovers in the gull-removal area mostly in the sound-side intertidal zone or sand flat habitat. Lower left shows observations of plovers in the reference area mostly in the tidal pond intertidal zone habitat. (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.)

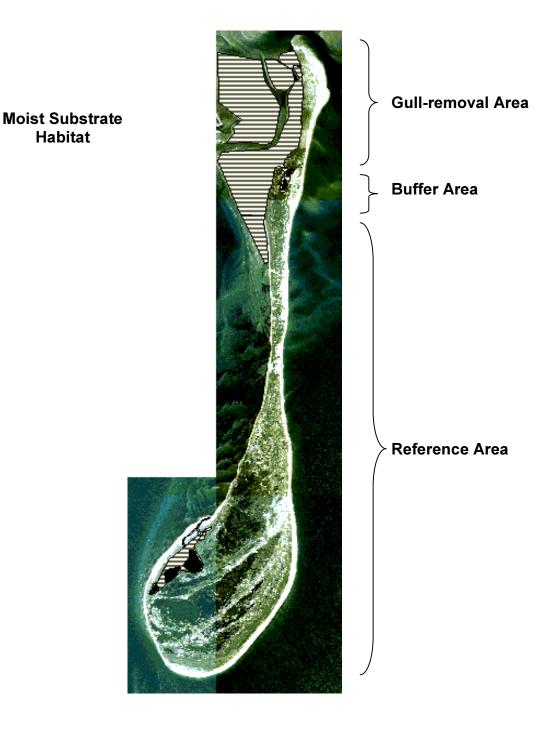



**Figure 8.** Mean percent time Piping Plovers were observed in different behaviors during 5-minute observations during the prenesting period, between the gullremoval area (n = 53) and the reference area (n = 93), South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean. There were no differences between the management areas in percent time in behaviors (MRPP, P > 0.05).



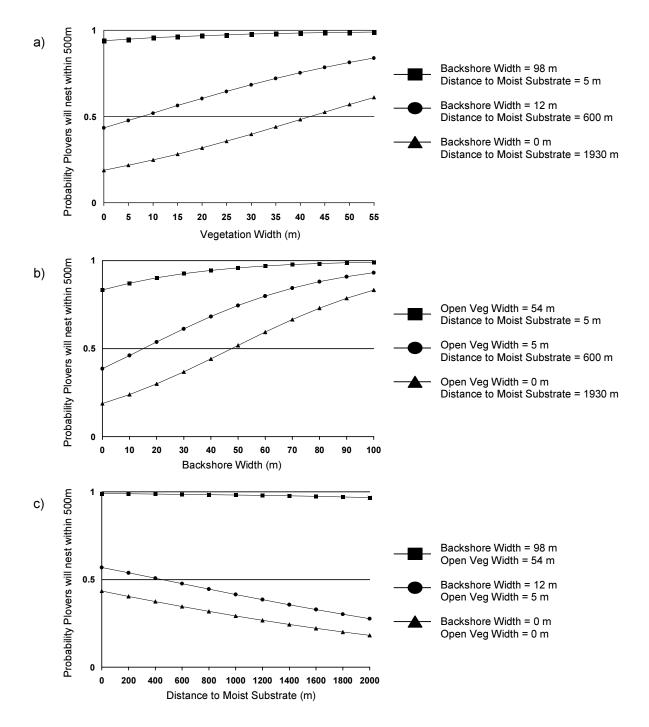

**Figure 9.** Number of nesting Piping Plover pairs, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1991-2000 (USFWS census data 1991-1997). Missing columns represent zero nesting Piping Plovers in the management area that year.




**Figure 10.** Approximate locations of Piping Plover nests with the boundary between the nesting ( $\geq$  500 m from all nest locations) and unused areas delineated, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. Locations were obtained using Garmin 12 hand-held GPS units. (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.)

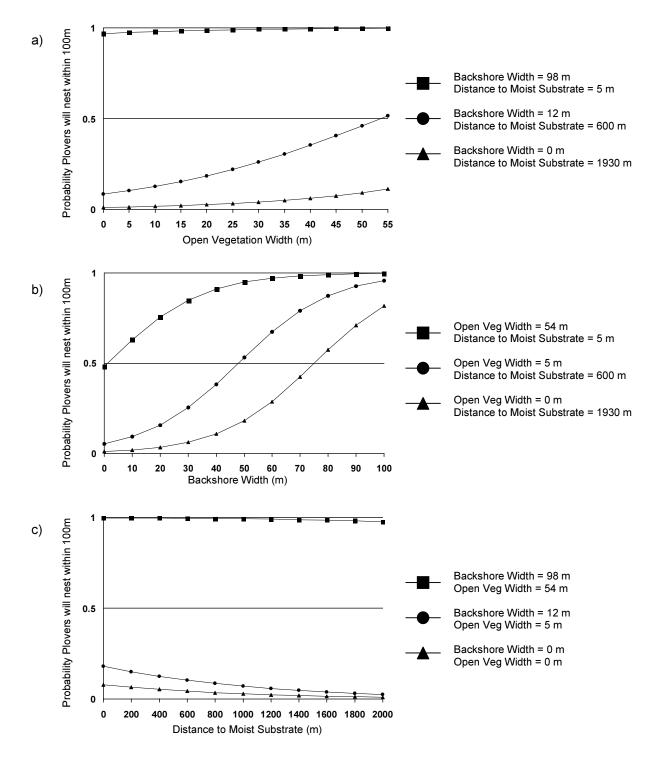


**Figure 11.** Relative gull abundance in nesting and unused areas based on mean counts of gulls in random 100 m-radius plots, by the management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. (GBBG = Great Black-backed Gulls, HERG = Herring Gulls, Immature = immature large gulls. Error bars represent the standard error of the mean. Where significant differences were found between management areas using MRPP, \*\* = P < 0.0001, and \* = P < 0.05.



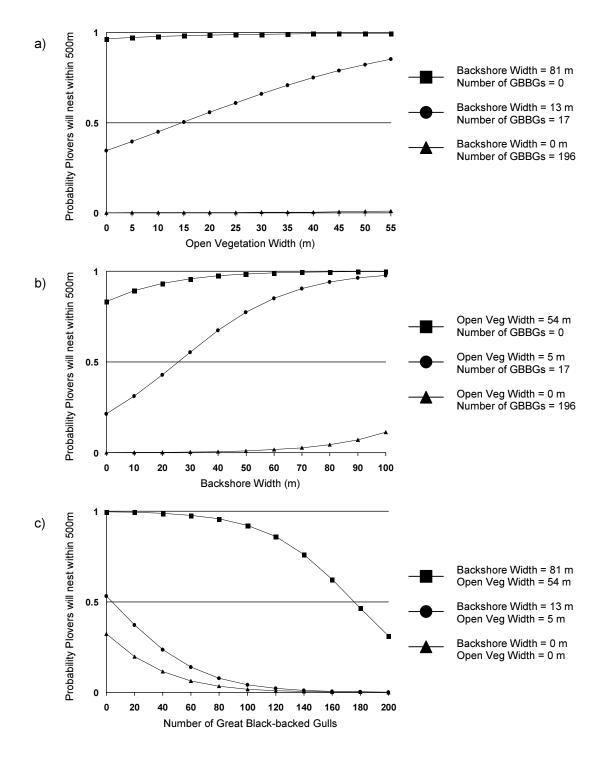

**Figure 12.** Mean width of habitats (m) measured along random transects, in nesting and unused areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean. Where significant differences were found between management areas using MRPP, \*\*\* = P < 0.0001, \*\* = P < 0.001, and \* = P < 0.01. There was no tidal pond intertidal zone habitat in the unused area.




\_\_\_\_

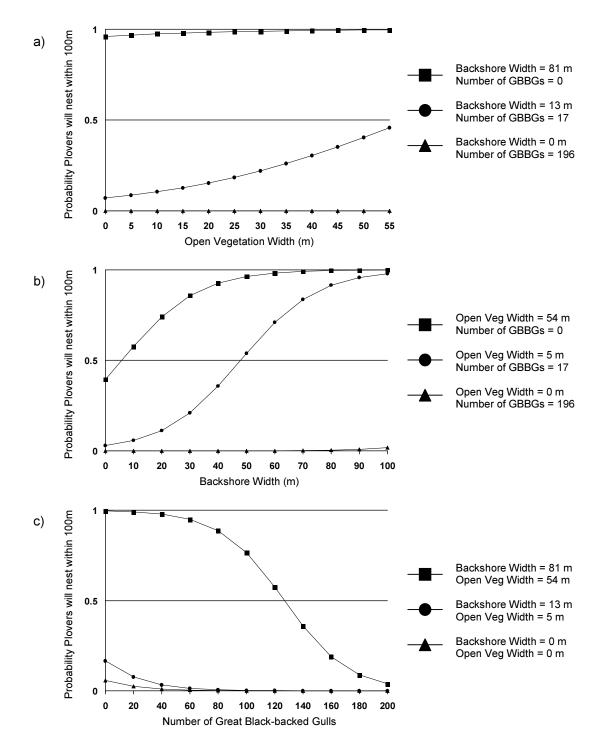
**Figure 13.** Moist substrate habitat on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000. Polygons layered over orthophotographs were delineated using ArcView Version 3.1 (ESRI). (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.)




**Figure 14.** Curves depicting the probability that Piping Plovers will nest within 500 of areas on South Monomoy Island given different backshore widths (m), open vegetation widths (m) and distances (m) to moist substrate habitats.

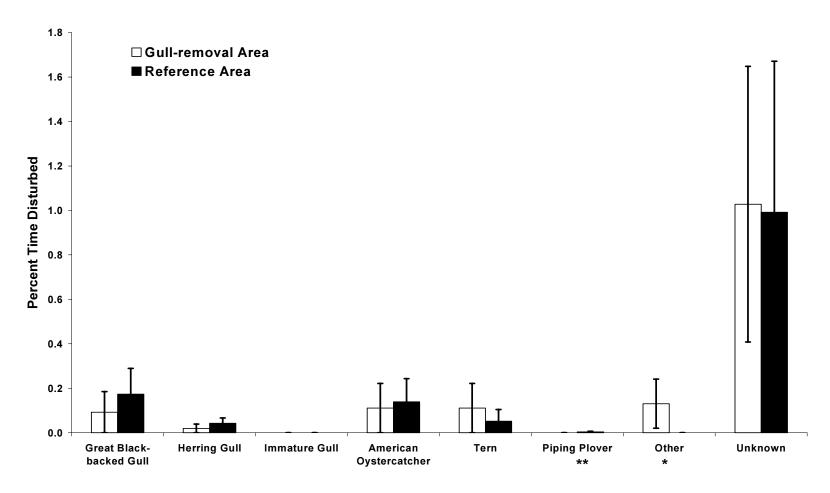
 $\begin{array}{l} \mbox{Logistic Regression Equation:} \\ \mbox{``a $\theta = 1 / (1 + exp [- (\beta_0 + \sum_{j=1} \beta_j X_{ij}) ] ) $ $ i = 1,2,...,n$ } \end{array}$ 




**Figure 15.** Curves depicting the probability that Piping Plovers will nest within 100 of areas on South Monomoy Island given different backshore widths (m), open vegetation widths (m) and distances (m) to moist substrate habitats.

 $\begin{array}{l} \mbox{Logistic Regression Equation:} \\ {}^{a} \ \theta = 1 \ / \ (1 \ + \ exp \ [- \ (\beta_{0} \ + \ \sum_{j=1} \ \beta_{j} \ X_{ij}) \ ] \ ) \end{array} \qquad i = 1,2,\ldots,n \label{eq:eq:expansion}$ 




**Figure 16.** Curves depicting the probability that Piping Plovers will nest within 500 of areas in the reference area, South Monomoy Island, given different backshore widths (m), open vegetation widths (m) and numbers of Great Black-backed Gulls.

 $\begin{array}{l} \mbox{Logistic Regression Equation:} \\ \mbox{$^{a}$ $\theta = 1 / (1 + exp \left[ - (\beta_0 + \sum_{j=1} \beta_j X_{ij}) \right] ) $} \\ \end{array} \ \ i = 1,2,\ldots,n \label{eq:equation}$ 



**Figure 17.** Curves depicting the probability that Piping Plovers will nest within 500 of areas in the reference area, South Monomoy Island given different backshore widths (m), open vegetation widths (m) and numbers of Great Black-backed Gulls.

 $\begin{array}{l} \mbox{Logistic Regression Equation:} \\ \mbox{$^{a}$ $\theta = 1 / (1 + exp \left[ - (\beta_0 + \sum_{j=1} \beta_j X_{ij}) \right] ) $} \\ \end{array} \ \ i = 1,2,\ldots,n \label{eq:equation}$ 



# Source of Disturbance

**Figure 18.** Mean percent time incubating Piping Plovers were observed disturbed by various sources during 5-minute observations, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean. Where significant differences were found between the management areas using MRPP, \*\* = P < 0.0001, and \* = P < 0.01. Missing columns represent zero percent time disturbed.

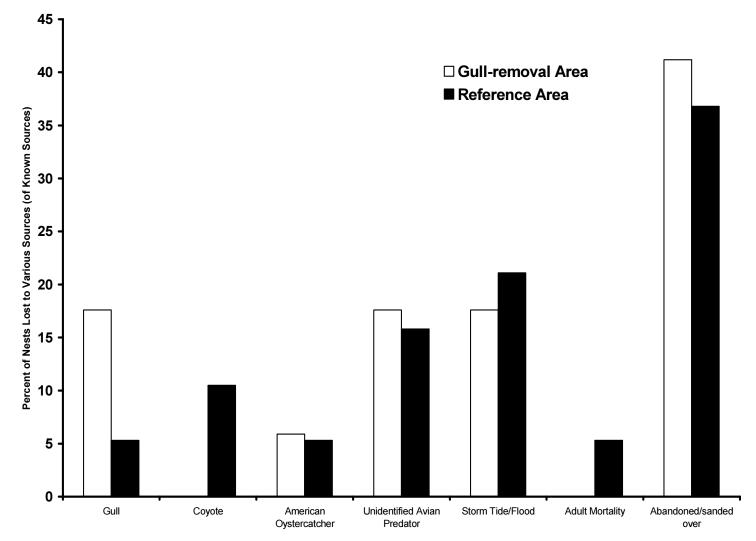



Figure 19. Percent of Piping Plover nest loss to various sources of nests lost when cause was known, South Monomoy Island, by management area, Cape Cod, Massachusetts, 1998-2000. Missing columns represent zero nests lost to the specific source.

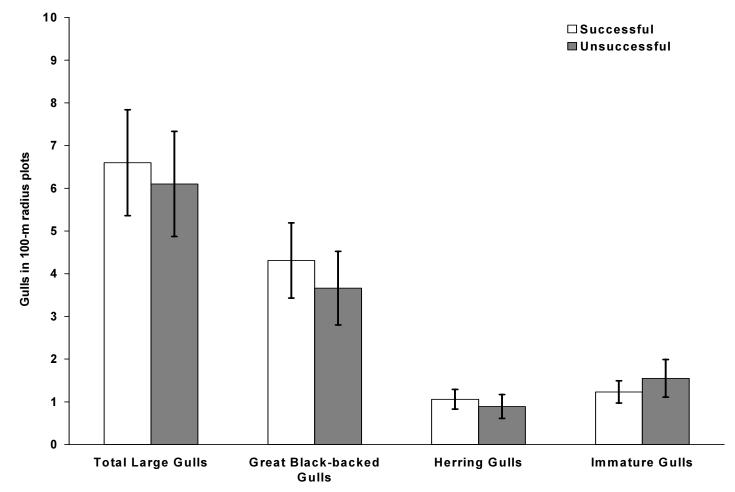



Figure 20. Mean number of gulls within 100 m of successful and unsuccessful nests, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. Error bars represent the standard error of the mean. There was no difference in the number of large gulls within 100 m of successful and unsuccessful nests.

# **APPENDICES**

Appendix A. Individual Piping Plover nest and brood chronology, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

Table A-1. Individual nest chronology, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

| Nest Number <sup>a</sup> | Location <sup>b</sup> | Habitat° | Date Nest<br>Found | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | Clutch Size | Date Nest<br>Exclosed | Number of Eggs<br>Lost | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | Number of Eggs<br>Hatched | Number of Eggs<br>Left in Scrape<br>After Hatch | Number of Chicks<br>Fledged |
|--------------------------|-----------------------|----------|--------------------|--------------------------------------|--------------------------------------|-------------|-----------------------|------------------------|--------------------------------|------------------------------------|----------------------------|---------------------------|-------------------------------------------------|-----------------------------|
| 1998, Gull-remo          | val Area              |          |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| N02A                     | NO                    | OB       | 5/08               | 5/08                                 | -                                    | 1           | -                     | 1                      | 5/10                           | STRM                               | -                          | 0                         | -                                               | -                           |
| N02B                     | NO                    | OB       | 5/16               | 5/15                                 | -                                    | 1           | -                     | 1                      | 5/18                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| N02C                     | NO                    | OV       | 6/18               | -                                    | -                                    | 4           | -                     | 4                      | 6/20                           | GULL                               | -                          | 0                         | -                                               | -                           |
| N03A                     | NT                    | OB       | 5/16               | -                                    | -                                    | 3           | 5/20                  | 3                      | 5/29                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| N04A                     | NS                    | SV       | 5/18               | 5/13                                 | 5/19                                 | 4           | 5/20                  | 4                      | 5/23                           | STRM                               | -                          | 0                         | -                                               | -                           |
| N05A                     | NT                    | OV       | 5/23               | 5/20                                 | 5/26                                 | 4           | 5/26                  | 0                      | -                              | -                                  | 6/20                       | 4                         | 0                                               | 2                           |
| N06A                     | NO                    | OV       | 5/26               | 5/18                                 | 5/24                                 | 4           | 5/26                  | 0                      | -                              | -                                  | 6/19                       | 4                         | 0                                               | 0                           |
| N08A                     | NT                    | OV       | 5/26               | -                                    | -                                    | -           | -                     | -                      | 5/26                           | AVPR                               | -                          | 0                         | -                                               | -                           |
| N08B                     | NT                    | OV       | 5/31               | 5/30                                 | 6/07                                 | 4           | 6/10                  | 4                      | 6/28                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| N09A                     | NO                    | OB       | 6/01               | 5/27                                 | 6/03                                 | 4           | 6/11                  | 0                      | -                              | -                                  | 6/28                       | 4                         | 0                                               | 0                           |
| N10A                     | NO                    | OB       | 6/07               | 5/23                                 | 5/29                                 | 4           | 6/11                  | 0                      | -                              | -                                  | 6/27                       | 4                         | 0                                               | 0                           |
| N12A                     | NO                    | OV       | 6/27               | 6/26                                 | 6/30                                 | 3           | 7/04                  | 0                      | -                              | -                                  | 7/26                       | 3                         | 0                                               | 2                           |

Continued.

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore.

<sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Nest Number <sup>a</sup> | Location <sup>b</sup> | Habitat°        | Date Nest<br>Found | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | Clutch Size | Date Nest<br>Exclosed | Number of Eggs<br>Lost | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | Number of Eggs<br>Hatched | Number of Eggs<br>Left in Scrape<br>After Hatch | Number of Chicks<br>Fledged |
|--------------------------|-----------------------|-----------------|--------------------|--------------------------------------|--------------------------------------|-------------|-----------------------|------------------------|--------------------------------|------------------------------------|----------------------------|---------------------------|-------------------------------------------------|-----------------------------|
| 1998, Buffer Ar          | ea                    |                 |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| N01A                     | BA                    | OV <sup>e</sup> | 5/08               | 5/04                                 | -                                    | 3           | -                     | 3                      | 5/10                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| N01B                     | BA                    | OB              | 5/26               | -                                    | -                                    | 4           | 5/30                  | 4                      | 6/04                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| 1998, Reference          | Area                  |                 |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| S01A                     | PH                    | SB              | 5/14               | 5/08                                 | 5/14                                 | 4           | 5/23                  | 0                      | -                              | -                                  | 6/11                       | 4                         | 0                                               | 1                           |
| S02A                     | PH                    | SV              | 5/14               | 5/10                                 | 5/16                                 | 4           | -                     | 4                      | 5/25                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| S02B                     | PH                    | SB              | 6/07               | -                                    | -                                    | 4           | -                     | 4                      | 6/13                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| S02C                     | PH                    | SB              | 2/23               | 6/20                                 | 6/24                                 | 3           | 6/27                  | 0                      | -                              | -                                  | 7/19                       | 2                         | 1                                               | 1                           |
| S03A                     | ST                    | OV              | 5/15               | 5/14                                 | 5/21                                 | 4           | -                     | 4                      | 6/12                           | AVPR                               | -                          | 0                         | -                                               | -                           |
| S04A                     | ST                    | OB              | 5/15               | -                                    | -                                    | 4           | -                     | 4                      | 5/21                           | COYO                               | -                          | 0                         | -                                               | -                           |
| S04B                     | ST                    | OB              | 6/07               | 5/26                                 | 5/31                                 | 4           | -                     | $2^{f}$                | -                              | -                                  | 6/28                       | 2                         | 0                                               | 2                           |
| S05A                     | PH                    | SB              | 5/15               | 5/05                                 | 5/11                                 | 4           | 5/23                  | 0                      | -                              | -                                  | 6/07                       | 3                         | 1                                               | 1                           |
| S06A                     | PH                    | SB              | 5/15               | 5/15                                 | 5/24                                 | 4           | 5/28                  | 0                      | -                              | -                                  | 6/16                       | 4                         | 0                                               | 0                           |
| S07A                     | PH                    | SB              | 5/15               | 5/13                                 | 5/19                                 | 4           | 5/23                  | 0                      | -                              | -                                  | 6/12                       | 4                         | 0                                               | 4                           |
| S08A                     | PH                    | SV              | 5/17               | -                                    | -                                    | 3           | -                     | 3                      | 6/04                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| S08B                     | PH                    | SV              | 6/17               | 6/14                                 | 6/20                                 | 4           | 6/27                  | 3 <sup>f</sup>         | -                              | -                                  | 7/19                       | 1                         | 0                                               | 1                           |
| S09A                     | EO                    | OV              | 5/18               | -                                    | -                                    | 4           | -                     | 4                      | 5/26                           | COYO                               | -                          | 0                         | -                                               | -                           |
| S09B                     | EO                    | OB              | 6/07               | -                                    | -                                    | 3           | -                     | 3                      | 6/12                           | UNKN                               | _                          | 0                         | -                                               | -                           |

## Continued.

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore.

<sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Nest Number <sup>a</sup> | Location <sup>b</sup> | Habitat <sup>c</sup> | Date Nest<br>Found | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | Clutch Size | Date Nest<br>Exclosed | Number of Eggs<br>Lost | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | Number of Eggs<br>Hatched | Number of Eggs<br>Left in Scrape<br>After Hatch | Number of Chicks<br>Fledged |
|--------------------------|-----------------------|----------------------|--------------------|--------------------------------------|--------------------------------------|-------------|-----------------------|------------------------|--------------------------------|------------------------------------|----------------------------|---------------------------|-------------------------------------------------|-----------------------------|
| 1998, Reference          | Area, Con             | tinued.              |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| S10A                     | EO                    | OV                   | 5/23               | 5/20                                 | 5/26                                 | 4           | -                     | 4                      | 6/12                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| S10B                     | EO                    | OB                   | 6/23               | 6/22                                 | -                                    | 3           | -                     | 3                      | 6/27                           | GULL                               | -                          | 0                         | -                                               | -                           |
| S11A                     | PH                    | SV                   | 5/25               | -                                    | -                                    | 3           | -                     | 3                      | 6/13                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| S12A                     | PH                    | SB                   | 5/27               | 5/26                                 | 6/01                                 | 4           | 6/22                  | 0                      | -                              | -                                  | 6/26                       | 3                         | 1                                               | 0                           |
| S13A                     | EO                    | OV                   | 5/30               | 5/27                                 | 6/03                                 | 4           | -                     | 4                      | 6/12                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| S13B                     | EO                    | OV                   | 6/21               | 6/20                                 | 6/26                                 | 4           | -                     | 0                      | -                              | -                                  | 7/21                       | 4                         | 0                                               | 2                           |
| S14A                     | PH                    | TB                   | 6/08               | -                                    | -                                    | 3           | 6/21                  | 3                      | 6/29                           | STRM                               | -                          | 0                         | -                                               | -                           |
| S15A                     | PH                    | SB                   | 6/17               | 6/08                                 | 6/14                                 | 4           | 6/21                  | 0                      | -                              | -                                  | 7/11                       | 3                         | 1                                               | 3                           |
| N07A                     | WA                    | OB                   | 5/29               | 6/20                                 | 6/26                                 | 4           | 5/30                  | 0                      | -                              | -                                  | 6/22                       | 4                         | 0                                               | 0                           |
| N11A                     | WA                    | OV                   | 6/22               | -                                    | -                                    | 4           | 6/27                  | 4                      | 7/15                           | ABAN                               | -                          | 0                         | -                                               | -                           |

#### Continued.

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore.

<sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Nest Number <sup>a</sup> | Location <sup>b</sup> | Habitat <sup>°</sup> | Date Nest<br>Found | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | Clutch Size | Date Nest<br>Exclosed | Number of Eggs<br>Lost | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | Number of Eggs<br>Hatched | Number of Eggs<br>Left in Scrape<br>After Hatch | Number of Chicks<br>Fledged |
|--------------------------|-----------------------|----------------------|--------------------|--------------------------------------|--------------------------------------|-------------|-----------------------|------------------------|--------------------------------|------------------------------------|----------------------------|---------------------------|-------------------------------------------------|-----------------------------|
| 1999, Gull-remo          | oval Area             |                      |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| 06A                      | NO                    | OV                   | 5/07               | 5/07                                 | 5/12                                 | 4           | 5/14                  | 4                      | 5/16                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| 06B                      | NO                    | OV                   | 5/29               | 5/29                                 | 6/05                                 | 3           | -                     | 3                      | 6/09                           | GULL                               | -                          | 0                         | -                                               | -                           |
| 08A                      | NO                    | OB                   | 5/11               | 5/11                                 | 5/17                                 | 4           | 5/17                  | 0                      | -                              | -                                  | 6/12                       | 4                         | 0                                               | 1                           |
| 10A                      | NT                    | OV                   | 5/13               | 5/08                                 | 5/13                                 | 4           | 5/14                  | 0                      | -                              | -                                  | 6/12                       | 4                         | 0                                               | 2                           |
| 22A                      | NO                    | OV                   | 5/31               | 5/28                                 | 6/03                                 | 4           | -                     | 0                      | -                              | -                                  | 6/29                       | 4                         | 0                                               | 2                           |
| 24A                      | NO                    | OB                   | 6/01               | 6/01                                 | 6/06                                 | 4           | -                     | 4                      | 6/10                           | GULL                               | -                          | 0                         | -                                               | -                           |
| 25A                      | NT                    | OV                   | 6/02               | 5/26                                 | 5/31                                 | 4           | -                     | 0                      | -                              | -                                  | 6/27                       | 2                         | 2                                               | 0                           |
| 27A                      | NS                    | SV                   | 6/18               | 6/18                                 | 6/23                                 | 4           | 6/30                  | 4                      | 7/04                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| 28A                      | NS                    | SV                   | 6/19               | 6/19                                 | 6/24                                 | 3           | -                     | 3                      | 7/03                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| 29A                      | NT                    | SV                   | 6/25               | 6/19                                 | 6/25                                 | 3           | -                     | 0                      | -                              | -                                  | 7/22                       | 2                         | 1                                               | 0                           |
| 1999, Buffer Ar          | ea                    |                      |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| 26A                      | BA                    | OB                   | 6/02               | 5/28                                 | 6/03                                 | 4           | 6/06                  | 0                      | -                              | -                                  | 6/27                       | 4                         | 0                                               | 0                           |

#### Continued.

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore. <sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Nest Number <sup>a</sup> | Location <sup>b</sup> | Habitat <sup>°</sup> | Date Nest<br>Found | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | Clutch Size | Date Nest<br>Exclosed | Number of Eggs<br>Lost | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | Number of Eggs<br>Hatched | Number of Eggs<br>Left in Scrape<br>After Hatch | Number of Chicks<br>Fledged |
|--------------------------|-----------------------|----------------------|--------------------|--------------------------------------|--------------------------------------|-------------|-----------------------|------------------------|--------------------------------|------------------------------------|----------------------------|---------------------------|-------------------------------------------------|-----------------------------|
| 1999, Reference          | Area                  |                      |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| 01A                      | ST                    | OB                   | 5/01               | 5/01                                 | 5/10                                 | 4           | -                     | 4                      | 5/11                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| 01B                      | ST                    | OV                   | 5/19               | 5/19                                 | 5/26                                 | 4           | -                     | 0                      | -                              | -                                  | 6/19                       | 4                         | 0                                               | 4                           |
| 02A                      | PH                    | SB                   | 5/04               | 5/01                                 | 5/06                                 | 4           | 5/11                  | 4                      | 5/20                           | ADMO                               | -                          | 0                         | -                                               | -                           |
| 03A                      | PH                    | SB                   | 5/05               | 5/05                                 | 5/12                                 | 4           | 5/13                  | 0                      | -                              | -                                  | 6/07                       | 4                         | 0                                               | 4                           |
| 04A                      | PH                    | SV                   | 5/06               | 5/06                                 | 5/11                                 | 4           | 5/13                  | 4                      | 5/20                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| 04B                      | PH                    | SB                   | 5/30               | 5/30                                 | 6/03                                 | 4           | -                     | 4                      | 6/17                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| 05A                      | EO                    | OB                   | 5/06               | 5/06                                 | 5/13                                 | 4           | 5/17                  | 4                      | 5/21                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| 05B                      | EO                    | OB                   | 6/02               | 6/02                                 | 6/08                                 | 4           | -                     | 0                      | -                              | -                                  | 7/02                       | 4                         | 0                                               | 2                           |
| 07A                      | PH                    | SB                   | 5/08               | 5/08                                 | 5/14                                 | 4           | 5/17                  | 0                      | -                              | -                                  | 6/09                       | 4                         | 0                                               | 4                           |
| 09A                      | EO                    | OV                   | 5/12               | -                                    | -                                    | 3           | -                     | 3                      | 5/14                           | UNKN                               | -                          | 0                         | -                                               | -                           |
| 11A                      | PH                    | SB                   | 5/15               | 5/11                                 | 5/17                                 | 4           | 5/28                  | 1 <sup>f</sup>         | -                              | -                                  | 6/12                       | 1                         | 2                                               | 1                           |
| 12A                      | PH                    | SV                   | 5/16               | -                                    | -                                    | 4           | 5/17                  | 4                      | 5/18                           | ABAN                               | -                          | 0                         | -                                               | -                           |
| 12B                      | PH                    | SB                   | 5/29               | 5/29                                 | 6/04                                 | 4           | -                     | 0                      | -                              | -                                  | 6/29                       | 4                         | 0                                               | 0                           |
| 13A                      | EO                    | SB                   | 5/16               | 5/16                                 | 5/24                                 | 4           | 5/28                  | 0                      | -                              | -                                  | 6/18                       | 4                         | 0                                               | 4                           |
| 14A                      | PH                    | SV                   | 5/19               | 5/11                                 | 5/17                                 | 2           | -                     | 0                      | -                              | -                                  | 6/13                       | 2                         | 0                                               | 1                           |
| 15A                      | PH                    | SB                   | 5/19               |                                      | 0                                    | -           | -                     | 6/20                   | 4                              | 0                                  | 3                          |                           |                                                 |                             |
| 16A                      | PH                    | SB                   | 5/26               | 5/26                                 | 5/31                                 | 4           | 6/05                  | 0                      | -                              | -                                  | 6/23                       | 4                         | 0                                               | 3                           |
| 17A                      | PH                    | SB                   | 5/26               | 5/23                                 | 5/29                                 | 4           | 5/31                  | 0                      | -                              | -                                  | 6/22                       | 4                         | 0                                               | 4                           |
| 18A                      | PH                    | TB                   | 5/26               | -                                    | -                                    | 4           | 5/28                  | 4                      | 6/15                           | STRM                               | -                          | 0                         | -                                               | -                           |
| 23A                      | WA                    | SB                   | 5/31               | 5/31                                 | 6/07                                 | 4           | 6/11                  | 0                      | -                              | -                                  | 7/10                       | 4                         | 0                                               | 0                           |

## Continued.

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore.

<sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Nest Number <sup>a</sup> | Location <sup>b</sup> | Habitat <sup>°</sup> | Date Nest<br>Found | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | Clutch Size | Date Nest<br>Exclosed | Number of Eggs<br>Lost | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | Number of Eggs<br>Hatched | Number of Eggs<br>Left in Scrape<br>After Hatch | Number of Chicks<br>Fledged |
|--------------------------|-----------------------|----------------------|--------------------|--------------------------------------|--------------------------------------|-------------|-----------------------|------------------------|--------------------------------|------------------------------------|----------------------------|---------------------------|-------------------------------------------------|-----------------------------|
| 2000, Gull-rem           | oval Area             |                      |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| 09A                      | NO                    | OV                   | 05/08              | 05/08                                | 05/14                                | 4           | -                     | 4                      | 05/24                          | AMOY                               | -                          | 0                         | -                                               | -                           |
| 09B                      | NO                    | OB                   | 06/05              | 05/31                                | 06/06                                | 4           | 06/13                 | 0                      | -                              | -                                  | 07/01                      | 4                         | 0                                               | 4                           |
| 14A                      | NT                    | OV                   | 05/13              | 05/13                                | -                                    | 1           | -                     | 1                      | 05/20                          | ABAN                               | -                          | 0                         | -                                               | -                           |
| 14B <sup>.g</sup>        | NT                    | OV                   | 06/02              | 06/02                                | 06/08                                | 4           | -                     | 1                      | -                              | -                                  | 07/06                      | 3                         | 0                                               | 1                           |
| 15A                      | NO                    | OV                   | 05/15              | 05/15                                | 05/22                                | 4           | -                     | 4                      | 05/23                          | AVPR                               | -                          | 0                         | -                                               | -                           |
| 15B                      | NO                    | OB                   | 06/03              | 05/30                                | 06/05                                | 4           | -                     | 4                      | 06/07                          | STRM                               | -                          | 0                         | -                                               | -                           |
| 17A                      | NO                    | OV                   | 05/23              | -                                    | -                                    | 4           | -                     | 4                      | 05/30                          | AVPR                               | -                          | 0                         | -                                               | -                           |
| 17B                      | NO                    | OV                   | 06/07              | 06/06                                | 06/12                                | 4           | -                     | 0                      | -                              | -                                  | 07/08                      | 4                         | 0                                               | 0                           |
| 22A                      | NO                    | OB                   | 06/01              | 06/01                                | 06/05                                | 3           | 06/13                 | 0                      | -                              | -                                  | 07/03                      | 3                         | 0                                               | 2                           |
| 24A                      | NO                    | OB                   | 06/01              | 06/01                                | 06/07                                | 4           | 06/13                 | 0                      | -                              | -                                  | 07/01                      | 3                         | 1                                               | 2                           |
| 29A                      | NS                    | SV                   | 06/21              | 06/20                                | 06/24                                | 3           | -                     | 3                      | 07/15                          | UNKN                               | -                          | 0                         | -                                               | -                           |

## Continued.

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore.

<sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Nest Num ber <sup>a</sup> | tion <sup>b</sup>     | lat <sup>c</sup>     | Nest<br>d          | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | h Size | Nest<br>sed           | ber of Eggs    | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | ber of Eggs<br>1ed | ber of Eggs<br>n Scrape<br>Hatch | ber of Chicks<br>ed |
|---------------------------|-----------------------|----------------------|--------------------|--------------------------------------|--------------------------------------|--------|-----------------------|----------------|--------------------------------|------------------------------------|----------------------------|--------------------|----------------------------------|---------------------|
| Nest ]                    | Location <sup>b</sup> | Habitat <sup>c</sup> | Date Nest<br>Found | Estim<br>Nest ]                      | Estim<br>Nest (                      | Clutch | Date Nest<br>Exclosed | Number<br>Lost | Estimated<br>Nest Loss         | Cause<br>Loss <sup>d</sup>         | Estima<br>Hatch            | Number<br>Hatched  | Number<br>Left in S<br>After Ha  | Number<br>Fledged   |
| 2000, Reference           | e Area                |                      |                    |                                      |                                      |        |                       |                |                                |                                    |                            |                    |                                  |                     |
| 01A                       | PH                    | SB                   | 05/06              | 05/06                                | 05/12                                | 4      | 05/27                 | 0              | -                              | -                                  | 06/07                      | 4                  | 0                                | 2                   |
| 02A                       | EO                    | OB                   | 05/06              | 05/06                                | 05/13                                | 3      | 05/31                 | 0              | -                              | -                                  | 06/08                      | 3                  | 0                                | 0                   |
| 03A                       | PH                    | SB                   | 05/06              | 05/04                                | 05/10                                | 4      | 05/15                 | 0              | -                              | -                                  | 06/05                      | 4                  | 0                                | 0                   |
| 04A                       | PH                    | SB                   | 05/07              | 05/07                                | 05/14                                | 4      | 05/27                 | 0              | -                              | -                                  | 06/09                      | 4                  | 0                                | 0                   |
| 05A                       | PH                    | SB                   | 05/07              | 05/05                                | 05/12                                | 4      | 05/15                 | 0              | -                              | -                                  | 06/07                      | 4                  | 0                                | 0                   |
| 06A                       | PH                    | SV                   | 05/07              | 05/05                                | -                                    | 3      | -                     | 3              | 05/12                          | ABAN                               | -                          | 0                  | -                                | -                   |
| 06B                       | PH                    | SB                   | 05/23              | 05/22                                | 05/30                                | 4      | 06/02                 | 0              | -                              | -                                  | 06/24                      | 4                  | 0                                | 4                   |
| 07A                       | EO                    | OB                   | 05/08              | 05/08                                | 05/14                                | 4      | 05/27                 | 4              | 05/31                          | ABAN                               | -                          | 0                  | -                                | -                   |
| 08A                       | ST                    | OB                   | 05/08              | 05/06                                | 05/13                                | 4      | -                     | 4              | 05/30                          | AVPR                               | -                          | 0                  | -                                | -                   |
| 08B                       | ST                    | OV                   | 06/10              | 06/06                                | 06/12                                | 4      | -                     | 0              | -                              | -                                  | 07/07                      | 4                  | 0                                | 1                   |
| 10A                       | PH                    | SB                   | 05/10              | 05/10                                | 05/17                                | 4      | 05/31                 | 0              | -                              | -                                  | 06/14                      | 4                  | 0                                | 3                   |
| 11A                       | PH                    | SB                   | 05/10              | 05/10                                | 05/15                                | 4      | -                     | 4              | 05/18                          | UNKN                               | -                          | 0                  | -                                | -                   |
| 11B                       | PH                    | SB                   | 05/27              | 05/27                                | 06/02                                | 4      | 06/08                 | 0              | -                              | -                                  | 06/27                      | 4                  | 0                                | 4                   |
| 12A                       | PH                    | SV                   | 05/13              | 05/10                                | 05/16                                | 4      | -                     | 0              | -                              | -                                  | 06/12                      |                    | 0                                | 4                   |
| 13A                       | PH                    | SB                   | 05/13              | 05/13                                | 05/20                                | 4      | -                     | 4              | 06/01                          | UNKN                               | -                          | 0                  | -                                | -                   |
| 13B                       | PH                    | SV                   | 06/14              | 06/14                                | 06/20                                | 4      | -                     | 4              | 06/28                          | AMOY                               | -                          | 0                  | -                                | -                   |
| 16A                       | PH                    | SB                   | 05/22              | 05/22                                | 05/29                                | 4      | 06/02                 | 0              | -                              | -                                  | 06/24                      | 4                  | 0                                | 1                   |
| 18A                       | PH                    | TB                   | 05/25              | 06/22                                | 06/28                                | 4      | 06/08                 | 0              | -                              | -                                  | 06/23                      | 4                  | 0                                | 3                   |
| 19A                       | PH                    | SB                   | 05/27              | 05/26                                | 06/01                                | 4      | 06/08                 | 0              | -                              | -                                  | 06/28                      | 4                  | 0                                | 0                   |

#### Continued.

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore.

<sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Nest Num ber <sup>a</sup> | Location <sup>b</sup> | Habitat <sup>e</sup> | Date Nest<br>Found | Estimated Date of<br>Nest Initiation | Estimated Date of<br>Nest Completion | Clutch Size | Date Nest<br>Exclosed | Number of Eggs<br>Lost | Estimated Date of<br>Nest Loss | Cause of Nest<br>Loss <sup>d</sup> | Estimated Date of<br>Hatch | Number of Eggs<br>Hatched | Number of Eggs<br>Left in Scrape<br>After Hatch | Number of Chicks<br>Fledged |
|---------------------------|-----------------------|----------------------|--------------------|--------------------------------------|--------------------------------------|-------------|-----------------------|------------------------|--------------------------------|------------------------------------|----------------------------|---------------------------|-------------------------------------------------|-----------------------------|
| ), Reference              | e Area, Con           | tinued.              |                    |                                      |                                      |             |                       |                        |                                |                                    |                            |                           |                                                 |                             |
| 21A                       | WA                    | SV                   | 05/29              | -                                    | -                                    | 2           | -                     | 2                      | -                              | ABAN                               | -                          | 0                         | -                                               | -                           |
| 21B                       | WA                    | OB                   | 05/29              | -                                    | -                                    | 2           | -                     | 2                      | 06/07                          | STRM                               | -                          | 0                         | -                                               | -                           |
| 23A                       | EO                    | OB                   | 06/01              | -                                    | -                                    | 1           | -                     | 1                      | 06/03                          | UNKN                               | -                          | 0                         | -                                               | -                           |
| 23B                       | EO                    | OB                   | 06/08              | 06/08                                | 06/12                                | 3           | 06/20                 | 0                      | -                              | -                                  | 07/08                      | 3                         | 0                                               | 3                           |
| 25A                       | EO                    | OB                   | 06/05              | -                                    | -                                    | 2           | -                     | 2                      | 06/06                          | STRM                               | -                          | 0                         | -                                               | -                           |
| 25B                       | EO                    | OB                   | 06/16              | -                                    | -                                    | 3           | -                     | 3                      | 06/25                          | AVPR                               | -                          | 0                         | -                                               | -                           |
| 26A                       | PH                    | SV                   | 06/08              | 06/08                                | 06/15                                | 4           | -                     | 0                      | -                              | -                                  | 07/13                      | 3                         | 1                                               | 0                           |
| 27A                       | ST                    | OV                   | 06/13              | 06/11                                | 06/17                                | 4           | -                     | 0                      | -                              | -                                  | 07/15                      | 2                         | 2                                               | 1                           |
| 28A                       | PH                    | SB                   | 06/14              | 06/13                                | 06/19                                | 4           | 06/28                 | 0                      | -                              | -                                  | 07/13                      | 3                         | 1                                               | 2                           |

<sup>a</sup> Nest numbers in 1998 were labeled N for the north half and S for the south half of the island. First nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

<sup>b</sup> BA = Buffer Area, EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>c</sup> OB = Ocean Backshore, OV = Ocean Open Vegetation, SB = Sound Backshore, SV = Sound Open Vegetation, TB = Tidal Pond Backshore.

<sup>d</sup> ABAN = Abandoned, ADMO = Adult Mortality, AMOY = American Oystercatcher, AVPR = Unidentified Avian Predator, COYO = Coyote, GULL = Gull, STRM = Storm/Flood Tide, UNKN = Unknown.

<sup>e</sup> Nest was located in vegetation between ocean side and Hospital Pond.

<sup>f</sup> Cause of egg loss was unknown.

| Year,<br>Management<br>Area | Nest<br>Area <sup>a</sup> | Primary<br>Foraging<br>Habitat <sup>b</sup> | Brood/<br>Nest<br>Number <sup>c</sup> | Hatch<br>Date | of | Chicks |     | Nu  | mbe | r of | Chic | cks ( | Obse | rved | By A | Age | (day | s; D | 00 = | Day | , 0, ł | natcl | h da | y; D | 025 = | = Da | y 25 | , fle | dge         | day) | 1 |     |     |
|-----------------------------|---------------------------|---------------------------------------------|---------------------------------------|---------------|----|--------|-----|-----|-----|------|------|-------|------|------|------|-----|------|------|------|-----|--------|-------|------|------|-------|------|------|-------|-------------|------|---|-----|-----|
|                             |                           |                                             |                                       |               |    |        | D00 | D01 | D02 | D03  | D04  | D05   | D06  | D07  | D08  | D09 | D10  | D11  | D12  | D13 | D14    | D15   | D16  | D17  | D18   | D19  | D20  | D21   | <i>cc</i> 0 | D73  |   | D24 | D25 |
| 1998, Gull-ren              | noval Ar                  | ea                                          |                                       |               |    |        |     |     |     |      |      |       |      |      |      |     |      |      |      |     |        |       |      |      |       |      |      |       |             |      |   |     |     |
|                             | NT                        | Sound                                       | N05A                                  | 06/20         | 4  | 2      | 2   | 3   |     |      |      |       | 1    | 3    |      |     |      |      |      | 3   | 2      | 1     |      |      |       | 1    |      | 2     | 2           |      | 2 |     | 2   |
|                             | NO                        | Ocean                                       | N06A                                  | 06/20         | 4  | 0      | 3   | 2   |     |      |      |       |      | 1    |      |     |      | 1    | 1    | 0   |        |       |      |      |       |      |      |       |             |      |   |     |     |
|                             | NO                        | Ocean                                       | N09A                                  | 06/28         | 4  | 0      | 4   |     | 0   |      |      |       |      |      |      |     |      |      |      |     |        |       |      |      |       |      |      |       |             |      |   |     |     |
|                             | NO                        | Ocean                                       | N10A                                  | 06/27         | 4  | 0      | 1   |     |     | 0    |      |       |      |      |      |     |      |      |      |     |        |       |      |      |       |      |      |       |             |      |   |     |     |
|                             | NO                        | Sound                                       | N12A                                  | 07/26         | 3  | 2      | 2   | 3   | 3   | 1    |      |       | 2    | 2    |      | 2   | 2    | 2    | 2    | 2   | 2      | 2     |      | . 2  | 2     |      | 2    | 2     |             |      | 2 |     | 2   |
| 1998, Reference             | e Area                    |                                             |                                       |               |    |        |     |     |     |      |      |       |      |      |      |     |      |      |      |     |        |       |      |      |       |      |      |       |             |      |   |     |     |
|                             | WA                        | Sound                                       | N07A                                  | 06/24         | 4  | 0      | 4   |     |     |      |      |       |      | 1    | 1    |     |      |      | 1    |     |        |       |      |      |       |      |      |       |             |      | 0 |     |     |
|                             | PH                        | Sound                                       | S01A                                  | 06/16         | 4  | 1      | 3   | 2   | 4   |      | 2    | 4     | 2    | 2    |      | 2   | 2    |      |      |     |        |       | 1    | 1    | l     | 1    | 1    | 1     | 1           | 1    | 1 |     | 1   |
|                             | PH                        | Sound                                       | S02C                                  | 07/19         | 2  | 1      | 1   | 2   | 2   | 2    | 2    | 2     | 1    |      |      | 2   | 1    | 1    |      | 1   | 1      |       | 1    | 1    | l     |      | 1    |       | 1           |      |   |     | 1   |
|                             | ST                        | Ocean                                       | S04B                                  | 07/02         | 2  | 2      | 2   | 1   | 2   | 1    |      |       | 2    |      |      |     | 2    | 1    |      | 1   | 2      |       |      |      |       |      | 2    | 2     |             |      |   |     | 2   |
|                             | PH                        | Sound                                       | S05A                                  | 06/07         | 3  | 1      | 3   |     |     |      |      |       |      |      |      |     | 1    | 1    |      | 1   |        | 1     | 1    | 1    | l     | 1    | 1    |       |             |      |   |     | 1   |
|                             | PH                        | Sound                                       | S06A                                  | 06/16         | 4  | 0      | 2   |     | 4   |      | 4    |       |      | 3    | 3    | 3   | 3    |      |      |     |        |       | 0    | )    |       |      |      |       |             |      |   |     |     |
|                             | PH                        | Sound                                       | S07A                                  | 06/16         | 4  | 4      |     |     | 4   |      | 4    | 2     |      | 4    | 4    | 4   | 4    |      |      |     |        |       | 4    | 4    | Ļ .   | 4    | 4    | 3     |             | 4    | 4 | 4   | 4   |
|                             | PH                        | Sound                                       | S08B                                  | 07/19         | 1  | 1      | 1   |     | 1   | 1    | 1    | 1     | 1    |      |      | 1   | 1    | 1    |      | 1   | 1      |       | 1    | 1    | l     |      | 1    |       |             |      |   |     | 1   |
|                             | PH                        | Sound                                       | S12A                                  | 06/26         | 3  | 0      | 3   |     |     |      |      |       | 0    |      |      |     |      |      |      |     |        |       |      |      |       |      |      |       |             |      |   |     |     |
|                             | EO                        | Ocean                                       | S13B                                  | 07/21         | 4  | 2      | 4   | 3   | 3   | 3    |      |       |      | 3    |      | 3   |      | 1    | 2    |     |        |       | 2    |      |       |      |      |       |             |      |   |     | 2   |
|                             | PH                        | Sound                                       | S15A                                  | 07/11         | 3  | 3      | 2   | 3   | 3   | 3    | 2    | 3     | 3    | 3    | 3    | 2   | 3    | 3    | 3    | 2   | 3      |       |      | . 3  | 3     | 3    | 3    |       | 3           | 3    |   | 3   | 3   |

#### Continued.

<sup>a</sup> EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>b</sup> Ocean = ocean side was the primary foraging area, Sound = sound side or tidal pond intertidal zone was the primary foraging area. Only if nest area = PH does the primary foraging area included tidal pond intertidal zone.

<sup>c</sup> Brood/nest numbers in 1998 were labeled N for the north half, and S for the south half of the island. Broods from first nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

| Year,<br>Management<br>Area |           | Primary<br>Foraging<br>Habitat <sup>b</sup> | Brood/<br>Nest<br>Number <sup>c</sup> | Hatch | of<br>Chicks | Number<br>of<br>Chicks<br>Fledged |     | Nu  | mbe | r of ( | Chie | ks O | bser | ved | By A | Age ( | days | s; D( | 00 = 1 | Day | 0, h: | atch | day | ; D2 | 5 = I | Day 2 | 25, flo | edge | e day | 7)  |     |     |
|-----------------------------|-----------|---------------------------------------------|---------------------------------------|-------|--------------|-----------------------------------|-----|-----|-----|--------|------|------|------|-----|------|-------|------|-------|--------|-----|-------|------|-----|------|-------|-------|---------|------|-------|-----|-----|-----|
|                             |           |                                             |                                       |       |              |                                   | D00 | D01 | D02 | D03    | D04  | D05  | D06  | D07 | D08  | D09   | D10  | D11   | D12    | D13 | D14   | D15  | D16 | D17  | D18   | D19   | D20     | D21  | D22   | D23 | D24 | D25 |
| 1999, Gull-rem              | noval Arc | ea                                          |                                       |       |              |                                   |     |     |     |        |      |      |      |     |      |       |      |       |        |     |       |      |     |      |       |       |         |      |       |     |     |     |
|                             | NO        | Seal                                        | 08A                                   | 06/12 | 4            | 1                                 | 4   |     | 4   | 4      |      | 4    | 4    | 4   | 2    | 2     |      | 2     | 2      | 3   | 2     | 2    |     |      | 3     |       |         |      |       | 1   | 1   | 1   |
|                             | NT        | Ocean                                       | 10A                                   | 06/12 | 4            | 2                                 | 4   |     | 3   | 3      |      | 2    | 1    | 2   | 2    | 2     | 1    | 2     | 2      | 2   | 2     | 2    |     |      | 2     |       |         | 1    | 1     | 1   |     | 2   |
|                             | NO        | Seal                                        | 22A                                   | 06/29 | 4            | 2                                 |     | 4   |     |        | 3    | 1    | 3    |     | 3    | 3     | 3    | 2     | 3      | 3   |       | 2    | 2   | 1    | 2     |       |         |      |       | 2   |     | 2   |
|                             | NT        | Ocean                                       | 25A                                   | 06/27 | 2            | 0                                 | 2   |     |     | 2      |      |      | 0    |     |      |       |      |       |        |     |       |      |     |      |       |       |         |      |       |     |     |     |
|                             | NT        | Sound                                       | 29A                                   | 07/22 | 2            | 0                                 | 2   | 2   | 2   | 2      |      | 1    | 0    |     |      |       |      |       |        | •   |       |      |     |      |       | •     |         |      |       |     |     |     |
| 1999, Buffer A              | rea       |                                             |                                       |       |              |                                   |     |     |     |        |      |      |      |     |      |       |      |       |        |     |       |      |     |      |       |       |         |      |       |     |     |     |
|                             | EO        | Ocean                                       | 26A                                   | 06/27 | 4            | 0                                 | 1   |     |     | 1      |      |      | 1    | 0   |      |       |      |       |        | •   |       |      |     |      |       | •     |         |      |       |     |     |     |
| 1999, Referenc              | e Area    |                                             |                                       |       |              |                                   |     |     |     |        |      |      |      |     |      |       |      |       |        |     |       |      |     |      |       |       |         |      |       |     |     |     |
|                             | ST        | Ocean                                       | 01B                                   | 06/19 | 4            | 4                                 | 2   | 3   | 3   | 4      | 3    | 3    | 3    | 4   | 3    |       | 4    |       | 3      |     | 4     | 1    | 3   | 3    | 4     | 3     | 3       |      |       | 4   |     | 4   |
|                             | PH        | Sound                                       | 03A                                   | 06/07 | 4            | 4                                 | 3   | 3   | 3   | 4      | 4    | 3    | 4    | 4   | 2    | 4     | 4    | 4     | 3      | 3   | 3     | 3    | 3   | 4    | 2     | 3     | 4       |      | 2     | 4   | 4   | 4   |
|                             | EO        | Seal                                        | 05B                                   | 07/02 | 4            | 2                                 |     | 1   | 2   |        | 4    | 4    | 4    | 3   | 1    |       | 3    |       | 2      | 2   | 2     | 2    |     |      | 2     | 2     | 1       |      | 2     | 2   | 2   | 2   |
|                             | PH        | Sound                                       | 07A                                   | 06/09 | 4            | 4                                 | 1   | 2   | 4   | 4      | 3    | 4    | 3    | 3   | 4    | 3     | 4    | 4     | 3      | 2   | 2     | 2    | 2   | 1    | 3     |       | 2       |      | 4     |     | 4   | 4   |
|                             | PH        | Sound                                       | 11A                                   | 06/12 | 1            | 1                                 | 1   | 1   | 1   | 1      | 1    | 1    | 1    | 1   | 1    | 1     | 1    | 1     | 1      |     | 1     | 1    |     | 1    |       | 1     |         | 1    | 1     | 1   | 1   | 1   |
|                             | PH        | Sound                                       | 12B                                   | 06/29 | 4            | 0                                 | 1   | 3   | 2   |        | 2    |      | 1    | 0   |      |       |      |       |        |     |       |      |     |      |       |       |         |      |       |     |     |     |
|                             | PH        | Seal                                        | 13A                                   | 06/18 | 4            | 4                                 | 3   | 4   | 4   | 4      | 4    |      | 4    | 3   | 4    | 4     |      | 2     | 3      | 4   |       | 4    | 4   | 4    | 4     | 4     | 4       | 4    | 4     |     | 4   | 4   |
|                             | PH        | Sound                                       | 14A                                   | 06/13 | 2            | 1                                 | 2   | 1   | 1   | 1      | 1    | 1    | 1    | 1   | 1    | 1     | 1    | 1     |        |     | 1     |      | 1   |      | 1     |       |         | 1    | 1     | 1   | 1   | 1   |
|                             | PH        | Seal                                        | 15A                                   | 06/20 | 4            | 3                                 | 3   |     | 4   | 4      | 3    | 3    | 3    | 3   |      | 3     |      | 3     |        | 2   | 3     | 3    | 3   | 3    | 3     | 3     | 3       | 3    |       |     | 3   | 3   |
|                             | PH        | Sound                                       | 16A                                   | 06/23 | 4            | 3                                 | 2   |     | 3   | 3      | 4    |      | 3    |     | 2    |       | 3    | 3     | 3      | 3   | 3     | 3    | 3   | 3    | 3     |       |         | 3    | 2     | 2   | 3   | 3   |
|                             | PH        | Sound                                       | 17A                                   | 06/22 | 4            | 4                                 | 3   | 4   | 2   | 2      | 3    | 2    |      | 3   |      | 4     |      | 4     | 4      | 4   | 4     | 4    | 4   | 4    | 4     | 4     |         |      | 4     | 4   | 4   | 4   |
|                             | WA        | Sound                                       | 23A                                   | 07/10 | 4            | 0                                 | 3   | 3   | 1   |        | 2    | 1    | 1    |     | 1    | 1     | 1    | 1     |        | 1   | 1     | 1    | 1   |      | 1     | 1     | 1       | 0    |       |     |     |     |

# Continued.

<sup>a</sup> EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash. <sup>b</sup> Ocean = ocean side was the primary foraging area, Sound = sound side or tidal pond intertidal zone was the primary foraging area. Only if nest area = PH does the primary foraging area included tidal pond intertidal zone.

<sup>c</sup> Brood/nest numbers in 1998 were labeled N for the north half, and S for the south half of the island. Broods from first nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

| Year,<br>Management<br>Area |         | Primary<br>Foraging<br>Habitat <sup>b</sup> | Brood/<br>Nest<br>Number <sup>c</sup> |       | Number<br>of<br>Chicks<br>Hatched | of<br>Chicks |     | Nu  | mbe | r of ( | Chic | eks C | bsei | ved | By A | Age | (day | s; D | 00 = | Day | 0, h | atch | ı day | ; D2 | 25 = 1 | Day | 25, f | ledg | ge da | y)  |     |     |
|-----------------------------|---------|---------------------------------------------|---------------------------------------|-------|-----------------------------------|--------------|-----|-----|-----|--------|------|-------|------|-----|------|-----|------|------|------|-----|------|------|-------|------|--------|-----|-------|------|-------|-----|-----|-----|
|                             |         |                                             |                                       |       |                                   |              | D00 | D01 | D02 | D03    | D04  | D05   | D06  | D07 | D08  | D09 | D10  | D11  | D12  | D13 | D14  | D15  | D16   | D17  | D18    | D19 | D20   | D21  | D22   | D23 | D24 | D25 |
| 2000, Gull-rem              | oval Ar | ea                                          |                                       |       |                                   |              |     |     |     |        |      |       |      |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | NO      | Ocean                                       | 09B                                   | 07/01 | 4                                 | 4            | 2   | 2   | 3   |        | 4    | 4     | 4    | 4   | 4    |     | 4    | 2    | 4    | 4   | 4    | 4    | 4     | 4    | 4      | 3   | 4     |      | 4     | 4   | 4   | 4   |
|                             | NT      | Sound                                       | 14B                                   | 07/06 | 3                                 | 1            | 3   |     | 2   | 3      |      | 3     |      | 3   | 2    | 2   | 2    | 2    | 2    | 2   | 1    | 1    |       | 1    | 1      | 1   |       |      | 1     | 1   | 1   | 1   |
|                             | NO      | Ocean                                       | 17B                                   | 07/08 | 4                                 | 0            | 2   | 0   |     |        |      |       |      |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | NO      | Ocean                                       | 22A                                   | 07/03 | 3                                 | 2            | 2   | 3   | 3   | 3      |      | 2     | 3    |     | 3    | 1   | 3    | 3    | 3    | 3   | 3    | 3    | 3     | 3    | 3      |     | 2     | 3    | 2     | 2   |     | 2   |
|                             | NO      | Ocean                                       | 24A                                   | 07/01 | 3                                 | 2            | 2   | 2   | 3   | 2      | 3    | 3     | 3    | 3   | 3    |     | 2    | 2    | 2    | 2   | 2    | 2    | 2     | 2    | 2      | 1   | 2     |      | 2     | 1   | 1   | 2   |
| 2000, Referenc              | e Area  |                                             |                                       |       |                                   |              |     |     |     |        |      |       |      |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | PH      | Sound                                       | 01A                                   | 06/07 | 4                                 | 2            | 4   |     | 3   | 3      | 2    | 2     | 2    | 2   | 2    | 2   | 2    | 2    | 2    | 2   | 2    | 2    | 2     | 2    | 2      |     | 2     | 2    | 1     | 2   | 2   | 2   |
|                             | EO      | Ocean                                       | 02A                                   | 06/08 | 3                                 | 0            | 3   |     | 1   | 0      |      |       |      |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | PH      | Sound                                       | 03A                                   | 06/05 | 4                                 | 0            | 4   | 1   | 0   |        |      |       |      |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | PH      | Sound                                       | 04A                                   | 06/09 | 4                                 | 0            | 2   | 4   | 4   | 0      |      |       |      |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | PH      | Sound                                       | 05A                                   | 06/07 | 4                                 | 0            | 4   | 0   |     |        |      |       |      |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | PH      | Sound                                       | 06B                                   | 06/24 | 4                                 | 4            | 3   | 4   | 4   | 3      | 4    | 4     | 4    | 4   | 4    | 4   | 4    | 4    | 4    | 4   | 4    | 4    | 4     | 4    | 4      | 4   | 4     | 4    | 4     | 4   | 3   | 4   |
|                             | ST      | Ocean                                       | 08B                                   | 07/07 | 4                                 | 1            | 1   | 1   |     | 3      | 3    | 2     | 1    | 1   | 1    | 1   | 1    | 1    | 1    |     | 1    | 1    | 1     | 1    | 1      |     |       | 1    | 1     | 1   | 1   | 1   |
|                             | PH      | Seal                                        | 10A                                   | 06/14 | 4                                 | 3            | 1   | 4   | 4   | 4      | 4    | 4     | 4    | 4   | 4    | 4   | 4    | 4    | 4    | 4   | 3    | 4    | 4     | 3    | 4      | 4   | 4     | 4    | 3     | 4   | 4   | 3   |
|                             | PH      | Sound                                       | 11B                                   | 06/27 | 4                                 | 4            | 4   | 4   | 3   | 4      | 4    | 4     | 4    | 4   | 4    | 4   | 4    | 4    | 4    | 4   | 4    | 4    | 4     | 4    | 4      | 4   | 4     | 3    | 3     | 4   | 4   | 4   |
|                             | PH      | Sound                                       | 12A                                   | 06/12 | 4                                 | 4            | 3   | 3   | 4   | 4      | 4    | 4     | 4    | 3   | 4    | 4   | 4    | 4    | 4    | 4   | 2    | 4    | 4     | 3    | 4      | 3   | 4     | 4    | 4     | 4   | 4   | 4   |
|                             | PH      | Sound                                       | 16A                                   | 06/24 | 4                                 | 1            | 4   | 4   | 4   | 3      | 2    | 4     | 4    | 1   | 1    | 1   | 1    | 1    | 1    | 1   | 1    | 1    | 1     | 1    | 1      | 1   | 1     | 1    | 1     | 1   |     | 1   |
|                             | PH      | Sound                                       | 18A                                   | 06/23 | 4                                 | 3            | 4   | 4   | 3   |        | 2    | 3     | 3    | 3   | 3    | 3   | 3    | 3    | 3    | 3   | 3    | 3    | 3     | 3    | 3      | 2   | 2     | 3    | 3     | 3   | 3   | 3   |
|                             | PH      | Sound                                       | 19A                                   | 06/28 | 4                                 | 0            | 4   | 4   | 4   | 4      | 4    | 4     | 0    |     |      |     |      |      |      |     |      |      |       |      |        |     |       |      |       |     |     |     |
|                             | EO      | Ocean                                       | 23B                                   | 07/08 | 3                                 | 3            | 3   | 3   | 3   | 3      | 3    | 3     | 3    | 2   | 3    | 3   | 3    | 3    | 3    | 3   | 1    | 3    | 3     | 3    |        |     | 3     | 2    | 3     | 3   |     | 3   |
|                             | PH      | Sound                                       | 26A                                   | 07/13 | 3                                 | 0            | 3   | 3   | 3   | 3      | 3    | 3     |      | 3   | 3    | 1   | 3    | 3    | 3    |     |      |      | 1     | 0    |        |     |       |      |       |     |     |     |
|                             | ST      | Ocean                                       | 27A                                   | 07/15 | 2                                 | 1            | 1   | 2   | 2   | 1      |      | 2     | 2    |     |      | 1   | 1    |      |      |     |      | 1    | 1     |      |        |     | 1     | 1    | 1     |     | 1   | 1   |
|                             | PH      | Sound                                       | 28A                                   | 07/13 | 3                                 | 2            | 3   | 3   | 3   | 3      | 3    | 3     | 2    | 3   | 3    | 3   | 3    | 2    | 2    |     |      | 2    | 2     | 2    | 2      |     | 2     |      | 1     | 2   | 2   | 2   |

<sup>a</sup> EO = East Ocean, NO = North Ocean, NS = North Sound, NT = North Tip, PH = Powder Hole Area, ST = South Tip, WA = Overwash.

<sup>b</sup> Ocean = ocean side was the primary foraging area, Sound = sound side or tidal pond intertidal zone was the primary foraging area. Only if nest area = PH does the primary foraging area included tidal pond intertidal zone.

<sup>c</sup> Brood/nest numbers in 1998 were labeled N for the north half, and S for the south half of the island. Broods from first nest attempts are labeled with the letter A, second nest attempts are labeled with the letter B, etc.

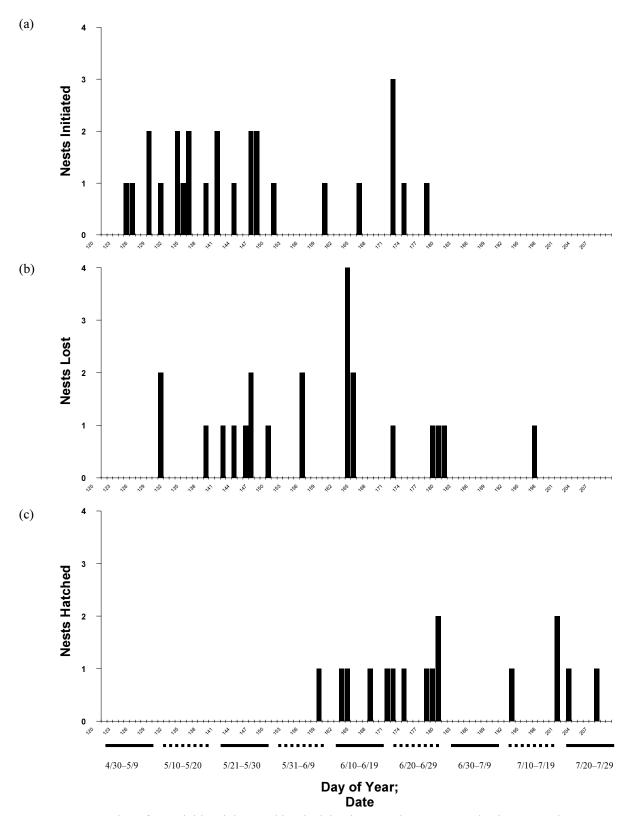
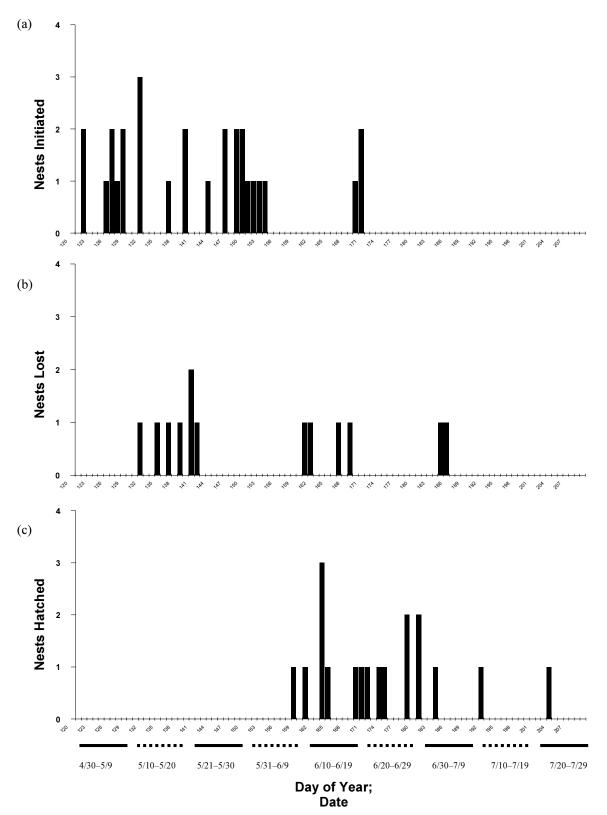
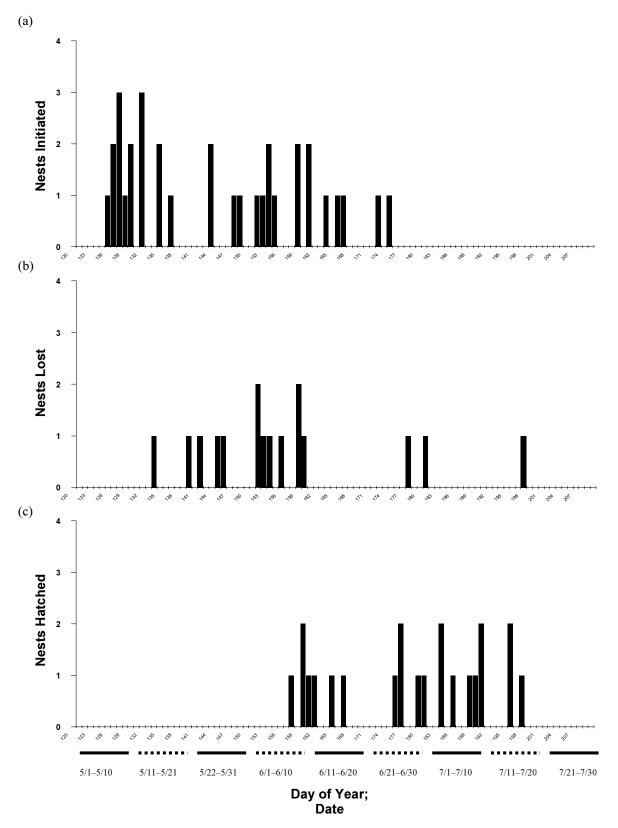





Figure A-1. Number of nests initiated, lost, and hatched, by date, South Monomoy Island, Cape Cod, Massachusetts, 1998.



**Figure A-2.** Number of nests initiated, lost, and hatched, by date, South Monomoy Island, Cape Cod, Massachusetts, 1999.



**Figure A-3.** Number of nests initiated, lost, and hatched, by date, South Monomoy Island, Cape Cod, Massachusetts, 2000.

**Appendix B.** Distribution of Potential Predators, Competitors, and Disturbances Other Than Large Gulls

*Methods*--We recorded the number of potential predators, competitors and disturbances, within 100 m of prenesting Piping Plovers, nests, and broods during daily surveys. Table B-1 lists all species seen within 100 m of prenesting plovers, plover nests, and broods. We standardized counts by always counting species in a predetermined order. To standardize the level of observer disturbance to plovers and other species during counts, we conducted counts from where we first observed the prenesting plover or plover brood, then recorded our distance (m) from the focal bird. For plover nests, we conducted counts of species from an observation point on the backshore located approximately 100 m from nests. Our distance and position relative to nests were determined using hand-held Garmin12 GPS units with the nest locations loaded in the memory. We used MRPP to examine differences in species' abundance within 100 m of prenesting plover broods among the management areas. We compared species' abundance within 100 m of successful and unsuccessful nests and broods using MRPP.

We recorded the number of potential predators, competitors and disturbances within 100 m of random points in the nesting and unused areas. We approached random points as we did plover nests (see above). Nesting areas were defined as all beach area within 500 m of a plover nest. We used MRPP to compare species' abundance in the Piping Plover nesting areas to species' abundance in the unused areas, within each management area, and island-wide.

*Results and Conclusions*--We counted more Laughing Gulls, shorebirds, and pedestrians near prenesting plovers in the gull-removal area than near prenesting plovers in the reference area (Table B-2). Laughing Gulls, shorebirds, and commercial shell-fishermen gathered on the sound-side intertidal zone sand flat in the gull-removal area to forage and harvest soft-shell clams. Foraging prenesting plovers preferred this habitat, and were concentrated there. Laughing Gulls might have used the sand flat because it was a good foraging area close to their colony site located in the gull-removal area. Laughing Gulls were not observed nesting in the reference area.

In 1999, shorebirds were more abundant near nests in the gull-removal area than near nests in the reference area (Table B-3). This was a function of the greater number of plover nests

189

in that year found on the sound side adjacent to the sand flat where shorebirds foraged. Plover nests on the sound side of the gull-removal area were found late in the season. These pairs probably failed elsewhere and were renesting on South Monomoy. They might have nested on the sound side in marginal nesting habitat because optimal nesting habitat was occupied. They might have renested in marginal habitat to take advantage of the moist substrate habitat of the sand flat, which would provide chicks with abundant prey if the nest were successful. In 2000, Least Terns were more abundant near nests and broods in the reference area than near nests and broods in the gull-removal area (Table B-3 and B-4). This was a function of the greater number of plover nests within the Least Tern colony in the reference area and the lack of a substantial Least Tern colony in the gull-removal area in 2000. Laughing Gulls and Common Terns were consistently more abundant near nests and broods in the gull-removal area than near nests and broods in the reference area. This was a function of the colonial nesting behavior of these species. Both the Laughing Gull and Common Tern colonies were located in the gull-removal area, adjacent to the plover nesting area. Pedestrians were more abundant near broods in the reference area than near broods in the gull removal area (Table B-4). We observed plover broods foraging near where beach-goers were able to land boats.

Island-wide and throughout the study, we found no difference between the abundance of species near successful nests and unsuccessful nests (Table B-5). We counted more American Oystercatchers near successful broods than near unsuccessful broods in the gull-removal area, and more pedestrians near successful broods than near unsuccessful broods island wide (Table B-6).

We consistently counted more Laughing Gulls, Common Terns, and Least Terns in the Piping Plover nesting areas than in the unused areas island-wide (Table B-7). Our results were influenced by the Laughing Gull and the Common Tern colony located adjacent to Piping Plover nesting areas in the gull-removal area. Laughing Gulls and Common Terns increased rapidly in the gull-removal area during our study, most likely as a result of the gull-removal program. Least terns used similar habitat to Piping Plovers for nesting, as they may prefer to nest where the beaches are wide and the wave energy is low to prevent flooding. Least Terns may require wide beaches to provide enough space for the colony.

190

**Table B-1.** List of positively identified species observed within 100 m of prenesting plovers, plover nests, plover broods, or random points during sampling on South Monomoy Island, Cape Cod, Massachusetts, 1998-2000.

#### Shorebirds

Black-bellied Plover Ruddy Turnstone Semipalmated Plover Short-billed Dowitcher Red Knot Willet Greater Yellowlegs Sanderling Dunlin Least Sandpiper Semipalmated Sandpiper

#### Other Birds

Common Loon Double-crested Cormorant Canada Goose Brant Red-breasted Merganser Northern Gannet Bonaparte's Gull Black Skimmer Great Blue Heron Snowy Egret Northern Harrier Bald Eagle Merlin Horned Lark Tree Swallow Red-winged Blackbird Common Grackle European Starling Song Sparrow Savannah Sparrow

Pluvialis squatarola Arenaria interpres Charadrius semipalmatus Limnodromus griseus Calidris canutus Catoptrophorus semipalmatus Tringa melanoleuca Calidris alba Calidris alpina Calidris minutilla Calidris pusilla

Gavia immer Phalacrocorax auritus Branta canadensis Branta bernicla Mergus serrator Morus bassanus Larus philadelphia Rynchops niger Ardea herodias Egretta thula Circus cyaneus Haliaeetus leucocephalus Falco columbarius Eremophila alpestris Iridoprocne bicolor Agelaius phoeniceus Quiscalus quiscula Sturnus vulgaris Melospiza melodia Passerculus sandwichensis

| Table B-2. Mean counts of individuals of species within 100 m of Piping Plovers during the prenesting period, between the gull-removal and reference areas,      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number plovers observed. Test statistics ( <i>T</i> ) and p-values were |
| obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.                              |

| Year      | <u>Management</u><br>Area |     | Laugh          | ing Gulls | Ove           | American<br>tercatchers | <u>S</u>       | horebirds        | Pedestrians    |                   |
|-----------|---------------------------|-----|----------------|-----------|---------------|-------------------------|----------------|------------------|----------------|-------------------|
|           | Alta                      | n   | $\overline{x}$ | SE        | $\frac{0}{x}$ | tercatchers<br>SE       | $\overline{x}$ | SE               | $\overline{x}$ | SE                |
| 1999      |                           |     |                |           |               |                         |                |                  |                |                   |
|           | Gull-removal              | 22  | 0.00           | 0.00      | 0.64          | 0.20                    | 57.27          | 30.56            | 0.23           | 0.23              |
|           | Reference                 | 81  | 0.00           | 0.00      | 0.21          | 0.07                    | 0.73           | 0.41             | 0.01           | 0.01              |
|           |                           |     |                | -         |               | T = -3.46               |                | <i>T</i> = -7.25 |                | T = 0.98          |
|           |                           |     |                |           |               | <i>P</i> = 0.01         | Р              | 9 = 0.0004       |                | P = 1.00          |
| 2000      |                           |     |                |           |               |                         |                |                  |                |                   |
|           | Gull-removal              | 78  | 0.65           | 0.38      | 0.19          | 0.08                    | 11.50          | 6.30             | 0.33           | 0.12              |
|           | Reference                 | 176 | 0.00           | 0.00      | 0.22          | 0.05                    | 4.23           | 2.87             | 0.02           | 0.01              |
|           |                           |     |                | T = -8.23 |               | T = 0.49                |                | T = -0.86        |                | T = -11.13        |
|           |                           |     | Р              | = 0.0001  |               | P = 0.58                |                | P = 0.16         |                | <i>P</i> < 0.0001 |
| 1999-2000 |                           |     |                |           |               |                         |                |                  |                |                   |
|           | Gull-removal              | 100 | 0.51           | 0.30      | 0.29          | 0.08                    | 21.57          | 8.44             | 0.31           | 0.10              |
|           | Reference                 | 257 | 0.00           | 0.00      | 0.21          | 0.04                    | 3.13           | 1.97             | 0.02           | 0.01              |
|           |                           |     |                | T = -9.32 |               | T = 0.31                |                | T = -6.20        |                | T = -13.58        |
|           |                           |     | Р              | < 0.0001  |               | P = 0.46                |                | P = 0.001        |                | <i>P</i> < 0.0001 |

| Year    | Management   |    | Laughir        | ng Gulls         |                   | American        | Comm              | on Terns  | Leas           | st Terns | Sho            | orebirds | Peo            | destrians |
|---------|--------------|----|----------------|------------------|-------------------|-----------------|-------------------|-----------|----------------|----------|----------------|----------|----------------|-----------|
|         | Area         | n  | $\overline{x}$ | SE               | $\frac{Oyste}{x}$ | rcatchers<br>SE | $\overline{x}$    | SE        | $\overline{x}$ | SE       | $\overline{x}$ | SE       | $\overline{x}$ | SE        |
|         |              | 11 | X              | 31               | X                 | 31              | X                 | 31        | X              | 31       | X              | 31       | X              | 31        |
| 1999    |              |    |                |                  |                   |                 |                   |           |                |          |                |          |                |           |
|         | Gull-removal | 10 | 1.05           | 0.40             | 0.75              | 0.21            | 102.62            | 41.98     | 0.14           | 0.14     | 1.84           | 1.05     | 0.24           | 0.11      |
|         | Buffer       | 1  | 0.00           | -                | 0.63              | -               | 0.17              | -         | 0.04           | -        | 0.00           | -        | 0.17           | -         |
|         | Reference    | 21 | 0.02           | 0.02             | 0.56              | 0.12            | 0.44              | 0.35      | 2.48           | 2.36     | 0.16           | 0.06     | 0.14           | 0.05      |
|         |              |    | T              | = -11.05         | T = 0.63          |                 | ź                 | T = -7.02 | Т              | = -0.92  | Т              | =-2.61   | T = -0.02      |           |
|         |              |    | <i>P</i> <     | < 0.0001         |                   | <i>P</i> = 0.69 | P                 | = 0.0003  | P              | P = 0.16 | I              | p = 0.02 |                | P = 0.36  |
| 2000    |              |    |                |                  |                   |                 |                   |           |                |          |                |          |                |           |
|         | Gull-removal | 11 | 14.81          | 6.96             | 0.58              | 0.16            | 99.18             | 36.70     | 0.02           | 0.01     | 0.52           | 0.25     | 0.08           | 0.05      |
|         | Buffer       | 0  | -              | -                | -                 | -               | -                 | -         | -              | -        | -              | -        | -              | -         |
|         | Reference    | 28 | 0.01           | 0.01             | 0.52              | 0.10            | 0.33              | 0.14      | 6.14           | 3.33     | 0.19           | 0.07     | 0.03           | 0.01      |
|         |              |    | Т              | '= -7.37         | T = 0.74          |                 | T = -9.92         |           | T = -2.54      |          | T = -0.50      |          | T = 0.22       |           |
|         |              |    | <i>P</i> <     | < 0.0001         |                   | P = 0.81        | <i>P</i> < 0.0001 |           | P              | P = 0.03 | I              | P = 0.23 |                | P = 0.46  |
| 1999-20 | 00           |    |                |                  |                   |                 |                   |           |                |          |                |          |                |           |
|         | Gull-removal | 21 | 8.26           | 3.88             | 0.66              | 0.13            | 100.82            | 27.03     | 0.08           | 0.07     | 1.15           | 0.52     | 0.15           | 0.06      |
|         | Buffer       | 1  | 0.00           | -                | 0.63              | -               | 0.17              | -         | 0.04           | -        | 0.00           | -        | 0.17           | -         |
|         | Reference    | 49 | 0.01           | 0.01             | 0.54              | 0.08            | 0.38              | 0.17      | 4.57           | 2.15     | 0.17           | 0.05     | 0.07           | 0.02      |
|         |              |    | Т              | '= <b>-</b> 9.62 |                   | T = 0.44        | Т                 | = -17.56  | Т              | = -2.34  | Т              | =-4.38   | 7              | T = -0.84 |
|         |              |    | <i>P</i> <     | < 0.0001         |                   | P = 0.55        | P                 | < 0.0001  | P              | P = 0.03 | Р              | = 0.003  |                | P = 0.16  |

**Table B-3.** Mean counts of individuals of species within 100 m of Piping Plover nests, among the management areas, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Year    | <u>Management</u><br>Area |    | <u>Laughir</u> | Laughing Gulls |                   | American<br>rcatchers | Comm             | on Terns  | Leas           | st Terns | Shorebirds     |          | Ped            | destrians |
|---------|---------------------------|----|----------------|----------------|-------------------|-----------------------|------------------|-----------|----------------|----------|----------------|----------|----------------|-----------|
|         | Alea                      | n  | $\overline{x}$ | SE             | $\frac{0yste}{x}$ | SE                    | $\overline{x}$   | SE        | $\overline{x}$ | SE       | $\overline{x}$ | SE       | $\overline{x}$ | SE        |
| 1999    |                           |    |                |                |                   |                       |                  |           |                |          |                |          |                |           |
|         | Gull-removal              | 5  | 2.65           | 0.79           | 0.29              | 0.17                  | 217.34           | 106.53    | 3.07           | 1.69     | 5.15           | 4.14     | 0.00           | 0.00      |
|         | Buffer                    | 1  | 0.00           | -              | 0.75              | -                     | 7.00             | -         | 0.00           | -        | 0.00           | -        | 0.00           | -         |
|         | Reference                 | 12 | 0.00           | 0.00           | 0.84              | 0.18                  | 1.17             | 0.68      | 4.34           | 4.17     | 0.78           | 0.30     | 0.25           | 0.10      |
|         |                           |    | Т              | =-8.75         |                   | T = -1.15             |                  | T = -9.51 | Т              | = -0.53  | 1              | r = 0.14 | Т              | r = -3.03 |
|         |                           |    | <i>P</i> <     | 0.0001         |                   | P = 0.12              | Р                | < 0.0001  | P              | P = 0.23 | I              | P = 0.42 | 1              | P = 0.02  |
| 2000    |                           |    |                |                |                   |                       |                  |           |                |          |                |          |                |           |
|         | Gull-removal              | 5  | 20.55          | 11.82          | 0.64              | 0.28                  | 94.11            | 57.86     | 0.05           | 0.05     | 7.48           | 7.32     | 0.00           | 0.00      |
|         | Buffer                    | 0  | -              | -              | -                 | -                     | -                | -         | -              | -        | -              | -        | -              | -         |
|         | Reference                 | 17 | 0.02           | 0.01           | 0.73              | 0.15                  | 1.08             | 0.49      | 2.67           | 1.12     | 2.02           | 0.89     | 0.05           | 0.03      |
|         |                           |    | Т              | =-8.60         | T = 0.87          |                       | <i>T</i> = -8.66 |           | T = -4.32      |          | T = 1.04       |          | T = -0.7       |           |
|         |                           |    | <i>P</i> <     | 0.0001         |                   | P = 0.88              | Р                | < 0.0001  | P              | = 0.005  | Ι              | P = 1.00 | 1              | P = 0.18  |
| 1999-20 | 000                       |    |                |                |                   |                       |                  |           |                |          |                |          |                |           |
|         | Gull-removal              | 10 | 11.60          | 6.33           | 0.47              | 0.16                  | 155.73           | 60.73     | 1.56           | 0.94     | 6.32           | 3.98     | 0.00           | 0.00      |
|         | Buffer                    | 1  | 0.00           | -              | 0.75              | -                     | 7.00             | -         | 0.00           | -        | 0.00           | -        | 0.00           | -         |
|         | Reference                 | 29 | 0.01           | 0.01           | 0.78              | 0.11                  | 1.11             | 0.39      | 3.36           | 1.81     | 1.51           | 0.54     | 0.13           | 0.05      |
|         |                           |    | T=             | -14.22         |                   | T = -0.41             | Т                | = -16.29  | 7              | r = 0.24 | Т              | = -0.55  | Т              | r = -3.14 |
|         |                           |    | <i>P</i> <     | 0.0001         |                   | P = 0.23              | Р                | < 0.0001  | P              | P = 0.49 | ļ              | P = 0.21 | 1              | P = 0.02  |

**Table B-4.** Mean counts of individuals of species within 100 m of Piping Plover broods, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances comparing the gull-removal area to the reference area.

| ear | Management    |    | Laughing Gulls    | American                                        | Common Terns      | Least Terns       | Shorebirds        | Pedestrians       | Othe             |  |
|-----|---------------|----|-------------------|-------------------------------------------------|-------------------|-------------------|-------------------|-------------------|------------------|--|
|     | Area          | n  | $\overline{x}$ SE | $\frac{\text{Oystercatchers}}{\overline{x}}$ SE | $\overline{x}$ s |  |
|     |               |    |                   |                                                 |                   |                   |                   |                   |                  |  |
| 999 |               |    |                   |                                                 |                   |                   |                   |                   |                  |  |
|     | Gull-removal  |    |                   |                                                 |                   |                   |                   |                   |                  |  |
|     | Successful    | 5  | 1.82 0.61         | 0.53 0.21                                       | 201.43 55.19      | 0.27 0.27         | 1.69 1.27         | 0.26 0.14         | 1.45 0.85        |  |
|     | Unsuccessful  | 5  | 0.28 0.19         | 0.98 0.35                                       | 3.80 1.66         | 0.00 0.00         | 1.98 1.82         | 0.21 0.17         | 0.09 0.03        |  |
|     |               |    | T = -4.32         | T = 0.40                                        | T = -4.21         | T = 0.00          | T = 0.89          | T = 0.62          | T = 2.7          |  |
|     |               |    | P = 0.005         | P = 0.57                                        | P = 0.006         | <i>P</i> < 0.0001 | P = 0.81          | P = 0.68          | P = 0.02         |  |
|     | Buffer        |    |                   |                                                 |                   |                   |                   |                   |                  |  |
|     | Successful    | 1  | 0.00 -            | 0.63 -                                          | 0.17 -            | 0.04 -            | 0.00 -            | 0.17 -            | 0.04             |  |
|     | Unsuccessful  | 0  |                   |                                                 |                   |                   |                   |                   | -                |  |
|     |               |    | -                 | -                                               | -                 | -                 | -                 | -                 |                  |  |
|     | Reference     |    |                   |                                                 |                   |                   |                   |                   |                  |  |
|     | Successful    | 12 | 0.00 0.00         | 0.66 0.20                                       | 0.67 0.61         | 4.24 4.13         | 0.19 0.09         | 0.10 0.03         | 1.06 0.34        |  |
|     | Unsuccessful  | 8  | 0.04 0.04         | 0.46 0.13                                       | 0.08 0.08         | 0.14 0.06         | 0.10 0.07         | 0.12 0.07         | 3.07 2.44        |  |
|     |               |    | T < 0.0001        | T = 0.14                                        | T = 0.46          | T = 0.47          | T = 0.49          | T = 0.93          | T = 0.79         |  |
|     |               |    | <i>P</i> < 0.0001 | P = 0.42                                        | <i>P</i> = 0.62   | <i>P</i> = 0.58   | <i>P</i> = 0.59   | P = 0.96          | P = 0.84         |  |
|     | South Monomoy |    |                   |                                                 |                   |                   |                   |                   |                  |  |
|     | Successful    | 18 | 0.51 0.25         | 0.62 0.14                                       | 56.41 25.98       | 2.91 2.75         | 0.60 0.37         | 0.15 0.05         | 1.11 0.48        |  |
|     | Unsuccessful  | 13 | 0.13 0.08         | 0.66 0.16                                       | 1.51 0.79         | 0.08 0.04         | 0.82 0.70         | 0.15 0.07         | 1.92 1.52        |  |
|     |               |    | T = -0.51         | T = 0.87                                        | T = -2.04         | T = -0.32         | T = 0.99          | T = 0.88          | T = 0.20         |  |
|     |               |    | P = 0.21          | P = 0.91                                        | P = 0.05          | P = 0.31          | P = 0.84          | P = 0.89          | P = 0.44         |  |

**Table B-5.** Mean counts of individuals of species within 100 m of successful vs. unsuccessful Piping Plover nests, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

Continued.

| Year | Management    |    | Laughing Gulls    | American                                        | Common Terns      | Least Terns       | Shorebirds        | Pedestrians       | Othe              |
|------|---------------|----|-------------------|-------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|      | Area          | n  | $\overline{x}$ SE | $\frac{\text{Oystercatchers}}{\overline{x}}$ SE | $\overline{x}$ SI |
|      |               |    |                   |                                                 |                   |                   |                   |                   |                   |
| 2000 |               |    |                   |                                                 |                   |                   |                   |                   |                   |
|      | Gull-removal  |    |                   |                                                 |                   |                   |                   |                   |                   |
|      | Successful    | 5  | 19.26 11.21       | 0.52 0.15                                       | 115.47 59.06      | 0.04 0.03         | 0.67 0.43         | 0.02 0.02         | 0.59 0.15         |
|      | Unsuccessful  | 6  | 11.09 9.37        | 0.63 0.27                                       | 85.61 50.31       | 0.00 0.00         | 0.39 0.32         | 0.12 0.08         | 1.67 1.50         |
|      |               |    | T = 0.61          | T = 0.36                                        | T = 0.73          | T = -1.35         | T = 0.60          | T = -0.24         | T = -0.21         |
|      |               |    | P = 0.69          | P = 0.54                                        | P = 0.76          | P = 0.09          | P = 0.71          | <i>P</i> = 0.35   | P = 0.32          |
|      | Buffer        |    |                   |                                                 |                   |                   |                   |                   |                   |
|      | Successful    | 0  |                   |                                                 |                   |                   |                   |                   |                   |
|      | Unsuccessful  | 0  |                   |                                                 |                   |                   |                   |                   |                   |
|      |               |    | -                 | -                                               | -                 | -                 | -                 | -                 |                   |
|      | Reference     |    |                   |                                                 |                   |                   |                   |                   |                   |
|      | Successful    | 17 | 0.002 0.002       | 0.68 0.12                                       | 0.41 0.22         | 8.47 5.33         | 0.31 0.11         | 0.05 0.01         | 0.87 0.17         |
|      | Unsuccessful  | 11 | 0.01 0.01         | 0.26 0.14                                       | 0.21 0.11         | 2.53 2.00         | 0.01 0.01         | 0.00 0.00         | 1.00 0.47         |
|      |               |    | T = 0.96          | T = -2.81                                       | T = 0.38          | T = 0.19          | <i>T</i> = -5.15  | T = -3.52         | T = 0.09          |
|      |               |    | P = 0.83          | <i>P</i> = 0.02                                 | P = 0.59          | P = 0.34          | P = 0.001         | <i>P</i> = 0.01   | P = 0.38          |
|      | South Monomoy |    |                   |                                                 |                   |                   |                   |                   |                   |
|      | Successful    | 22 | 4.38 2.92         | 0.65 0.10                                       | 26.56 16.18       | 6.55 4.16         | 0.39 0.13         | 0.04 0.01         | 0.81 0.13         |
|      | Unsuccessful  | 17 | 3.92 3.38         | 0.39 0.13                                       | 30.35 19.58       | 1.64 1.30         | 0.14 0.11         | 0.04 0.03         | 1.24 0.58         |
|      |               |    | T = 0.95          | T = -1.75                                       | T = 0.89          | T = -0.61         | T = -2.57         | T = -1.45         | T = -1.16         |
|      |               |    | P = 0.84          | P = 0.06                                        | P = 0.86          | P = 0.23          | P = 0.03          | P = 0.08          | P = 0.12          |

**Table B-5, Continued.** Mean counts of individuals of species within 100 m of successful vs. unsuccessful Piping Plover nests, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

Continued.

| Year    | Management    |    | Laughing Gulls    | American                                        | Common Terns      | Least Terns       | Shorebirds        | Pedestrians       | Othe              |
|---------|---------------|----|-------------------|-------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|         | Area          | n  | $\overline{x}$ SE | $\frac{\text{Oystercatchers}}{\overline{x}}$ SE | $\overline{x}$ SI |
|         |               |    |                   |                                                 |                   |                   |                   |                   |                   |
| 1999-20 | 000           |    |                   |                                                 |                   |                   |                   |                   |                   |
|         | Gull-removal  |    |                   |                                                 |                   |                   |                   |                   |                   |
|         | Successful    | 10 | 10.54 6.04        | 0.53 0.12                                       | 158.45 40.71      | 0.16 0.14         | 1.18 0.65         | 0.14 0.08         | 1.02 0.43         |
|         | Unsuccessful  | 11 | 6.18 5.18         | 0.79 0.21                                       | 48.42 29.27       | 0.00 0.00         | 1.12 0.83         | 0.16 0.09         | 0.67 0.15         |
|         |               |    | T = 0.52          | T = 0.04                                        | T = -2.42         | T = -2.03         | T = 0.74          | T = 0.75          | T = -0.85         |
|         |               |    | <i>P</i> = 0.65   | P = 0.37                                        | P = 0.03          | P = 0.04          | P = 0.75          | P = 0.78          | P = 0.19          |
|         | Buffer        |    |                   |                                                 |                   |                   |                   |                   |                   |
|         | Successful    | 1  | 0.00 -            | 0.63 -                                          | 0.17 -            | 0.04 -            | 0.00 -            | 0.17 -            | 0.04              |
|         | Unsuccessful  | 0  |                   |                                                 |                   |                   |                   |                   |                   |
|         |               |    | -                 | -                                               | -                 | -                 | -                 | -                 |                   |
|         | Reference     |    |                   |                                                 |                   |                   |                   |                   |                   |
|         | Successful    | 29 | 0.001 0.001       | 0.67 0.11                                       | 0.52 0.28         | 6.72 3.53         | 0.26 0.07         | 0.07 0.02         | 0.95 0.17         |
|         | Unsuccessful  | 19 | 0.03 0.02         | 0.35 0.10                                       | 0.15 0.07         | 1.52 1.17         | 0.04 0.03         | 0.05 0.03         | 1.87 1.05         |
|         |               |    | T = -1.18         | T = -2.11                                       | T = -0.23         | T = -0.64         | T = -4.13         | T = -0.74         | T = 0.07          |
|         |               |    | P = 0.12          | <i>P</i> = 0.05                                 | P = 0.32          | <i>P</i> = 0.21   | <i>P</i> = 0.006  | P = 0.16          | P = 0.38          |
|         | South Monomoy |    |                   |                                                 |                   |                   |                   |                   |                   |
|         | Successful    | 40 | 2.64 1.62         | 0.64 0.08                                       | 39.99 14.68       | 4.91 2.59         | 0.48 0.18         | 0.09 0.02         | 0.95 0.16         |
|         | Unsuccessful  | 30 | 2.28 1.92         | 0.51 0.11                                       | 17.85 11.27       | 0.96 0.74         | 0.44 0.31         | 0.09 0.04         | 1.54 0.72         |
|         |               |    | T = 0.98          | T = -0.30                                       | T = -0.20         | T = -1.09         | T = -0.95         | T = -0.02         | T = -1.30         |
|         |               |    | P = 0.85          | P = 0.25                                        | P = 0.29          | P = 0.13          | P = 0.15          | P = 0.35          | P = 0.10          |

**Table B-5, Continued.** Mean counts of individuals of species within 100 m of successful vs. unsuccessful Piping Plover nests, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of nests. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Manageme<br>Area | ent (        |    | Laughing Gulls |           |                              | American<br>ercatchers | Common Terns   |          | Least Terns    |           | Shorebirds     |                 | Pedestrians    |                 |
|------------------|--------------|----|----------------|-----------|------------------------------|------------------------|----------------|----------|----------------|-----------|----------------|-----------------|----------------|-----------------|
| Alta             |              | n  | $\overline{x}$ | SE        | $\frac{0.980}{\overline{x}}$ | SE                     | $\overline{x}$ | SE       | $\overline{x}$ | SE        | $\overline{x}$ | SE              | $\overline{x}$ | SE              |
| Gull-remo        | val          |    |                |           |                              |                        |                |          |                |           |                |                 |                |                 |
|                  | Successful   | 7  | 6.99           | 3.03      | 0.67                         | 0.19                   | 96.85          | 41.48    | 2.22           | 1.29      | 5.55           | 5.20            | 0.00           | 0.00            |
|                  | Unsuccessful | 3  | 22.36          | 21.32     | 0.00                         | 0.00                   | 293.10         | 172.61   | 0.00           | 0.00      | 8.10           | 6.79            | 0.00           | 0.00            |
|                  |              |    |                | T = 0.81  |                              | T = -2.54              |                | T = 0.03 | 7              | r = -0.75 |                | T = 0.67        |                | -               |
|                  |              |    |                | P = 0.79  |                              | <i>P</i> = 0.03        |                | P = 0.42 | i.             | P = 0.19  |                | P = 0.72        |                | <i>P</i> = 1.00 |
| Buffer           |              |    |                |           |                              |                        |                |          |                |           |                |                 |                |                 |
|                  | Successful   | 0  | -              | -         | -                            | -                      | -              | -        | -              | -         | -              | -               | -              | -               |
|                  | Unsuccessful | 1  | 0.00           | -         | 0.75                         | -                      | 7.00           | -        | 0.00           | -         | 0.00           | -               | 0.00           | -               |
| Reference        |              |    |                |           |                              |                        |                |          |                |           |                |                 |                |                 |
|                  | Successful   | 21 | 0.01           | 0.01      | 0.65                         | 0.13                   | 1.25           | 0.51     | 3.36           | 2.35      | 1.25           | 0.63            | 0.18           | 0.06            |
|                  | Unsuccessful | 8  | 0.00           | 0.00      | 1.11                         | 0.21                   | 0.75           | 0.50     | 3.35           | 2.40      | 2.19           | 1.08            | 0.01           | 0.01            |
|                  |              |    |                | T = -0.38 |                              | T = -1.14              |                | T = 0.36 |                | T = 1.09  |                | T = 0.20        |                | T = -2.47       |
|                  |              |    |                | P = 0.29  |                              | P = 0.12               |                | P = 0.54 |                | P = 0.91  |                | <i>P</i> = 0.45 |                | <i>P</i> = 0.03 |
| South Mor        | nomoy Island |    |                |           |                              |                        |                |          |                |           |                |                 |                |                 |
|                  | Successful   | 28 | 1.76           | 0.92      | 0.66                         | 0.11                   | 25.15          | 12.62    | 3.08           | 1.78      | 2.32           | 1.36            | 0.13           | 0.05            |
|                  | Unsuccessful | 12 | 5.59           | 5.40      | 0.80                         | 0.20                   | 74.36          | 52.96    | 2.23           | 1.64      | 3.49           | 1.81            | 0.01           | 0.01            |
|                  |              |    |                | T = 0.89  |                              | T = 0.75               |                | T = 0.74 |                | T = 0.97  |                | T = 0.10        |                | T = -2.59       |
|                  |              |    |                | P = 0.83  |                              | P = 0.81               |                | P = 0.76 |                | P = 0.88  |                | P = 0.42        |                | P = 0.03        |

**Table B-6.** Mean counts of individuals of species within 100 m of successful vs. unsuccessful Piping Plover broods, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of broods. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| ear | Management                 |     | Laughir        | ng Gulls      |                          | American         | Comm           | on Terns  | Leas           | st Terns                                      | Sho            | orebirds | Pe             | destriar       |
|-----|----------------------------|-----|----------------|---------------|--------------------------|------------------|----------------|-----------|----------------|-----------------------------------------------|----------------|----------|----------------|----------------|
|     | Area                       |     |                | <u>B ouno</u> |                          | ercatchers       |                | <u></u>   |                | <u>, , , , , , , , , , , , , , , , , , , </u> |                | <u></u>  |                | <u>uvou iu</u> |
|     |                            | n   | $\overline{x}$ | SE            | $\frac{1}{\overline{x}}$ | SE               | $\overline{x}$ | SE        | $\overline{x}$ | SE                                            | $\overline{x}$ | SE       | $\overline{x}$ | S              |
| 99  |                            |     |                |               |                          |                  |                |           |                |                                               |                |          |                |                |
|     | Gull-removal               |     |                |               |                          |                  |                |           |                |                                               |                |          |                |                |
|     | Nesting Area               | 131 | 0.81           | 0.27          | 0.64                     | 0.11             | 98.19          | 21.83     | 0.08           | 0.05                                          | 13.54          | 4.03     | 0.44           | 0.1            |
|     | Unused Area                | 3   | 0.00           | 0.00          | 1.00                     | 1.00             | 0.00           | 0.00      | 0.00           | 0.00                                          | 1.00           | 1.00     | 0.67           | 0.6            |
|     |                            |     | Т              | = -0.31       |                          | T = 1.15         |                | T = -0.59 | Т              | = -0.03                                       | Т              | = -0.14  |                | T = 0.7        |
|     |                            |     | 1              | P = 0.15      |                          | <i>P</i> = 1.00  |                | P = 0.14  | F              | P = 0.02                                      | I              | P = 0.13 |                | P = 1.0        |
|     | Buffer                     |     |                |               |                          |                  |                |           |                |                                               |                |          |                |                |
|     | Nesting Area               | 70  | 0.03           | 0.03          | 0.29                     | 0.08             | 2.69           | 0.90      | 0.00           | 0.00                                          | 0.00           | 0.00     | 0.00           | 0.0            |
|     | Unused Area                | 62  | 0.02           | 0.02          | 0.92                     | 0.15             | 0.39           | 0.17      | 0.00           | 0.00                                          | 11.74          | 5.24     | 0.02           | 0.0            |
|     |                            |     | 1              | T = 0.99      |                          | <i>T</i> = -8.67 |                | T = -4.75 |                | -                                             | 7              | r = 9.36 |                |                |
|     |                            |     | 1              | P = 0.84      | Р                        | = 0.0002         | Ι              | P = 0.003 | F              | P = 1.00                                      | <i>P</i> <     | 0.0001   |                | P = 1.0        |
|     | Reference                  |     |                |               |                          |                  |                |           |                |                                               |                |          |                |                |
|     | Nesting Area               | 143 | 0.00           | 0.00          | 0.28                     | 0.06             | 0.64           | 0.42      | 1.99           | 0.97                                          | 0.16           | 0.10     | 0.20           | 0.0            |
|     | Unused Area                | 120 | 0.00           | 0.00          | 0.31                     | 0.07             | 0.09           | 0.04      | 0.03           | 0.03                                          | 0.37           | 0.30     | 0.07           | 0.1            |
|     |                            |     |                | -             |                          | T = 0.71         |                | T = -1.35 | Т              | = -4.91                                       | 7              | T = 0.79 | 2              | T = -0.3       |
|     |                            |     | 1              | P = 1.00      |                          | P = 0.84         |                | P = 0.09  | P              | = 0.003                                       | I              | P = 0.78 |                | 0.2            |
|     | South Monomoy <sup>a</sup> |     |                |               |                          |                  |                |           |                |                                               |                |          |                |                |
|     | Nesting Area               | 134 | 0.04           | 0.24          | 0.32                     | 0.06             | 47.60          | 18.63     | 2.11           | 1.03                                          | 3.35           | 2.99     | 0.31           | 0.1            |
|     | Unused Area                | 109 | 0.00           | 0.00          | 0.18                     | 0.05             | 0.07           | 0.03      | 0.03           | 0.03                                          | 0.42           | 0.32     | 0.08           | 0.0            |
|     |                            |     | Т              | =-3.99        |                          | T = -0.78        |                | T = -8.17 | Т              | = -4.54                                       | Т              | = -0.43  | 1              | T = -1.0       |
|     |                            |     | Р              | = 0.007       |                          | P = 0.15         | Р              | = 0.0001  | P :            | = 0.004                                       | ŀ              | P = 0.28 |                | P = 0.1        |

**Table B-7.** Mean counts of individuals of species within 100 m of random points, during the nesting period, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

#### Continued.

<sup>a</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

Table B-7, Continued. Mean counts of individuals of species within 100 m of random points, during the nesting period, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| ear | Management                 |     | <u>Laughin</u> | <u>g Gulls</u> |              | American        | Comm           | on Terns  | Leas           | t Terns       | Sho            | orebirds           | Peo            | destrians |
|-----|----------------------------|-----|----------------|----------------|--------------|-----------------|----------------|-----------|----------------|---------------|----------------|--------------------|----------------|-----------|
|     | Area                       |     | _              | 0 F            | <u>Oyste</u> | rcatchers<br>SE | _              | 0 F       | _              | 0 F           | _              | 0E                 | _              | CT        |
|     |                            | n   | $\overline{x}$ | SE             | x            | SE              | $\overline{x}$ | SE        | $\overline{x}$ | SE            | $\overline{x}$ | SE                 | $\overline{x}$ | SE        |
| 000 |                            |     |                |                |              |                 |                |           |                |               |                |                    |                |           |
|     | Gull-removal               |     |                |                |              |                 |                |           |                |               |                |                    |                |           |
|     | Nesting Area               | 132 | 4.21           | 1.13           | 0.36         | 0.06            | 147.52         | 24.22     | 0.08           | 0.05          | 11.31          | 3.96               | 0.10           | 0.05      |
|     | Unused Area                | 7   | 0.00           | 0.00           | 0.00         | 0.00            | 0.14           | 0.14      | 0.00           | 0.00          | 0.71           | 0.57               | 0.00           | 0.00      |
|     |                            |     | T              | = -0.99        |              | T = -1.26       |                | T = -1.61 | T              | <b>-0.07</b>  | Т              | = -0.28            | 7              | r = -0.18 |
|     |                            |     | Р              | = 0.11         |              | P = 0.10        |                | P = 0.07  | Р              | = 0.05        | F              | P = 0.13           |                | P = 0.11  |
|     | Buffer                     |     |                |                |              |                 |                |           |                |               |                |                    |                |           |
|     | Nesting Area               | 0   | -              | -              | -            | -               | -              | -         | -              | -             | -              | -                  | -              |           |
|     | Unused Area                | 141 | 0.13           | 0.09           | 0.96         | 0.11            | 0.35           | 0.11      | 0.00           | 0.00          | 4.96           | 1.56               | 0.01           | 0.01      |
|     |                            |     |                |                |              |                 |                |           |                |               |                |                    |                |           |
|     | Reference                  |     |                |                |              |                 |                |           |                |               |                |                    |                |           |
|     | Nesting Area               | 150 | 0.01           | 0.01           | 0.33         | 0.07            | 1.01           | 0.69      | 4.97           | 1.49          | 0.39           | 0.17               | 0.03           | 0.03      |
|     | Unused Area                | 126 | 0.01           | 0.01           | 0.21         | 0.06            | 0.06           | 0.03      | 0.02           | 0.02          | 0.29           | 0.21               | 0.00           | 0.00      |
|     |                            |     | Т              | = 1.00         |              | T = -0.07       |                | T = -1.58 | T              | <b>-7</b> .70 | Т              | <b>-7</b> .60      |                |           |
|     |                            |     | Р              | = 0.84         |              | P = 0.30        |                | P = 0.07  | P =            | 0.0003        | P =            | 0.0003             |                | P = 1.00  |
|     | South Monomoy <sup>a</sup> |     |                |                |              |                 |                |           |                |               |                |                    |                |           |
|     | Nesting Area               | 171 | 1.80           | 0.76           | 0.32         | 0.06            | 38.73          | 11.92     | 3.06           | 1.09          | 1.51           | 0.92               | 0.05           | 0.04      |
|     | Unused Area                | 157 | 0.01           | 0.01           | 0.36         | 0.06            | 0.13           | 0.08      | 0.01           | 0.01          | 1.06           | 0.43               | 0.01           | 0.01      |
|     |                            |     | T              | = -7.69        |              | T = 0.70        |                | T = -7.82 | T              | = -5.70       | 7              | <sup>r</sup> =0.85 | 7              | r = -0.40 |
|     |                            |     | P =            | 0.0001         |              | P = 0.83        | Р              | = 0.0002  | P =            | = 0.001       | F              | P = 0.85           |                | P = 0.33  |

#### Continued.

<sup>a</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

**Table B-7, Continued.** Mean counts of individuals of species within 100 m of random points, during the nesting period, between the nesting and unused areas, by management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| r <u>Management</u>        |     | Laughir        | ng Gulls         |                   | American             | Comm           | on Terns  | Leas           | st Terns | Sho            | orebirds | Pe             | destrians |
|----------------------------|-----|----------------|------------------|-------------------|----------------------|----------------|-----------|----------------|----------|----------------|----------|----------------|-----------|
| Area                       | n   | $\overline{x}$ | SE               | $\frac{Oyste}{x}$ | ercatchers<br>SE     | $\overline{x}$ | SE        | $\overline{x}$ | SE       | $\overline{x}$ | SE       | $\overline{x}$ | SE        |
|                            |     | л              | 52               | л                 | 52                   | л              | 52        | л              | 52       | л              | 51       | л              | 51        |
| 9-2000                     |     |                |                  |                   |                      |                |           |                |          |                |          |                |           |
| Gull-removal               |     |                |                  |                   |                      |                |           |                |          |                |          |                |           |
| Nesting Area               | 263 | 2.52           | 0.59             | 0.51              | 0.06                 | 122.95         | 16.35     | 0.08           | 0.04     | 12.42          | 2.82     | 0.27           | 0.06      |
| Unused Area                | 10  | 0.00           | 0.00             | 0.30              | 0.30                 | 0.10           | 0.10      | 0.00           | 0.00     | 0.80           | 0.47     | 0.20           | 0.20      |
|                            |     | Т              | '= -1.12         |                   | T = -0.08            | í              | T = -2.19 | Т              | = -0.13  | Т              | = -0.59  |                | T = 0.60  |
|                            |     | 1              | P = 0.09         |                   | P = 0.31             |                | P = 0.04  | F              | P = 0.08 | F              | P = 0.13 |                | P = 1.00  |
| Buffer                     |     |                |                  |                   |                      |                |           |                |          |                |          |                |           |
| Nesting Area               | 70  | 0.03           | 0.03             | 0.29              | 0.08                 | 2.69           | 0.90      | 0.00           | 0.00     | 0.00           | 0.00     | 0.00           | 0.00      |
| Unused Area                | 203 | 0.10           | 0.06             | 0.95              | 0.09                 | 0.36           | 0.09      | 0.00           | 0.00     | 7.03           | 1.94     | 0.01           | 0.01      |
|                            |     | Т              | '= <b>-</b> 0.01 | Т                 | <sup>-</sup> =-12.28 | Т              | = -13.12  |                | -        | Т              | = -8.38  | 1              | T = -0.34 |
|                            |     | Ì              | P = 0.34         | Р                 | < 0.0001             | P              | < 0.0001  | F              | P = 1.00 | P =            | 0.0001   |                | P = 0.30  |
| Reference                  |     |                |                  |                   |                      |                |           |                |          |                |          |                |           |
| Nesting Area               | 293 | 0.003          | 0.003            | 0.30              | 0.05                 | 0.83           | 0.41      | 3.52           | 0.90     | 0.28           | 0.10     | 0.11           | 0.05      |
| Unused Area                | 246 | 0.004          | 0.004            | 0.26              | 0.05                 | 0.07           | 0.03      | 0.02           | 0.01     | 0.33           | 0.18     | 0.03           | 0.03      |
|                            |     | ,              | T = 1.00         |                   | T = 0.64             |                | T = -3.01 | T =            | -11.75   | 7              | = 0.29   | 1              | T = -0.85 |
|                            |     | 1              | P = 0.84         |                   | P = 0.73             |                | P = 0.01  | <i>P</i> <     | 0.0001   | F              | P = 0.49 |                | P = 0.16  |
| South Monomoy <sup>a</sup> |     |                |                  |                   |                      |                |           |                |          |                |          |                |           |
| Nesting Area               | 305 | 1.16           | 0.44             | 0.32              | 0.04                 | 42.66          | 10.55     | 2.64           | 0.76     | 2.32           | 1.41     | 0.17           | 0.06      |
| Unused Area                | 266 | 0.004          | 0.004            | 0.29              | 0.04                 | 0.11           | 0.05      | 0.02           | 0.01     | 0.80           | 0.29     | 0.04           | 0.02      |
|                            |     | Т              | '= <b>-</b> 9.39 |                   | T = 0.59             | Т              | = -15.78  | Т              | = -9.76  | Т              | = -0.18  | 1              | T = -2.00 |
|                            |     | <i>P</i> <     | < 0.0001         |                   | P = 0.68             | P              | < 0.0001  | <i>P</i> <     | 0.0001   | F              | P = 0.34 |                | P = 0.05  |

<sup>a</sup> A random subset of all random points was used when combining all management areas so that sampling intensity was equal throughout the island.

### Appendix C. Sensitivity Analysis of the Nesting Area Size

In order to quantify characteristics of Piping Plover nesting habitat, we subjectively chose all beach area within 500 m of Piping Plover nests to be Piping Plover "nesting area" and all area beyond 500 m to be "unused area" (see page 18). We then sampled within the nesting and unused areas and made inferences about Piping Plover nesting habitat. Here we examine the sensitivity of the 500-m boundary between nesting and unused area to make inferences about nesting habitat by altering the distance from nests for which we used to determine the nesting area. We pooled 1999 and 2000 data for these analyses.

## Univariate Analyses

To examine the sensitivity of analyses comparing nesting vs. unused areas in number of gulls and habitat width based on the subjective 500-m boundary defining the nesting area, we reclassified all random points and transects based on a 100-m boundary distance from Piping Plover nests. All random points and transects within 100 m of a nest were reclassified as "nesting" while all random points and transects beyond 100 m of a nest were reclassified as "unused." We used MRPP to examine differences in gull abundance and habitat widths in nesting vs. unused areas based on the 100-m boundary. We then examined the inferences we made using the 500-m boundary analyses vs. the 100-m boundary analyses.

*Gull numbers*—Based on the 100-m boundary defining the nesting area, we classified 98 random points as "nesting" and 175 random points as "unused" in the gull-removal area, and 118 random points as "nesting" and 421 random points as "unused" in the reference area. For island-wide comparisons (management areas pooled), we randomly selected a set of 119 points classified as "nesting" and 452 points classified as "unused" for analyses so that sampling intensity equal throughout the island.

Inferences made when comparing the number of gulls in nesting and unused areas were the same with both the 500-m boundary and the 100-m boundary between nesting and unused areas. Island wide, when basing analyses on the 100-m boundary, we counted fewer gulls in random plots in Piping Plover nesting areas than in random plots in the unused areas as we did when basing analyses on the 500-m boundary. The mean number of gulls within 100 m of

202

random points in both the nesting and unused areas increased with the increase in nesting area size (Table C-1).

*Habitat Width*--Based on the 100-m boundary defining the nesting area, we classified 23 random ocean side transects as "nesting" and 27 random transects as "unused" in the gull-removal area, and 24 random transects as "nesting" and 92 random transects as "unused" in the reference area. For island-wide comparisons (management areas pooled), we randomly selected a set of 34 transects classified as "nesting" and 92 transects classified as "unused" for analyses.

Inferences made when comparing habitat widths in nesting and unused areas island-wide were the same with both the 500-m boundary and the 100-m boundary analyses. When basing analyses on the 100-m boundary, the ocean- and sound-side backshore and open vegetation habitats and the tidal pond intertidal zone habitat were wider in the nesting areas than in the unused areas (Table C-2). However, within the gull-removal area, we found that the 100-m boundary analyses were more sensitive in detecting differences in habitat width between the nesting and unused area. This can be explained by the more equal sample sizes between the areas in the 100-m boundary analyses compared to the 500-m boundary analyses.

Mean habitat widths in Piping Plover nesting areas increased with decreasing boundary size. When the sampling area for the nesting area was large, we included more transects in areas unsuitable for Piping Plover nesting (where the width of the backshore and/or open vegetation was minimal). Therefore, by reducing the size of the sampling area, more precise estimates of the mean habitat widths were obtained, despite the fact that inferences made with the differing sampling area sizes were the same.

# Logistic Regression

We reclassified all random points and transects based on a 100-, 200-, 300-, and 400-m boundary distance from Piping Plover nests (see page 18, Figure C-1). We constructed logistic regression models to examine variables that were influential in Piping Plover nesting area selection on South Monomoy Island (see pages 21 and 22). We then examined Akaike's Information Criterion (AIC) and the percent of concordant transects to determine the best fitting model.

203

Inferences made were the same for all models despite different nesting area size. For the South Monomoy Island models, based on the lowest value AIC and the highest percent concordant, the 100-m boundary model was the best fitting model. For the Reference Area models, the 100-m boundary model was the best fitting model based on AIC, and the 200-m boundary model was the best fitting model based on percent concordant (Table C-3).

We recommend classifying nesting area as all beach area within 100 m of Piping Plover nests to make inferences about nesting vs. unused areas. However, if sample sizes are insufficient using a 100m boundary, similar inferences can be made using a larger sampling area. **Table C-1.** Mean counts of large gulls within 100 m of random points in nesting areas compared to mean counts of large gulls within 100 m of random points in unused areas, by nesting area size and management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of random points. Test statistics (*T*) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

| Management Area,               |                           |     | <u>Total L</u> | arge Gulls    | <u>Great Black-ba</u> | cked Gulls    | He             | rring Gulls   | Imma           | ature Gulls   |
|--------------------------------|---------------------------|-----|----------------|---------------|-----------------------|---------------|----------------|---------------|----------------|---------------|
| Nesting Area Size <sup>a</sup> |                           | n   | $\overline{x}$ | SE            | $\overline{x}$        | SE            | $\overline{x}$ | SE            | $\overline{x}$ | SE            |
| Gull-removal Area              |                           |     |                |               |                       |               |                |               |                |               |
| 100m                           | Nesting Area <sup>a</sup> | 98  | 3.58           | 0.84          | 1.34                  | 0.31          | 1.13           | 0.27          | 1.11           | 0.46          |
|                                | Unused Area               | 175 | 3.67           | 0.51          | 1.61                  | 0.20          | 1.05           | 0.17          | 1.01           | 0.36          |
|                                |                           |     | T = -0.1       | 1, $P = 0.32$ | T = -1.2              | 8, P = 0.10   | T = 0.4        | 7, P = 0.57   | T = 0.87       | 7, P = 0.89   |
| 500m                           | Nesting Area              | 263 | 3.63           | 0.46          | 1.50                  | 0.18          | 1.06           | 0.15          | 1.07           | 0.29          |
|                                | Unused Area               | 10  | 3.80           | 0.98          | 1.80                  | 0.47          | 1.60           | 0.60          | 0.40           | 0.22          |
|                                |                           |     | T = -0.8       | 6, $P = 0.14$ | T = -1.0              | 1, $P = 0.13$ | T = -0.6       | 1, $P = 0.18$ | T = -0.07      | 7, $P = 0.17$ |
| Reference Area                 |                           |     |                |               |                       |               |                |               |                |               |
| 100m                           | Nesting Area              | 118 | 10.70          | 1.51          | 6.82                  | 0.94          | 2.72           | 0.83          | 1.16           | 0.44          |
|                                | Unused Area               | 421 | 35.97          | 1.77          | 28.70                 | 1.49          | 5.93           | 0.69          | 1.34           | 0.24          |
|                                |                           |     | T = -56.33, 1  | P < 0.0001    | T = -61.60,           | P < 0.0001    | T = -6.58, 1   | P = 0.0009    | T = 0.63       | P = 0.70      |
| 500m                           | Nesting Area              | 293 | 19.98          | 2.01          | 15.25                 | 1.65          | 3.28           | 0.52          | 1.46           | 0.33          |
|                                | Unused Area               | 246 | 42.89          | 1.95          | 34.23                 | 1.66          | 7.55           | 1.07          | 1.11           | 0.25          |
|                                |                           |     | T = -73.69, 1  | P < 0.0001    | T = -72.85, 1         | P < 0.0001    | T = -12.62, 1  | P < 0.0001    | T = 0.40       | ), $P = 0.54$ |
| South Monomoy Is               | land                      |     |                |               |                       |               |                |               |                |               |
| 100m                           | Nesting Area              | 119 | 8.62           | 1.35          | 5.16                  | 0.87          | 1.76           | 0.35          | 1.70           | 0.56          |
|                                | Unused Area               | 452 | 30.77          | 1.43          | 23.85                 | 1.18          | 5.63           | 0.63          | 1.30           | 0.24          |
|                                |                           |     | T = -46.91, 1  | P < 0.0001    | T = -50.86,           | P < 0.0001    | T = -9.28, 1   | P < 0.0001    | T = 0.80       | P = 0.87      |
| 500m                           | Nesting Area              | 305 | 14.45          | 1.23          | 10.40                 | 0.96          | 2.44           | 0.34          | 1.61           | 0.35          |
|                                | Unused Area               | 266 | 39.58          | 1.90          | 30.91                 | 1.61          | 7.55           | 1.00          | 1.12           | 0.25          |
|                                |                           |     | T = -88.21, 1  | P < 0.0001    | T = -87.68,           | P < 0.0001    | T = -22.49, 1  | P < 0.0001    | T = 0.23       | P = 0.45      |

<sup>a</sup> Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. In this table, nesting area size is area either 100 m or 500 m from plover nests. Area beyond the nesting area is unused area.

| Habitat, | Area Size <sup>a</sup>    |     | Gull-remov     | al Area         |    | Referen        | ce Area  | South | Monomoy        | Island <sup>a</sup> |
|----------|---------------------------|-----|----------------|-----------------|----|----------------|----------|-------|----------------|---------------------|
| ivesting | Aica Size                 | n   | $\overline{x}$ | SE              | n  | $\overline{x}$ | SE       | n     | $\overline{x}$ | SE                  |
| Ocean I  | ntertidal Zone            |     |                |                 |    |                |          |       |                |                     |
| 100m     | Nesting Area <sup>a</sup> | 23  | 35.15          | 8.52            | 24 | 17.39          | 1.60     | 34    | 19.53          | 4.12                |
|          | Unused Area               | 27  | 28.80          | 6.12            | 92 | 19.20          | 1.10     | 92    | 21.65          | 1.76                |
|          |                           |     | T = 0.46, P    | P = 0.58        |    | T = -0.69, P   | 9 = 0.17 |       | T = -1.17, P   | <b>P</b> = 0.11     |
| 500m     | Nesting Area              | 48  | 32.06          | 5.29            | 64 | 17.88          | 1.23     | 72    | 21.78          | 2.78                |
|          | Unused Area               | 2   | 23.72          | 10.35           | 52 | 19.98          | 1.41     | 54    | 20.15          | 1.39                |
|          |                           |     | T = 0.26, P    | P = 0.37        |    | T = 0.23, F    | P = 0.44 |       | T = -0.04, F   | P = 0.35            |
| Ocean F  | Fresh Wrack               |     |                |                 |    |                |          |       |                |                     |
| 100m     | Nesting Area              | 23  | 0.78           | 0.44            | 24 | 1.08           | 0.83     | 34    | 1.01           | 0.60                |
|          | Unused Area               | 27  | 0.57           | 0.22            | 92 | 0.59           | 0.16     | 92    | 0.68           | 0.16                |
|          |                           |     | T = 0.88, P    | <b>P</b> = 0.91 |    | T = 0.93, P    | 9 = 1.00 |       | T = 0.96, F    | <b>P</b> = 1.00     |
| 500m     | Nesting Area              | 48  | 0.69           | 0.24            | 64 | 0.84           | 0.34     | 72    | 0.88           | 0.31                |
|          | Unused Area               | 2   | 0.00           | 0.00            | 52 | 0.51           | 0.22     | 54    | 0.61           | 0.22                |
|          |                           |     | T = -0.29, P   | P = 0.16        |    | T = 0.08, P    | P = 0.39 |       | T = 0.06, F    | P = 0.37            |
| Ocean E  | Backshore                 |     |                |                 |    |                |          |       |                |                     |
| 100m     | Nesting Area              | 23  | 52.38          | 6.72            | 24 | 31.09          | 3.73     | 34    | 40.40          | 4.87                |
|          | Unused Area               | 27  | 16.98          | 4.36            | 92 | 21.71          | 1.73     | 92    | 20.64          | 1.57                |
|          |                           | T = | -13.18, P <    | 0.0001          |    | T = -4.13, P = | = 0.007  | T =   | -12.52, P <    | 0.0001              |
| 500m     | Nesting Area              | 48  | 34.11          | 4.75            | 64 | 26.40          | 2.11     | 72    | 30.10          | 2.80                |
|          | Unused Area               | 2   | 13.04          | 0.30            | 52 | 20.26          | 2.40     | 54    | 20.47          | 2.20                |
|          |                           |     | T = -0.75, P   | P = 0.20        |    | T = -3.21, P   | P = 0.02 | Т     | r = -3.99, P   | = 0.008             |
| Ocean (  | Old Wrack                 |     |                |                 |    |                |          |       |                |                     |
| 100m     | Nesting Area              | 23  | 0.69           | 0.23            | 24 | 0.39           | 0.22     | 34    | 0.56           | 0.20                |
|          | Unused Area               | 27  | 0.45           | 0.17            | 92 | 0.60           | 0.13     | 92    | 0.58           | 0.13                |
|          |                           |     | T = 0.37, P    | <b>P</b> = 0.51 |    | T = 0.15, P    | 9 = 0.39 |       | T = 0.94, F    | <b>P</b> = 1.00     |
| 500m     | Nesting Area              | 48  | 0.54           | 0.14            | 64 | 0.63           | 0.17     | 72    | 0.66           | 0.16                |
|          | Unused Area               | 2   | 1.00           | 1.00            | 52 | 0.45           | 0.13     | 54    | 0.46           | 0.13                |
|          |                           |     | T = 1.06, P    | P = 0.97        |    | T = 0.51, P    | P = 0.60 |       | T = 0.36, F    | P = 0.50            |

**Table C-2.** Mean width (m) of foraging habitats on random transects, between the nesting and unused areas, by nesting area size and management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

#### Continued.

<sup>a</sup>Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. In this table, nesting area size is area either 100 m or 500 m from plover nests. Area beyond the nesting area is unused area.

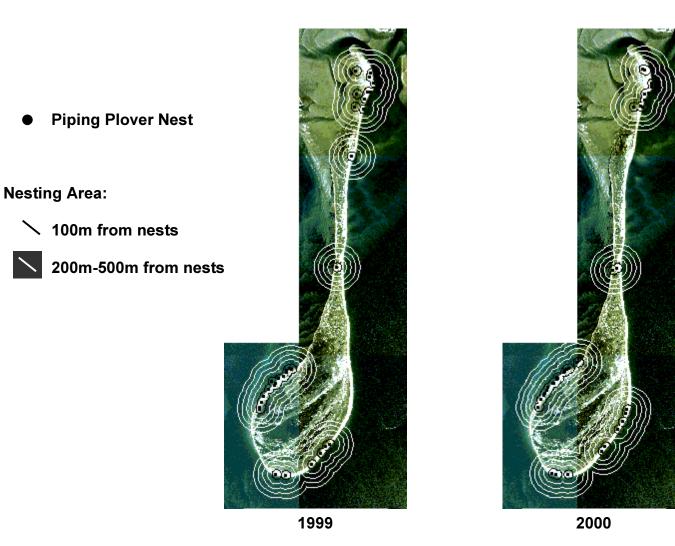
| Habitat | Area Size <sup>a</sup>    |    | Gull-remov            | al Area  |    | Referen                      | ce Area         | South | Monomoy                     | Island <sup>a</sup> |
|---------|---------------------------|----|-----------------------|----------|----|------------------------------|-----------------|-------|-----------------------------|---------------------|
| Nesting | Alea Size                 | n  | $\overline{x}$        | SE       | n  | $\overline{x}$               | SE              | n     | $\overline{x}$              | SE                  |
| Ocean ( | Open Vegetation           |    |                       |          |    |                              |                 |       |                             |                     |
| 100m    | Nesting Area <sup>a</sup> | 23 | 23.03                 | 2.68     | 24 | 18.09                        | 2.40            | 34    | 21.23                       | 2.28                |
|         | Unused Area               | 27 | 12.63                 | 2.10     | 92 | 12.56                        | 1.17            | 92    | 11.78                       | 1.13                |
|         |                           |    | $\Gamma = -4.42, P =$ | = 0.006  |    | T = -2.27, F                 | <b>P</b> = 0.04 | Т     | = <b>-</b> 7.35, P =        | 0.0005              |
| 500m    | Nesting Area              | 48 | 17.24                 | 1.88     | 64 | 16.07                        | 1.49            | 72    | 17.20                       | 1.53                |
|         | Unused Area               | 2  | 21.63                 | 3.85     | 52 | 10.26                        | 1.43            | 54    | 10.50                       | 1.39                |
|         |                           |    | T = -0.15, F          | P = 0.41 |    | T = -3.62, F                 | P = 0.01        | 7     | r = -4.56, P                | = 0.005             |
| Sound I | ntertidal Zone            |    |                       |          |    |                              |                 |       |                             |                     |
| 100m    | Nesting Area              | 12 | 76.72                 | 22.71    | 33 | 6.64                         | 0.87            | 30    | 10.00                       | 2.13                |
|         | Unused Area               | 52 | 120.02                | 22.77    | 88 | 8.64                         | 2.29            | 97    | 45.08                       | 11.38               |
|         |                           |    | T = 0.19, F           | 9 = 0.43 |    | T = 0.25, F                  | <b>P</b> = 0.46 |       | T = -2.44, F                | <b>P</b> = 0.03     |
| 500m    | Nesting Area              | 62 | 99.72                 | 16.75    | 65 | 6.35                         | 0.63            | 67    | 39.88                       | 13.49               |
|         | Unused Area               | 2  | 489.36                | 230.91   | 56 | 10.12                        | 3.56            | 60    | 33.35                       | 11.05               |
|         |                           |    | T = -2.75, F          | 9 = 0.03 |    | T = 0.52, F                  | P = 0.62        |       | T = 0.62, H                 | P = 0.69            |
| Sound F | Fresh Wrack               |    |                       |          |    |                              |                 |       |                             |                     |
| 100m    | Nesting Area              | 12 | 0.36                  | 0.13     | 33 | 2.46                         | 0.87            | 30    | 2.20                        | 0.92                |
|         | Unused Area               | 52 | 0.47                  | 0.15     | 88 | 1.60                         | 0.19            | 97    | 1.61                        | 0.18                |
|         |                           |    | T = -0.21, F          | 9 = 0.28 |    | T = 0.15, F                  | P = 0.13        |       | T = -0.82, F                | P = 0.16            |
| 500m    | Nesting Area              | 62 | 0.46                  | 0.13     | 65 | 1.85                         | 0.47            | 67    | 1.43                        | 0.43                |
|         | Unused Area               | 2  | 0.00                  | 0.00     | 56 | 1.82                         | 0.25            | 60    | 2.11                        | 0.26                |
|         |                           |    | T = -0.35, F          | P = 0.11 |    | T = -1.32, F                 | P = 0.10        | T     | = <b>-8</b> .07, <i>P</i> = | 0.0002              |
| Sound H | Backshore                 |    |                       |          |    |                              |                 |       |                             |                     |
| 100m    | Nesting Area              | 12 | 4.65                  | 1.66     | 33 | 30.11                        | 3.79            | 30    | 31.05                       | 4.14                |
|         | Unused Area               | 52 | 3.79                  | 0.45     | 88 | 7.83                         | 0.98            | 97    | 6.37                        | 0.70                |
|         |                           |    | T = 1.19, F           | 9 = 1.00 | T  | = -32.38, P <                | 0.0001          | T =   | -39.14, P <                 | 0.0001              |
| 500m    | Nesting Area              | 62 | 3.89                  | 0.49     | 65 | 20.48                        | 2.55            | 67    | 18.01                       | 2.49                |
|         | Unused Area               | 2  | 5.68                  | 2.16     | 56 | 6.27                         | 0.64            | 60    | 5.71                        | 0.60                |
|         |                           |    | T = 0.32, F           | P = 0.55 | T  | = <b>-</b> 16.50, <i>P</i> < | 0.0001          | T =   | -14.18, <i>P</i> <          | 0.0001              |

**Table C-2, Continued.** Mean width (m) of foraging habitats on random transects, between the nesting and unused areas, by nesting area size and management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

#### Continued.

<sup>a</sup>Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. In this table, nesting area size is area either 100 m or 500 m from plover nests. Area beyond the nesting area is unused area.

| Habitat  |                           |     | Gull-remov                 | al Area         |            | Referen                    | ce Area  | South | Monomoy            | <u>Island</u> <sup>a</sup> |
|----------|---------------------------|-----|----------------------------|-----------------|------------|----------------------------|----------|-------|--------------------|----------------------------|
| Nesting  | Area Size <sup>a</sup>    | n   | $\overline{x}$             | SE              | n          | $\overline{x}$             | SE       | n     | $\overline{x}$     | SE                         |
| Sound (  | Old Wrack                 |     |                            |                 |            |                            |          |       |                    |                            |
| 100m     | Nesting Area <sup>a</sup> | 12  | 0.78                       | 0.24            | 33         | 3.58                       | 0.54     | 30    | 3.20               | 0.58                       |
|          | Unused Area               | 52  | 0.93                       | 0.15            | 88         | 2.94                       | 0.26     | 97    | 2.58               | 0.24                       |
|          |                           |     | T = 0.49, P                | P = 0.59        |            | T = -0.68, F               | P = 0.18 |       | T = 0.14, P        | 9 = 0.31                   |
| 500m     | Nesting Area              | 62  | 0.92                       | 0.13            | 65         | 3.41                       | 0.38     | 67    | 2.57               | 0.36                       |
|          | Unused Area               | 2   | 0.35                       | 0.35            | 56         | 2.77                       | 0.27     | 60    | 2.90               | 0.29                       |
|          |                           |     | T = 0.13, F                | P = 0.48        |            | T = -0.77, F               | P=0.16   |       | T = -1.46, P       | P = 0.08                   |
| Sound (  | Open Vegetation           |     |                            |                 |            |                            |          |       |                    |                            |
| 100m     | Nesting Area              | 12  | 2.63                       | 0.90            | 33         | 17.37                      | 2.53     | 30    | 16.49              | 2.75                       |
|          | Unused Area               | 52  | 1.64                       | 0.62            | 88         | 3.24                       | 0.53     | 97    | 2.85               | 0.66                       |
|          |                           |     | T = -1.69, F               | P = 0.07        | T =        | = -30.47, P <              | 0.0001   | T =   | -27.58, P <        | 0.0001                     |
| 500m     | Nesting Area              | 62  | 1.54                       | 0.45            | 65         | 11.74                      | 1.58     | 67    | 9.45               | 1.58                       |
|          | Unused Area               | 2   | 10.46                      | 10.46           | 56         | 1.70                       | 0.30     | 60    | 2.30               | 0.80                       |
|          |                           |     | T = 1.36, F                | P = 1.00        | <i>T</i> = | = -22.34, <i>P</i> <       | 0.0001   | T =   | -11.53, <i>P</i> < | 0.0001                     |
| Tidal Po | ond Intertidal Zone       |     |                            |                 |            |                            |          |       |                    |                            |
| 100m     | Nesting Area              | 12  | 0.00                       | 0.00            | 33         | 27.59                      | 8.44     | 30    | 28.78              | 9.21                       |
|          | Unused Area               | 52  | 1.79                       | 1.31            | 88         | 2.18                       | 1.09     | 97    | 0.95               | 0.66                       |
|          |                           |     | T = -0.23, F               | <b>P</b> = 0.25 | T =        | = -19.24, P <              | 0.0001   | T =   | -25.72, P <        | 0.0001                     |
| 500m     | Nesting Area              | 62  | 0.00                       | 0.00            | 65         | 16.96                      | 4.68     | 67    | 14.26              | 4.49                       |
|          | Unused Area               | 2   | 46.60                      | 13.26           | 56         | 0.00                       | 0.00     | 60    | 0.00               | 0.00                       |
|          |                           | T = | <b>-</b> 44.18, <i>P</i> < | 0.0001          | T =        | <b>-13</b> .16, <i>P</i> < | 0.0001   | T =   | -10.45, <i>P</i> < | 0.0001                     |


**Table C-2, Continued.** Mean width (m) of foraging habitats on random transects, between the nesting and unused areas, by nesting area size and management area, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000. The sample size (n) equals the number of transects. Test statistics (T) and p-values were obtained from BLOSSOM Multi-response Permutation Procedure (MRPP), a nonparametric randomization test based on Euclidean distances.

<sup>a</sup> Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. In this table, nesting area size is area either 100 m or 500 m from plover nests. Area beyond the nesting area is unused area.

**Table C-3.** Akaike's Information Criterion (AIC) and percent of concordant transects for logistic regression models when the nesting area is defined as all beach area within differing distances from Piping Plover nests, South Monomoy Island, Cape Cod, Massachusetts, 1999-2000.

| Model                                         | Nesting Area<br>Size <sup>a</sup>          | Nesting Area<br>Transects (n) | Unused Area<br>Transects (n) | Akaike's Information Criterion (AIC, intercept and covariates)     | Percent Concordant      |
|-----------------------------------------------|--------------------------------------------|-------------------------------|------------------------------|--------------------------------------------------------------------|-------------------------|
| South Monomoy Islar<br>Significant Variables: | Backshore Width (n<br>100m<br>200m<br>300m | 51<br>70<br>91                | 168<br>149<br>128            | nt (m), Open Vegetation Width (m)<br>168.605<br>211.247<br>246.248 | 85.1%<br>81.4%<br>78.5% |
|                                               | 400m<br>500m                               | 109<br>118                    | 110<br>101                   | 270.079<br>273.983                                                 | 73.6%<br>72.4%          |
| Reference Area Mode<br>Significant Variables: | Backshore Width (n                         | // ·                          |                              | Ills, Open Vegetation Width (m)                                    |                         |
|                                               | 100m                                       | 36                            | 128                          | 119.246                                                            | 88.7%                   |
|                                               | 200m                                       | 45                            | 119                          | 126.982                                                            | 90.2%                   |
|                                               | 300m                                       | 58                            | 106                          | 149.103                                                            | 87.3%                   |
|                                               | 400m                                       | 71                            | 93                           | 169.530                                                            | 84.4%                   |
|                                               | 500m                                       | 77                            | 87                           | 181.656                                                            | 81.5%                   |

<sup>a</sup> Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. In this table, nesting area size is area either 100, 200, 300, 400 or 500 m from plover nests. Area beyond the nesting area is unused area.



 $\mathbf{i}$ 

Figure C-1. Piping Plover nesting area boundaries used for logistic regression models. Nesting area is defined as all beach area within a certain distance of all Piping Plover nests. Area beyond the nesting area is defined as unused area.

## Appendix D. Intertidal Zone Infauna Samples: A Pilot Study

To better comprehend the labor intensity and logistics of sampling for benthic organisms that may be Piping Plover prey, we sampled for substrate organisms during the Piping Plover brood-rearing period following Loegering and Fraser (1995). We took core samples from in (saturated sample) and above (wet sample) the swash zone of the intertidal habitat in brood foraging areas and along transects at random locations (Figure D-1). Samples were taken from ocean-side, sound-side, and tidal pond intertidal zone types, and from both the gull-removal and reference area. We used 10.2 cm diameter PVC pipe to extract a 5 cm deep core. We immediately saturated substrate cores with 80% ethanol with approximately 1 gm/500 ml Rose Bengal protein stain (Mason and Yevich 1967). We extracted all invertebrates >1 mm from each sample within 5 days of collection, and stored them in 70% ethanol (Tables D-1 and D-2). For one sampling period, we took both 5 cm and 10 cm deep core samples in the same location to examine differences in infauna abundance and diversity between the core depths (Table D-1). Sample sizes were not large for statistical comparisons between management areas, between brood-rearing and nonbrood-rearing areas, between core depths, and among intertidal zone types. Substrate particle size varied among the samples which might have lead core depth inaccuracy and bias. We found that we were logistically burdened by infauna sampling, and therefore did not continue these methods in 2000.

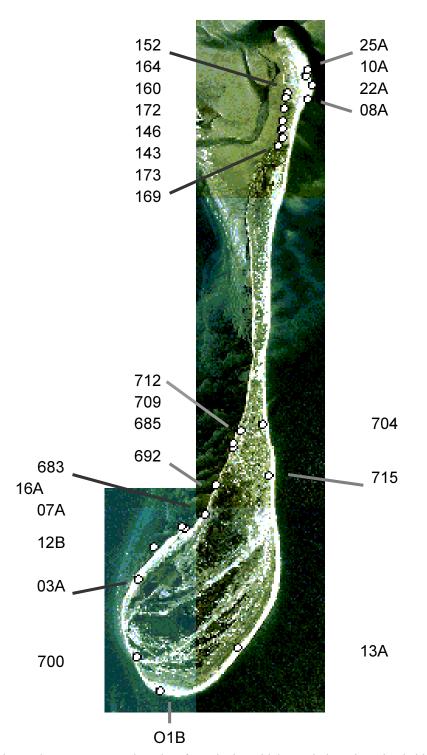
## Literature Cited

- Loegering, J. P. and J. D. Fraser. 1995. Factors affecting piping plover chick survival in different brood-rearing habitats. J. Wildl. Manage. 59(4): 646-655.
- Mason, W. T. and P. P. Yevich. 1967. The use of phloxine B and rose bengal stains to facilitate sorting benthic samples. Trans. Amer. Microsc. Soc. 86(2): 221-223.

| Core Depth (cm) | Date Collected   | Time Collected | Number     | Brood Core (B)<br>or Random Point Core (R) | Area<br>(Gull-removal = GRA, Reference = REF) | Intertidal Zone Lype<br>(O = Ocean, S = Sound, T = Tidal Pond) | wet (w) or Saturated (S) Sand<br>Nematodes (width <1mm) | Polychaetes<br>(pieces, length 1-2 cm, width >1mm) | Amphipods  | Pelecypod Molluscks (bivalves) | Gastropod Molusks                        | Insect Larva                             | Horseshoe Crabs                          | Iso/copopods                             | Mole Crabs                               | Seeds                                    | Eggs/Egg Sacs                            | Other      | Collector | Date Sorted      | Sorter   |
|-----------------|------------------|----------------|------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|------------|--------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------|-----------|------------------|----------|
| 05              | 061999           | 0930           | 10A        |                                            | GRA C                                         |                                                                | V 0000                                                  | 0000                                               | 000        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | SK        | 061999           | SK       |
| 05              | 061999           | 0930           | 10A        |                                            | GRA C                                         |                                                                |                                                         | 0000                                               | 000        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | SK        | 062099           | PK       |
| 05              | 061999           | 0825           | 143        | R                                          | GRA S                                         |                                                                | V 0007                                                  | 0000                                               | 000        | 001                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | SK        | 062099           | PK<br>PK |
| 05<br>05        | 061999<br>061999 | 0825<br>1215   | 143<br>07A | R<br>B                                     | GRA S<br>REF T                                |                                                                | 0006 V 0000                                             | $\begin{array}{c} 0000\\ 0000 \end{array}$         | 000<br>000 | 000<br>000                     | $\begin{array}{c} 000\\ 000 \end{array}$ | 000<br>000 | SK<br>PK  | 062099<br>061999 | PK<br>SK |
| 05              | 061999           | 1215           | 07A        |                                            | REF T                                         |                                                                |                                                         | 0000                                               | 000        | 008                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | VS        | 062099           | SK       |
| 05              | 061999           | 1155           | 683        | R                                          | REF S                                         |                                                                | V 0000                                                  | 0000                                               | 000        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | SK        | 061999           | SK       |
| 05              | 061999           | 1155           | 683        | R                                          | REF S                                         |                                                                |                                                         | 0000                                               | 000        | 002                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | SK        | 062099           | SK       |
| 05              | 062499           | 1310           | 08A        |                                            | GRA C                                         |                                                                | V 0002                                                  | 0000                                               | 023        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | PK        | 062699           | VS       |
| 05              | 062499           | 1310           | 08A        |                                            | GRA C                                         | 0 9                                                            |                                                         | 0000                                               | 001        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | РК        | 062699           | SK       |
| 05              | 062499           | 1050           | 146        | R                                          | GRA S                                         | 5 1                                                            | V 0158                                                  | 0000                                               | 001        | 000                            | 000                                      | 008                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | РК        | 062699           | SK       |
| 05              | 062499           | 1050           | 146        | R                                          | GRA S                                         | 5 5                                                            | 0007                                                    | 0000                                               | 000        | 000                            | 000                                      | 007                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | PK        | 062599           | VS       |
| 05              | 062499           | 1430           | 03A        |                                            | REF S                                         |                                                                | V 0653                                                  | 0000                                               | 000        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 001                                      | 001                                      | 000                                      | 000        | AV        | 062699           | VS       |
| 05              | 062499           | 1430           | 03A        | В                                          | REF S                                         | 5 5                                                            | 1976                                                    | 0000                                               | 001        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | VS        | 062699           | SK       |
| 05              | 062499           | 1250           | 685        | R                                          | REF S                                         |                                                                | V 0888                                                  | 0000                                               | 000        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | SK        | 062699           | VS       |
| 05              | 062499           | 1250           | 685        | R                                          | REF S                                         | 5                                                              | 2814                                                    | 0000                                               | 000        | 000                            | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000                                      | 000        | SK        | 062999           | AV,VS    |

| Core Depth (cm) | Date Collected   | Time Collected | Number     | Brood Core (B)<br>or Random Point Core (R) | a<br>Il-removal = GRA, Ref<br>rrtidal Zone Type | (O = Ocean, S = Sound, T = Tidal Pond)<br>Wet (W) or Saturated (S) Sand | Nematodes (width <1mm) | Polychaetes<br>(pieces, length 1-2 cm, width >1mm) | Amphipods  | Pelecypod Molluscks (bivalves) | Gastropod Molusks | Insect Larva                             | Horseshoe Crabs                          | Iso/copopods | Mole Crabs                               | Seeds                                    | Eggs/Egg Sacs                            | Other      | Collector | Date Sorted      | Sorter      |
|-----------------|------------------|----------------|------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|------------------------|----------------------------------------------------|------------|--------------------------------|-------------------|------------------------------------------|------------------------------------------|--------------|------------------------------------------|------------------------------------------|------------------------------------------|------------|-----------|------------------|-------------|
| 05              | 070699           | 1520           | 22A        |                                            | GRA O                                           | W                                                                       | 0000                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | AV        | 071299           | VS          |
| 05              | 070699           | 1520           | 22A        |                                            | GRA O                                           | S                                                                       | 0000                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 002        | AV        | 071199           | VS,PK       |
| 05<br>05        | 070699<br>070699 | 1055<br>1055   | 152<br>152 | R<br>R                                     | GRA S<br>GRA S                                  | W<br>S                                                                  | 0209<br>0150           | 0000<br>0006                                       | 006<br>000 | 059<br>035                     | 000<br>049        | 000<br>000                               | $\begin{array}{c} 000\\ 002 \end{array}$ | 000<br>002   | 000<br>000                               | 000<br>000                               | 070<br>000                               | 000<br>000 | AV<br>AV  | 071299<br>071799 | VS<br>SK    |
| 05              | 070699           | 1033           | 132<br>13A |                                            | REF O                                           | S<br>W                                                                  | 0150                   | 0000                                               | 000        | 000                            | 049               | 000                                      | 002                                      | 002          | 000                                      | 000                                      | 000                                      | 000        | SK        | 071199           | SK<br>SK,JF |
| 05              | 070699           | 1210           | 13A        |                                            | REF O                                           | S                                                                       | 0040                   | 0000                                               | 021        | 000                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | SK        | 071299           | SK,51<br>SK |
| 05              | 070699           | 1045           | 692        | R                                          | REF S                                           | W                                                                       | 0004                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000          | 003                                      | 000                                      | 000                                      | 000        | PK        | 071299           | PK          |
| 05              | 070699           | 1045           | 692        | R                                          | REF S                                           | S                                                                       | 0000                   | 0015                                               | 000        | 001                            | 000               | 000                                      | 000                                      | 000          | 008                                      | 001                                      | 000                                      | 000        | РК        | 071799           | AV,VS       |
| 05              | 071899           | 1335           | 08A        |                                            | GRA O                                           | W                                                                       | 0000                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | SK        | 072199           | SK          |
| 05              | 071899           | 1335           | 08A        |                                            | GRA O                                           | S                                                                       | 0000                   | 0000                                               | 001        | 000                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | SK        | 072299           | SK          |
| 05              | 071899           | 1030           | 160        | R                                          | GRA S                                           | W                                                                       | 0344                   | 0031                                               | 000        | 000                            | 071               | 000                                      | 001                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | SK        | 072199           | VS          |
| 05              | 071899           | 1030           | 160        | R                                          | GRA S                                           | S                                                                       | 0098                   | 0010                                               | 000        | 014                            | 003               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | SK        | 072399           | SK,PK       |
| 05              | 071899           | 1100           | 16A        |                                            | REF T                                           | W                                                                       | 0202                   | 0003                                               | 010        | 019                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 004        | PK        | 072099           | AV          |
| 05              | 071899           | 1100           | 16A        |                                            | REF T                                           | S                                                                       | 0349                   | 0057                                               | 009        | 010                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 001                                      | 008        | PK        | 072199           | SK          |
| 05<br>05        | 071899<br>071899 | 1215<br>1215   | 700<br>700 | R<br>R                                     | REF S<br>REF S                                  | W<br>S                                                                  | 0314<br>0059           | $\begin{array}{c} 0000\\ 0000 \end{array}$         | 000<br>000 | 000<br>000                     | 000<br>000        | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | 000<br>000   | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | 000<br>000 | VS<br>VS  | 072099<br>072199 | VS<br>AV    |
| 05              | 0/1899           | 1213           | 700        | к                                          | KEP 5                                           | 3                                                                       | 0039                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | 13        | 072199           | AV          |

| Core Depth (cm) | Date Collected   | Time Collected | Number     | Brood Core (B)<br>or Random Point Core (R) | Area<br>(Gull-removal = GRA, Reference = REF) | Intertidal Zone Type<br>(O = Ocean, S = Sound, T = Tidal Pond) | Wet (W) or Saturated (S) Sand | Nematodes (width <1mm) | Polychaetes<br>(pieces, length 1-2 cm, width >1mm) | Amphipods  | Pelecypod Molluscks (bivalves) | Gastropod Molusks | Insect Larva | Horseshoe Crabs                          | Iso/copopods | Mole Crabs | Seeds                                    | Eggs/Egg Sacs                            | Other                                    | Collector | Date Sorted      | Sorter   |  |
|-----------------|------------------|----------------|------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-------------------------------|------------------------|----------------------------------------------------|------------|--------------------------------|-------------------|--------------|------------------------------------------|--------------|------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------|------------------|----------|--|
| 05              | 072499           | 1035           | 25A        | В                                          | GRA                                           |                                                                | W                             | 0150                   | 0000                                               | 001        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | PK        | 072599           | PK       |  |
| 05              | 072499           | 1035           | 25A        |                                            | GRA                                           |                                                                | S                             | 0676                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 001                                      | PK        | 072699           | AV       |  |
| 05              | 072499           | 1000           | 164        | R                                          | GRA                                           |                                                                | W                             | 0207                   | 0000                                               | 000        | 121                            | 023               | 000          | 083                                      | 000          | 000        | 000                                      | 002                                      | 000                                      | PK        | 072899           | SK       |  |
| 05              | 072499           | 1000           | 164        | R                                          | GRA                                           |                                                                | S                             | 0282                   | 0000                                               | 091        | 000                            | 005               | 000          | 000                                      | 001          | 000        | 000                                      | 001                                      | 000                                      | PK        | 072899           | AV       |  |
| 05              | 072499<br>072499 | 1125<br>1125   | 12B<br>12B | B                                          | REF<br>REF                                    |                                                                | W                             | 0003                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 001                                      | AV        | 072699<br>072599 | AV<br>PK |  |
| 05<br>05        | 072499           | 1055           | 12B<br>704 | B<br>R                                     | REF                                           |                                                                | S<br>W                        | 1500<br>4000           | 0005<br>0000                                       | 000<br>000 | 047<br>000                     | 001<br>000        | 000<br>000   | $\begin{array}{c} 000\\ 000 \end{array}$ | 001<br>000   | 000<br>000 | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | AV<br>SK  | 072599           | PK<br>SK |  |
| 05              | 072499           | 1055           | 704        | R                                          | REF                                           |                                                                | S                             | 1000                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | SK        | 072099           | PK       |  |
| 05              | 072499           | 1055           | 22A        |                                            | GRA                                           |                                                                | W                             | 0100                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | VS        | 073099           | PK       |  |
| 05              | 080299           | 1050           |            | B                                          | GRA                                           |                                                                | s                             | 0175                   | 0000                                               | 002        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | VS        | 080399           | VS       |  |
| 05              | 080299           | 1220           | 169        | R                                          | GRA                                           |                                                                | W                             | 0040                   | 0000                                               | 036        | 031                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 001                                      | VS        | 080599           | AV       |  |
| 05              | 080299           | 1220           | 169        | R                                          | GRA                                           |                                                                | S                             | 0030                   | 0000                                               | 000        | 014                            | 008               | 000          | 001                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | VS        | 080599           | SK       |  |
| 05              | 080299           | 1215           | 13A        | В                                          | REF                                           | 0                                                              | W                             | 0327                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | SK        | 080399           | VS       |  |
| 05              | 080299           | 1215           | 13A        | В                                          | REF                                           | 0                                                              | S                             | 0210                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | SK        | 080599           | PK       |  |
| 05              | 080299           | 1030           | 709        | R                                          | REF                                           | S                                                              | W                             | 0032                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      | PK        | 080599           | PK       |  |
| 05              |                  |                |            |                                            | ILL/I                                         | 5                                                              | ••                            | 0052                   | 0000                                               | 000        | 000                            | 000               | 000          | 000                                      | 000          | 000        | 000                                      | 000                                      | 000                                      |           | 0000000          | AV       |  |


| Core Depth (cm) | Date Collected   | Time Collected | Number     | Brood Core (B)<br>or Random Point Core (R) | Area<br>Area<br>(Gull-removal = GRA, Reference = REF)<br>Intertidal Zone Type | (O = Ocean, S = Sound, T = Tidal Pond)<br>Wet (W) or Saturated (S) Sand | Nematodes (width <1mm) | Polychaetes<br>(pieces, length 1-2 cm, width >1mm) | Amphipods  | Pelecypod Molluscks (bivalves) | Gastropod Molusks | Insect Larva                             | Horseshoe Crabs                          | Iso/copopods                             | Mole Crabs                               | Seeds      | Eggs/Egg Sacs                            | Other                                    | Collector | Date Sorted      | Sorter    |
|-----------------|------------------|----------------|------------|--------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|----------------------------------------------------|------------|--------------------------------|-------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------|------------------------------------------|------------------------------------------|-----------|------------------|-----------|
| 05              | 080799           | 1025           | 25A        | В                                          | GRA O                                                                         | W                                                                       | 0000                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | SK        | 081199           | VS        |
| 05              | 080799           | 1025           | 25A        |                                            | GRA O                                                                         | S                                                                       | 0008                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 013                                      | SK        | 081199           | AV        |
| 05              | 080799           | 1145           | 172        | R                                          | GRA S                                                                         | W                                                                       | 0001                   | 0041                                               | 000        | 105                            | 060               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | SK        | 081099           | AV        |
| 05              | 080799           | 1145           | 172        | R                                          | GRA S                                                                         | S                                                                       | 0043                   | 0003                                               | 000        | 207                            | 104               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | SK        | 081099           | SK        |
| 05              | 080799           | 1130           | 07A        |                                            | REF T                                                                         | W                                                                       | 0113                   | 0000                                               | 000        | 000                            | 000               | 001                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | PK        | 080899           | PK        |
| 05<br>05        | 080799<br>080799 | 1130<br>1245   | 07A<br>715 | В<br>R                                     | REF T<br>REF O                                                                | S<br>W                                                                  | 0003<br>0250           | 0000<br>0000                                       | 000<br>000 | 000<br>000                     | 000<br>000        | $\begin{array}{c} 000\\ 000 \end{array}$ | 000<br>000 | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | PK<br>VS  | 080899<br>080899 | VS<br>VS  |
| 05              | 080799           | 1245           | 715        | к<br>R                                     | REF O                                                                         | S                                                                       | 0230                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | VS        | 080899           | v S<br>AV |
| 05              | 080799           | 1245           | 173        | R                                          | GRA S                                                                         | W                                                                       | 0698                   | 0000                                               | 000        | 566                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | AV        | 080899           | AV,PK,VS  |
| 05              | 081399           | 1440           | 173        | R                                          | GRA S                                                                         | s                                                                       | 0150                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | AV        | 081499           | PK        |
| 05              | 081399           | 1320           | 10A        |                                            | GRA O                                                                         | W                                                                       | 0000                   | 0000                                               | 001        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 002                                      | AV        | 081499           | AV        |
| 05              | 081399           | 1320           | 10A        |                                            | GRA O                                                                         | S                                                                       | 0007                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | AV        | 081499           | VS        |
| 05              | 081399           | 1545           | 712        | R                                          | REF S                                                                         | W                                                                       | 0642                   | 0000                                               | 001        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | SK        | 081499           | РК        |
| 05              | 081399           | 1545           | 712        | R                                          | REF S                                                                         | S                                                                       | 0160                   | 0000                                               | 007        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | SK        | 081599           | VS        |
| 05              | 081399           | 1420           | 01B        | В                                          | REF O                                                                         | W                                                                       | 0121                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | VS        | 081599           | PK        |
| 05              | 081399           | 1420           | 01B        | В                                          | REF O                                                                         | S                                                                       | 0021                   | 0000                                               | 000        | 000                            | 000               | 000                                      | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000                                      | VS        | 081599           | VS        |

| Core Depth (cm) | Date Collected   | Time Collected | Number     | Brood Core (B)<br>or Random Point Core (R) |            | Intertidal Zone Type<br>(O = Occan, S = Sound, T = Tidal Pond) | Wet (W) or Saturated (S) Sand | Nematodes (width <1mm) | Polychaetes<br>(pieces, length 1-2 cm, width >1 mm) | Amphipods  | Pelecypod Molluscks (bivalves) | Gastropod Molusks                        | Insect Larva | Horseshoe Crabs                          | lso/copopods                             | Mole Crabs                               | Seeds      | Eggs/Egg Sacs                            | Other      | Collector | Date Sorted      | Sorter         |
|-----------------|------------------|----------------|------------|--------------------------------------------|------------|----------------------------------------------------------------|-------------------------------|------------------------|-----------------------------------------------------|------------|--------------------------------|------------------------------------------|--------------|------------------------------------------|------------------------------------------|------------------------------------------|------------|------------------------------------------|------------|-----------|------------------|----------------|
| 10              | 080799           | 1025           | 25A        | В                                          | GRA        | 0                                                              | W                             | 0003                   | 0000                                                | 000        | 000                            | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 009        | SK        | 081199           | AV             |
| 10              | 080799           | 1025           | 25A        | В                                          | GRA        |                                                                | S                             | 0500                   | 0003                                                | 009        | 000                            | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 016        | SK        | 081199           | PK,SK          |
| 10              | 080799           | 1145           | 172        | R                                          | GRA        |                                                                | W                             | 0026                   | 0006                                                | 000        | 492                            | 021                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000        | SK        | 081099           | PK,VS          |
| 10              | 080799           | 1145           | 172        | R                                          | GRA        |                                                                | S                             | 0128                   | 0006                                                | 000        | 143                            | 064                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000        | SK        | 081199           | PK,VS          |
| 10              | 080799           | 1130           | 07A        |                                            | REF '      |                                                                |                               | 0099                   | 0000                                                | 000        | 000                            | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000        | PK        | 080899           | AV,VS          |
| 10<br>10        | 080799<br>080799 | 1130<br>1245   | 07A<br>715 | В<br>R                                     | REF<br>REF |                                                                |                               | 0012<br>0256           | $\begin{array}{c} 0000\\ 0000 \end{array}$          | 000<br>000 | 002<br>000                     | $\begin{array}{c} 000\\ 000 \end{array}$ | 000<br>000   | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | $\begin{array}{c} 000\\ 000 \end{array}$ | 000<br>000 | $\begin{array}{c} 000\\ 000 \end{array}$ | 000<br>000 | PK<br>VS  | 080899<br>080899 | SK<br>DV AV    |
| 10              | 080799           | 1243<br>1245   | 715        | R                                          |            | 0                                                              | S                             | 0230                   | 0000                                                | 000        | 000                            | 000                                      | 000          | 000                                      | 000                                      | 000                                      | 000        | 000                                      | 000        | VS        | 080899           | PK,AV<br>SK,PK |

| Area      | Organism           | Ocea | n Intertid | al Zone | Soun | d Intertid | al Zone | Tidal Pond Intertidal Zone |      |       |  |
|-----------|--------------------|------|------------|---------|------|------------|---------|----------------------------|------|-------|--|
|           |                    | n    | Mean       | SE      | n    | Mean       | SE      | n                          | Mean | SE    |  |
| Gull-remo | val                |      |            |         |      |            |         |                            |      |       |  |
|           | Nematodes          | 8    | 140        | 103.6   | 8    | 304        | 101.6   |                            |      | -     |  |
|           | Polychaetes        | 8    | 1          | 0.6     | 8    | 11         | 6.8     |                            |      | -     |  |
|           | Amphipods          | 8    | 4          | 2.9     | 8    | 17         | 11.5    |                            |      | -     |  |
|           | Pelecypod Mollusks | 8    | 0          | 0.0     | 8    | 144        | 70.4    |                            |      | -     |  |
|           | Gastropod Mollusks | 8    | 0          | 0.0     | 8    | 40         | 20.1    |                            |      | -     |  |
|           | Insect Larva       | 8    | 0          | 0.0     | 8    | 2          | 1.9     |                            |      | -     |  |
|           | Horseshoe Crabs    | 8    | 0          | 0.0     | 8    | 11         | 10.3    |                            |      | -     |  |
|           | Iso/Copopods       | 8    | 0          | 0.0     | 8    | 0          | 0.3     |                            |      | -     |  |
|           | Mole Crabs         | 8    | 0          | 0.0     | 8    | 0          | 0.0     |                            |      | -     |  |
|           | Seeds              | 8    | 0          | 0.0     | 8    | 0          | 0.0     |                            |      | -     |  |
|           | Eggs/Egg Sacs      | 8    | 0          | 0.0     | 8    | 9          | 8.7     |                            |      | -     |  |
|           | Other              | 8    | 2          | 1.6     | 8    | 0          | 0.1     |                            |      | -     |  |
| Reference |                    |      |            |         |      |            |         |                            |      |       |  |
|           | Nematodes          | 5    | 1245       | 941.1   | 7    | 1090       | 558.5   | 4                          | 543  | 341.2 |  |
|           | Polychaetes        | 5    | 0          | 0.0     | 7    | 2          | 2.1     | 4                          | 16   | 14.6  |  |
|           | Amphipods          | 5    | 4          | 4.4     | 7    | 1          | 1.1     | 4                          | 5    | 4.8   |  |
|           | Pelecypod Mollusks | 5    | 0          | 0.0     | 7    | 0          | 0.3     | 4                          | 21   | 10.6  |  |
|           | Gastropod Mollusks | 5    | 0          | 0.0     | 7    | 0          | 0.0     | 4                          | 0    | 0.3   |  |
|           | Insect Larva       | 5    | 0          | 0.0     | 7    | 0          | 0.0     | 4                          | 0    | 0.3   |  |
|           | Horseshoe Crabs    | 5    | 0          | 0.0     | 7    | 0          | 0.0     | 4                          | 0    | 0.0   |  |
|           | Iso/Copopods       | 5    | 0          | 0.0     | 7    | 0          | 0.0     | 4                          | 0    | 0.3   |  |
|           | Mole Crabs         | 5    | 0          | 0.0     | 7    | 2          | 1.6     | 4                          | 0    | 0.0   |  |
|           | Seeds              | 5    | 0          | 0.0     | 7    | 0          | 0.2     | 4                          | 0    | 0.0   |  |
|           | Eggs/Egg Sacs      | 5    | 0          | 0.0     | 7    | 0          | 0.0     | 4                          | 0    | 0.3   |  |
|           | Other              | 5    | 0          | 0.4     | 7    | 0          | 0.0     | 4                          | 3    | 2.9   |  |

**Table D-2.** Mean number of organisms found within substrate core samples taken from the intertidal zone, by

 management area and intertidal zone type, South Monomoy Island, Cape Cod, Massachusetts, 1999.



**Figure D-1.** Locations substrate core samples taken from the intertidal zone in brood-rearing habitats (two-digit number with a letter) and at random locations (three-digit number), South Monomoy Island, Cape Cod, Massachusetts, 1999. Core locations were plotted using ArcView Version 3.1 (ESRI). (Orthophotographs taken 1 September 1994, Coastal Color Orthophotos index numbers 325810, 329810, 329814, and 329818, MassGIS, Commonwealth of Massachusetts Executive office of Environmental Affairs; http://www.state.ma.us/mgis/massgis.htm.)

# VITA

Shannon Elizabeth Keane was born in Boston, Massachusetts in 1972. She graduated from Lincoln-Sudbury Regional High School in 1991. She attended the University of Massachusetts at Amherst, and received a Bachelor of Science degree in both Wildlife Biology and Natural Resources Management in 1997. For the 1994-1995 acedemic year, Shannon attended the University of Alaska, Fairbanks. She then spent the summer of 1995 as a field technician for the Institute of Arctic Biology studying Pacific Black Brant ecology on the Yukon-Kuskakwim Delta in Alaska. In the summer of 1996, she was a field technicinan for Connecticut Audubon Society, assisting in a study of Common Terns and endangered Roseate Terns on Falkner Island in Long Island Sound, Connecticut. In 1997, Shannon monitored Piping Plover reproductive success for Massachusetts Audubon Society at various locations on Cape Cod, Massachusetts. She began working on the Monomoy National Wildlife Refuge Piping Plover and Gull project through Virginia Polytechnic Institute and State University in April 1998.