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Abstract 

The effects of injection pressure and ambient temperature on spray characteristics of water emulsified diesel were 
investigated in a constant volume combustion chamber.  The bubbles' size of the water phase in the fuel was first 
measured using a microscope for all the prepared fuels and stability tests were conducted to ensure no phase 
separation occurred before measurement.  The fuels were later injected and combusted in a constant volume 
chamber with optical access.  The evolution of the entire injection was record by a high speed camera using Mie 
scattering.  The images were processed to acquire the spray characteristics such as liquid penetration and cone angle; 
and as such, the impacts of the ambient temperature and injection pressure on the spray performance were evaluated.  
It is shown that both W10 (10% water by volume) and W20 were characterized by longer liquid penetration, 
especially under low ambient temperatures, which was attributed to the low volatility of the water.  Noticeably 
increased cone angles and "fattened" main jet body were observed for emulsified fuel at the beginning stage of 
injection indicating the possible occurrence of micro-explosion.  
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Introduction  
        The stringent emission regulations as well as the 
limited available petroleum resources around the world 
are driving both the automotive manufacturers and 
academia to find new technologies for cleaner and more 
efficient combustion in the internal combustion engine.   
One promising method is to use emulsified fuel, which 
can economically solve the classic diesel engine 
dilemma known as the "Particulate Matter (PM)-NOx 
trade-off", since a reduction of both exhaust emissions 
has been found by using water-in-diesel fuels in direct 
injected compression ignition engines [1-5].  The 
emulsified fuel's capability of reducing the NOx can be 
attributed to the vaporization of water, which lowers the 
flame temperature and thus notably reduces the NOx 
emission.  As for the soot reduction, it can be explained 
by the better air fuel mixing process featured by the 
enhanced atomization since micro-explosion may occur 
due to the drastic volatility difference between the 
different phases of the fuel, moreover, the water 
dissociation can form hydroxyl radicals during 
combustion which help to oxidize the soot thus 
reducing the soot emission [6]. 
        Although emulsified fuel is considered an 
environmentally preferable alternative with tremendous 
emission reduction potential to be incorporated into the 
current fleet of diesel engines without major engine 
modifications, there remain several issues among which 
the stability should probably be most important [7-9].   
Ghannam [9] reported that the surfactant is crucial to 
stabilize the emulsion; 0.2% surfactant and 2 minutes 
mixing time can stabilize 10% and 20% emulsified 
diesel for up to 4 weeks and 10 days respectively, 
however, with water content higher than 20%, the 
stability period is limited to 5 hours even after 
increasing the surfactant concentration.  The ignition 
delay of the emulsified fuel combustion is another issue 
as the ignition delay time will increase greatly with the 
presence of water.  Ghojel et al. [10] has found that the 
ignition delay for the diesel-water emulsion is always 
longer than that of the diesel fuel.  Whereas the 
injection pressure has little impact on the ignition delay, 
the ambient temperature could significantly influence 
the ignition delay especially at higher water content, 
thus injection modification might be required to 
maintain the engine performance.  The current study 
will address these issues by exploring the impact of 
hydrophilic-lipophilic-balance value (HLB) on the 
stability of the emulsified fuels and by evaluating the 
impact on ambient conditions on the ignition delay. 
        The other aim of this study is to investigate the 
micro explosion phenomena in a spray flame.  The 
micro explosion, associated with enhanced atomization 
and better fuel/air mixing, has always been considered 
one of the major reasons for emission reduction by 

using emulsified fuel.  Although numerous researchers 
have shown the existence of micro-explosion for a 
single fuel droplet [11-13], the presence of such 
phenomena in the spray injected by a regular diesel 
injector is still open for debate.  The discovery of 
micro-explosions in droplet combustion arouses interest 
of researchers in finding similar evidence in real engine 
combustion.  The presence of micro-explosion in 
atomized emulsion sprays were demonstrated in 
separate experiments by a number of investigators [14-
17].  The direct flame photographs, temperature profiles 
and micro-explosion frequencies have been shown by 
Fuchihata et al [14].  They reported observation of 
small droplets whose diameter were less than 50 μm 
exploding in the spray flame.  Wu et al [16] used the 
laser holography shadowgraph to visualize the spray in 
a diesel/water/ethanol emulsion in which an apparent 
raised part can be seen in the main jet body and claimed 
as the evidence of the micro-explosion.  In a recent 
study of Raul et al. [17], "glowing spots" have been 
reported and might have resulted from micro-explosion.  
It should be noted that there remain substantial 
differences between the single droplet and fuel jet 
experiment.  The velocities of the droplets in a reacting 
spray jet can reach up to ~100 m/s while the fuel 
droplet is quiescent in the single droplet combustion; 
the primary and secondary breakup due to the high jet 
momentum and aerodynamic force may also affect the 
occurrence of micro-explosion.  Therefore, the 
speculation that micro-explosions can occur in spray 
combustion needs to be supported by experimental 
evidence derived from spray studies.  It is also 
interesting to discover the injection and ambient 
conditions that favor the occurrence of micro explosion.  
 
Experimental Methods 
Preparation of emulsified fuel  
        An ultra low sulfur diesel (ULSD) obtained from 
Illini FS was used as a base fuel and the oil phase in 
emulsified diesel in current study.  The cetane index, 
90% distillation point, total sulfur, flashpoint, and 
viscosity of the base fuel regulated by American 
Society for Testing and Materials (ASTM) are tabulated 
in Table 1.  In a previous study [7], the three phase oil-
in-water-in-oil (O/W/O) emulsions were reported more 
stable than two phase water-in-oil (W/O) emulsion.  
Thus a two-step procedure was utilized to prepare the 
O/W/O emulsions in this research.  A hydrophilic 
surfactant polyoxyethylene sorbitan monooleate 
(TWEEN 80) with HLB = 15 was added into water for 
reducing the interfacial tension and retarding the 
flocculation, coalescence, and creaming between oil 
and water phases.  On the other hand, the lipophilic 
surfactant Sorbitan oleate (Span 80) with HLB = 4.3 
was added into ULSD to stabilize the oil phase.  A 
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magnetic stirrer (Temper, Fisher Scientific Inc.) was 
employed to mix and heat the water and ULSD while 
the TWEEN 80 and Span 80 were added in 
respectively. 
        An O/W emulsion was first prepared by adding 1/9 
in volume USLD into water-TWEEN 80 mixture and 
blended at 10000 rpm for 5 minutes.  The above 
emulsion was then gently poured into the specific 
amount of ULSD-Span 80 mixture and emulsified for a 
period of time at 50 C and 10000 rpm to form O/W/O 
emulsion.  The blending time period, including 5, 10, 
20, 30 minutes, were optimized by the later stability 
tests.  In addition, the HLB value is the most referable 
parameter of surfactant selection and addition in 
emulsification process while the higher HLB stands for 
more hydrophilic tendency of a surfactant.  Emulsions 
of different HLB values were prepared by Span 80 and 
TWEEN 80 while the combined HLBs were calculated 
by the following equation: 
 

∗ W 	 ∗                (1) 
 
where the suffixes S and T stands for Span 80 and 
TWEEN 80 respectively; W represents the mass ratio of 
each surfactant (WS + WT = 1).  In the current study, the 
tested HLB ranged from 5.0~8.0 to prepare 700 mL 
O/W/O emulsion while the optimization of HLB value 
took place by stabilizing 20 vol. % water in a O/W/O 
emulsion and were tested in terms of their stability.  
The water contents varied from 5 to 20 vol. % in this 
study with the fixed 2 vol.% total surfactant ratio. 
 

Molecular formula C12-C25 

Cetane index 40 (min.) 

Total sulfur (ppm) 7~15 
Density (g/ml) 0.82-0.86 

Auto-ignition temperature (C) ~210 

Lower heating value (MJ/kg) 42.5 

Flash point (C) 65-88 

Boiling point (C) 180-230 

90% distillation point (C) 293.3~332.2 

Viscosity (cst) 1.5~4.5 
Table 1. Base line fuel properties 

 
Fuel stability tests 
        There were three parameters to be optimized by 
emulsion stability tests, including blending duration, 
HLB values, and water contents.  The following two 
methods were employed to characterize the stability of 
the emulsion: (1) a two-week (14-day) continuous 
record of fuel daily changes; and (2) observation and 
analysis of W/O droplet sizes using an optical 

microscope (OLYMPUS BX51TF, TOKYO, JAPAN) 
with 400x amplification and a charge-coupled device 
(CCD) video camera (OLYMPUS DP20).  The first 
method observed the destabilization of emulsion after 
the short term storage.  15 mL of each tested fuel was 
stored in a centrifugal tube at 25C right after it’s 
production.  The higher separated volume at the bottom 
of tube after 14-day standing indicates lesser stability of 
emulsion.  In order to estimate the fuel condition after a 
long-term storage, the second method was used  to 
capture the image and calculate the Sauter mean 
diameter (SMD) of O/W/O bubbles by using the Image-
Pro Plus software version 5.0.2.9.  By the bubble size 
distribution and SMD measurement, the tendency of 
phase separation could be described while the 14-day 
test showed no separate layer. 
 
Experimental Setup and Procedure  
        A constant volume chamber with a bore of 110 
mm and a height of 65 mm is used in this study.  The 
chamber can imitate the spray and combustion process 
of a diesel engine, allowing a maximum operating 
pressure of 18 MPa.  The chamber has an open end on 
the top with a fused silica (Dynasil 1100) end window 
installed opposite to the injector, allowing optical 
access.  The fused silica end window, sealed by a 
Tamshell energized spring seal, is 130 mm in diameter 
and 60 mm in thickness, with a high UV transmittance 
down to 190 nm.  A six-hole Caterpillar hydraulic-
actuated electronic-controlled unit injector (HEUI) is 
mounted at the center of the chamber head.  Four 
injection pressures ranging from 70 MPa to 130 MPa 
were used in this study.  The cylinder wall is heated to 
380 K by eight heaters (Watlow Firerod), to mimic the 
wall temperature of a diesel engine as well as to prevent 
water condensation on the optical windows.  
Nevertheless, the oil line and fuel line inside the 
chamber head are kept at 350 K to simulate the 
situation in an actual engine and stop the fuel 
evaporation before injection.  A Kistler 6121 quartz 
pressure transducer is embedded in the chamber wall in 
conjunction with a 5026 dual mode differential charge 
amplifier.  All pressure data and were ensemble 
averaged over at least eight injection events, and the 
apparent heat release rate (AHRR) data were calculated 
from filtered, averaged pressure data using an air-
standard first-law analysis. 
        The procedure is started by filling the chamber to a 
specified density with a premixed, combustible-gas 
mixture, including acetylene (C2H2), 50/50 oxygen and 
nitrogen, and air as shown in Fig. 1a.  The mixture is 
pushed into the chamber by a piston accumulator and 
then ignited with a spark plug. By burning the mixture, 
a high-temperature, high-pressure environment in the 
chamber is created.  Acetylene, with unity C/H ratio, is 
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used as the combustible gas for its flammability and 
low window contamination.  Equation (2) shows the 
chemical reaction of the mixture, 
	
4	 C2H2	 	 10	 	 O2	 	65	N2		8	CO2	
	4	H2O	 	 	O2	 	65	N2						                         (2)   
 
where ζ denotes the amount of excess oxygen.  The 
chamber ambient contains 21% oxygen, 66.7% 
nitrogen, 8.2% carbon dioxide and 4.1% water vapor by 
volume after burning the mixture.  The molecular 
weight for the post-combustion gas mixture is 29.738 
kg/kmole, and the density is 14.8 kg/m3.  As the 
products of combustion cool over a relatively long time 
(~2 s) due to heat transfer to the vessel walls, the vessel 
pressure slowly decreases.  When the desired 
experimental conditions are reached, the HEUI injector 
is triggered and the fuel injection, auto-ignition and 
combustion processes ensue.  The ambient gas 
temperature, density, and composition at injection are 
determined by the pressure at the time of fuel injection 
and the initial mass and composition of gas within the 
chamber.  For the experiments presented in this paper, 
three different ambient temperatures were considered: 
800, 1000 and 1200 K, covering both low-temperature 
combustion and conventional combustion in diesel 
engine.  
 
Image Processing 
        High speed images for both spray and combustion 
studies are obtained with a non-intensified high speed 
digital camera (Phantom V7.1), located above the 
optical chamber.  For the spray studies, the light source 
is supplied by a copper vapor laser (Oxford Lasers 
LS20-50) which can be externally controlled to run up 
to a maximum frequency of 50 kHz with pulse duration 
of 25 ns.  The high-speed camera and the copper-vapor 
laser were synchronized up to 15,037 frames per second 
to produce time resolved measurement at a spatial 
resolution of 512×256 pixels.  A Nikkor 105 mm focal 
length lens was used for the high-speed imaging and an 
exposure time of 3 μs was used.  The copper-vapor 
laser has two-color output, at 511 and 578 nm, with a 
power ratio of 2:1.  To filter out the light at 578 nm for 
this monochromatic light extinction, two interference 
filters at 510 nm and 515 nm with 10 nm full width at 
half maximum (FWHM) achieving a 5 nm FWHM 
were used.  The interference filters also served to block 
the visible soot luminosities, though the intensive soot 
emission, especially at high ambient temperature cases, 
may still contribute to the signal gain and raise noises in 
the determination of the liquid penetration.  The 
scattered light emitted from the fiber was condensed by 
an aspheric condenser lens and then reflected via a 
mirror of 6 mm diameter placed in front of the 

condenser lens that could be considered as from a point 
source before entering the chamber.  A schematic 
drawing of the setup is shown in Fig. 1b.  The camera 
was triggered to start the recording by the injection 
signal and was set to record for a duration long enough 
to cover the entire duration of spray and combustion.  
The spatial resolution of the camera was typically 0.108 
mm/pixel. 
        Shadowgraphs based on the diffraction index 
variation for vapor-air localization has been used for 
quite a long time.  The use of this technique, usually 
involving two optical windows installed inline on a test 
chamber, was motivated against elastic scattering 
because of the difficulties involved in discriminating 
the border between the vaporized fuel and surrounding 
air in reacting environments as pointed out by a few 
researchers [17,18].  In the present study, a similar 
principle based on the reflection index variation instead 
of diffraction index variation has been adopted since 
only one optical accessible window is installed on the 
top of the chamber.  The raw images obtained from 
each complete injection sequence were first corrected 
by the first image of the respective sequence which was 
taken right before the fuel injection.  The histogram 
equalization was then performed to enhance the 
contrast of each image and minimized the effect of the 
illumination intensity variation due to the ambient 
temperature difference and light degradation from case 
to case.  It is also found that this procedure eliminate 
the bulk noise of the background which later makes 
easier the determination of both the liquid penetration 
and cone angle.  As the camera will capture stronger 
reflection signal of the laser beam from the spray, the 
liquid penetration length can be defined as the distance 
between the injector tip and the first pixel above a 
preset threshold along the jet centerline.  The 
determination of the threshold has been discussed by a 
number studies.  In a recent study of Raul et al. [17], 
both the centerline intensities and the derivatives have 
been used to divide the spray jet into continuous liquid 
core, droplets and fuel vapors.  After performing a 
similar analysis, the author found the determination of 
the droplets penetration and vapors penetration could be 
very challenging and subjected to inconsistency due to 
the aforementioned soot luminosity noise in the 
background as can be seen in Fig. 2.  Therefore, only 
one threshold was chosen in the present study and was 
referred to as the liquid penetration.  It is also 
worthwhile to mention that penetration is not merely 
decided by "one" pixel touching the threshold, but 
rather a 3×3 pixel arrays whose value are all above the 
threshold, such that the impact of the noise can be 
minimized.  Once the liquid penetration was 
determined, the cone angle can be measured by finding 
the farthest 3×3 pixel array above the same preset 
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Summary and Conclusions 
        The effects of injection pressure and ambient 
temperature on spray characteristics of water emulsified 
diesel were investigated in a constant volume 
combustion chamber.  The bubbles' size of the water 
phase has been measured using a microscope and 
stability tests have been conducted for all the prepared 
emulsions.  All emulsified fuels tested were stable 
within a range of two weeks.  The fuel was later 
injected and combusted in the constant volume 
chamber.  A wide range of ambient conditions were 
applied so as to investigate their impacts on the ignition 
delay, spray penetration and cone angle.  The findings 
can be summarized as follows:  
        1)  For diesel emulsified fuels, an HLB value of 5 
is relatively the suitable surfactant composition to the 
diesel/water interfacial condition as it stabilize the 
emulsion for more than two weeks, with water content 
reach up to 20%. 
        2) Ambient temperature had the dominant impact 
on the ignition delay compared to injection pressure and 
water content.  With water content less than 20%, the 
ignition delay was only observed at the low ambient 
temperature together with low injection pressure, and 
almost negligible in all other cases indicating the 
ignition delay should not be considered as a major issue 
with low water content emulsified diesel.  
        3) It is shown that both W10 (10% water by 
volume) and W20 were characterized by longer liquid 
penetration, especially under low ambient temperatures, 
which can be attributed to the low volatility of the 
water.  Notably increased cone angles and "fattened" 
main jet body were observed for emulsified fuel at the 
beginning stages of injection indicating the occurrence 
of micro-explosion.   
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