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ABSTRACT 
 
The 2013 California Building Code requires that the vertical component of an earthquake be 
accounted for in almost all building analyses and designs. However, ASCE 41-06 and the draft 
version of ASCE 41-13 only require consideration of the vertical seismic component for long-
span structures, pre-stressed structures, and structures with highly stressed elements under 
gravity load. Even then, portions of ASCE 41 provide recommendations that conflict with those 
in the CBC. In many projects, the effect of using vertical time histories is more pronounced and 
the performance of the structure can be very sensitive to such vertical acceleration demand. 
This study provides a comparison between code-prescribed pseudo-static vertical seismic forces 
and the results of a non-linear response-history analysis that incorporates vertical ground 
motions. Additionally, recommendations are proposed for the necessary level of beam element 
meshing to suitably capture vertical ground motion effects. 
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ABSTRACT 
 

The 2013 California Building Code requires that the vertical component of an earthquake be 
accounted for in almost all building analyses and designs. However, ASCE 41-06 and the draft 
version of ASCE 41-13 only require consideration of the vertical seismic component for long-span 
structures, pre-stressed structures, and structures with highly stressed elements under gravity load. 
Even then, portions of ASCE 41 provide recommendations that conflict with those in the CBC. In 
many projects, the effect of using vertical time histories is more pronounced and the performance 
of the structure can be very sensitive to such vertical acceleration demand. 
This study provides a comparison between code-prescribed pseudo-static vertical seismic forces and 
the results of a non-linear response-history analysis that incorporates vertical ground motions. 
Additionally, recommendations are proposed for the necessary level of beam element meshing to 
suitably capture vertical ground motion effects. 

 
Introduction 

 
Two investigative analyses were performed for the purposes of this paper. The first 
analysis (Analysis 1) was a full building 3D non-linear model subjected to horizontal and 
vertical ground motions. The results of this analysis will be used to compare component 
demands from a response-history analysis to those determined using the commonly code-
prescribed static vertical force of 0.2SDS. The second analysis (Analysis 2) was performed 
on a series of 2D frames subjected to vertical and horizontal ground motions. The results of 
this analysis will be used to investigate the effect of beam meshing on component demands 
and joint accelerations. 
 This study has been undertaken by the Computer Applications Committee of the 
Structural Engineers Association of Northern California (SEAONC). 
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Background 
 
The vertical effects of earthquakes on buildings have traditionally been less of a concern than the 
horizontal effects. This is primarily due to the misbelief that both the amplitude of the vertical 
component is smaller than the horizontal component and that the building is stiffer in the vertical 
direction than in the horizontal direction. Building codes around the world, in concert with this 
general belief, have given less attention to the effects of vertical shaking in buildings [1]. It was 
not until the 1988 UBC that design considerations for vertical effects first appeared in a 
prominent building code [2]. Even then, the requirement was minor: a force of 0.2*Wp and only 
for horizontally cantilevered components. Over the years, the 0.2 coefficient has been carried 
from code edition to code edition and is still present today in the form of 0.2SDS found in ASCE 
7-10. Today, even the two most prominent building codes in the United States, ASCE 7-10 and 
ASCE 41-13 handle the vertical component in very different ways [3, 4]. ASCE 7-10 requires 
consideration of vertical accelerations in design for all elements, whereas ASCE 41 only requires 
it to be considered for cantilevered members, pre-stressed members and heavily gravity-loaded 
members. ASCE 7-10 requires considering the horizontal and vertical components 
simultaneously while ASCE 41-13 does not. Finally, ASCE 41-13 determines vertical forces 
either by using a site-specific vertical response spectrum or by scaling the horizontal response 
spectrum by a factor of 2/3. ASCE 7-10 simply requires using a gravity amplification factor of 
0.2SDS. 
 Despite the relatively minor ways in which ASCE 7-10 and ASCE 41-13 address the 
vertical component of ground motion, detailed analytical and experimental studies, as well as a 
plethora of supporting observations from the damage patterns of the 1989 Loma Prieta, 1994 
Northridge, 1995 Kobe, 1999 Chi Chi, 2010 Darfield and 2011 Christchurch (where a vertical 
PGA of 2.21 was recorded [5]) earthquakes emphasize the significance of vertical seismic 
effects, especially in near-field conditions. Hence, their effects cannot be ignored in design [5-
12]. Recent studies by several researchers conclusively indicate that certain failure modes 
(including compressive, tensile, shear, and flexural failures) can only be attributed to high 
seismically-induced vertical forces [11]. In steel structures subject to near-field ground motions, 
ultra-low cycle fatigue in connections may be attributed to vertical motions. In reinforced 
concrete structures, vertical effects can reduce column compressive forces, decreasing shear and 
flexural capacity, and ultimately reducing column ductility. 
 Due to differences in the inherent damping mechanisms, buildings usually have less 
damping in the vertical direction than in the horizontal direction. Additionally, vertical ground 
motions are typically high-frequency motions due to the very high vertical stiffness of buildings, 
which in turn leads to very high fundamental vertical frequencies (the vertical period of 
reinforced concrete buildings typically range from 0.05 sec to 0.25 sec) [13]. Furthermore, 
building vertical frequencies are not greatly influenced by a change in building height or lateral 
stiffness. This can lead to resonance and significant component demands when the fundamental 
vertical frequencies of the structures are in the range of the vertical pulses of ground motions [9, 
11]. Regardless of evidence to the contrary, most building codes are unconservative when 
calculating vertical seismic forces. Codes usually calculate vertical demand by the use of a 
vertical-to-horizontal spectral acceleration (V/H) ratio. Recent studies show that the vertical-to-
horizontal (V/H) spectral ratios can reach as high as 1.7 for short periods and 0.7 for long 
periods. This implies that the commonly used ratio of V/H = 2/3 in engineering applications is 
far exceeded, at least, in the short-period range [14]. This effect is especially pronounced in near-



fields of high-frequency ground motions and in unconsolidated soil environments where the site-
specific spectra for vertical ground motions would be an ideal alternative [6, 7, 15, 16]. 
 It is well-known that peak ground vertical accelerations increase with earthquake 
magnitude and attenuate with distance. In near-fields environments, the P and S waves reach the 
base of the structure almost simultaneously. The interval between the instances that P and S 
waves reach the base of the building disperses with the source-to-site distance from the 
hypocenter of the earthquake [6]. According to Snell’s law and refraction of the seismic waves, 
compression waves (P-waves) are likely to dominate the vertical ground motions in short-periods 
while the Shear waves (S-waves) dominate the horizontal ground motions in long-periods. 
Therefore, it is necessary to study the vertical component of ground motions in near-field 
earthquakes because of the simultaneous occurrence of vertical and horizontal components [12]. 
 Vertical components of ground motions typically have less pronounced effects in the 
perimeter/corner columns than in the interior columns. Perimeter/corner columns receive more 
seismic forces from horizontal motions than those at the interior area as the perimeter/corner 
columns provide resistance to overturning. In addition, the contribution of gravity forces is larger 
for interior columns since the effect of overturning is negligible at interior columns. For the first 
vertical mode response of moment frame buildings, effects of the vertical components of ground 
motion are less in the columns at the lower stories than in the upper stories. This is because the 
relative change in the pre-existing static axial load is larger in the upper stories. In other words, 
the sensitivity of the columns to the vertical component of ground motions is more in the upper 
stories than in the lower stories [17]. A similar pattern can be observed in beams. The effects of 
the vertical components of ground motion are less in beams that have smaller forces due to 
horizontal ground motions and smaller tributary areas. Usually, the effects of the vertical 
component of ground motions are more pronounced in three beam conditions: interior beams, 
upper story beams and long span beams. 
 

Analysis 1 Methodology 
 
A Nonlinear Dynamic Procedure (NDP) utilizing non-linear response-history analysis was used 
for this part of the study. A 3D model of a 7-story steel special moment frame structure including 
a basement was built in PERFORM-3D v5 [18]. Moment frames were modeled using nonlinear 
elements. Moment frame columns were modeled with two concentrated axial-flexural (PMM) 
plastic hinges at the ends and an elastic section in between with the end zones outside the 
flexural hinges at the joints. The moment frame beams were modeled with two concentrated 
moment-rotation (MR) plastic hinges at the ends and an elastic section in between with the end 
zones outside the flexural hinges at the joints. The location of the plastic hinge was at the joint or 
a distance of one-third of the beam depth from the joint depending on the strength of the panel 
zone, as defined in FEMA 351 [19]. Appropriate reduction factors were applied based on ASCE 
41-06 for panel zone demand ratios of less than 0.6 or greater than 0.9 [20]. 
  For this analysis, slabs were modeled as rigid diaphragms. Foundations were not modeled 
and a fixed base at the basement was assumed. Due to the open floor plan layout, limited number 
of partitions at most levels and the fact that the damping ratio in steel buildings is inherently less 
than concrete buildings, a lower damping ratio was used. Rayleigh damping was implemented to 
yield a damping ratio of approximately 2.5 percent at the fundamental period of the structure in 
each direction. From the modal analysis, the first mode period of the building was approximately 
1.8 seconds with a mass participation ratio of 71 percent. The second mode period was 



approximately 0.6 seconds with a 10 percent mass participation ratio. The remaining seismic 
mass participation ratio was associated with the ground floor and basement wall excitation, 
which were rigid compared to the flexible superstructure. 
 Two versions of this model were built for this study. The first model did not discretize 
the beams and the tributary mass was only assigned to the nodes at either end of the beams. This 
model presents the simplest analytical model that may be used when attempting to capture the 
effects of the vertical component of seismic events. The other model divided the beams into 8 
elements and assigned mass to all of the intermediate nodes and the two end nodes. The second 
model was used to set a benchmark for comparison of some of the engineering demand 
parameters between the two models. For each model, two load combinations were analyzed and 
the results were compared. One load combination included the earthquake vertical effect by 
applying the CBC approach of 0.2 SDS. The other load combination explicitly applied the vertical 
acceleration response-history to the model. The comparison of the results from the two 
approaches will help to evaluate the adequacy of the building code approach for estimating 
different engineering demand parameters (EDPs). 
 For the model with meshed beams, 2 of the 7 ground motion records were selected to 
reduce the analysis time and computational space for this model. EDPs selected for comparison 
were: column axial force, beam flexural force and joint relative acceleration. Beams, columns 
and joints at the interior, edge, and corner of the structure, as well as at the building top (roof), 
mid-height (5th floor), and base (2nd floor) were selected for observation.  
 

Analysis 2 Methodology 
 
Analysis 2 consists of a series of linear response-history analyses performed on three different 
2D building frames. The steel moment frame building geometry, loads and member sizes were 
taken from analytical models developed for the SAC Steel Project [21]. The 3-story, 9-story, and 
20-story buildings were modified in two significant ways. First, the subterranean levels were 
removed and the bases were fixed to simplify the analysis. Secondly, the frames were assumed to 
have the same tributary mass in the lateral and vertical directions. The original source models 
utilized only perimeter moment frames. In that design only one half bay of vertical mass was 
tributary to the moment frames but multiple bays of lateral mass were tributary. 
 The 2D building frames were created and modeled in SAP2000 (v15.1.0) [22]. Building 
mass was applied as a line load to the beams. Panel zones were modeled as 50% rigid and all 
columns were meshed into 4 frame elements between floors. From this point 4 different models, 
each with different beam meshing, were created for each of the 3 buildings. Beams were meshed 
into 1, 2, 4, and 8 frame elements for a total of 12 different analysis models. The building modal 
properties were determined using Ritz Vector analysis with the maximum number of modes 
either limited to the number of degrees of freedom of the system or 1000. After determining the 
primary frequency of the buildings, the same ground motions used in Analysis 1 were re-scaled 
for each of the three structures. Only the fault normal and vertical motions were applied 
concurrently to the structures. The linear response-history was performed using the same modal 
properties described above. 
 The maxima and minima of column axial force, beam flexural force, and joint relative 
acceleration for each response-history analysis were recorded. Beams, columns, and joints at the 
interior and exterior of the structure, as well as at the building top, bottom and mid-height were 
selected for observation. 



Ground Motion Records 
 
7 ground motion records were selected and scaled to the design response spectrum at the 
theoretical site in downtown San Francisco, CA following the guidelines of ASCE 7-05. Scaling 
was repeated for the four structures under study, three 2D frames and one 3D structure. The same 
scale factor is applied to the vertical and horizontal components of each record. Table 1 includes 
the records and relating information for each record. 
 
Table 1. Ground motion information 
 

Event/Station Magnitude Distance (km) Fault Type PGA (g) 

Manjil/Abhar (GM1) 7.37 40 Oblique 0.5 

Duzce/Duzce (GM2) 7.14 6.6 Strike-Slip 0.43 

Erzikan (GM3) 6.69 4.4 Strike-Slip 0.45 

Imperial Valley/Holtville (GM4) 6.53 7.7 Strike-Slip 0.24 

Kocaeli/Duzce (GM5) 7.51 15.4 Strike-Slip 0.33 

Loma Prieta/LGPC (GM6) 6.93 3.9 R-Oblique 0.71 

Landers/Yermo (GM7) 7.28 23.6 Strike-Slip 0.22 
 

Analysis 1 Observations 
 
The un-meshed model is used for the comparison study utilizing 7 ground motion records. The 
results are presented for EDPs by applying the vertical component of the time history record and 
the code recommendation of 0.2SDS times the dead load. Table 2 shows detailed results for the 
seven ground motion records used as input motions for this study. As seen in Table 2, corner and 
edge column compression demands from the CBC code approach are within 10% of those of the 
vertical time history accelerations. For the interior columns, the code approach underestimates 
the compression demand by 20% or more in 4 out of 7 records. The compression demand on 
interior columns is underestimated by an average of 15% to 20% when the code approach is 
applied in analysis. Column compression demands in the meshed and un-meshed models are 
similar. The effect of meshing was limited to a 5% change in the column compression force. 
 For tension load combinations, the code approach does not predict tension demand in 
interior columns. However, the response-history analyses with vertical time history records show 
tension in interior columns for 3 out of 7 records. Considering that column splices in many 
existing steel structures only include small partial joint penetration (PJP) welds with weld 
material lacking minimum toughness requirements for seismic demands, these welds may be 
susceptible to premature fracture particularly under the net tension demands. Considering that 
column splices are essential to the integrity of the columns under gravity and seismic loads, 
predicting and monitoring their axial and flexural demands are critical in evaluating columns as 
well as the overall building performance under seismic events. 
 Beam flexural demands are compared, at the face of the column, between the code and 
the vertical time history approaches. The results show that the negative flexural demands are 
comparable between the two approaches. Even though the positive flexural demand results are 



close between the two approaches for the perimeter beams, the demands are underestimated in 
interior beams, especially at the roof level. Comparing the beam results, both the positive and the 
negative flexural demands are underestimated in the unmeshed model for the interior beams at 
lower floors. For the meshed model, positive flexural demands are reported at beam mid-span. 
Although one time history record shows that the demands are underestimated at the roof level, 
the other record shows otherwise. Therefore, no final conclusion is reported for this EDP. 
 Floor vertical accelerations are compared at the column locations between the two 
approaches. The results show that the code approach is significantly un-conservative in all 
locations and under all time history records. Comparing the vertical acceleration results shows 
that even though the meshed model predicts lower demands in the vertical time history case, it 
predicts smaller demands in the code approach case. In addition, the results from the meshed 
case confirm that not only is the vertical acceleration at the column locations much higher in the 
vertical time history case—compared to the code approach—but it is also higher in the beam 
mid-span. 
 As an overall building demand parameter, story drift was compared between the two 
approaches and it was found that the results are within an acceptable range and that story drifts 
are insensitive to the beam mesh size. 
 

Analysis 2 Observations 
 
Figure 1 shows the range and average of absolute maximum vertical accelerations at 6 pre-
selected column joint locations (interior and exterior columns at the roof, mid-height, and 2nd 
story). All of the accelerations have been normalized by the accelerations determined by the 8 
element beam mesh model. 
 

  
 

Figure 1.    Average and range of normalized maximum joint accelerations for analysis 2. 
 

A number of trends are apparent from column accelerations presented in Figure 1. First, 
the range of column accelerations reduces dramatically with increasing building height. The 3-
story 1 beam element model shows accelerations that vary from 200-400% of the same 8 beam 
element model. The 20-story model shows only 1-20% variability for the same mesh. Secondly, 
the average and range of all 3 buildings reduces dramatically at the 4 element mesh level. The 
maximum divergence from the mean accelerations of any of the 3 buildings is only 12% for  



Table 2.  Analysis 1 results 
 

 

AC Accelerations at columns 
BEM Beam end moments 
CA Column axial force 
LC1 1.2D+0.5L+aH(t)+av(t); Compression 

load case 
LC2 0.9D+aH(t)+av(t); Tension load case 
LC3 1.41D+0.5L+aH(t); Compression load 

case 
LC4 0.69D+aH(t); Tension load case 
2nd   Base (Columns); 2nd floor (Beams) 
5th  
 

Between 4th and 5th stories (Columns), at 
5th floor (Beams) 

R Between 7th and 8th stories (Columns); 
at Roof (Beams) 

T Column in tension under av(t) 



these models. Overall, accelerations at column locations tend to be overestimated at lower 
meshing levels. The 20 story building shows underestimated column accelerations at the 2 
element mesh, but otherwise accelerations are consistently overestimated. 
 Beam mid-span accelerations are also plotted in Figure 1. Accelerations were measured 
at 6 beam mid-points (interior and exterior beams at the roof, mid-height, and 2nd story). No 1 
element mesh results are displayed since beam mid-point accelerations cannot be determined in 
that configuration. Like the column accelerations, variability reduces with building height and 
convergence seems to occur at the 4 mesh model. However, unlike the column accelerations, 
beam mid-point accelerations are mostly underestimated at lower meshing levels. 
 In general, the maximum column and beam vertical accelerations increased with story 
height. Typically, interior columns had higher maximum vertical acceleration than exterior 
columns. Similar to the columns, the interior beams have a slightly higher relative vertical 
acceleration. 
 In additional to vertical accelerations, beam moments and column axial forces were also 
studied. All forces discussed were determined by taking the average of the absolute maximums 
of each of the 7 ground motions. For the purposes of this analysis, no differentiation was made 
between positive/negative beam moment and compression/tension column force. The unfactored 
member forces are solely from the scaled simultaneously applied vertical and horizontal ground 
motions. 
 

 
Figure 2.    Average and range of normalized maximum beam moment demands for analysis 2. 
  

Figure 2 shows very different results for the beam end and midpoint moment demands. 
Beam end moments are not particularly sensitive to the mesh level but midpoint demands are. 
Moment demands at both beam locations are not particularly sensitive to the building height. 
Convergence is seen at the 4 element mesh level for end moments. Midspan moments do not 
converge as thoroughly at the same level of meshing. 

Column axial force demands are shown in Figure 3. Overall, the axial demands are not 
particularly sensitive to building height and have nearly complete convergence at the 4 element 
mesh level. 



  
 
Figure 3.    Average and range of normalized maximum column axial demands for nalysis 2. 
 

Conclusion and Further Research 
 
One significant observation from Analysis 1 was that the code approach did not capture the net 
tension demands at the interior columns. Considering the non-ductile behavior of low-toughness 
weld material at pre-Northridge groove welds, this issue can be of a major concern for the 
evaluation of existing buildings at life-safety and collapse-prevention performance objectives. It 
was found that the code approach underestimates the interior column compression demands by 
as much as 40% with an average of almost 20%. For interior beam demands, the positive 
moments at the face of the columns were lower for the code approach compared to the explicit 
application of the vertical accelerations by a maximum of about 65% with an average of roughly 
30%. The magnitude of difference was higher at the upper story beams compared to the beams at 
the lower floors. The analyses confirm that the change in column axial and beam flexural 
demands between the code and explicit vertical acceleration approaches is more pronounced in 
interior building elements than edge and corners. The vertical accelerations in beams and 
columns were found to be substantially affected by the inclusion of vertical acceleration time 
histories. This can cause major damage to acceleration-sensitive non-structural components in 
the buildings, to the equipment installed at floors, and to the anchorage of the equipment. 
 The results of Analysis 2 showed that for most of the parameters that were tracked, a 4 
element beam mesh provided the same results as an 8 element beam mesh. Overall, the taller 
buildings were less sensitive to the level of beam mesh level and would often converge at the 2 
element mesh level. Our recommendation is that using a 4 element beam mesh should 
sufficiently capture overall behavior due to the vertical time history accelerations. 
 We recommend conducting further research on this topic. Both Analysis 1 and 2 were 
steel moment frame systems and both used the same set of ground motions scaled to a particular 
site. Analytical research should be expanded to buildings with different lateral systems, building 
materials, building orientations and different site specific ground motions. 
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