
I

EFFICIENCY IN THE COLUMBIA DATABASE

QUERY OPTIMIZER

By

YONGWEN XU

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Portland State University

1998



II

ABSTRACT

An abstract of the thesis of Yongwen Xu for the Master of Science in Computer

Science presented February 12,1998.

Title: Efficiency in the Columbia Database Query Optimizer

Query optimization is an area where database systems can achieve significant

performance gains. Modern database applications demand optimizers with high

extensibility and efficiency. Although more than one decade’s efforts have been

contributed to these areas, the state of the art in optimizer research is still not adequate

for the demands of business. The goal of our Columbia project is to provide efficient

and extensible tools for query optimization, particularly for complex queries and new

data models. Efficiency is the main focus of this thesis.

This thesis describes the design and implementation of the Columbia Query

Optimizer, which obtains significant performance improvement while extensibility is

not sacrificed. Based on the top-down optimization algorithm of the Cascades

Optimizer Framework, Columbia simplifies the design of top-down optimizers by

carefully reengineering the search space structure and search algorithms. Two pruning

techniques are implemented which can achieve significantly better performance

improvement. Usability is also improved in Columbia by adding a friendly user

interface and extensive tracing support. Experiments on the Columbia optimizer were

done using the relational data model. Results will be demonstrated in efficiency



III

improvement by comparing Columbia to other top-down optimizers, such as

Cascades.



IV

THESIS APPROVAL

The abstract and thesis of Yongwen Xu for the Master of Science in Computer

Science were presented February 12, 1998, and accepted by the thesis committee and

the department.

COMMITTEE APPROVALS:                                                                         

Leonard Shapiro, Chair

                                                                        

Jingke Li

                                                                        

John Rueter

Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:                                                                         

Richard Hamlet, Chair

Department of Computer Science



i

Acknowledgments

Many people helped in the work of this thesis. I am grateful to all of them.

Many thanks to my advisor, Professor Leonard Shapiro. I owe him a great deal

for his help and guidance from the beginning of the research to the end of the thesis.

Thanks for his friendly supervision, visionary instructions and extreme patience.

Thanks to Keith Billings for sharing his work in Model D and the helpful discussions

about models and search algorithms in Columbia and Cascades. Thanks to Professor

Jingke Li for providing an experimental platform for the performance analysis of our

work. Beth Phelps and Cynthia Beretta-Loepp in the Computer Science department

office provided essential support for our efforts.

Thanks to Professor David Maier and graduate student Quan Wang at Oregon

Graduate Institute for suggestions and helpful discussions regarding the design and

development of Columbia, pruning techniques, and optimization of object-oriented

data models. The work of this thesis also benefits from discussions on top-down

optimization efforts in industry. Goetz Graefe and Cesar Galindo-Legaria told us

about Microsoft’s new transformation-based optimizer. They are very useful for the

design of the Columbia optimizer.

Last but not least, thanks to my wife, Wen Huang, for her long-lasting

understanding and support during the entire project. She also provided valuable

comments for this thesis as well as sharing her knowledge on TPC-D queries and

Microsoft SQL Server optimizer.

This research is supported by NSF IRI-9119446, DARPA (BAAB07=91-C-

Q513) subcontract from Oregon Graduate Institute to Portland State University.



ii

Table of Contents

Chapter 1 .  Introduction .............................................................................................1

1.1 Motivation for This Research ................................................................................1

1.2 Overview of This Thesis .......................................................................................4

Chapter 2 .  Terminology .............................................................................................6

2.1.  Query Optimization .............................................................................................6

2.2. Logical Operators and Query Tree .......................................................................8

2.3. Physical Operators and Execution Plan..............................................................10

2.4. Groups ................................................................................................................11

2.5. The Search Space................................................................................................15

2.6. Rules ...................................................................................................................18

Chapter 3. Related Work ...........................................................................................21

3.1 The System R and Starburst Optimizer ...............................................................21

3.2 The Exodus and Volcano Optimizer Generators.................................................24

3.3 The Cascades Optimizer Framework ..................................................................26

Chapter 4 . Structure of the Columbia Optimizer...................................................31

4.1 Overview of the Columbia Optimizer .................................................................31

4.1.1 The Optimizer Input ......................................................................................31

4.1.2. The Optimizer Output...................................................................................34

4.1.3 The External Dependence of Optimizer ........................................................35

4.2 The Search Engine...............................................................................................36

4.2.1 The Search Space ..........................................................................................37

4.2.1.1 Search Space Structure - Class SSP........................................................37

4.2.1.2 Duplicate Multi-expression Detection in the Search Space....................39

4.2.1.3 GROUP...................................................................................................42

4.2.1.4 Expressions .............................................................................................49

4.2.2 Rules..............................................................................................................51

4.2.2.1 Rule Binding ...........................................................................................53

4.2.2.2 Enforcer Rule..........................................................................................56

4.2.3 Tasks  --  Searching Algorithm......................................................................61

4.2.3.1 O_GROUP - Task to Optimize a Group.................................................63

4.2.3.2 E_GROUP - Task to expand the group ..................................................65

4.2.3.3 O_EXPR - Task to optimize a multi-expression ....................................67

4.2.3.4 APPLY_RULE - Task to Apply a Rule to a Multi-Expression..............69

4.2.3.5 O_INPUTS - Task to optimize inputs and derive cost of an expression 70

4.3 Pruning Techniques .............................................................................................74

4.3.1 Lower Bound Group Pruning........................................................................74

4.3.2 Global Epsilon Pruning ................................................................................77

4.4 Usability in the Columbia Optimizer ..................................................................80



iii

4.4.1 Windows Interface.........................................................................................80

4.4.2 Tracing of the optimizer............................................................................83

Chapter 5 .  Result and Performance........................................................................86

5.1 Performance on Chain and Star Queries..............................................................86

5.2. Comparison with Cascades.................................................................................89

5.3 Epsilon Pruning Technique Analysis ..................................................................91

Chapter 6 .  Conclusions and Future works.............................................................94

References....................................................................................................................97

Appendix B. Cost Model Text File Example ..........................................................101

Appendix C. A Simple Rule Set for Join Queries ..................................................102

Appendix D. A Final Search Space Example in Tracing File ...............................103

Appendix E. An OPEN Task Stack Sample in Tracing File.................................105



iv

List of Tables

Table 1. Complexity of  Join of n Relations [Bil97] ....................................................18

Table 2. Grammar of the Query Tree............................................................................32

Table 3. Data Member Definition of class M_EXPR in Columbia ..............................50

Table 4. Data Member Definition of class EXPR_LIST in Cascades ..........................50



v

List of Figures

Figure 1. Query Processing.............................................................................................6

Figure 2. Query Representation ....................................................................................10

Figure 3. Execution plans .............................................................................................11

Figure 4. Logically equivalent query trees and plans ...................................................12

Figure 5. Equivalent expressions in groups [ABC] ......................................................13

Figure 6. Equivalent multi-expressions in group [ABC]..............................................14

Figure 7. Initial Search Space of a given query............................................................16

Figure 8. Two types of Rules........................................................................................20

Figure 9. Interface of Columbia Optimizer ..................................................................31

Figure 10. An Example of Query Text File and Query Expression Tree .....................34

Figure 11. Two Optimal Plans for one Query with different Catalogs.........................35

Figure 12. Main components in the Columbia Search Engine .....................................37

Figure 13. Pseudo-code for the Use of lookup2().........................................................41

Figure 14. Pseudo-code for calculating lower bound of a group..................................44

Figure 15. Finite State Machine for BINDERY::advance() .........................................56

Figure 16. Main Loop of Optimization in Columbia....................................................62

Figure 17. Relationship between Tasks ........................................................................63

Figure 18. Algorithm for O_GROUP ...........................................................................64

Figure 19. Algorithm for E_GROUP............................................................................66

Figure 20. Algorithm for O_EXPR...............................................................................68

Figure 21. Algorithm for APPLY_RULE.....................................................................70

Figure 22 Pseudo-code of O_INPUTS::perform()........................................................72

Figure 23. Search space during optimization ( [AC] is Cartesian product ).................75

Figure 24. Algorithm of Lower Bound Pruning ...........................................................76

Figure 25. A situation when lower bound pruning happens .........................................77

Figure 26. A Dialog to allow user to change parameters of the optimizer ...................81

Figure 27. A picture of the optimizer application.........................................................83

Figure 28. Optimization time for chain and star queries ..............................................87

Figure 29. Number of multi-expressions generated in chain and star queries..............88

Figure 30. Memory usage for chain and star queries....................................................89

Figure 31. Optimization time for chain queries ............................................................90

Figure 32. Optimization time for star queries...............................................................91

Figure 33.Effectiveness of Epsilon pruning .................................................................92

Figure 34. Errors to optimal plan of Epsilon pruning...................................................93



1

Chapter 1 .  Introduction

1.1 Motivation for This Research

In spite of the fact that query optimization has been a subject of research for

more than 15 years [SAC+79], query optimizers are still among the largest and most

complex modules of database systems, making their development and modification

into difficult and time-consuming tasks. The situation is further complicated by the

needs of modern database applications [ZdM90], such as Decision Support Systems

(DSS) and On-Line Analytical Processing (OLAP), large data warehouses, complex

objects (e.g., multimedia databases, WWW and GIS), and the need to handle new

evaluation techniques (e.g., parallel and distributed evaluations). These new

application areas in turn demand new database technologies, such as new query

languages and new query processing techniques, which are quite different from those

in traditional transaction processing applications.

Over the past several years, several generations of commercial and research

query optimizers have been developed, making contributions to the extensibility and

efficiency of optimizers.

The first efforts at extensible optimizer technology (we call it the first

generation.), begun about ten years ago, realized the need for new data models, query

classes, languages and evaluation techniques. These projects include Exodus [GrD87]

and Starburst [HCL90]. Their goal was to make optimizers more modular and easier to

extend.  The techniques they used include layering of components, rule-based



2

transformations, etc. Those efforts had some shortcomings, such as the complexity of

making extensions, search performance, and a bias toward record-oriented data

models.

The second generation of extensible optimizer tools, such as the Volcano

optimizer generator [GrM93], added more sophisticated search techniques, more use

of physical properties to guide search, and better control over search strategy, to

achieve better search performance. Although these optimizers are somewhat flexible,

it is still hard and complex to make extensions.

The third generation of query optimizer frameworks, such as Cascades

[Gra95], OPT++ [KaD96], EROC [MBH96] and METU [ONK95], use object-

oriented design to simplify the task of implementing, extending and modifying an

optimizer, while maintaining efficiency and making search strategies more flexible.

This latest generation of optimizers is reaching a level of sophistication that satisfies

the requirements and demands of modern commercial database systems. This is

demonstrated by industry’s implementation of these optimizers, such as Cascades by

Microsoft [Gra96] and Tandem [Cel96], EROC by NCR [MBH96].

These three generations of query optimizers can be categorized into two kinds

of search strategies, Starburst style bottom-up dynamic programming optimizers and

Cascades style top-down branch and bound rule-driven cost based optimizers. Bottom-

up optimization is widely used in current traditional commercial database systems

because it is believed to be efficient, at least in traditional applications. But bottom-up

optimization is inherently less extensible than top-down optimization since it requires

the decomposition of the original problem into sub problems. Also, to achieve



3

acceptable performance for large queries, heuristics are required in bottom-up

optimization.

Although previous implementations of top-down optimizers showed they have

been difficult to tune for competitive performance as bottom-up optimization, we

believe that top-down optimizers have advantages in efficiency as well as

extensibility.  The remainder of this thesis describes our attempt to develop an

alternative top-down optimizer, Columbia, to demonstrate that high efficiency could

be achieved in a top-down approach.

Based on the top-down optimization of the Cascades Optimizer Framework,

Columbia extensively exploits the object-oriented features of C++ and carefully

engineers and simplifies the top-down optimization to achieve efficiency while

maintaining extensibility. It defines a few key abstract classes with virtual methods.

The search strategy is implemented entirely in terms of these abstract classes. The

search strategy invokes the virtual methods of these abstract classes to perform the

search and the cost-based pruning of the search space. Hence, it is easy to extend the

optimizer to manipulate complex data models, adding new operators and

transformation rules by deriving new classes from the abstract classes and rewriting

the virtual methods. Since the main focus of this thesis is optimization efficiency in

the relational data model, we do not discuss extensibility of the optimizer here and

leave extending the optimizer to manipulate other data model as future works.

To minimize the usage of CPU and memory, several engineering techniques

are used to obtain efficiency in Columbia. They include a fast hash function to

eliminate duplicate expressions, separation of logical and physical expressions in a



4

group, small and compact data structures, efficient algorithms to optimize groups and

inputs, and an efficient way to handle enforcers.

An important technique Columbia provides is group pruning, which

significantly prunes the search space without compromising plan quality. The

optimizer computes the cost for high-level physical plans before some lower-level

plans are generated. These early costs serve as upper bounds for subsequent

optimization. We will show that in many cases these upper bounds can be used to

avoid generating entire groups of expressions, hence, pruning significant amounts of

possible query plans in the search space.

Besides group pruning, Columbia also implements another pruning technique:

global epsilon pruning.  This technique significantly prunes the search space by

generating acceptable close-to-optimal solutions. An optimization goal is finished

when a solution is found to be close enough to the optimal solution, hence a

significant amount of expressions need not be considered. An analysis of this pruning

technique is discussed. The effectiveness and error in the optimization are shown.

1.2 Overview of This Thesis

The remainder of this thesis is organized as follows.

Chapter 2 describes the terminology and fundamental concepts used in this

thesis.

Related work is presented in Chapter 3, in which we survey the commercial

and research contributions in this area, from traditional to new generations, from

bottom-up to top-down optimizers. We will focus on performance analysis.



5

In Chapter 4, the overall structure and design of the Columbia system is

described, including search space, rules and optimizing tasks. Two pruning techniques

are discussed. Usability improvement is also discussed in this chapter. Since Columbia

is built based on Cascades, the discussion will focus on the comparison between them

and explain how Columbia achieves better efficiency.

Chapter 5 demonstrates the results we gathered from our experiences using our

optimizer. Performance improvements are illustrated, comparing to other optimizers.

Chapter 6 contains a summary and conclusions, and outlines potential future

research directions.



6

Chapter 2 .  Terminology

In this section we review the terminology and fundamental concepts in the

literature of query optimization [ElN94] [Ram97], which are also used in the

description of the design and implementation of Columbia. More detailed terminology

will be discussed in Chapter 4, the structure of the Columbia optimizer.

2.1.  Query Optimization

The purpose of a query processor is to take a request expressed in the data

manipulation language (DML) of a database system and evaluate it against the

contents of a database. 

Figure 1. Query Processing

Figure 1 diagrams the steps in query processing. The original query in DML

syntax is parsed into a logical expression tree over a logical algebra that is easily

manipulated by later stages. This internal logical form of the query then passes to the

Query

in DML

Query Tree

(logical algebra)

OPTIMIZER

logical & physical

transformations

parsing

Catalog

Optimal Plan

(physical algebra)

Execution

Engine

Database

Contents

Result

Output

executing

user level

system level



7

Query Optimizer, which is responsible for transforming the logical query into a

physical plan
1
 that will be executed against the physical data structure holding the

data. Two kinds of transformations will be performed: Logical transformations which

create alternative logical forms of the query, such as commuting the left and right

children of the tree, and physical transformations which choose a particular physical

algorithm to implement a logical operator, such as sort-merge join for join. This

process generates, in general, a large number of plans that implement the query tree.

Finding the optimal plan (relative to the cost model, which includes statistical and

other catalog information) is the main concern of the query optimizer. Once an

optimal (or near optimal) physical plan for the query is selected, it is passed to the

query execution engine. The query execution engine executes the plan using the stored

database as input, and produces the result of the query as output.

If we look at the user level, the query processing is hidden in the dark box of

the query processor. Users will submit their queries, which in general, are written in a

high level language like SQL, Quel, or OQL [Cat94] (in the case of object-oriented

database systems) to the database system, with the expectation that the system will

output the results of the queries correctly and quickly.  Correctness is an absolute

requirement of a query processor, while performance is a desirable feature and the

main concern of a query processor. As we can see in the system level of query

processing, the query optimizer is a critical component that contributes to high

performance. There are a large number of plans that implement the query correctly,

                                                          
1
 A plan is an algebra expression with a choice of implementation methods for each

operator that it contains.



8

but with different execution performance for some performance measures (e.g.,

execution time, memory). One goal of the optimizer is to find the plan with the best
2

execution performance. A naive way an optimizer could do this is to generate all

possible plans and choose the cheapest. But exploring all possible plans is

prohibitively expensive because of the large number of alternative plans for even

relatively simple queries. Thus optimizers have to somehow narrow down the space of

alternative plans that they consider.

Query optimization is a complex search problem. Research has shown that

simplified versions of this problem are NP-hard [IbK84]. In fact, even for the simplest

class of relational joins, the number of joins that have to be evaluated when using

dynamic programming is exponential with the number of input relations [OnL90]. So

a good search strategy is critical to the success of an optimizer.

The remainder of this chapter will review some fundamental concepts used in

solving the query optimization problem. We will use these concepts to describe the

design and implementation of Columbia.

2.2. Logical Operators and Query Tree

Logical operators are high-level operators that specify data transformations

without specifying the physical execution algorithms to be used. In the relational

                                                          
2
 In theory, optimality is the goal. However, optimality is relative to many aspects,

such as cost model, catalog information and sometimes to a particular subset of the

search space. So, in practice and more precisely, the goal of a query optimizer is to

find a good evaluation plan for a given query.



9

model, logical operators generally take tables
3
 as inputs, and produce a single table as

output. Each logical operator takes a fixed number of inputs (which is called the arity

of the operator) and may have parameters that distinguish the variant of an operator.

Two typical logical operators are GET and EQJOIN. The GET operator has no input

and one argument, which is the name of the stored relation. GET retrieves the tuples of

the relation from disk and outputs the tuples for further operations. The EQJOIN

operator has two inputs, namely the left and right tables to be joined, and one

argument which is a set of join predicates relating to the left and right tables.

A query tree is a tree representation of a query and serves as the input to an

optimizer. Typically a query tree is represented as a tree of logical operators in which

each node is a logical operator having zero or more logical operators as its inputs. The

number of children of the node is exactly the arity of the operator. Leaves of the tree

are operators with zero arity. An example of a query tree representation of a query is

showed in Figure 2.

Query trees are used to specify the order in which operators are to be applied.

In order to apply the top operator in the tree, its inputs must be applied first. In this

example, EQJOIN has two inputs, which are taken from the outputs of two GET

operators. The argument of EQJOIN, i.e., “Emp.dno=Dept.dno”, describes the

condition of the join operation. The output of EQJOIN will produce the result of

query. GET operators have no input, so they are the leaves of the tree and generally

                                                          
3
 Here, we define table as a collection of tuples. In the relational model, it can be a real

stored relation (roughly, a disk file) or a temporary collection of tuples produced in the

evaluation of a query.



10

provide data sources of the query evaluation. The argument of each GET operator

defines which stored relation will be retrieved.

Figure 2. Query Representation

2.3. Physical Operators and Execution Plan

Physical Operators represent specific algorithms that implement particular

database operations. One or more physical execution algorithms can be used in a

database for implementing a given query logical operator. For instance, the EQJOIN

operator can be implemented using nested-loops or sort-merge or other algorithms.

These specific algorithms can be implemented in different physical operators. Thus,

two typical physical operators are LOOPS_JOIN, which implements the nested-loops

join algorithm, and MERGE_JOIN, which implements the sort-merge join algorithm.

The typical implementing algorithm for the GET logical operator is scanning the table

in stored order, which is implemented in another physical operator FILE_SCAN. Like

logical operators, each physical operator also has fixed number of inputs (which is the

arity of the operator), and may have parameters.

Select  *

from Emp, Dept,

where Emp.dno = Dept.dno

EQJOIN
(Emp.dno = Dept.dno)

GET(“Emp”) GET(“Dept”)

(b) Query Tree(a) SQL Query

Result



11

Replacing the logical operators in a query tree by the physical operators which

can implement them gives rise to a tree of physical operators which is called an

Execution Plan or access plan for the given query. Figure 3 shows two possible

execution plans corresponding to the query tree in Figure 2(b).

Figure 3. Execution plans

Execution plans specify how to evaluate the query. Each plan has an execution

cost corresponding to the cost model and catalog information. In general, a good

execution plan for a given query is generated by the optimizer and serves as the input

to the Query Execution Engine which executes the overall algorithms against the data

of database systems to produce the output result of the given query.

2.4. Groups

A given query can be represented by one or another query tree that is logically

equivalent. Two query trees are logically equivalent if they output exactly the same

result for any population of the database [Gra95]. For each query tree, in general, there

are one or more corresponding execution plans implementing the query tree and

LOOPS_JOIN
(Emp.dno = Dept.dno)

FILE_SCAN
(“Emp”)

FILE_SCAN
(“Dept”)

(a) Execution Plan 1

Result

MERGE_JOIN
(Emp.dno = Dept.dno)

FILE_SCAN
(“Emp”)

FILE_SCAN
(“Dept”)

(b) Execution Plan 2

Result



12

EQJOIN

GET(“A”)

EQJOIN

GET(“B”)

GET(“C”)

(a). (A 
~
~

 B) 
~
~

 C

EQJOIN

GET(“B”)

EQJOIN

GET(“C”)

GET(“A”)

(b). A 
~
~

 (B 
~
~

 C)

LOOPS_JOIN

FILE_SCAN(“A”)

LOOPS_JOIN

FILE_SCAN (“B”)

FILE_SCAN (“C”)

(a-i). (AF 
~
~

L BF) 
~
~

L CF

MERGE_JOIN

FILE_SCAN(“A”)

MERGE _JOIN

FILE_SCAN (“B”)

FILE_SCAN (“C”)

(a-ii). (AF 
~
~

M BF) 
~
~

M CF

producing exactly the same result. Analogously, these execution plans are logically

equivalent. Figure 4 shows several logically equivalent query trees and logically

equivalent execution plans implementing the query trees.

Figure 4. Logically equivalent query trees and plans

As shown in Figure 4, we denote an EQJOIN operator by ~~, LOOPS_JOIN

by ~~L, and MERGE_JOIN by ~~M. To simplify, we also denote a GET operator by its

argument and FILE_SCAN by its argument plus sub F.  In Figure 4, (a) and (b) are

two logically equivalent query trees. The difference is the order of logical operators.

(a-i) and (a-ii) are two logically equivalent execution plans implementing query tree

(a). They use two different join algorithms.



13

We can also use expressions to represent query trees and execution plans (or

sub trees and sub plans). An expression consists of an operator plus zero or more input

expressions. We refer to an expression as logical or physical based on the type of its

operator. So query trees are logical expressions and execution plans are physical

expressions.

Given a logical expression, there are a number of logically equivalent logical

and physical expressions. It is useful to collect them into groups and define their

common characteristics. A Group is a set of logically equivalent expressions
4
. In

general, a group will contain all equivalent logical forms of an expression, plus all

physical expressions derivable based on selecting allowable physical operators for the

corresponding logical forms. Usually, there will be more than one physical expression

for each logical expression in a group. Figure 5 shows a group containing the

expressions in Figure 4 and other equivalent expressions.

Figure 5. Equivalent expressions in groups [ABC]

                                                          
4
 Note that a group might not contain all equivalent expressions. In some case where a

pruning technique has been applied, some expressions will not be considered and do

not need to be included in the group.

(B 
~
~

 C) 
~
~

 A

Logical Expressions:

A 
~
~

 (B 
~
~

 C)(A 
~
~

 C) 
~
~

 B

(C 
~
~

 B) 
~
~

�
�

A A 
~
~

 (C 
~
~

 B)(C 
~
~

 A) 
~
~

 B

C 
~
~

 (A 
~
~

 B)
B 
~
~

 (A 
~
~

 C)
C 
~
~

 (B 
~
~

 A)
B 
~
~

 (C 
~
~

 A)

(A 
~
~

 B) 
~
~

 C

(B 
~
~

 A) 
~
~

�
�

C

(AF 
~
~

M BF) 
~
~

M CF

Physical Expressions:

(AF 
~
~

L BF) 
~
~

L CF (BF 
~
~

L AF) 
~
~

L CF (AF 
~
~

L CF) 
~
~

L BF   ……



14

We usually denote a group by one of its logical expressions. For instance, (A

~~ B) ~~ C, or simply [ABC]. Figure 5 shows all
5
 equivalent logical expressions for

the group [ABC] and some physical expressions. We can see that there are a number

of equivalent expressions, even for logical expressions.

To reduce the number of expressions in a group, Multi-expressions are

introduced. A Multi-expression consists of a logical or physical operator and takes

groups as inputs. A multi-expression is the same as an expression except it takes

groups as inputs while expressions take other expressions as inputs. For instance, the

multi-expression “ [AB] ~~�� [C] ” denotes the EQJOIN operator taking the groups

[AB] and [C] as its inputs. The advantage of multi-expressions is the great savings in

space because there will be fewer equivalent multi-expressions in a group. Figure 6

shows the equivalent multi-expressions in the group [ABC]. There are many fewer

multi-expressions than expressions in figure 5. In fact, one multi-expression represents

several expressions by taking groups as inputs. With multi-expressions, a group can be

re-defined as a set of logically equivalent multi-expressions.

Figure 6. Equivalent multi-expressions in group [ABC]

                                                          
5
 For simple cases, the group consists of join operators only.

Logical Multi-Expressions:

[AB] 
~
~

 [C] , [BC] 
~
~

 [A] , [AC] 
~
~

 [B] , [A] 
~
~

 [BC] , [C] 
~
~

 [AB] , [B] 
~
~

 [AC]

 Physical Multi-Expressions:

[AB] 
~
~

L [C] , [AB] 
~
~

M [C] , [AC] 
~
~

L [B]   ……



15

In the typical processing of a query, many intermediate results (collections of

tuples) are produced before the final result is produced. An intermediate result is

produced by computing an execution plan (or a physical expression) of a group. In this

meaning, groups correspond to intermediate results (these groups are called

intermediate groups).  There is only one final result, whose group is called the final

group).

The Logical properties of a group are defined as the logical properties of the

result, regardless of how the result is physically computed and organized. These

properties include the cardinality (number of tuples), the schema, and other properties.

Logical properties apply to all expressions in a group.

2.5. The Search Space

The search space represents logical query trees and physical plans for a given

initial query. To save space, the search space is represented as a set of groups, each

group takes some groups as input. There is a top group designated as the final group,

corresponding to the final result from the evaluation of the initial query. Figure 7

shows the initial search space of the given query.

In the initial search space, each group includes only one logical expression,

which came from the initial query tree. In figure 7, the top group, group [ABC], is the

final group of the query. It corresponds to the final result of the joins of three relations.

We can derive the initial query tree from an initial search space. Each node in a query

tree corresponds to an operator of a multi-expression in each group of the search



16

space. In Figure 7, top group [ABC] has a multi-expression which consists of an

operator EQJOIN and two groups, [AB] and [C], as inputs. We can derive a query tree

with the EQJOIN as the top operator and the input operators are derived from group

[AB] and group [C], keep deriving input operators of the query tree from the input

groups recursively until the considering groups are leaves (no input). The query tree

derived from this initial search space is exactly the initial query tree. In other words,

initial search space represents initial query tree.

Figure 7. Initial Search Space of a given query

In the course of optimization, the logically equivalent logical and physical

expressions for each group are generated and the search space greatly expands. Each

group will have a large number of logical and physical expressions. At the same time

as the optimization generates physical expressions, the execution costs of the physical

expressions (i.e., execution plans) are calculated. In some sense, generating all the

physical expressions is the goal of the optimization since we want to find the cheapest

plan and we know that costs are only related to physical expressions. But in order to

generate all the physical expressions, all the logical expressions must be generated

EQJOIN

GET(“A”)

EQJOIN

GET(“B”)

GET(“C”)

Initial Query: (A 
~
~

 B) 
~
~

 C

[AB]
�
�
~
~

�
�

[C]

GET(“C”)

Initial Search Space

GET(“A”) GET(“B”)

[A]
�
�
~
~

�
�

[B]

final group [ABC]

[AB]

[A]

[C]

[B]



17

since each physical expression is the physical implementation of a logical expression.

After the optimization is done, namely, all equivalent physical expressions are

generated for each group and the costs of all possible execution plans are calculated,

the cheapest execution plan can be located in the search space and served as the output

of the optimizer. A completely expanded search space is called a final search space.

Normally
6
, a final search space represents all the logically equivalent expressions

(logical and physical) of a given query. In fact, all the possible query trees and

execution plans can be derived from the final search space by using the recursive

method we use to derive the initial query tree from the initial search space. Each

(logical or physical) operator of a multi-expression in the search space serves as an

operator node in a query tree or an execution plan. Since a group in the search space

contains a number of logical equivalent expressions, the final search space represents a

large number of query trees and execution plans.

Table 1 [Bil97] shows the complexity of complete logical search space of join

of n relations. (Only the numbers of logical expressions are showed.) For example, the

search space of join of 4 relations has 15 groups, includes 54 logical expressions and

represents 120 query trees.

As can be seen from Table 1, even considering only the logical expressions,

the size of the search space increases dramatically (exponentially) as the number of the

                                                          
6
   In some cases, pruning applies to the expansion of the search space, and then some

expressions may not be generated.  It may be that entire groups are not expanded.

Some pruning techniques will be described in Section 4.4.



18

joined relations increases. The number of physical expressions depends on how many
7

implementation algorithms used for the logical operators. For example, if there are N

logical expressions in the search space, and M (M>=1) join algorithms are used in the

database systems, then there will be M*N total physical expressions in the search

space. So the number of physical expressions is at least the same as the number of

logical expressions or larger.

Table 1. Complexity of  Join of n Relations [Bil97]

 2.6. Rules

Many optimizers use rules to generate the logically equivalent expressions of a

given initial query. A rule is a description of how to transform an expression to a

                                                          
7
 Different database systems may choose a certain different number of algorithms to

implement one logical operator. For example, nested-loops, sort-merge and index-

nested-loops are the common join algorithms database systems choose.

Number of Number of Number of Number of 

Relations Groups Logical Expressions Query Trees

N 2N
 – 1 3N

 – (2N+1
 – 1) + N (2N – 2)! / (N – 1)!

2 3 4 2

3 7 15 12

4 15 54 120

5 31 185 1680

6 63 608 30240

7 127 1939 665280

8 255 6058 17297280

9 511 18669 518918400

10 1023 57012 17643225600

11 2047 173063 670442572800

12 4095 523262 28158588057600

13 8191 1577953 1295295050649600

14 16383 4750216 64764752532480000

15 32767 14283387 3497296636753920000

16 65535 43915666 202843204931727360000

17 131071 128878037 12576278705767096254464

18 262143 386896220 830034394580628315045888



19

logically equivalent expression.. A new expression is generated when a rule is applied

to a given expression. It is the rules that an optimizer uses to expand the initial search

space and generate all the logically equivalent expressions of a given initial query.

Each rule is defined as a pair of pattern and substitute. A pattern defines the

structure of the logical expression that can be applied to the rule. A substitute defines

the structure of the result after applying the rule. When expanding the search space,

the optimizer will look at each logical expression, (note that rules only apply to logical

expressions), and check if this expression matches any patterns of the rules in the rule

set. If the pattern of a rule is matched, the rule is fired to generate the new logically

equivalent expression according to the substitute of the rule.

Cascades used expressions to represent patterns and substitutes. Patterns are

always logical expressions, while substitutes can be logical or physical.

Transformation rules and implementation rules are two common types of rules. A rule

is called transformation rule if its substitute is a logical expression. A rule is called

implementation rule if its substitute is a physical expression.

For example, EQJOIN_LTOR is a transformation rule that applies left to right

associativity to a left deep logical expression and generates a right deep logical

expression that is logically equivalent to the original expression.

EQJOIN_MERGEJOIN is an implementation rule that generates a physical expression

by replacing the EQJOIN operator with MERGEJOIN physical operator. This physical

expression implements the original logical expression using sort-merge join algorithm.

Figure 8 shows a picture of these two simple rules.



20

Figure 8. Two types of Rules

EQJOIN

Group1

EQJOIN

Group 2

Group 3

Pattern

EQJOIN

Group2

EQJOIN

Group3

Group1

Substitute 1

MERGEJOIN

MERGEJOIN

Substitute 2

Group1

Group 2

Group 3

JOIN_LTOR

JOIN_MERGEJOIN



21

Chapter 3. Related Work

Pioneering work in query optimization can be traced back to two decades ago.

IBM’s System R optimizer [SAC+79] succeeded and worked so well that it has served

as the foundation for many current commercial optimizers.

Database systems and applications evolve and demand new generations of

optimizers to handle new extensions to database systems. The relational data model is

extended with more features, such as supporting new data types and new operations.

The object oriented data model is introduced to handle more complex data. Since early

optimizers were designed to use with a relatively simple relational data model, new

generations of extensible optimizers were developed to meet the requirements of

evolving database systems. The new generations of optimizers focus on extensibility

as well as the difficult goal of all optimizers: efficiency. This chapter will look at some

notable optimizers that contribute significantly to the query optimization literature.

3.1 The System R and Starburst Optimizer

Current relational query optimizers have been greatly influenced by techniques

used in the design of IBM’s System R query optimizer [SAC+79]. One of the

important contributions of the System R optimizer is cost-based optimization.  The

optimizer use statistics about relations and indexes stored in the system catalog to

estimate the cost of a query evaluation plan. There are two parts to estimating the cost:



22

one is estimating the cost of performing the operators. The other is estimating the size

of the result of a query block
8
, and whether it is sorted.

Estimating the cost of operators requires knowledge of various parameters of

the input relations, such as the cardinality (size of the relation), number of pages and

available indexes. Such statistics are maintained in the DBMS’s system catalogs. Size

estimation plays an important role in cost estimation because the output of one

operator can be the input to another operator, and the cost of an operator depends on

the size of its inputs. System R defined a series of size estimation formulas which are

also used by current query optimizers, although more sophisticated techniques based

on more detailed statistics (e.g., histograms of the values in a system) have been

proposed in recent years [Ioa93] [PIH96].

Another important contribution of the System R optimizer is the bottom-up

dynamic programming search strategy. The idea of dynamic programming is to find

the best plans of the lower level query blocks
9
 in the query tree and only keep the best

plans for consideration with the upper level query blocks. It is a bottom-up style, since

it always optimizes the lower level expressions first. In order to calculate the cost of

an upper level expression, all the costs (as well as the sizes of the results) of its lower

level inputs (also expressions) must be calculated. The dynamic programming trick is:

after we optimize a query block (i.e., we find a best plan), we throw away all the

equivalent expressions of this query block and only keep the best plan for this query

block.  [OnL90]  pointed out  that   dynamic  programming  needs  to  consider   O(3
N
)

                                                          
8
 System R decomposes queries into a collection of smaller units call query blocks.

9
 In some sense, a query block in System R is like a group in Cascades and Columbia.



23

expressions (plans). Because of this exponential growth rate, when N is large, the

number of expressions which the optimizer needs to consider is still unacceptable. So

the System R optimizer also use heuristics such as delaying optimization of Cartesian

products until final processing or considering only left deep trees (which excludes a

large number of query trees, like bushy trees) when optimizing large queries [GLS93].

However, the exclusion of Cartesian products or considering only left deep trees may

force a poor plan to be chosen, hence optimality can not be guaranteed.

IBM’s Starburst optimizer [HCL90] extends the System R optimizer with an

extensible and more efficient approach. The Starburst optimizer consists of two rule-

based sub systems: the query re-write or Query Graph Model (QGM) optimizer and

the plan optimizer. A QGM is the internal, semantic representation of a query. The

QGM optimizer uses a set of production rules to transform a QGM heuristically into a

semantically equivalent “better” QGM. The purposes of this phrase are simplification

and amelioration [JaK84]: eliminating redundancy and deriving expressions that are

easier for the plan optimizer to optimize in a cost-based manner. The plan optimizer is

a select-project-join optimizer consisting of a join enumerator and a plan generator.

The join enumerator uses two kinds of join feasibility criteria (mandatory and

heuristic) to limit the number of joins. The join enumerator algorithm is not rule-based

and written in C and its modular design allows it to be replaced by alternative

enumeration algorithms. The plan generator uses grammar-like production rules to

construct access plans for joins. These parameterized production rules are called

STrategic Alternative Rules (or STARs). The STARs can determine which table is the

inner and which is the outer, which join methods to consider, etc.



24

In Starburst, Query optimization is a two step process. In the first phase, An

initial query expressed as a QGM is passed to the QGM optimizer and be re-written to

a new better QGM. The new QGM is then passed to the plan optimizer. In the second

phase, the plan optimizer communicates with the QGM optimizer to produce access

plans, and construct an optimal execution plan in a bottom up fashion similar to the

System R optimizer.

The QGM optimizer is capable of sophisticated heuristic optimization. Thus it

contributes to the efficiency of the Starburst optimizer. However, as [KaD96] pointed

out, the heuristics sometimes make incorrect decisions because they are based on only

logical information, i.e., not based on cost estimates. Also, heuristics are hard to

extend to more complicated queries containing non-relational operators. Obviously,

the grammar-like rule-based approach to transform QGMs and plans is a contribution

to extensible query optimization, but is not clear how this can be used to optimize

queries containing non-relational operators and complicated transformations.

3.2 The Exodus and Volcano Optimizer Generators

The Exodus optimizer generator [GrD87] was the first extensible optimizer

framework using top-down optimization. The goal of Exodus is to build an

infrastructure and tool for query optimization with minimal assumptions about the data

model. The input into Exodus is a model description file, which describes a set of

operators, a set of methods to be considered when building and comparing access

plans, transformation rules (defining the transformations of the query tree) and

implementation rules (defining the correspondence between operators and methods).



25

To implement a query optimizer for a new data model, the DBI
10

 writes a model

description file and a set of C procedures. The generator transforms the model file into

a C program which is compiled and linked with the set of C procedures to generate a

data model specific optimizer. The generated optimizer transforms the initial query

tree step by step, maintaining information about all the alternatives explored so far in a

data structure called MESH. At any time during the optimization there can be a set of

possible next transformations, which are stored in a queue structure, called OPEN.

When the OPEN is not empty, the optimizer will select a transformation from OPEN,

apply it to the correct nodes in MESH, do cost estimation for the new nodes and add

newly enable transformation into OPEN.

The main contribution of Exodus is the top-down optimizer generator

framework which separates the search strategy of an optimizer from the data model

and separates transformation rules and logical operators from implementation rules

and physical operators. Although it was difficult to construct efficient optimizers, it

contributed as a useful foundation for the next generation of extensible optimizers.

With the primary goal of improving the efficiency of Exodus, Volcano

Optimizer Generator [GrM93] is designed to achieve more efficiency, further

extensibility and effectiveness. Efficiency was achieved by combing dynamic

programming with directed search based on physical properties, branch-and-bound

pruning and heuristic guidance into a new search algorithm that is called directed

dynamic programming. The search strategy in Volcano is a top-down, goal-oriented

                                                          
10

 DataBase Implementers (DBI) are the programmers implementing a database

system, including creating a system for a new data model and enhancing an existing

system.



26

control strategy: sub expressions are optimized only if warranted. That is, only those

expressions and plans that truly participate in promising larger plans are considered

for optimization. It also uses dynamic programming to store all optimal sub plans as

well as optimization failures until a query is completely optimized. Since it is very

goal-oriented though the use of physical properties ( a generalization of “interesting

properties” used in System R) and derives only those expressions and plans which are

promising, the search algorithm is efficient. More extensibility in Volcano was

achieved by generating optimizer source code from data model specifications and by

encapsulating costs as well as logical and physical properties into abstract data types.

Effectiveness was achieved by permitting exhaustive search, which is pruned only at

the discretion of the optimizer implementers.

The efficiency of the Volcano search strategy permitted the generation of real

optimizers, one for an object-oriented database system [BMG93] and one for a

prototype scientific database system with many rules [Wog93].

3.3 The Cascades Optimizer Framework

The Cascades Optimizer Framework [Gra95] is an extensible query

optimization framework that resolves many short-comings of the EXODUS and

Volcano optimizer generators. It achieves a substantial improvement over its

predecessors in functionality, ease-of-use, and robustness without giving up

extensibility, dynamic programming and memoization. The choosing of Cascades as

the foundation for new query optimizers in Tandem’s NonStop SQL product [Cel96]

and in Microsoft’s SQL Server product [Gra96] demonstrated that Cascades satisfies



27

the requirements and demands of modern commercial database systems. The

following list some of advantages of Cascades:

• Optimization tasks as data structures

• Rules as objects

• Rules to place property enforcers such as sort operations

• Ordering of moves by promise

• Predicates as operators that is both logical and physical

• Abstract interface class defining the DBI-optimizer interface and

permitting DBI-defined subclass hierarchies.

• More robust code written in C++ and a clean interface making full use of

the abstraction mechanisms of C++

• Extensive tracing support and better documentation to assist the DBI

In Cascades, the optimization algorithm is broken into several parts, which are

called “tasks”. Tasks are realized as objects in which a “perform” method is defined

for them. All such task objects are collected in a task structure that is realized as a

Last-In-First-Out stack
11

. Scheduling a task is very similar to invoking a function: the

task is popped out of the stack and the “perform” method of the task is invoked. At

any time during the optimization there is a stack of tasks waiting to be performed.

Performing a task may result in more tasks being placed on the stack.

                                                          
11

 As [Gra95] pointed out, other task structures can easily be envisioned. In particular,

task objects can be reordered very easily at any point, enabling very flexible

mechanisms for heuristic guidance, Moreover, There are more advantages in

representing the task structure by a graph that captures dependencies or the topological

ordering among tasks and permit efficient parallel search (using shared memory).



28

The Cascades optimizer first copies the original query into the initial search

space (in Cascades, the search space is called “memo” which is inherited from

Volcano). The entire optimization process is then triggered by a task to optimize the

top group of the initial search space, which in turn triggers optimization of smaller and

smaller subgroups in the search space. Optimizing a group means finding the best plan

in the group (which is called an “optimization goal”) and therefore applies rules to all

expressions. In this process, new tasks are placed into the task stack and new groups

and expressions are added into the search space. After the task of optimizing the top

group is completed, which requires all the subgroups of the top group to complete

their optimization, the best plan of the top group can be found, hence the optimization

is done.

Like the Volcano optimizer generator, Cascades begins the optimization

process from the top group and is considered to use a top-down search strategy.

Dynamic programming and memoization are also used in the task of optimizing a

group. Before initiating optimization of all a group’s expressions, it checks whether

the same optimization goal has been pursued already; if so, it simply returns the plan

found in the earlier search. One major difference between the search strategies in

Cascades and Volcano is that Cascades only explores a group on demand while

Volcano always generates all equivalent logical expressions exhaustively in the first

pre-optimization phase before the actual optimization phase begin. In Cascades, there

is no separation into two phases. It is not useful to derive all logically equivalent forms

of all expressions, e.g., of a predicate. A group is explored using transformation rules

only on demand, and it is explored only to create all members of the group that match



29

a given pattern. Since it explores groups only for truly useful patterns, Cascades search

strategy is more efficient
12

.

Compared to the Volcano optimizer generator’s cumbersome user interface,

Cascades provides a clean data structure abstraction and interface between DBI and

optimizer. Each of the classes that makes up the interface between the Cascades

optimizer and the DBI is designed to become the root of a subclass hierarchy. The

optimizer relies only on the method defined in this interface; the DBI is free to add

additional methods when defining subclasses. Some important interfaces include

operators, cost model and rules. This clear interface is important in that it makes the

optimizer more robust and makes it easier for a DBI to implement or extend an

optimizer.

[Bil97] describes an experimental optimizer, Model D, for optimizing the

TPC-D queries [TPC95] developed under the Cascades optimizer framework. Model

D has many logical operators which in turn require a number of rules and physical

operators. The new operators and rules are defined and easily added to the optimizer

by the DBI by deriving from the base interface class. With only a few changes to the

Cascades search engine, Model D demonstrates the extensibility of the Cascade

framework in the relational model.

Cascades is just an optimizer framework. It proposed numerous performance

improvements, but many features are currently unused or provided only in

rudimentary form.  The current design and implementation of  Cascades  leaves  room

                                                          
12

 In the worst case, exploration of Cascades is exhaustive. Thus in the worst case the

efficiency of the Cascades search will equal that of the Volcano search strategy.



30

for many improvements. The strong separation of optimizer framework and the DBI’s

specification, extensive use of virtual methods, very frequent object allocation and de-

allocation can cause performance problems. Some pruning techniques can be applied

to the top-down optimization to dramatically improve search performance. All these

observations motivate our research in Cascades and development of a new, more

efficient optimizer – the Columbia optimizer.



31

Chapter 4 . Structure of the Columbia Optimizer

Based on the Cascades framework, Columbia focuses on efficiency of

optimization. This chapter will describe in detail the design and implementation of the

Columbia optimizer. Comparison with Cascades will be discussed.

4.1 Overview of the Columbia Optimizer

Figure 9 illustrates the interface of the Columbia optimizer. Columbia takes an

initial query text file as input, uses a catalog and cost model information also written

in text files provided by the DBI, and generates the optimal plan for the query as

output.

Figure 9. Interface of Columbia Optimizer

4.1.1 The Optimizer Input

In Columbia, the optimizer input is a text file which contains the initial query

tree in the LISP style tree representation. A tree consists of a top operator and (if they

exist) its inputs, which are represented as sub trees. Each tree or sub tree is

parenthesized for separation.

Initial Query

(Text File) Optimal Plan

Catalog

(Text File)

Cost Model

(Text File)

Read In

Query

Read In Catalog Read In CM

Optimize ()
Copy Out



32

Table 2 shows the BNF definition of the query tree in text format. In the query

text file, comments are allowed and begun with “ // ” in each comment line. The query

parser will ignore the comment lines. Sometimes comments are very helpful for the

people writing and/or reading the query text file, since they provide additional more

readable information. Each query text file represents only one query tree. Our current

implementation of logical operators includes GET, EQJOIN, PROJECT and SELECT,

which is enough to represent most typical Select-Project-Join queries. This design also

allows easy extension to support other logical operators. 

Table 2. Grammar of the Query Tree

The Query Parser of the Optimizer reads in the query text file and stores it as

an expression tree. The expression tree is implemented as a recursive data structure, an

object of class EXPR which consists of an operator and none or more EXPR objects as

inputs. Thus, the query expression tree can be traversed from the root (top) expression.

Grammar:

FileContent -> [CommentLine]*

Query

CommentLine -> //string \n

Query -> Table

Table -> GET(QuoStr) |

 (EQJOIN(Keys,Keys),Table,Table)|

(PROJECT(Keys),Table) |

(SELECT(Table,Pred)

Pred  -> (OP1, ItemOp ) |

(OP2, ItemOp, ItemOp )

ItemOp -> ATTR |

INT(QuoStr) |

STR(QuoStr)

OP1  -> OP_NOT

OP2 -> OP_EQ | OP_LT | OP_LE | OP_GT |

OP_GE | OP_NE | OP_AND | OP_OR

Keys -> Attr |

<Attr,[Attr]*>

Attr -> string.string
QuoStr -> "string"



33

The expression tree serves as an intermediate format which is finally copied into the

search space by the optimizer when the search space is initialized. This kind of module

separation permits a high level of extensibility. The query parser has a loose relation

with optimization (it takes a query text file as input and outputs a query expression),

hence more operations can be easily added into the parser to support more

functionality, such as schema checking, query re-write, etc. In Cascades, the initial

query is represented as an expression tree directly written in C++ code and embedded

into the code of the optimizer. If another initial query is to be optimized, the whole

code of the optimizer needs to be compiled to include the changes to the initial query

expression. In Columbia, only the query text file needs to be rewritten to represent the

new initial query and there is no need to compile code.

Figure 10 shows an example of the content of a query text file and the

corresponding query expression tree.

As shown in Figure 10, the predicate of the SELECT is represented as an

expression tree serving as one of the inputs of the SELECT operator. In Columbia, in

addition to logical and physical operators, there are item operators inherited from

Cascades. Item operators are distinguished from bulk operators (the logical and

physical operators) in that they operate on a fixed number (usually one) of tuples,

while bulk operators operate on an arbitrary number of tuples [Bil97]. Generally item

operators can be thought of as functions either of a fixed number of tuples, or of a

fixed number of (atomic) values. A predicate is represented as an expression tree of

item operators, returning a Boolean value. Tree representation of predicates provides



34

easy predicate manipulation, such as pushing predicate components (sub trees of item

operators) through joins [Gra95].

Figure 10. An Example of Query Text File and Query Expression Tree

4.1.2. The Optimizer Output

The optimal plan of a query is found during the optimization process and

copied out by the optimizer. The optimal plan is printed out in a format of indented

tree representation of physical expressions with costs related to the expressions. The

final cost is optimal relative to a specific catalog and cost model. Different catalogs

and cost models yield different optimal plans for the same query. Figure 11 shows two

examples of the optimizer’s output, both of which are the optimal plans of the query

shown in Figure 10, relative to different catalogs.

// initial query:

// Select *

// from A,B

// where     A.X=B.X  and

// B.Y=100

// tree representation

( SELECT,

        ( EQJOIN(A.X, B.X),

            GET("A"),

            GET("B")

        ),

       ( OP_GE,

                ATTR("B.Y"),

                INT("100")

        )

)

(a) Query Text File Content

SELECT

EQJOIN OP_GE

GET(A) GET(B) Attr(B.Y) Int(100)

(b) Query Expression Tree



35

An implementation algorithm of SELECT operator is FILTER, which

evaluates each tuple of the input table against the predicate. As shown in Figure 11,

different catalogs yield very different costs and optimal plans. It is reasonable that the

plan using an index is much cheaper.

Figure 11. Two Optimal Plans for one Query with different Catalogs

4.1.3 The External Dependence of Optimizer

Section 4.1.2 illustrates that the optimizer depends on two kinds of

information: catalog and cost model. In Columbia, catalog and cost model are also

described in text files to provide the features of extensibility and ease-of-use. The

catalog parser and cost model parser read in the catalog and cost model information,

(a) optimal plan for a catalog with no index on A.X or B.X

========  OPTIMAL PLAN =========

FILTER, Cost =  3.627

LOOPS_INDEX_JOIN(<A.X>,<B.X>)Index on B, Cost =  3.551

FILE_SCAN(A), Cost =  1.501

OP_GE, Cost = 0

ATTR(B.Y), Cost = 0
INT(100), Cost = 0

========  OPTIMAL PLAN =========

FILTER, Cost =  10.601

MERGE_JOIN(<A.X>,<B.X>), Cost =  10.526

QSORT sorted on (A.X), Cost =  5.188

FILE_SCAN(A), Cost =  1.501

QSORT sorted on (B.X), Cost =  5.188

FILE_SCAN(B), Cost =  1.501

OP_GE, Cost = 0

ATTR(B.Y), Cost = 0
INT(100), Cost = 0

(b) optimal plan for a catalog  with an index on B.X



36

then store them in global objects “Cat” and “Cm” (instances of class CAT and class

CM respectively). During the optimization process, the optimizer will fetch

information from these global objects and operate accordingly.

Currently Columbia supports a simple version of catalogs and cost models.

These text file models allow further extension to catalogs and cost models which

support more catalog information and more complex cost model. For instance, it is

easy to add functional dependency information to the catalog by adding a new entry in

the catalog text file and modifying the catalog accordingly. Moreover, by only editing

the text files, users of the optimizer can easily change the catalog and cost model

information to experience different optimizations. In Cascades, both catalog and cost

model are hard-coded as C++ code into the optimizer system, like the hard-coded

query expression, thus any changes to them require compilation and linking of all the

code. To illustrate the simple and extensible format, Appendix A and B give examples

of catalog and cost model text files.

4.2 The Search Engine

Figure 12 illustrates the three important components of the Columbia search

engine and their relationship. The search space is initialized by copying in the initial

query expression. The goal of the optimizer is to expand the search space and find the

optimal (i.e., least cost) plan from the final search space. In Columbia, the

optimization process is controlled by a series of “tasks”. These tasks optimize groups

and expressions in the search space, applying rules from the rule set, expanding the



37

search space by generating new expressions and groups. After the optimization is

completed (i.e., all tasks are scheduled), the optimal plan in the final search space is

copied out as the output of the optimizer.

Figure 12. Main components in the Columbia Search Engine

4.2.1 The Search Space

This section will describe the structure of the Columbia search space. The

components of the search space are groups. Each group contains one or more multi-

expressions that are logically equivalent.

4.2.1.1 Search Space Structure - Class SSP

We borrow the term Search Space from AI, where it is a tool for solving a

problem. In query optimization, the problem is to find the cheapest plan for a given

query, subject to a certain context. A Search Space typically consists of a collection of

possible solutions to the problem and its sub problems. Dynamic Programming and

Memoization are two approaches to using a Search Space to solve a problem. Both

Dynamic Programming and Memoization partition the possible solutions by logical

SEARCH SPACE

RULE SET TASKS

applying rules

optimizing groups and exprs

copy out optimal plan

scheduling



38

equivalence. We call each partition a GROUP. Hence, search space consists of a

collection of groups.

In Columbia, a structure similar to the Cascades’ MEMO structure is used to

represent the search space, namely an instance of class SSP, which consists of an array

of groups with a group ID identified as the root group in the search space. A group in

the search space contains a collection of logically equivalent multi-expressions. As is

introduced in section 2.4, a multi-expression consists of an operator and none or more

groups as inputs. Hence, each group in the search space is either a root group or an

input group to other group(s), i.e., from the root group, all other groups can be visited

as descendants of the root group. That is why the root group must be identified. By

copying in the initial query expression, The search space is initialized with several

basic groups. Each basic group contains only one logical multi-expression. The further

operation of the optimization will expand the search space by adding new multi-

expressions and new groups into the search space. The method “CopyIn” copies an

expression to a multi-expression and includes the multi-expression into the search

space. It may either include the new multi-expression into an existing group which the

multi-expression logically equivalently belongs to, or include the new multi-

expression into a new group in which case the method is respondent to first create the

new group and append it to the search space. The method “CopyOut” of the class SSP

will output the optimal plan after the optimization is finished.



39

4.2.1.2 Duplicate Multi-expression Detection in the Search Space

One potential problem of including a multi-expression into the search space is

that duplication may happen, i.e., there may be a multi-expression in the search space

which is exactly the same as this multi-expression
13

. So, before the actual including

operation, duplication of this multi-expression must be checked through the whole

search space. If there is a duplicate, this multi-expression should not be added into the

search space.

To check duplication, there are at least three algorithms:

1. some kind of tree-based search

2. extendible hashing

3. static hashing

Although there are some existing codes for algorithm 1 or 2, they are

complicated and it is hard to say if they are efficient in this case. Alternative 3 is

simple and easy to code, although there may be a problem when the number of multi-

expressions grows exponentially. A hash table with a fixed number of buckets which

is suitable for small queries will be fully filled with many entries per bucket when a

large query is optimized since much more expressions are generated.

Both Cascades and Columbia use static hashing (alternative 3) to facilitate fast

                                                          
13

 Actually, duplication is unavoidable in rule-based optimizers. Duplicate

identification is needed even in the presence of unique rule sets (discussed in section

4.2.2), for two reasons: (i). Unique rule sets generate side effects, e.g., rule (AB)C ->

A(BC) has the group containing BC as a side effect. BC may already exist, although

the expression A(BC) is guaranteed not to exist by the unique rule sets. (ii).

Generalizations of unique rule sets, e.g., adding aggregate pushdown, may destroy

uniqueness.



40

detection of duplicate multi-expressions. Hence the potential problem of fixed bucket

size can not be avoided. The search space contains a static hash table. All the three

components of a multi-expression, i.e., operator class name, operator parameters, and

input group numbers are hashed into the hash table to check duplication. The major

difference between Columbia and Cascades is that Columbia use an efficient hash

function.

Instead of using a traditional hash function (randomizing then modulo a prime)

as in Cascades, Columbia chose an efficient hash function “lookup2”, which is a

modification of the original hash function LOOKUP2 written by Bob Jenkins. Jenkins

[Bob97] claims LOOKUP2 is simple and very efficient compared to many traditional

hash functions. Every bit of a hashed key are mixed up with bits of other three

“magic” values by simple and fast operations, such as addition, subtraction and bit

operations. Every bit of the key affects every bit of the return value. Another

advantage of lookup2 is that the sizes of its hash tables are powers of two, which

allows very fast
14

 modular operations to such hash table sizes. Instead, a traditional

hash function requires a modular operation to a prime which is much slower than a

modular operation to the power of two. Regarding the large number of hash

operations, efficiency of the hash function is very important. Figure 13 shows the

pseudo-code for the use of the function Lookup2. The return value of this pseudo-code

serves as the hash value of the key.

                                                          
14

 The trick is using a bit-mask operation. For example, the module of a value to 2
n
 is

equal to the value applying a bit-mask which masks off the higher bits expect the

lower n bits of the value. Bit operation is much faster than any others.



41

Figure 13. Pseudo-code for the Use of lookup2()

Since duplication only happens for logical multi-expressions during the

optimization (physical expressions are generated uniquely from logical expressions),

all logical multi-expressions the optimizer generates are hashed to check the

duplication when they are to be included into the search space. A multi-expression has

three components: an operator class name, operator arguments and none or more input

groups. To maximize the distribution of hash values, Columbia uses all of the three

components as parameters of the key of a multi-expression. All of the three

components are applied to the hash function successively: the operator class name is

first hashed to a value which is used for the initial value to hash the operator

parameters. This hash value is then in turn used as the initial value to hash the input

groups. The final hash value yields the hash value for the multi-expression.

The method “FindDup()” of the class SSP implements duplicate detection. The

hash table in the search space contains pointers to the logical multi-expressions in the

search space. The FindDup method takes a multi-expression as parameter and returns

the duplicate multi-expression in the search space if a duplicate is found. Here is the

algorithm of FindDup: The hash value of the multi-expression is calculated, then the

hash table is looked up to see whether there is a collision. If so, comparison of two

multi-expressions is done by the order of simplicity, i.e., first compares arity of the

operators, then input groups, finally parameters of the operators. If no duplicate is

found, the new multi-expression is linked to the multi-expression with the same hash

init_val = 0

for (each parameter of the key)

init_val = lookup2 (parameter, init_val)

return init_val mod table_size



42

value. In the case of no collision in the hash table, the new multi-expression is added

to the hash table, and no duplication is found.

Recalling that the number of multi-expressions in the search space is very

large, this hash mechanism in Columbia enables simple and efficient duplicate

elimination of multi-expressions in the whole search space.

4.2.1.3 GROUP

The class GROUP is central to top-down optimization. A group contains a

collection of logically equivalent logical and physical multi-expressions. Since all of

these multi-expressions have the same logical properties, the class GROUP also stores

a pointer to the logical property these multi-expressions shared. For dynamic

programming and memoization, a winner structure that records the optimal plans of

the group is included. Beyond these basic elements of a group, Columbia improved

upon this class to facilitate an efficient search strategy. Compared to Cascades, the

improvement includes the addition of a lower bound member, the separation of

physical and logical multi-expressions and a better structure for winners.

The Lower Bound of a Group.  A lower bound for a group is a value L such

that every plan
15

 P in the group satisfies: cost(P) >= L.  Lower bound is an important

measure for top-down optimization where group pruning could happen when the lower

bound of a group is greater than the current upper bound, i.e., cost limit for the current

optimization. Group pruning can avoid enumeration of entire input groups without

                                                          
15

 Actually, a plan in a group is derived from the physical multi-expressions explicitly

stored in the group.



43

missing the optimal plan. Section 4.4.1 will discuss the details of group pruning in

Columbia which is a main contribution to the efficiency of the Columbia optimizer.

The lower bound of a group is calculated when the group is created and stored in the

group to be used in future optimizing operations.

This section describes how the lower bound of a group is obtained in

Columbia. Obviously, a higher lower bound is better. The goal is to find the highest

possible lower bound according to the information we gathered from a group. When a

group is constructed, the logical property is gathered, including the cardinality and the

schema of the group, from which our lower bound is derived. Since the lower bound is

based only on the group’s logical property, it can be calculated without enumerating

any expressions in the group.

Before the calculation of the lower bound is described, some definitions are

presented:

• touchcopy() is a function which returns a numeric value such that for any

join the value is less than cost of a join divided by cardinality of the join

output. This function represents the cost of touching the two tuples needed

to make the output tuple, and the cost of copying the result out.

• Fetch() is the amortized cost of fetching one byte from disk, assuming data

is fetched in blocks.

• |G| denotes the cardinality of group G.

• Given a group G, we say that a base table A is in the schema of G if A.X is

in the schema of G for some attribute X of A. Then cucard(A.X) denotes

the unique cardinality of a column A.X in G, cucard(A) in G denotes the



44

maximum value of cucard(A.X) over all attributes A.X in the schema of G.

Without loss of generality we assume the base tables in the schema of G

are A1, . . . , An, n >= 1, and cucard(A1) <= ... <= cucard(An).

The calculation of the lower bound of a group is shown in Figure 14.

Figure 14. Pseudo-code for calculating lower bound of a group

In Figure 14, we defined three kinds of lower bounds for a group. Detailed

discussions are presented in the following paragraphs. These three kinds of lower

bounds are independent, hence the sum of them provides the lower bound for a

group
16

.

(1). The touch-copy bound from top join of G. It is based on G’s cardinality

since the set of tuples outputted by any plan in G is just the result output of the top

join of the group. By the definition of touchcopy(), the cost of any join (including the

copy-out cost) is at least touchcopy() times the cardinality of the resulting join.

                                                          
16

 There is one criticism which could be made of all these approaches: they depend on

cardinality and cucard estimates, which are notoriously inaccurate. Cucard estimates

are even worse than cardinality. Although  there exist more accurate but sophisticated

estimation methods, such as using histograms, Columbia uses simple estimates and

allows further improvement in this case.

if G contains Get(A)

LowerBound  = cost(FILE_SCAN(A)).

Else

LowerBound =

touchcopy() * |G|  //From top join

+

touchcopy() * sum ( cucard(Ai) where i = 2, ..., n-1) // from other non-top joins

+

Fetch() * sum ( cucard(Ai) where i = 1, ..., n) // from leaves

Note: For each Ai which has no index on a join (interesting) order, replace cucard(Ai) in the

“from leaves”  term above with |Ai| and it yields a better lower bound.



45

(2). The touch-copy bound from the non-top joins of G. It is based on the

unique cardinality of columns in G, i.e., the cucards of attributes in G’s schema. We

can prove that this touch-copy bound is a lower bound of the non-top joins.

Theorem: A lower bound corresponding to non-top joins of G is given by

touchcopy() * sum ( cucard(Ai) where i=2, …, n )

Motivation: Think of the left deep plan with the Ai’s in order. The first join

has A2 in its schema so a lower bound for the join of A1 and A2 is

touchcopy()*C2 where C2=cucard(A2). Other joins Ai (i>2) have the same

properties. So the sum of them yields the result of the theorem. The following

lemma says this works for any ordering of the Ai and for any join graph, not

only left deep.

Lemma: Let L be an operator tree such that schema(L) contains attributes

from base tables A1, …, An. Let J be the set of joins in L and let A* be an

arbitrary table in the schema of L. There is a map f: J -> schema(L) such that

(1) the range of f is all of schema(L) except A*

(2) for each j in J, f(j) is in the schema of j

Proof of Lemma: by induction on k = size of schema(L). The case k = 2 is

obvious. Induction step: Let L have k tables in its schema. Map the top join to

any table on the side without A*. Induction succeeds on the two sub-trees since

each of the sub-trees has less than k tables in its schema.

Proof of theorem: For any ordering of Ai and any join graph of the group G,

there are n-1 joins in G. Let J be a set of joins of G and Ji (where i= 2, …, n)

be a join of G. The schema of G contains attributes from base table A1, …, An.



46

According to the lemma, there is a map from J to the schema of G, such that Ji

(i=2, …, n) maps to Ai (i=2, …, n) respectively and Ai is in the schema of Ji.

Thus, a lower bound for the join Ji is touchcopy() * Ci where Ci>=cucard(Ai).

Hence, the sum of these lower bounds for join Ji (where I=2,…, n) is

touchcopy() * sum ( cucard(Ai) where i=2, …, n ),  which prove the theorem.

(3). The fetch bound from the leaves (base tables) of G. It is also based on the

cucards of attributes in G’s schema, corresponding to the cost of fetching tuples from

base tables. The reason why this fetch cost is a bound for G is:

Theorem: Suppose T.A is an attribute of a group G, where T is a range

variable ranging over a base table which we also call T, and A is an attribute of

the base table.  Let c = the cucard of T.A.  Then any plan in G must fetch

(retrieve from disc) at least c tuples from A. Especially, if c is the max cucard

value over all T.As in G, it yields a higher fetch cost.

Proof: Each relational operator preserves values of attributes (assuming the

attributes are still in the output, e.g., are not projected out). Thus if there are

two tuples in a plan from G with distinct T.A values, just descend the plan tree

to T in order to find two tuples in T with these same T.A values.

Separation of logical and physical multi-expressions. Cascades stored

logical and physical multi-expressions in a single linked list. We store them in

separate lists, which saves time in two cases.



47

First, rule bindings take all logical multi-expressions as inputs to check if they

match patterns, so we need not skip over physical multi-expressions. A group

generally contains a huge number of logical and physical multi-expressions which

may occupy several pages of virtual memory, so a single reference of physical multi-

expressions may cause memory page fault which greatly slow down the program

execution. Generally, the number of physical multi-expressions in a group is twice or

three times as the number of logical multi-expressions. By separating logical and

physical expressions and only looking at logical expressions, binding in Columbia

should be faster than that in Cascades.

Second, if a group has been optimized and we are optimizing it for a different

property, we can handle the physical and logical multi-expressions in the group

separately. The physical multi-expressions in the physical list are scanned only to

check whether the desired property is satisfied and calculate costs directly, and the

logical multi-expressions in the logical list are scanned only to see if all appropriate

rules have been fired. Only when a rule has not been applied to an expression before,

is the logical expression to be optimized. In Cascades, the task for optimizing a group

does not look at the physical multi-expressions. Instead, all logical multi-expressions

are to be optimized again. Obviously, the approach in Columbia to optimize a group is

superior to that in Cascades, and is facilitated by the separation of logical and physical

linked lists in a group.

Better Structure for Winners. The key idea of dynamic programming and

memoization is to save the winners of searches for future use. Each search for the



48

cheapest solution to a problem or subproblem is done relative to some context. Here a

context consists of required physical properties (e.g.  the solution must be sorted on

A.X ) and an upper bound (e.g. the solution must cost less than 5).  A WINNER is the

multi-expression (physical) which won the search for the context which guided a

search. Since different search contexts may yield different winners for a group, an

array of winner objects is stored into a group structure.

In Cascades, a Winner class contains a pair consisting of a context which

guided a search, and a multi-expression which is the winner of that search. A winner

class in Cascades also contains a pointer to link to the next winner indicating that there

may be another winner for this group for a different search context.

In Columbia, a simplified structure is used to represent a winner. Without

storing a context and a link to other winners, a winner class in Columbia consists of a

multi-expression which won the search, the cost of the expression (i.e., the winner),

and the required physical property of the search. A winner object in a group represents

the result of one possible search for the group. Since a group contains an array of

winners, there is no need to store a pointer to the next winner of the group. It is

obvious that a winner structure in Columbia is simpler and smaller than that in

Cascades. In Columbia, a winner is also used to store the temporary result of a search.

While the costs of physical multi-expressions of a group are being calculated, the

cheapest yet found expression is stored as a winner. During the optimization process,

the winner is improved and finally the best (cheapest) plan is found. Sometimes, when

no physical multi-expression can be found with the required physical property, we

store the multi-expression pointer as NULL to indicate no winner for that physical



49

property. Since no winner is also a solution for a search of this sub-problem, this

information is memoized and will be useful in the future optimizing process. The

following is the definition of data members in a WINNER class in Columbia:

Class WINNER

{ M_EXPR    *   MPlan;           //Which plan is the best so far? NULL means no 

// physical mexpr with this property found so far.

PHYS_PROP *  PhysProp;    //What property are we trying to obtain?

COST      *  Cost;           //cost of MPlan, Best cost so far.

 }

4.2.1.4 Expressions

There are two kinds of expression objects: EXPR and M_EXPR. An EXPR

object corresponds to an expression in query optimization, which represents a query or

a sub-query in the optimizer. An EXPR object is modeled as an operator with

arguments (class OP), plus pointers to input expressions (class EXPR). For

convenience, it retains the operator's arity. EXPRs are used to represent the initial and

final query and are involved in the definitions and bindings of rules.

An M_EXPR implements a multi-expression. It is a compact form of EXPR

which utilizes sharing. An M_EXPR is modeled as an operator with arguments plus

pointers to input GROUPs instead of EXPRs, so an M_EXPR embodies several

EXPRs. M_EXPRs are the main component of groups and all searching is done over

M_EXPRs. So there must be some state associated with M_EXPRs. Table 3 shows the



50

definition of data members in the class M_EXPR and Table 4 shows the definition of

corresponding class EXPR_LIST implementing multi-expressions in Cascades.

Table 3. Data Member Definition of class M_EXPR in Columbia

Table 4. Data Member Definition of class EXPR_LIST in Cascades

Table 3 and 4 illustrate the two class implementations of multi-expressions in

Columbia and Cascades. We can see that comparing to the corresponding class

EXPR_LIST in Cascades, class M_EXPR has fewer data members. The extra data

members in EXPR_LIST are not needed in M_EXPR: The arity of the mexpr can be

gotten from the operator. There is no need to keep track of the tasks which created the

Class M_EXPR

{

private:

OP* Op; //Operator

GRP_ID* Inputs; //input groups

GRP_ID GrpID; //I reside in this group

M_EXPR* NextMExpr; // link to the next mexpr in the same group

M_EXPR * HashPtr; // list within hash bucket

BIT_VECTOR  RuleMask;  //If the index bit is on, do not fire rule with that index

}

class EXPR_LIST

{

private:

    OP_ARG * op_arg; // operator

    GROUP_NO * input_group_no; // input groups

    GROUP_NO group_no; // I reside in this group

    EXPR_LIST * group_next; // list within group

    EXPR_LIST * bucket_next; // list within hash bucket

    BIT_VECTOR dont_fire; //If the index bit is on, do not fire rule with that index

    int arity; // cache arity of the operator

    int task_no; //Task that created me, for book keeping

    PROPERTY_SET * phys_prop; // phys props of the mexpr if it is physical

    COST * cost; // cost of the mexpr if it is physical

}



51

mexpr and store the physical properties and cost of the physical mexpr because they

are no longer used anywhere once they are calculated and the decision is made. Since

multi-expressions occupy the main part of the search space memory, it is very critical

to make this data structure as succinct as possible. For example, an M_EXPR object

takes 24 bytes of memory while an EXPR_LIST object takes 40 bytes of memory. The

memory usage ratio between class EXPR_LIST and M_EXPR is about 1.67 : 1. If the

initial query is a join of 10 tables, there are at least 57k logical multi-expressions

according to Table 1 shown in Section 2.5. In Columbia these logical multi-expression

may take up to 24*57k = 1368k bytes of memory. In Cascades, they may take up to

40*57k = 2280k bytes of memory. So this succinct data structure in Columbia causes

a big saving in memory.

4.2.2 Rules

Rules by which the optimizing search is guided are defined in a rule set which

is independent of the search structure and algorithm. The rule set can be modified

independently by adding or removing some rules. Appendix C shows a simple rule set

used for optimizing simple join queries.

All rules are instances of the class RULE, which provides for rule name, an

antecedent (the “pattern”), and a consequent (the “substitute”). Pattern and substitute

are represented as expressions (EXPR objects) which contain leaf operators. A leaf

operator is a special operator only used in rules. It has no input and is a leaf in a

pattern or substitute expression tree. During the matching of a rule, a leaf operator



52

node of the pattern matches any sub-tree. For example, the Left To Right (LTOR) join

associative rule has these member data, in which L(i) stands for Leaf operator i:

Pattern: ( L(1) join L(2) )  join  L(3)

Substitute: L(1)  join  ( L(2) join L(3) )

The pattern and substitute describe how to produce new multi-expressions in

the search space. The production of these new multi-expressions is done by

APPLY_RULE::perform(), in two parts: First a BINDERY object produces a binding

of the pattern to an EXPR in the search space; Then RULE::next_substitute() produces

the new expression, which is integrated into the search space by SSP::copy_in().

There are other methods in the class RULE to facilitate the operations of rules.

The method top_match() checks whether the top operator of a rule matches the top

operator of the current expression wanted to apply the rule. This top matching is done

before the actual binding of the rule, hence eliminates a lot of obviously non-match

expressions.

The method promise() is used to decide the order in which rules are applied, or

even do not apply the rule. The promise() method returns a promise value of the rule

according to the optimizing context, e.g., the required physical properties we are

considering. So it is a run time value and informs the optimizer how useful the rule

might be. A promise value of 0 or less means not to schedule this rule here. Higher

promise values mean schedule this rule earlier. By default, an implementation rule has

a promise of 2 and others a promise of 1, indicating implementation rules are always

scheduled earlier. This rule scheduling mechanism allows the optimizer to control



53

search order and benefit from it by scheduling rules to obtain searching bounds as

quick as possible, as low as possible.

Columbia inherited the basic design of rule mechanism from Cascades but

made several improvements, including the binding algorithm and the handling of

enforcers. The following sections will discuss these improvements in detail.

4.2.2.1 Rule Binding

All rule-based optimizers must bind patterns to expressions in the search space.

For example, consider the LTOR join associative rule, which includes these two

member data. Here L(i) stands for the LEAF_OP with index i:

Pattern: (L(1) join L(2)) join L(3)

Substitute: L(1) join (L(2) join L(3))

Each time the optimizer applies this rule, it must bind the pattern to an

expression in the search space. A sample binding is to the expression

( G7 join G4 ) join G10

where Gi is the group with GROUP_NO i.

A BINDERY object (a bindery) performs the nontrivial task of identifying all

bindings for a given pattern.  A BINDERY object will, over its lifetime, produce all

such bindings. In order to produce a binding, a bindery must spawn one bindery for

each input subgroup.  For instance, consider a bindery for the LTOR associativity rule.

It will spawn a bindery for the left input, which will seek all bindings to the pattern

L(1) join L(2) and a bindery for the right input, which will seek all bindings for the

pattern L(3). The right bindery will find only one binding, to the entire right input



54

group. The left bindery will typically find many bindings, one per join in the left input

group.

BINDERY objects (binderies) are of two types: expression bindery and group

bindery. Expression binderies bind the pattern to only one multi-expression in a

group. An expression bindery is used by a rule in the top group, to bind a single

expression.  Group binderies, which are spawned for use in input groups, bind to all

multi-expressions in a group. Because Columbia and its predecessors apply rules only

to logical multi-expressions, binderies bind logical operators only.

Because of the huge number of multi-expressions in the search space, rule

binding is a time-consuming task. In fact, in Cascades, the function

BINDERY::advance() which finds a binding is the most expensive among all the

functions in the optimizer system. Any improvement on the algorithm of rule binding

will surely result in the performance improvement of the optimizer. Columbia refined

the BINDERY class and binding algorithm to make rule binding more efficient.

Since a bindery may bind several EXPRs in the search space, it will go through

several stages, basically they are: start, then loop over several valid bindings, then

finish. In Columbia, these stages are represented by three binding states, each of which

is a value of an enum type BINDERY_STATE. It is shown in the following C++ type

definition:

typedef enum BINDERY_STATE

{      start,          // This is a new MExpression

        valid_binding,  // A binding was found.

        finished,       // Finished with this expression



55

} BINDERY_STATE;

In Cascades, the binding algorithm used more states to keep track of all the

binding stages, hence complicating the algorithm and consuming more CPU time. In

Cascades, the binding stages are represented by six binding states. The following is the

Cascades version of the binding state definition:

typedef enum BINDING_STATE

{  start_group, // newly created for an entire group

    start_expr, // newly created for a single expression

    valid_binding, // last binding was succeeded

    almost_exhausted, // last binding succeeded, but no further ones

    finished, // iteration through bindings is exhausted

    expr_finished // current expr is finished; in advance() only

} BINDING_STATE;

In Columbia, the binding algorithm is implemented in the function

BINDERY::advance(), which is called by APPLY_RULE::perform().The binding

function walks the many trees embedded in the search space structure in order to find

possible bindings. The walking is done with a finite state machine, as shown in Figure

15.

Since the finite state machine only has three states, the algorithm in Columbia

obtains its simplicity and efficiency compared to the more complex finite state

machine in Cascades with six states. Moreover, as mentioned in section 4.2.1.3, the

separation of logical and physical multi-expressions into two link lists in Columbia



56

made the binding much faster because there is no need to skip over all the physical

expressions in the group.

Figure 15. Finite State Machine for BINDERY::advance()

4.2.2.2 Enforcer Rule

An enforcer rule is a special kind of rule that inserts physical operators that

enforce or guarantee desired physical properties. The physical operator inserted by an

State start:

If the pattern is a leaf, we are done.

State = finished

Return TRUE

Skip over non-logical, non-matching expressions.

State = finished

break

Create a group bindery for each input and

   try to create a binding for each input.

If successful

State = valid_binding

Return TRUE

else

delete input binderys

State = finished

Break

State valid_binding:

Increment input bindings in right-to-left order.

If we found a next binding,

State = valid_binding

return TRUE

else

delete input binderys

state = finished

break

State finished:

If pattern is a leaf //second time through, so we are done

   OR

   this is an expr bindery //we finished the first expression, so done

   OR

   there is no next expression

return FALSE

else

state = start

break



57

enforcer rule is called an enforcer. Typically, an enforcer takes a group as input and

outputs the same group but with a different physical property. For instance, the

QSORT physical operator is an enforcer, which implements the QSORT algorithm

over a collection of tuples represented by a group in the search space. The rule

SORT_RULE is an enforcer rule, which inserts the QSORT operator into the

substitute. It can be represented as:

Pattern: L(1)

Substitute: QSORT L(1)

Where L(i) stands for the LEAF_OP with index i.

An enforcer rule is fired when and only when a search context requires a sorted

physical property. For example, when a merge-join is being optimized, the search

context for its inputs has a required physical property which requires the input is

sorted on the merge-join attributes. Consider the multi-expression

MERGE_JOIN(A.X, B.X), G1, G2.

When we are optimizing this multi-expression using the top-down approach,

the inputs are to be optimized first with certain contexts. For the left input group G1,

the required physical property in the searching context is sorted on A.X, while the

right input group G2 will have a required physical property sorted on B.X. When the

searching requires a sorted property, the SORT_RULE is fired to insert the QSORT

operator to force the input groups to have the required properties.

It is similar with other enforcer rules, for example, HASH_RULE, which

enforces a hashed physical property. Whether an enforcer rule is fired or not is

determined by the promise() method in the rule object. The promise() method returns a



58

positive promise value if and only if the search context has a required physical

property, for example, sorted or hashed. If there is no required physical property, a

zero promise value is returned indicating that the enforcer rule will not be fired.

There are two differences in the handling of enforcer rules between Cascades

and Columbia.

First, excluded property. Cascades used excluded properties in the promise()

function to determine the promise value of an enforcer. When both the required

physical property set and excluded physical property set are not empty, the promise()

function return a non-zero promise value. The purpose of using an excluded property

is to avoid repeatedly applying an enforcer rule for a group. But those excluded

properties are difficult to track and use more memory (it requires that a search context

include a pointer to an excluded property), and also make the search algorithm

complicated to handle enforcers. Instead, Columbia does not use excluded properties

at all. A context only includes a required property and an upper bound. The promise()

function determines a rule’s promise only by the required physical property. To avoid

the potential problem of repeatedly applying an enforcer rule, the unique rule set

technique is applied to enforcer rules. That is, the RuleMask data member in each

M_EXPR has a bit for each enforcer rule. When an enforcer rule has been fired, the bit

associated to this rule is set to on, which means the enforcer rule has been fired for this

multi-expression. The other time the enforcer rule is to be fired, the rule mask bit is

checked and the rule will not be fired repeatedly. On the other hand, this simple

approach raises a potential problem: if a group has been optimized and we are

optimizing it for a different property, an enforcer rule bit in a multi-expression may



59

have been set to on because of the last optimization. In this new optimization phrase,

the enforcer rule will not have a chance to be fired for the different property, even it

has a very good promise for this new physical property. Thus, the optimizer may give

a wrong answer for this optimization phrase. The solution to this problem yields

another improvement of Columbia over Cascades. It is discussed in the following

paragraph as the second difference than Cascades.

Second, representation of enforcers. In Cascades, an enforcer is represented

as a physical operator with some parameters. For example, a QSORT operator has two

parameters: one is the attributes needed to sort on, the other is the sorting order

(ascending or descending). The method QSORT::input_reqd_prop() returns no

required physical property and a sorted excluded property for inputs. It provides the

searching contexts for inputs when optimizing a multi-expression downward. An

enforcer is actually generated by an enforcer rule. After an enforcer rule is

successfully bound to an expression, method RULE::next_substitute() is invoked to

produce a new expression where the enforcer is inserted. The parameters of the

enforcer are produced according to the required physical properties of the searching

context. For example, if the search context has a required physical property of being

sorted on attributes <A.X, A.Y>, the enforcer generated will be a QSORT with

parameter <A.X,A.Y>, denoted as QSORT(<A.X,A.Y>). This new expression with

the enforcer will be included into the same group as the “before” expression in the

search space. Since enforcers have parameters, enforcers with the same name but

different parameters are treated as different enforcers. We can see from this that if the

searches come with many different required physical properties, such as sorted on



60

different attributes, there may be many enforcers with the same name but different

parameters in a group in the search space. This could be a potential waste.

In Columbia, instead, an enforcer is represented as a physical operator without

any parameter. For example, a QSORT enforcer is denoted as QSORT(), which does

not contain any parameter. Only one QSORT operator will be generated and included

into a group during the whole optimizing process because after the first SORT_RULE

is fired, the corresponding rule bit in the expression is set to on and prevents the future

SORT_RULE applications. This approach is safe because we assume that sorting of an

input stream costs same regardless of sort keys. Here is how the Columbia optimizer

works: If a group has been optimized for a property, an enforcer multi-expression has

been added into the group. Now that we are optimizing it for a different property, then

the same enforcer will not be generated because the corresponding rule bit has been

set. Thus the enforcer rule will not be fired. On the other hand, all the physical multi-

expressions in the group (including the enforcer multi-expression) will be checked to

see whether the desired property is satisfied and costs will be calculated directly under

the new context with the new required physical property. Since the enforcer has no

parameter, it satisfies the new physical property and hence the cost of this enforcer

multi-expression will be calculated out under the new physical property. If an enforcer

multi-expression becomes the winner for a physical property, it and the physical

property are stored in the winner structure just like the normal multi-expression

winners.

When the optimizer is going to copy out the optimal plan, the enforcer winners

need a special treatment which is to append the parameters to them according to the



61

corresponding required physical properties, since the actual enforcer implementation

requires parameters. For example, suppose the enforcer multi-expression “QSORT(),

G1” is a winner for the physical property “sorted on A.X”. When we copy out this

winner, the actual plan is “QSORT(A.X), G1” which appends the actual parameter to

the enforcer.

4.2.3 Tasks  --  Searching Algorithm

A task is an activity within the search process.  The original task is to optimize

the entire query. Tasks create and schedule each other; when no undone tasks remain,

optimization terminates. Each task is associated with a certain context and has a

method “perform()” which actually performs the task. Class TASK is an abstract class

from which specific tasks are inherited. It contains a pointer to the context, the parent

tasks number which creates this task, and a pure virtual function “perform()” needed

to be implemented in the subclasses. Class PTASKS contains a collection of undone

tasks needed to be scheduled and performed. PTASKS is currently implemented as a

stack structure which has method “pop()” to remove a task for performing and

method “push()” to store a task into the stack structure. A PTASKS object “PTasks” is

created at the beginning of the optimization and the original task of optimizing the top

group is pushed into PTasks. When optimization begins, the original task is popped

out and the perform() method in the task is invoked to begin the actual optimization.

The optimization will create follow-up tasks which will be pushed into PTasks for

further scheduling. Figure 16 shows the pseudo-code for the main optimization



62

process. By using the abstract class, we can see that a simple and clean programming

structure is achieved.

Figure 16. Main Loop of Optimization in Columbia

The whole search algorithm is performed by all the specific tasks in the

optimizer. The tasks in Columbia are: group optimization (O_GROUP), group

exploration (E_GROUP), expression optimization (O_EXPR), input optimization

(O_INPUTS), rule application (APPLY_RULE). Figure 17 shows the relationship

between these tasks. Arrows indicate which type of task schedules (invokes) which

other type. The remainder of this section will describe the Columbia implementation

of each task in detail. In the description of each task, a comparison with Cascades is

discussed.

optimize()

{

// start optimization with top group

PTasks.push ( new O_GROUP ( TopGroup ) );

// main loop of optimization

// while there are tasks undone, do one

while (! PTasks.empty ())

{

TASK * NextTask = PTasks.pop (); // get the next task

NextTask -> perform (); // perform it

}

// optimization completed, copy out the best plan

Ssp.CopyOut() ;

}



63

Figure 17. Relationship between Tasks

4.2.3.1 O_GROUP - Task to Optimize a Group

This task finds the cheapest plan in this group, for a given set of contexts, and

stores it (with the contexts) in the group's winner structure. If there is no cheapest plan

(e.g. the upper bound cannot be met), the context with a null plan is stored in the

winner structure. This task generates all relevant logical and physical expressions in

the group, costs all the physical expressions and chooses the cheapest one. Two other

types of tasks are created by O_GROUP task to generate and optimize the expressions

in a group: O_EXPR and O_INPUTS.

Dynamic programming and memoization are used in this task. Before initiating

optimization of all of a groups’ expressions, it checks whether the same optimization

goal (i.e., same searching context) has been pursued already; if so, it simply returns

the plan found in the earlier search. Reusing plans derived earlier is the crucial aspect

of dynamic programming and memoization.

O_GROUP

Optimize()

O_EXPR

E_GROUP

APPLY_RULE

O_INPUTS



64

Figure 18 illustrates the process in O_GROUP task. It is implemented by

O_GROUP::perform() method.

Figure 18. Algorithm for O_GROUP

As seen in figure 18, the separation of logical and physical multi-expressions

in a group facilitates the search in this task.

There are two cases for performing a O_GROUP task.

First, the first time optimizing a group (i.e., searching a group for a context): In

this case, only one logical mexpr (the initial mexpr) is in the group. By this algorithm,

only one task, O_EXPR the intial mexpr, is created and pushed into the task stack,

which will generate other expressions by applying rules.

The second case occurs when optimizing a group under a different context,

e.g., a different required physical property: In this case, the group has been optimized

//find the best plan for a group with certain context

O_GROUP::perform( context )

{

If ( lower bound of the group greater than upper bound in the context)

return; // impossible goal

If ( there is a winner for the context )

Return; // done, no further optimization needed

// else, more search needed

// optimize all the logical mexprs with the same context

For ( each logical log_mexpr in the group )

PTasks.push (new O_EXPR( log_mexpr, context ) );

// cost all the physical mexprs with the same context

For ( each physical phys_mexpr in the group )

PTasks.push ( new O_INPUTS( phys_mexpr , context ) ) ;

}

Note: Since the tasks are pushed into a stack, O_INPUTS tasks are actually scheduled earlier than

O_EXPR tasks. It is desired because a winner may be produced earlier.



65

and may have some winners. So there may be more than one logical and physical

multi-expression in the group. Two things are needed: 1. We need to perform

O_EXPR on each logical multi-expression with the new context. Because under the

new context, some rules in the rule set that can not be applied to a mexpr become

applicable. Due to the unique rule set technique, we will not fire the same rule twice,

thus avoiding duplicate multi-expressions generated into the group; 2. We need to

perform O_INPUTS on each physical mexpr with the new context to calculate the cost

of the physical mexpr and produce a winner for the context if possible.

In Cascades, the task of optimizing a group did not deal with physical multi-

expressions. For all the logical multi-expressions in a group, the task creates and

pushes the O_EXPR task for each logical multi-expression. Then all the physical

multi-expressions will be generated and the costs are calculated. In the case of

optimizing a group the second time, all physical multi-expressions would be generated

again for cost calculations under a different context. And because all logical and

physical multi-expressions are stored in one linked list, this method must skip over all

the physical multi-expressions in a group. From this comparison, the algorithm of

optimizing a group in Columbia is more efficient than that in Cascades.

4.2.3.2 E_GROUP - Task to expand the group

Some rules require that their inputs contain particular target operators,

typically logical operators. For example, a join associativity rule requires that one of

the inputs must be a join. Consider the left associativity rule of a join. When the join



66

operator in a multi-expression matches the top join operator in the rule, the left input

group of the multi-expression must be expanded to see if there is any join in the group

since the rule requires that the left input must be a join. And all the joins in the group

should match the left join in the rule.

An E_GROUP task expands a group by creating all target logical operators

that could belong to the group, e.g., fire whatever rules are necessary to create all joins

that could belong to a join group. This task is only invoked on demand when an

exploration is required by a rule according to the rule’s pattern. It is created and

scheduled by O_EXPR task when necessary.

Figure 19 shows the process of exploring a group. It is implemented by the

E_GROUP::perform() method.

Figure 19. Algorithm for E_GROUP

Dynamic programming is also used here to avoid duplicate work. Before

exploring a group’s expressions, the task checks whether the group has already been

explored. If so, the task terminates immediately without spawning other tasks. When

exploration is needed, the task invokes an O_EXPR task for each logical multi-

// derive all logical multi-expression for matching a pattern

E_GROUP::perform(context)

{

If ( the group has been explored before)

Return;

// else,  the group has not yet been explored

for ( each log_mexpr in the group )

PTasks.push (new O_EXPR( log_mexpr, context, exploring ) );

Mark the group explored;

}



67

expression with “exploring” flag to inform the O_EXPR task to explore the

expression, i.e., only fire transformation rule for the expression.

In Cascades, An E_GROUP task spawns another type of task, E_EXPR, to

explore a multi-expression. Since E_EXPR has similar actions with O_EXPR,

Columbia does not have an E_EXPR task. Instead, Columbia simply reuses O_EXPR

with a flag indicating the purpose of the task.

4.2.3.3 O_EXPR - Task to optimize a multi-expression

There are two purposes for an O_EXPR task in Columbia: One is to optimize a

multi-expression. This task fires all rules in the rule set for the multi-expression, in

order of promise. In this task, transformation rules are fired to expand the expression,

generating new logical multi-expressions; while implementation rules are fired to

generate corresponding physical multi-expressions. The other purpose for O_EXPR is

to explore a multi-expression to prepare for rule matching. In this case, only

transformation rules are fired and only new logical multi-expressions are generated.

There is a flag associated with an O_EXPR task, indicating the purpose for the task.

Be default, the flag is set to “optimizing”, since O_EXPR task is mostly used for

optimizing an expression. If the task is used for exploring, especially spawned by

E_GROUP task, the flag is set to “exploring”.

Figure 20 shows the algorithm for task O_EXPR, which is implemented in the

method O_EXPR::perform(). In O_EXPR::perform(), the optimizer decides which

rules are pushed onto the PTASK stack. Notice that a rule's promise is evaluated



68

before inputs of the top-most operator are expanded and matched against the rule's

pattern while promise values are used to decide whether or not to expand those inputs.

Figure 20. Algorithm for O_EXPR

There is no major difference between the algorithm of optimizing a multi-

expression in Columbia and in Cascades, except Columbia reused O_EXPR task to

explore a multi-expression. In Cascades, a new type of task, “E_EXPR”, is used for

exploring.

// optimize or explore a multi-expression, firing all appropriate rules.

O_EXPR::perform( mexpr, context , exploring )

{

// Identify valid and promising rules

For (each rule in the rule set)

{

// check rule bit in mexpr

if ( rule has been fired for mexpr )  continue;

// only fire transformation rules for exploring

if (exploring && rule is implementation rule ) continue;

// check top operator and promise

if (top_match(rule, mexpr) && promise(rule,context) > 0 )

store the rule with the promise;

}

sort the rules in order of promises;

// fire the rules in order

for ( each rule in order of promise)

{

// apply the rule

PTasks.push ( new APPLY_RULE ( rule, mexpr, context, exploring ) );

// explore the input group if necessary

for (each input of the rule pattern )

{

if ( arity of input > 0 )

PTasks.push ( new E_GROUP( input grp_no, context) );

}

}

}



69

4.2.3.4 APPLY_RULE - Task to Apply a Rule to a Multi-Expression

There is no difference between the algorithm of applying a rule in Columbia

and Cascades. A rule is only applied to logical expressions. APPLY_RULE is the task

to apply a rule to a logical multi-expression and generate new logical or physical

multi-expressions into the search space. Given a rule and a logical multi-expression,

the task determines all sensible pattern bindings to expressions currently available in

the search space, then applies the rule and includes new substitute expressions into the

search space. The new generated multi-expressions will then be optimized for further

transformations if it is a logical multi-expression, or be calculated its cost if it is a

physical multi-expression.

Figure 21 shows the algorithm for task APPLY_RULE, which is implemented

by the method APPLY_RULE::perform(). This algorithm in Columbia is the same as

that in Cascades.

After a binding is found, the method RULE::condition() is invoked to

determine whether the rule can actually apply to the expression. For example, a rule

that pushes a select below a join requires a condition about compatibility of schemas.

This condition can not be checked until after the binding, since schemas of input

groups are only available after the binding.

After the rule is applied for the multi-expression, the corresponding rule bit in

the multi-expression must be set so that the other time the same rule will not be

applied again to this multi-expression and hence duplicate work is avoided.



70

Figure 21. Algorithm for APPLY_RULE

4.2.3.5 O_INPUTS  -  Task to optimize inputs and derive cost of an expression

After an implementation rule has been applied during optimization, i.e., an

implementation algorithm has been considered for one node in a query tree,

optimization continues by optimizing each input to the implementation algorithm. The

goal of task O_INPUTS is to compute the cost of a physical multi-expression. It first

computes the costs of the multi-expression’s inputs then adds them up to the cost of

the top operator. Member data input_no in class O_INPUTS, initially 0, indicates

// apply a transformation or implementation rule

APPLY_RULE::perform( mexpr, rule, context, exploring )

{

// check rule bit in mexpr

if ( rule has been fired for mexpr )  return;

for (each binding for the mexpr and rule)

{

before = binding->extract_expr(); // get the binding expression

if ( rule->condition(before) not satisfied )   continue; // check condition

after = rule->next_substitute(expr );      // get the substitute from the rule

new_mexpr = Ssp->CopyIn(after); // include the substitute into SSP

// further transformations to optimize new expr

if ( new_mexpr is logical )

PTasks.push (new O_EXPR (new_mexpr, context, exploring));

// calculate the cost of the new physical mexpr

if ( new_mexpr is physical )

PTasks.push (new O_INPUTS (new_mexpr, context));

}

mexpr->set_rule_bit(rule); // mark the rule has been fired

}



71

which input has been costed. This task is unique to other tasks in that it does not

terminate after scheduling other tasks. It first pushes itself onto the stack, then

schedules the optimization of the next input.  When all inputs are costed, it calculates

the cost of the entire physical multi-expression.

This task is the major task for the implementation of Columbia’s pruning

techniques which are discussed in detail in section 4.3. Based on the same task in

Cascades, O_INPUTS in Columbia re-engineers the algorithm and adds pruning

related logic to implement the pruning techniques that are new in Columbia.

Figure 22 illustrates the pseudo-code of method O_INPUTS_perform(), which

implements the algorithm of task O_INPUTS.

NOTATION:

G: the group being optimized.

IG: various inputs to expressions in G.

GLB: the Group Lower Bound of an input group, stored as a data member of

the group.

Full winner: a winner whose plan is non-null.

InputCost[]: contains actual (or lower bound) costs of optimal inputs to G.

LocalCost: cost of the top operator being optimized.

CostSoFar: LocalCost + sum of all InputCost[] entries.



72

Figure 22 Pseudo-code of O_INPUTS::perform()

//On the first (and no other) execution, the code initializes O_INPUTS member InputCost.

For each input group IG

  If (Starburst case)  InputCost is zero;

Determine property required of search in IG;

If (no such property)  terminate this task.;

Get Winner for IG with that property;

If (the Winner from IG is a Full winner)  InputCost[IG] = cost of that winner;

else if (!CuCardPruning)  InputCost[IG] = 0        //Group Pruning case

       else if (no Winner)  InputCost[IG] = GLB     //remainder is Lower Bound Pruning case

              else // Winner has a null plan, find a lower bound for IG

InputCost[IG] = max(cost of winner, IG Lower Bound)

EndFor // initialize InputCost

//The rest of the code should be executed on every execution of this method.

If (Pruning && CostSoFar >= upper bound) terminate this task.   // Note1: group pruning applied

//Calculate cost of remaining inputs

For each remaining (from InputNo to arity) input group IG;

    Probe IG to see if there is a winner;

    If (there is a Full Winner in IG)

store its cost in InputCost;

if (Pruning && CostSoFar exceeds G's context's upper bound) terminate this task;

    else If (we did not just return from O_GROUP on IG)

//optimize this input; seek a winner for it

push this task;

push O_GROUP for IG;

return;

           else   // we just returned from O_GROUP on IG, this is an impossible plan

   if(There is a winner in IG with a null plan)

If appropriate, update null-plan winner in IG;

terminate this task;

       else  // There is no winner in IG

Create a new null-plan winner in IG;

terminate this task;

EndFor //calculate the cost of remaining inputs

//Now all inputs have been optimized

if (arity==0 and required property can not be satisfied)  terminate this task;

if (CostSoFar >= than G's context's upper bound)  terminate this task;

//Now we know current expression satisfies current context

if (GlobepsPruning && CostSoFar <= GLOBAL_EPS)        // Note2: global epsilon pruning applied

Make current expression a winner for G;

mark the current context as done;

terminate this task;

if (either there is no winner in G or CostSoFar is cheaper than the cost of the winner in G)

//so the expression being optimized is a new winner

Make the expression being optimized a  new winner

update the upperbound of the current context

return;



73

There are three pruning flags in the algorithm: Pruning, CuCardPruning and

GlobepsPruning. Users of the optimizer can set these flags accordingly to experiment

different pruning techniques in Columbia.

There are four cases on which we can run benchmarks for Columbia. The

O_INPUTS algorithm handles these four cases with different logic. In Cascades, only

case 1 and 2 are addressed.

1. Starburst - [!Pruning && !CuCardPruning] : no pruning applied, generates

all expressions for input groups, i.e., expands input groups thoroughly.

2. Simple Pruning - [Pruning && !CuCardPruning] : tries to avoid input

group expansions by aggressively checking limits at all times, i.e., if

CostSoFar during optimization of the expression is greater than the upper

bound of the optimizing context, the task is terminated with no further

optimization. In this case, InputCost[] entries only store the winner costs of

inputs, if the input has a winner for the optimizing context.

3. Lower Bound Pruning - [CuCardPruning] : tries to avoid input group

expansions as much as possible. The difference between this and simple

pruning is: if there is no winner for an input group, it stores the input group's

GLB in the InputCost[] entry. This case assumes that the Pruning flag is on,

i.e., the code forces Pruning flag to be true if CuCardPruning is true.

4. Global Epsilon Pruning - [GlobepsPruning] : If a plan costs less than the

global epsilon value (GLOBAL_EPS), it is considered as a final winner for G,

hence  no further optimization is needed (i.e., the task is terminated). This flag



74

is independent of others. It can be combined with the other three cases in an

optimization.

4.3 Pruning Techniques

In this section, two pruning techniques in Columbia are discussed. They extend

Cascades’ search algorithm and improve search performance by effectively pruning

the search space. As we can see from section 4.2.3.5, these pruning techniques are

mainly implemented in task O_INPUTS.

4.3.1 Lower Bound Group Pruning

Motivation: Top-down optimizers compute a cost for high-level physical plans

before some lower-level plans are generated. These early costs serve as upper bounds

for subsequent optimizations.  In many cases these upper bounds could be used to

avoid generating entire groups of expressions.  We call this group pruning.

Since Columbia searches top-down and memoizes, bounds could be used to

prune entire groups. For example, suppose the optimizer’s input is (A~~B)~~C. The

optimizer will first calculate the cost of one plan in the group [ABC], say

(A~~LB)~~LC; imagine its cost is 5 seconds. It expanded the group [AB] and did not

consider the groups [AC] or [BC] in calculating this 5 second cost. Now we are

considering optimizing another expression in the group, say [AC]~~L[B]. Suppose the

group [AC] represents a Cartesian product, it is so huge that it takes more than 5



75

seconds just to copy out tuples from [AC] to [ABC]. It means the plans containing

[AC] will never be the optimal plan for [ABC]. In this case the optimizer does not

generate, so effectively prunes, all the plans in the group [AC]. Figure 23 shows the

content of the search space after the optimization of the two expressions discussed

above. Notice that the [AC] group was not expanded. On the other hand, Starburst and

other bottom-up optimizers optimize the groups [AB], [AC] and [BC] before

beginning to process [ABC], thus losing any chance to prune multiple plans.

Figure 23. Search space during optimization ( [AC] is Cartesian product )

We say that an optimality group G is pruned if it is never enumerated. A

pruned group will thus contain only one expression, namely the expression which

created it. Group pruning can be very effective: a group representing the join of k

tables can contain 2
k 

–2 logical expressions. And there are normally more than two

times physical expressions than logical expressions in a group.

Algorithm: In this section we will describe how Columbia increases the

likelihood of achieving group pruning, through the use of an improved optimization

[ABC]:

Winner: [AB]
~

~

L[C], 5 sec

Expressions:

[AB]
~

~

[C], …

[AB]:

Winner: [A]
~

~

L[B], 2 sec

 Expanded: Yes

[C]:

Winner: …

Expanded:…

[ABC]:

Winner: [AB]
~

~

L[C], 5 sec

Expressions:

[AB]
~

~

[C], [AC]
~

~

[B], …

[AC]:

Winner: No

Expanded: No

[B]:

Winner: …

Expanded:…

(a).After optimizing [AB]
~

~

[C] (b).After optimizing [AC]
~

~

[B]



76

algorithm, which is shown in Figure 24. This algorithm is one part of task O_INPUTS

(section 4.2.3.5), and is the detail description of  “Note1” line in Figure 22.

When optimizing a physical expression Expr under a context:

    (1) Compute a lower bound for the cost of Expr, equal to

    (2) Cost of Expr’s operator +

    (3) Cost of inputs that have optimal plans for the required properties +

    (4) Group Lower Bound of other inputs ;

    (5) If this lower bound is > UpperBound of the context, return NULL;

    (6) For each input without an optimal plan for the required properties

    Optimize the input;

Figure 24. Algorithm of Lower Bound Pruning

In Figure 24, lines (1) – (4) compute a lower bound for the cost of Expr. If this

lower bound is greater than the current upper bound, Limit, then the routine can return

without having enumerated any input groups. The difference between this algorithm

and the algorithm of Cascades is that there is no line (4) in the algorithm of Cascades. 

In Columbia, there is a group lower bound associated with a group, which

represents the minimal cost of copying out tuples of the group and fetching tuples

from the tables of the group (see details in section 4.1.2.3). This group lower bound is

calculated and stored in the group before the optimization of an expression since it is

based only on the logical properties of the group. Line (4) includes in the group lower

bound of inputs which do not have optimal plans for the required properties, thus

improves the lower bound of the cost of Expr and then the likelihood of group

pruning.

Figure 25 shows the situation when this lower bound group pruning happens.

In this situation, Cascades’ algorithm will not prune the group [BC] since the lower

bound cost of the expression being optimized is only the sum of operator cost and the



77

winner cost of inputs if any. In this case, it equals to 1+2+0 = 3 and not greater than

the upper bound in the context. The group [BC] still will be expanded.

Figure 25. A situation when lower bound pruning happens

Lower Bound Group pruning is safe, i.e., the optimizer using this pruning

technique produces optimal plans. Because we will only prune a set of plans when a

lower bound for the cost of the set is greater than the cost of another plan, and we

proved in section 4.1.2.3 that the bound we used is a lower bound.

4.3.2 Global Epsilon Pruning

Motivation: The concept of satisficing originated in economics.  The idea is

that, in theory, economic systems are governed by laws which require everyone to

optimize their satisfaction, subject to satisfying some constraints.  In practice people

do not act this way: they settle for almost optimal solutions which almost satisfy the

constraints. This behavior is called satisficing. One way to view satisficing is to

[ABC]:

GLB= …

Winner:…

…

[A]:

GLB=1 sec

Winner:FILE_SCAN, 2 sec

Expanded: Yes

[BC]:

GLB=3 sec

Winner: No

Expanded: No

Optimizing [A]
~

~

L[BC] :

Context: UpperBound = 5 sec

Cost of 
~

~

L = 1 sec

Then:

       Pruning happen for [BC] since:

       Winner[A]+GLB[BC]+Cost[
~

~

L] =

 2 + 3 +1 = 6

greater than UpperBound = 5

       [BC] will not be expanded.



78

imagine that there is some constant epsilon and that everything is optimized/satisfied

within epsilon. The idea of satisficing is motivation for the following idea.

Global Epsilon Pruning: A plan is considered as a final winner of a group if

its cost is close enough (within epsilon) to the cost of an optimal plan. Once such a

winner is declared, no further optimization is needed for the group, hence possibly

prunes the search space. For example, supposed we are optimizing the group [ABC],

we will calculate the cost of the first plan we get in the group, say (A~~LB)~~LC and it

costs 5 seconds. If the epsilon we choose is 6 second, i.e., we consider that a plan less

than 6 seconds is a final winner. Although it is not optimal, we are satisfied with it. So

the plan (A~~LB)~~LC with cost 5 seconds is consider as a final winner for the group

[ABC], hence no further search is pursued for the group [ABC]. In other word, search

for [ABC] is done, although we even do not expand group [ABC]. A lot of expressions

in the search space are pruned by this method.

This pruning technique is called Global Epsilon Pruning since the epsilon is

used globally during the whole optimization instead of localizing to a specific group

optimization.

Algorithm: Choose a global parameter Globeps > 0. Follow the usual

optimization algorithm, except that a final winner is declared in a group if a

plan is found with

cost(plan) < Globeps.

Enter the winner in the group and mark the search context done indicating that

no further search is needed for this group.



79

This algorithm is implemented in the task O_INPUTS, shown in “Note2” in

Figure 22. After the cost of an optimizing expression is calculated, if the global

epsilon pruning flag is set, the cost is compared with the global epsilon. The search is

done if the cost is less than the epsilon.

Obviously, Global Epsilon Pruning does not yield an optimal plan. But the

distance from absolute optimality is bounded in some sense.

Theorem: Let "absolute-optimum" denote the result of the usual optimization

and "Globeps-optimum" denote the result of optimization with Global Epsilon

Pruning.  If absolute-optimum has N nodes whose cost is less than Globeps,

then the cost of Globeps-optimum differs by at most

N * Globeps

from the cost of absolute-optimum.

Proof: Begin by performing a depth-first search on the absolute-optimum, but

use Global Epsilon Pruning to replace every optimal input with the first plan

having cost less then Globeps, if such a plan exists.  N such optimal inputs will

be replaced. Denote the plan which is the result of this process by P.  Since P

differs from the abosolute-optimum in at most N inputs, by at most Globeps,

we have

cost(P) - cost(absolute-optimum) < N * Globeps.

Since P is in the search space defined by the Global Epsilon Pruning algorithm,

We must have

Cost (Globeps-optimum) < cost(P).

The theorem follows.



80

Different epsilons greatly affect the pruning. A very small epsilon will produce

no pruning at all since the costs of all plans in a group are greater than the epsilon. On

the other hand, A large epsilon will prune a significant amount of plans but may yield

a plan that is far away to the optimal plan. Since this pruning technique relies heavily

on the epsilon we choose, the above theorem gives us an idea of how to choose an

epsilon. For example, suppose we want to optimize a join of 10 tables. We estimate

the cost of the optimal plan of this join is 100 seconds and the optimal plan has 20

nodes. We also assume a plan with a distance of 10 seconds from the optimal plan is

acceptable. According to the theorem, we can have a Globeps-optimum plan whose

cost differs from the optimal cost by at most 20* Globeps = 10, which is acceptable.

Hence, we can choose a global epsilon to be 0.5.

4.4 Usability in the Columbia Optimizer

Besides efficiency improvement upon the Cascades described in the previous

sections, usability is improved in Columbia by using a windows interface to interact

with users and supporting sustained tracing information. This section presents

Columbia’s improvement of usability upon Cascades.

4.4.1 Windows Interface

Experimenting with an optimizer is a tedious task. There are three kinds of

inputs to an optimizer: a query, a catalog and a cost model. Any of them will affect the

behavior of the optimizer. Columbia provides a convenient interface for user to choose



81

different query files, catalog files and cost model files. The optimizer will then

optimize this new input set without quitting the optimizer.

Furthermore, an experimental optimizer like Columbia has some pruning flags

for users to experience different pruning techniques. There are other parameters in the

optimizer to allow users to control the output of the optimizer. The friendly user

interface in Columbia provides an easy way to control and experiment with the

optimizer.

Figure 26 illustrates an option setting dialog in the Columbia optimizer which

lets the user select parameters for the optimizer. The optimizer will accept these

settings when the user click “OK” on the dialog and the new optimization will be

based on these current settings (parameters).

Figure 26. A Dialog to allow user to change parameters of the optimizer



82

As shown in Figure 26, the option setting dialog lets users select different input

files. As discussed in section 4.1, the inputs to the optimizer are modeled as text files,

they can be written outside of the optimizer using any text editors and stored in the file

system where the optimizer program resides. The “Browse” buttons enable the user to

find the files in the file system and select them as the inputs to the optimizer.

There are three pruning flags users can select in this dialog for the optimizer:

GroupPruning, CuCardPruning and EpsilonPruning, which represent the three flags in

the algorithm of task O_INPUTS repectively: Pruning, CuCardPruning and

GlobalepsPruning. Section 4.2.3.5 describes the meanings of these three flags and how

the combinations of them control the behavior of the optimizer. For EpsilonPruning,

there is also an edit field for users to enter the epsilon they want.

On the top portion of the dialog, there are some options related to the tracing of

the optimizer behavior. They will be described in the next section “Tracing of the

optimizer”.

Once new parameters are set, next optimization of the optimizer will be based

on these settings and output the result to a window. The optimizer application also

provides a search tool in the application menu to let users search keywords in the

result output. When the result has many lines, this search tool will help users to

quickly locate the interesting part of the output.

Figure 27 shows a picture of the optimizer application after a result output is

generated and the search tool menu is selected by users.



83

Figure 27. A picture of the optimizer application

4.4.2 Tracing of the optimizer

Since the behavior of the optimizer is complicated, it is difficult to debug or

verify the process of optimization. Tracing information provided by the optimizer

during the optimization process is one way to let users look into the optimization

process and see how the optimizer works. Columbia improves the tracing mechanism

in Cascades to provide an easy-to-read, controllable tracing information to users.

A tracing of an optimization may include:

1. Content of inputs to the optimizer: the query being optimized, catalog, cost

model and rule set used in the optimizer. By looking at this information, we

know what the optimizer is working on.



84

2. Content of task stack: It is called OPEN stack. The stack contains tasks to

be scheduled. Each time a task is removed from the top of the stack and is

performed. By looking at the OPEN stack, we know how the optimizer is

working and the scheduling of optimizing tasks.

3. Detail processing of each task: This information traces the processing of a

particular task.

4. Content of the search space after each task: after each task is performed,

the search space may change since more expressions or winners may be

added into the search space. This information traces the result of each task.

5. Content of final search space: After the optimization is completed, the final

search space is printed out. By looking at the final search space, users can

find the final status of the optimizer. For example, how many expressions

are generated in each group.

The above information is very extensive. Sometimes users are interested in

only one of the parts in the tracing result. Columbia provides this control by setting the

tracing options for the optimizer. In the “Option Setting” dialog (Figure 26), there are

two sets of settings for tracing control.

1. Trace To: Users can select the tracing destination to a text file, to a window

or to the COVE
17

 script file.

2. Trace Content: this option allows users to select the interesting part(s) of

tracing contents. There are three choices and combinations are allowed.

                                                          
17

 COVE is a visualization environment designed for Cascades. It reads from a script

file to visualize the process of the optimizer.



85

Final SSP: final search space content is included in the tracing.

Appendix D shows a sample of final search space in the tracing result.

OPEN: OPEN stack content after each task is included in the tracing.

Appendix E shows a sample of some OPEN stacks in the tracing result.

SSP: search space content after each task is included in the tracing.

These options allow users to control the tracing and provide them a convenient

way to debug and verify the behavior of the optimizer.



86

Chapter 5 .  Result and Performance

This chapter presents an experimental evaluation of efficiency in the Columbia

optimizer. First, the performance of the Columbia optimizer on chain and star queries

is illustrated, including expression generation, memory usage and optimization time.

Second, the Columbia optimizer is compared with the Cascades optimizer. Third, the

effectiveness of global epsilon pruning technique in Columbia is examined.

The queries used in the experiments are join-only queries. Two kinds of

queries are examined, namely chain queries and star queries. They represent two basic

shapes of join orderings. In a chain query, all joined relations are connected side by

side through their join predicates. In a star query, the joined relation at the center is

connected to the surrounding relations through their predicates.

The experiments of the Columbia optimizer were run on a SMP system with 4

Intel Pentium Pro 200MHz CPUs and 1G memory. The operating system is Windows

NT Server 4.0. The simple cost model shown in Appendix B is used. The rule set used

in the optimizer is shown in Appendix C. Nested loop-join and sorted merge-join are

used to implement a join algorithm. All the base tables used in the queries are defined

as having the same cardinality in the catalog.

5.1 Performance on Chain and Star Queries

This section presents the results of using the Columbia optimizer to optimize

two classes of queries, chain queries and star queries. Here we only used lower bound



87

group pruning in Columbia to demonstrate the best performance of Columbia while

still generates optimal solutions. Figure 28-30 illustrates the performance of the

Columbia optimizer optimizing chain and star queries. Three measurements were

performed: optimization time, number of multi-expressions and memory usage. As the

number of tables in the query increases, the complexity of optimizing the query

increases dramatically. The shape of the query also affects optimization complexity. It

is more complex to optimize star queries than chain queries.

Figure 28 shows the times to optimize different chain and star queries. We can

see that the times of optimizing star queries increases much faster than that of chain

queries. Columbia optimizer is efficient when optimizing chain queries. From Figure

28 we can see that it takes a few seconds to optimize queries with less than 11 tables,

and less than 1 minute to optimize a chain query of a join of 16 tables.

Figure 28. Optimization time for chain and star queries

The process of optimization is to generate possible multi-expressions and find

the cheapest plan. Hence the number of multi-expressions is also a major factor of

optimization complexity. Figure 29 illustrates the numbers of multi-expressions

0

50

100

150

200

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Tables

O
p

ti
m

iz
a

ti
o

n
 T

im
e

(s
e

c
o

n
d

s
)

Star

Chain



88

generated during the optimization of chain and star queries. All logical and physical

multi-expressions are counted. We can see that star queries generate much more multi-

expressions than chain queries when number of tables in query exceeds 11.

Figure 29. Number of multi-expressions generated in chain and star queries

In a top-down optimizer, all multi-expressions are memoized for further

processing. They occupy a large amount of memory. The more multi-expressions

generated, the more memory they take. Figure 30 shows the memory usage of

optimizing chain and star queries. We can see that there is little change of memory

usage of optimizing queries with less than 11 tables. As the number of tables

increases, the memory usage increases dramatically, especially for the star queries.

As pointed out in [OnL90], the optimization of star queries is much more

complex than chain queries because chain queries generate many Cartesian products

during optimization, while star queries generate relatively few. Since Cartesian

products are prone to be pruned by the optimizer using the group pruning technique, it

0

200000

400000

600000

800000

1000000

1200000

1400000

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Tables

M
u

lt
i-

e
x
p

re
s
s
io

n
s

Star

Chain



89

is reasonable that the optimizer optimized the chain queries more efficiently than the

star queries.

Figure 30. Memory usage for chain and star queries

Given the fact that the Columbia optimizer can optimizer a chain query with 16

tables within 1 minute, and used less than 150M memory, it becomes practical for

optimizing large chain queries.

5.2. Comparison with Cascades

This section presents an experimental comparison of the search efficiency of

the Columbia optimizer and the Cascades optimizer. Several chain and star queries

were optimized by both optimizers on the same data model, i.e., same catalog, same

rule set and same cost model. The optimization times are compared.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Tables

M
e
m

o
ry

(K
b

y
te

s
)

Star

Chain



90

Figure 31-32 shows the optimization times
18

 for chain and star queries. We can

see from Figure 31 that it takes only a few seconds for the Columbia optimizer to

optimize a chain query with 10 tables, while it takes 12 seconds for the Cascades

optimizer to optimize it. There is a bigger difference between the Columbia optimizer

and the Cascades optimizer when optimizing star queries. We can see from Figure 32

that, for the star query of 9 tables, the Columbia optimizer used a few seconds while

the Cascades optimizer used more than 1 minute.

From this comparison, we can see that the Columbia optimizer performs better

than the Cascades optimizer does. The performance improves significantly when the

number of tables in a query increases. Furthermore, the Columbia optimizer does

much better than the Cascades optimizer when optimizing star queries. This indicates

that the pruning technique used in the Columbia optimizer is more effective than that

in the Cascades optimizer for the star queries.

Figure 31. Optimization time for chain queries

                                                          
18

 The Cascades Optimizer was run on an Ultra-2 Sun workstation with 2

UltraSPARC-II 296MHz CPUs and 252MB Memory. The operating system is SunOS

5.5.1. The optimization time reported is the user time from the Unix time command.

0

2

4

6

8

10

12

14

3 4 5 6 7 8 9 10

Number of Tables

O
p

ti
m

iz
a

ti
o

n
 t

im
e

 (
s

e
c

o
n

d
s

)

Cascades

Columbia



91

Figure 32. Optimization time for star queries

5.3 Epsilon Pruning Technique Analysis

This section analyses the global epsilon pruning technique used in the

Columbia optimizer. As discussed in section 4.3.2, effectiveness of epsilon pruning

depends heavily on the epsilon we choose and epsilon pruning may not yield an

optimal plan. We first ran the optimizer to optimize the query without using epsilon

pruning and recorded the cost of the optimal plan the optimizer generated. Then we

ran the optimizer to optimize the query using epsilon pruning by choosing different

epsilons and measured the number of multi-expressions generated. At the mean time,

the errors of the costs of the optimizer outputs to the costs of the optimal plans are

calculated and reported. The error is calculated by:

Error = (cost of optimizer output – cost of optimal plan) / cost of optimal plan.

0

10

20

30

40

50

60

70

3 4 5 6 7 8 9 10

Number of Tables

O
p

ti
m

iz
a
ti

o
n

 T
im

e
(s

e
c
o

n
d

s
)

Cascades

Columbia



92

The error indicates the distance of the output to the optimal plan. For example,

an error of 1 indicates the cost of the optimizer output is twice as much as the optimal

plan. So we may consider an error of greater than 1 to be far from the optimal plan.

The experimented query is a chain query of a join of 8 tables with the same

cardinality. Figure 33 shows the numbers of multi-expressions generated when

optimizing with different epsilons. Figure 34 shows the errors of the outputs to the

optimal plans when optimizing with different epsilons. We can see that as the epsilon

increases, the number of multi-expressions decreases rapidly, while the error also

increases. In the case that the epsilon is zero, which is the same as optimizing without

epsilon pruning, the optimal plan is generated. The largest number of multi-

expressions are generated when the error is zero. In the case that the epsilon is 15, the

number of multi –expressions drops significantly, from 3174 to 1293. Less than one

half of the multi-expressions is generated, while the error in this case is 0.4, which is

relatively small. If we look at the case that the error is 1, which is in the case that the

epsilon is 30, the number of multi-expressions drops to 608, one fifth of the original

number of multi-expressions.

Figure 33.Effectiveness of Epsilon pruning

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40

E psilon s

M
u

lt
i-

e
x

p
re

s
s

io
n

s



93

Figure 34. Errors to optimal plan of Epsilon pruning

From this, we conclude that by using the epsilon pruning technique, the

optimizer can optimize a query and generate an acceptable close-to-optimal plan very

quickly, hence this technique improves efficiency in the optimizer.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40

Epsilons

E
rr

o
r 



94

Chapter 6 .  Conclusions and Future works

This thesis has described the design and implementation of the Columbia query

optimizer. Performance improvement was demonstrated by comparing with its

predecessor, the Cascades optimizer. The performance of the Columbia optimizer

shows that it could become practical for optimizing large queries. The ability of

optimizing large queries efficiently is greatly demanded by many modern database

applications.

Based on the design of the Cascades framework, several engineering

techniques are used to obtain efficiency in Columbia. They include a fast hash

function to eliminate duplicate expressions, separation of logical and physical

expressions in a group, small and compact data structures, efficient algorithms to

optimize groups and inputs, and an efficient way to handle enforcers. These

techniques minimize the usage of CPU and memory in the optimization.

Two pruning techniques are implemented in the Columbia optimizer. By using

lower bound group pruning, the search space is significantly pruned without

compromising plan quality. A group lower bound can be obtained quickly before the

group is optimized. The group whose lower bound exceeds the searching limit (upper

bound) is pruned safely. Another pruning technique in the Columbia optimizer is

global epsilon pruning. This technique significantly prunes the search space by

generating acceptable close-to-optimal solutions. An optimization goal is finished

when a solution is found to be close enough to the optimal solution. The analysis of



95

effectiveness and error of this pruning technique shows that by carefully choosing an

epsilon, the optimization can be very efficient and still generate an acceptable

solution.

Different query classes greatly affect the optimization. By comparing with the

Cascades optimizer on different query classes, we show that the Columbia optimizer

does much better than the Cascades optimizer does when optimizing star queries. This

indicates that the pruning technique used in the Columbia optimizer is more effective

than that in the Cascades optimizer for the star queries.

Besides the performance improvement upon Cascades, usability is also

improved in Columbia by using windows user interface to interact with users and

supporting sustain tracing information of optimization.

There is much additional work to be done to improve the Columbia optimizer.

The optimizer still uses a large amount of memory to optimize large queries. The

memory usage can become prohibitive when optimizing very large queries, such as the

star queries with greater than 16 tables. Techniques analogous to periodic garbage

collection and memory sharing may be useful to minimize memory usage. This

deserves further systematic investigation.

Another important issue is correctness of the solutions produced by the

optimizer. It is difficult to prove if the optimizer produces the optimal plan or a sub-

optimal plan just because of a programming bug in the optimizer, especially when

optimizing large queries. Although tracing facilities are added to the Columbia

optimizer, proof and debugging of an optimization remains a complex and time-



96

consuming task. Some visualization tools or quick optimality verification tools are

useful for experimenting the optimizer.

Finally, we intend to extend our work to other classes of queries such as TPC

queries, OLAP queries and OQL-based queries.  Provided its extensibility is inherited

from Cascades, we hope that the Columbia optimizer can be easily extended while still

retaining its high efficiency.



97

References

[Bil97] Keith Billings, A TPC-D Model for Database Query Optimization in

Cascades, M.S. Thesis, Portland State University, Spring 1997.

[BMG93] J.A. Blakeley, W.J. McKenna and G. Graefe, Experiences Building the

Open OODB Query Optimizer. Proc. ACM SIGMOD Conf.,

Washington, DC, May 1993.287

[Bob97] Bob Jenkins, Hash Functions for Hash Table Lookup, Dr. Dobb's

Journal, September 1997, pages 107-109.

[Cat94] R.G.G. Cattell, editor, The Object Database Standard: ODMG-93,

Release 1.1, Morgan Kaufmann, San Francisco, 1994

[Cel96] Pedro Celis, The Query Optimizer in Tandem's ServerWare SQL

Product. Proceedings of the 22th International Conference on Very

Large Data Bases, 1996.

[ElN94] R. Elmasri and S. Navathe. Fundamentals of Database Systems,

Second Edition, Benjamin-Cummings, 1994

[GLS93] P. Gassner, G. M. Lohman and K. B. Schiefer, Query Optimization in

IBM's DB2 Family of DBMSs, IEEE Data Engineering Bulletin, 16(4),

December 1993.

[Gra95]   G. Graefe, The Cascades Framework for Query Optimization, Bulletin

of the Technical Committee on Data Engineering, Vol 18 No. 3,

September 1995, Pg 19-29

[Gra96] G. Graefe, The Microsoft Relational Engine, Proceedings of the 12th

International Conference on Data Engineering",, May 1996, 160-161.

[GrD87] G. Graefe and D. J. DeWitt, The EXODUS Optimizer Generator,

Proceedings ACM SIGMOD Conference, San Francisco, CA, May

1987, 160.

[GrM93]   G. Graefe and W. J. McKenna, The Volcano Optimizer Generator:

Extensibility  and  Efficient  Search, Proc. IEEE Int’l.  Conf.  On Data

Eng.,  Vienna, Austria, April 1993, 209.

[HCL90] L.Haas, W.Chang, G.Lohman, etc, Starburst Mid-Flight: As the Dust

Clears, IEEE Trans. on Knowledge and Data Engineering, pages 143,

Vol. 2, No.1 March 1990



98

[IbK84] T.Ibaraki and T.Kameda,  On the Optimal Nesting order for Computing

N-Relational Joins, ACM Trans.on the Database Sys. Vol.9, No. 3,

September 1984 , 483

[Ioa93] Y.E.Ioannidis. Universality o serial histograms. Proc. of the Conf. On

Very Large Database, Aug. 1993

[KaD96]  N. Kabra, D. DeWitt, OPT++:  An Object-Oriented Implementation for

Extensible Database Query Optimization, Proc. ACM SIGMOD Conf.

1996.

[MBH96] W. McKenna, L. Burger, C. Hoang and M. Truong, EROC: A Toolkit

for Building NEATO Query Optimizers, PROC VLDB Conf. 1996.

[JaK84] M.Jarke and J. Koch, “Query optimization in Database Systems”, ACM

Computing Surveys. 16,2(June 1984),111

[ONK95] F. Ozcan, S. Nural, P. Koksal, M. Altinel, A. Dogac, A Region Based

Query Optimizer through Cascades Optimizer Framework, Bulletin of

the Technical Committee on Data Engineering, Vol 18 No. 3,

September 1995, Pg 30-40.

[OnL90]   K. Ono and G. M. Lohman, Measuring the  Complexity of  Join

Enumeration in Query Optimization, Proc. Int’l. Conf. on Very Large

Data  Bases,  Brisbane, Australia, August 1990, 314

[PIH96] V.Poosala, Y.Ioannidis, P.Haas, and E.Shekita. Improved histograms

for selectivity estimation of range predicates. ACM SIGMOD Conf. On

the Management of Data, Montreal, June 1996

[Ram97] R. Ramakrishnan. Database Management Systems, Second Edition,

McGraw-Hill, 1997

[SAC+79] P. Selinger, M. Astahan, D. Chamberlin, R. Lorie and T. Price Access

Path Selection in a Relational Database Management System,

Proceedings of SIGMOD, May 1979

[TPC95] Transaction Processing Performance Council, TPC Benchmark D

(Decision Support) Standard Specification Revision 1.1, December,

1995

[WoG93] R.H.Wolniewicz and G.Graefe, Algebraic Optimization of

Computations over Scientific Databases, Proc. Intl’ Conf. On Very

Large Data Bases, Dublin, Ireland, August 1993, 13



99

[ZdM 90] S. Zdonik and D. Maier. Readings in Object-Oriented Database

Systems. Morgan Kaufmann, San Mateo, CA, 1990



100

Appendix A.  Catalog Text File Example

//Catalog text file for Table A, B, C

// 05-17-97 written by Yongwen Xu

RelName: A // string_t 

Card: 5000 // real_t

UCard: 5000 // real_t

Width: 0.01 // real_t

Order: heap // Enum: sorted hashed heap

OrderKey: (X) // string_tCollection : Collection of Attribute

NumOfAttr: 3 // int_t

//Name(S)   Type(E)     UCard(D)    Max(D)  Min(D)  Comment

X           real_t 5000        5000   0    Primary Key

Y           string_t 5000

Z           int_t 5000       5000   0

NumofIndex: 1

//IndexName(S) Attribute (K) Order (E)

A_X               (X)       btree

RelName: B

Card: 5000

UCard: 5000

Width: 0.01

Order: heap

OrderKey: (X)

NumOfAttr: 2

//Name(S)   Type(E)     UCard(D)    Max(D)  Min(D)  Comment

X           real_t 5000    5000    0

Y           real_t 5000    5000    0     Key

NumofIndex: 1

//IndexName(S) Attribute (K) Order (E)

B_X             (X)             hash

RelName: C

Card: 5000

UCard: 5000

Width: 0.01

Order: sorted

OrderKey: (Y)

NumOfAttr: 2

//Name(S)   Type(E)     UCard(D)    Max(D)  Min(D)  Comment

Y           real_t 5000    5000    0     Key

Z           real_t 5000    5000    0

NumofIndex: 1

//IndexName(S) Attribute (K) Order (E)
C_Y             (Y)             hash



101

Appendix B. Cost Model Text File Example

Note: A class CM in Columbia stores the above values in the corresponding private

data members, and exports a series of methods for the optimizer to fetch these cost

model values. These methods are considered normally as cost functions. The

following is a list of the cost functions this cost model supported:

double cpu_read() ;          // cpu cost of reading one block from the disk

double touch_copy() ;          //cpu cost of copying one tuple to the next operator

double cpu_pred() ;          // cpu cost of evaluating one predicate

double cpu_apply() ;          // cpu cost of applying function on one attribute

double cpu_comp_move() ; // cpu cost of comparing and moving tuples

  double hash_cost() ;          // cpu cost of building hash table

double hash_probe() ;          // cpu cost of finding hash bucket

double index_probe() ;        // cpu cost of finding index

double bf() ;         // block factor of table file

double index_bf() ;         // block factor of index file

double io() ;         // i/o cost of reading one block

//cost model text file for simple cost model

// 12-4-97 written by Yongwen Xu

CPU_READ:  0.00003

TOUCH_COPY:  0.00001

CPU_PRED:       0.00001

CPU_APPLY:      0.00002

CPU_COMP_MOVE:  0.00003

HASH_COST:      0.00002

HASH_PROBE:     0.00001

INDEX_PROBE:    0.00001

BF:             100 

INDEX_BF:       1000

IO:             0.03



102

Appendix C. A Simple Rule Set for Join Queries

Note: The binary number in front of each rule in the above rule set indicates whether

the corresponding rule is used in the optimizer. If the number is 1, means the rule is

turned on, the rule is being used in the optimizer.

This rule set is actually used in all the experiments we did with Columbia. A

rule set is correspondent with a set of logical operators and physical operators which

the query optimizer supports. In our experiments, we only deal with simple queries

which is mainly join queries. If a new logical operator is to be added to the optimizer,

new rules must be added to the rule set to guide the optimizer how to handle this new

operator.

1  GET_TO_FILE_SCAN // file-scan implements get

1  SELECT -> FILTER // filter implements select

1  PROJECT -> P_PROJECT // physical project implements project

0  EQJOIN -> LOOPS_INDEX_JOIN // index loops join implements eqjoin

1  EQJOIN -> MERGE_JOIN // sort merge implements eqjoin

1  EQJOIN->LOOPS_JOIN // LOOPS JOIN implements EQJOIN

1  SORT enforcer // sort enforcer rule

1  EQJOIN_COMMUTE // Commutativity of EQJOIN

1  EQJOIN_LTOR // Left To Right Associativity of EQJOIN

0  EQJOIN_RTOL // Right To Left Associativity of EQJOIN

0  EXCHANGE // Cesar's exchange rule



103

Appendix D. A Final Search Space Example in Tracing File

SSP Content: RootGID: 0

----- Group 0 : -----

EQJOIN(<B.Y>,<C.Y>) , 1 , 4 ;

EQJOIN(<A.X>,<B.X>) , 2 , 5 ;

EQJOIN(<B.X,B.Y>,<A.X,C.Y>) , 3 , 6 ;

EQJOIN(<A.X,C.Y>,<B.X,B.Y>) , 6 , 3 ;

EQJOIN(<B.X>,<A.X>) , 5 , 2 ;

EQJOIN(<C.Y>,<B.Y>) , 4 , 1 ;

MERGE_JOIN(<B.Y>,<C.Y>) , 1 , 4 ;

LOOPS_JOIN(<B.Y>,<C.Y>) , 1 , 4 ;

LOOPS_INDEX_JOIN(<B.Y>,<C.Y>)Index on C , 1 ;

MERGE_JOIN(<B.X,B.Y>,<A.X,C.Y>) , 3 , 6 ;

LOOPS_JOIN(<B.X,B.Y>,<A.X,C.Y>) , 3 , 6 ;

MERGE_JOIN(<A.X,C.Y>,<B.X,B.Y>) , 6 , 3 ;

LOOPS_JOIN(<A.X,C.Y>,<B.X,B.Y>) , 6 , 3 ;

MERGE_JOIN(<A.X>,<B.X>) , 2 , 5 ;

LOOPS_JOIN(<A.X>,<B.X>) , 2 , 5 ;

MERGE_JOIN(<B.X>,<A.X>) , 5 , 2 ;

LOOPS_JOIN(<B.X>,<A.X>) , 5 , 2 ;

LOOPS_INDEX_JOIN(<B.X>,<A.X>)Index on A , 5 ;

MERGE_JOIN(<C.Y>,<B.Y>) , 4 , 1 ;

LOOPS_JOIN(<C.Y>,<B.Y>) , 4 , 1 ;

----- has 20 MExprs -----

Winners:

Any Prop, LOOPS_INDEX_JOIN(<B.Y>,<C.Y>)Index on C , 1,  5.601

LowerBound:  1.594

log_prop:   Card: 5000  UCard: 5000

Schema:   A.X : 1250; A.Y : 1250; A.Z : 1250; B.X : 1250; B.Y : 1250; C.Y : 2500; C.Z : 2500

----- Group 1 : -----

EQJOIN(<A.X>,<B.X>) , 2 , 3 ;

EQJOIN(<B.X>,<A.X>) , 3 , 2 ;

QSORT , 1 ;

MERGE_JOIN(<A.X>,<B.X>) , 2 , 3 ;

LOOPS_JOIN(<A.X>,<B.X>) , 2 , 3 ;

LOOPS_INDEX_JOIN(<A.X>,<B.X>)Index on B , 2 ;

MERGE_JOIN(<B.X>,<A.X>) , 3 , 2 ;

LOOPS_JOIN(<B.X>,<A.X>) , 3 , 2 ;

LOOPS_INDEX_JOIN(<B.X>,<A.X>)Index on A , 3 ;

----- has 9 MExprs -----

Winners:

Any Prop, LOOPS_INDEX_JOIN(<A.X>,<B.X>)Index on B , 2,  3.551

sorted on (B.Y), QSORT , 1,  7.238

LowerBound:  1.551

log_prop:   Card: 5000  UCard: 5000

Schema: A.X : 2500; A.Y : 2500; A.Z : 2500; B.X : 2500; B.Y : 2500

----- Group 2 : -----

GET(A) ;

FILE_SCAN(A) ;

QSORT , 2 ;

----- has 3 MExprs -----

Winners:



104

Any Prop, FILE_SCAN(A),  1.501

sorted on (A.X), QSORT , 2,  5.188

LowerBound:  1.501

log_prop:   Card: 5000  UCard: 5000

Schema: A.X : 5000; A.Y : 5000; A.Z : 5000

----- Group 3 : -----

GET(B) ;

FILE_SCAN(B) ;

QSORT , 3 ;

----- has 3 MExprs -----

Winners:

Any Prop, FILE_SCAN(B),  1.501

sorted on (B.X), QSORT , 3,  5.188

sorted on (B.Y), NULL,  1.900

LowerBound:  1.501

log_prop:   Card: 5000  UCard: 5000

Schema: B.X : 5000; B.Y : 5000

----- Group 4 : -----

GET(C) ;

FILE_SCAN(C) ;

QSORT , 4 ;

----- has 3 MExprs -----

Winners:

sorted on (C.Y), FILE_SCAN(C),  1.501

LowerBound:  1.501

log_prop:   Card: 5000  UCard: 5000

Schema: C.Y : 5000; C.Z : 5000

----- Group 5 : -----

EQJOIN(<B.Y>,<C.Y>) , 3 , 4 ;

EQJOIN(<C.Y>,<B.Y>) , 4 , 3 ;

MERGE_JOIN(<B.Y>,<C.Y>) , 3 , 4 ;

LOOPS_JOIN(<B.Y>,<C.Y>) , 3 , 4 ;

LOOPS_INDEX_JOIN(<B.Y>,<C.Y>)Index on C , 3 ;

MERGE_JOIN(<C.Y>,<B.Y>) , 4 , 3 ;

LOOPS_JOIN(<C.Y>,<B.Y>) , 4 , 3 ;

----- has 7 MExprs -----

Winners:

Any Prop, NULL,  3.551

LowerBound:  1.551

log_prop:   Card: 5000  UCard: 5000

Schema: B.X : 2500; B.Y : 2500; C.Y : 2500; C.Z : 2500

----- Group 6 : -----

EQJOIN(<>,<>) , 2 , 4 ;

----- has 1 MExprs -----

Winners:

No Winners

LowerBound:  251.502

log_prop:   Card: 25000000  UCard: 25000000

Schema: A.X : 2500; A.Y : 2500; A.Z : 2500; C.Y : 2500; C.Z : 2500



105

Appendix E. An OPEN Task Stack Sample in Tracing File

Note: the first 5 Stack status are shown

OPEN after task 1:

0 -- O_EXPR expression: EQJOIN(<B.Y>,<C.Y>) , 1 , 4, parent 1

OPEN after task 2:

0 -- APPLY_RULE: RULE EQJOIN -> MERGE_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

1 -- APPLY_RULE: RULE EQJOIN->LOOPS_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

2 -- APPLY_RULE: RULE EQJOIN -> LOOPS_INDEX_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

3 -- E_GROUP group 1, parent 2

4 -- APPLY_RULE: RULE EQJOIN_LTOR , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

5 -- APPLY_RULE: RULE EQJOIN_COMMUTE , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

OPEN after task 3:

0 -- O_INPUTS expression: MERGE_JOIN(<B.Y>,<C.Y>) , 1 , 4, parent 3

1 -- APPLY_RULE: RULE EQJOIN->LOOPS_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

2 -- APPLY_RULE: RULE EQJOIN -> LOOPS_INDEX_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

3 -- E_GROUP group 1, parent 2

4 -- APPLY_RULE: RULE EQJOIN_LTOR , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

5 -- APPLY_RULE: RULE EQJOIN_COMMUTE , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

OPEN after task 4:

0 -- O_GROUP group 1, parent 4

1 -- O_INPUTS expression: MERGE_JOIN(<B.Y>,<C.Y>) , 1 , 4, parent 3

2 -- APPLY_RULE: RULE EQJOIN->LOOPS_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

3 -- APPLY_RULE: RULE EQJOIN -> LOOPS_INDEX_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

4 -- E_GROUP group 1, parent 2

5 -- APPLY_RULE: RULE EQJOIN_LTOR , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

6 -- APPLY_RULE: RULE EQJOIN_COMMUTE , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

OPEN after task 5:

0 -- O_EXPR expression: EQJOIN(<A.X>,<B.X>) , 2 , 3, parent 5

1 -- O_INPUTS expression: MERGE_JOIN(<B.Y>,<C.Y>) , 1 , 4, parent 3

2 -- APPLY_RULE: RULE EQJOIN->LOOPS_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

3 -- APPLY_RULE: RULE EQJOIN -> LOOPS_INDEX_JOIN , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

4 -- E_GROUP group 1, parent 2

5 -- APPLY_RULE: RULE EQJOIN_LTOR , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4

6 -- APPLY_RULE: RULE EQJOIN_COMMUTE , mexpr EQJOIN(<B.Y>,<C.Y>) , 1 , 4


