
Efficient C++ implementation of custom FEM kernel
with Eigen

Mikhail Sizov

INP SB RAS

January 31, 2019

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 1 / 34



Outline

1 Problem statement

2 Basis of Finite element analysis

3 Eigen

4 Shape functions

5 Principle of minimum energy

6 Global coefficient matrix

7 Obtaining solution

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 2 / 34



Design of electromagnets

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 3 / 34



Problem statement

Lens quality is determined by features of magnetic field (e.g. uniformity)

Qualified labor, but includes a lot of trial and error

Simulating fields in 3D with existing tools takes up to several days

Existing software can’t reuse intermediate calculations

Goals:

Reduce human labor

Reduce total count of full 3D modeling

Solution: randomizing geometries with genetic algorithms
Takes thousands of iterations to get good results, need to be fast

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 4 / 34



Problem statement

Use custom 2D finite element method kernel:

Calculates field in 2D projection of magnet

Single evaluation takes O(n2) instead of O(n3)

Caches calculations

Uses uniformity of magnet field in target area as a quality measure

Cons:

Less precision

Suitable for limited set of geometries (either long bodies or solids of
revolution)

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 5 / 34



Problem statement in 2D

Coil current Jz generates magnetic field (B)

Ferromagnetic core with permeability µ forms magnetic field

For 2D projection of long magnet, Az (magnetic potential along Z) fully
determines magnetic field
Known:

Maxwell equations

Object geometry and properties (e.g. permeability µ or BH curve of
material)

Current Jz

Boundary conditions for Az (e.g. potential is zero at ∞)

Unknown: Magnetic potential Az in rest of domain area

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 6 / 34



Finite element method

Solves partial differential problems in finite domain, e.g.

Fluid flow

Heat transfer

Structural analysis

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 7 / 34



Finite element method

Why FEM?

Suited well for complex geometries, works with irregular or adaptive
meshes (density can be proportional to spatial derivative of target
value, more value changes in area would lead to more dense mesh)

Other method is numerical integration, usually has regular mesh
(equal distance between discrete points)

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 8 / 34



Finite element method

Numerical computations (approximate)

Differential equations translated to algebraic equation systems

Domain geometry is approximated with finite elements (e.g. triangles)

Method works when differential equations on linear functions result in
polynomial equations.

Target variable (Az) is linearly interpolated within element,
so that Az is continuous function

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 9 / 34



Eigen

Eigen is a C++ header-only template library for linear algebra.
Operates with vectors and matrices
Other popular linear algebra libraries are:

OpenBLAS (C++)

Armadilo (C++)

scipy (python)

cuBLAS (CUDA)

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 10 / 34



Why Eigen?

Fixed and dynamic-sized matrices and vectors

Sparse/dense matrices and vectors

Multi-platform, multi-compiler

Expression templates (remove temporaries, lazy evaluation)

Optimized fixed-size matrices: (no dynamic memory allocation,
unrolled loops)

Standard numeric types (std::complex, integers, float)

Interface for custom types

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 11 / 34



Why Eigen?

Benchmark provided on Eigen website (higher is better):

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 12 / 34



FEM first step : create a Mesh

Start with geometry approximation by simple shapes (in 2D: triangles,
convex quadrilaterals)
Geometry approximation is called mesh

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 13 / 34



FEM first step : create a Mesh

Each single triangle is a finite element, it has:

3 triangle vertices (nodes)

Vertix coordinates (x1, y1),(x2, y2),(x3, y3)

Constant material properties within: Jz or µ

Node values (Ael
z1,Ael

z2,Ael
z3)

Target Ael
z is linearly interpolated between nodes, e.g.

Ael
z (x , y) = a + bx + cy , more on that later

Node values either known from boundary conditions or unknowns
Node values shared between elements (Az is continuous function)

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 14 / 34



Mesh

Eigen::Vector2d p1 = {x1, y1}; // point coordinates
Eigen::Vector2d p2 = {x2, y2};
Eigen::Vector2d p3 = {x3, y3};
// Vector2d - static size of 2 (up to 4 defined)
// "d" stands for double (could also be int, float, double or

std::complex<T>)

// VectorXd - uses dynamic memory allocation
typedef Matrix <double,2,1> Eigen::Vector2d;
// Implemented as dense Matrix with size known at compile time
Eigen::Matrix<double, 2, 3> geometry;
geometry << x1,y1,x2,y2,x3,y3; // Dense matrix, other way

Element’s geometry can also be stored in dense matrix:x1 y1

x2 y2

x3 y3


Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 15 / 34



Shape functions

Interpolation within element is linear. By definition it must return node
values on node coordinates Ael

z (xi , yi ) = Ael
zi

Let’s introduce set of 3 interpolating functions Φi (x , y) (shape function),
that is:

Linear Φi (x , y) = αi + βix + γiy

Equals 1 on it’s own node Φi (xi , yi ) = 1

Equals 0 on other 2 nodes Φi (xj , yj) = 0, given i 6= j

Now, we can express Ael
z (x , y) as :

Ael
z (x , y) =

[
Φ1(x , y) Φ2(x , y) Φ3(x , y)

] Az1

Az2

Az3

 =
3∑

i=1

Φi (x , y)Ael
zi

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 16 / 34



Shape functions(implementation)

Shape functions coefficient matrix Φi (x , y) = αi + βix + γiy is known
from geometry: α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

 =

1 x1 y1

1 x2 y2

1 x3 y3

−1

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 17 / 34



Shape functions(implementation)

Element’s shape functions coefficients can be calculated from element
coordinates:

Eigen::Matrix<double, 3, 3, RowMajor> geometry;
// Dense 3x3 matrix to store geometry
geometry.block<3,1>(0,0) = Vector3d::Ones(); //fill first

column
geometry.block<1,2>(0,1) = p1; // block assignments
geometry.block<1,2>(1,1) = p2;
geometry.block<1,2>(2,1) = p3;
auto shape = geometry.inverse();
// get actual shape coefficients

Specific memory layout can improve performance (ColMajor vs RowMajor):

mCol =

1 2 3
4 5 6
7 8 9

 mRow =

1 2 3
4 5 6
7 8 9


Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 18 / 34



Typical structure of CPU memory caches

L1 cache reference 1ns

L2 cache reference 4ns

L3 cache reference 15ns

Main memory reference 100 ns

Modern CPU have SIMD vectorization instructions e.g. AVX set
AVX-256 operates with 256bit of data (4 double values), data is loaded
from continuous memory region

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 19 / 34



Shape functions(implementation)

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 20 / 34



Shape functions(implementation)

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 21 / 34



System total energy

Shape functions + potential values at nodes define Az in domain (solves
problem)
How to calculate unknown Az at nodes?

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 22 / 34



System total energy

Let’s write potential energy per unit length of magnet field for an element:

U(Ael
z (x , y)) =

1

4πµ

∫ ∣∣∣∇Ael
z (x , y)

∣∣∣2 dS +
1

c

∫
Ael
z (x , y) · JzdS

Substituting shape functions Φi and vector of node values ~Ael
z into

Ael
z (x , y), we would get:

U(Az) =
1

4πµ
~AelT
z C ~Ael

z +
S

3c
Jz

3∑
i=1

Ael
zi

µ – element permeability
S – element square
C – element coupling matrix (from shape functions)

C =

β1 γ1

β2 γ2

β3 γ3

[β1 β2 β3

γ1 γ2 γ3

]
Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 23 / 34



System total energy

Total system energy can be obtained from sum of each element’s energies:

U(Az) = M ~AelT
z C ~Ael

z + J ~Ael
z

Looks similar, differences:
M – vector storing values proportional to node permeability constants
J – vector storing values proportional to node current (can have zeros
inside if no current within element)
Matrix C stores global coefficient matrix

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 24 / 34



Global coefficient matrix

Global coefficient matrix is sparse (real example for 9x9 regular mesh):

C =



−2 1 0 0 0 1 0 0 0
1 −4 1 0 0 0 2 0 0
0 1 −4 1 0 0 0 2 0
0 0 1 −4 1 0 0 0 2
0 0 0 1 −2 0 0 0 0
1 0 0 0 0 −4 2 0 0
0 2 0 0 0 2 −8 2 0
0 0 2 0 0 0 2 −8 2
0 0 0 2 0 0 0 2 −8


1 Most values are zeros

2 Symmetrical

3 Typical node count for 2D is 250k, about 1k of non-zeros

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 25 / 34



Global coefficient matrix

Dedicated types exist for efficiently storing sparse matrices:

typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
tripletList.reserve(estimation_of_entries);
for(...)
{
// ...
tripletList.push_back(T(i,j,v_ij));

}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
// mat is ready to go!

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 26 / 34



Global coefficient matrix

Sparse matrix memory layout:

Values: stores the coefficient
values of the non-zeros.

InnerIndices: stores the row (in
row major specialization) indices
of the non-zeros.

OuterStarts: stores for each
column (resp. row) the index of
the first non-zero in the previous
two arrays.

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 27 / 34



Obtaining solution

Let’s use physics principle of minimal potential energy:
From all possible values of free Ael

zi parameters, we need to choose set that
gives minimal energy, so derivative of energy by each of Ael

zi is zero:

∂U

∂Az1
= [...] =

∂U

∂Azi
= 0

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 28 / 34



Obtaining solution

k - global node index [1..n]

∂U

∂Azk
= Mk

n∑
j=1

AzjCkj + Jk = 0

Reorder node names so that unknown potential values have indexes [1..m]
and known have indexes [m + 1..n]

m∑
j=1

AzjCkj = −
n∑

j=m+1

AzjCkj −
Jk
Mk

Can be viewed as matrix equation:
Ax = B

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 29 / 34



Obtaining solution

Eigen library has solver concept that either solves linear equation system
or returns an error
Has several solvers that are tailored to different problems, e.g.
SimplicialLDLT – for medium sparse problems (2D Poisson)
ConjugateGradient – for large symmetric problems (3D Poisson)
SparseQR – for least squares problems
If solution exists, such solver would return all node values for magnetic
potential

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 30 / 34



Obtaining solution

//define a solver
Eigen::SimplicialLDLT<Eigen::SparseMatrix<double> > solver;

solver.analyzePattern(A); // checks for non-zero values
solver.factorize(A);
if(solver.info()!=Success) {
// decomposition failed
return;

}
x1 = solver.solve(b1);
if(solver.info()!=Success) {
// solving failed
return;

}
x2 = solver.solve(b2); //can be used for different right parts

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 31 / 34



Obtaining solution

After solving linear equation system, we get all node values and can also
calculate magnetic field

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 32 / 34



Summary

Using 2D FEM calculations, we can speed up magnets design in early
stage, and people are working in almost real time.

One single calculation with 500x500 nodes takes fractions of seconds,
while full 3D simulation could take several days.

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 33 / 34



Summary

To calculate fields using finite element method:

1 Generate triangle mesh for problem domain

2 Construct linear interpolation functions for each triangle

3 Express total energy of system in terms of interpolation functions and
node values

4 Calculate integrals or differentials of interpolation functions

5 At this step energy is written as polynomial function of node values

6 Apply principle of minimal energy (minimize energy with respect to
each unknown node value)

7 Compose system of linear equations (with unknown node values)

8 Solve resulting linear equation system

Mikhail Sizov (INP SB RAS) Efficient C++ implementation of custom FEM kernel with EigenJanuary 31, 2019 34 / 34


