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Abstract 

Practical realtime production optimization problems typically involve large, highly 

complex reservoir models, with thousands of unknowns and many constraints. Further, 

our understanding of the reservoir is always highly uncertain, and this uncertainty is 

reflected in the models. As a result, performance prediction and production 

optimization, which are the ultimate goals of the entire modeling and simulation 

process, are generally suboptimal. The key ingredients to successful realtime reservoir 

management would involve efficient optimization and uncertainty propagation 

algorithms combined with efficient model updating (history matching) algorithms for 

data assimilation and uncertainty reduction in realtime. 

 
This work discusses a closed-loop approach for efficient realtime production 

optimization that consists of three key elements – adjoint models for efficient 

parameter and control gradient calculation, polynomial chaos expansions for efficient 

uncertainty propagation, and Karhunen-Loeve (K-L) expansions and Bayesian 

inversion theory for efficient realtime model updating (history matching). The control 

gradients provided by the adjoint solution are used by a gradient-based optimization 

algorithm to determine optimal control settings, while the parameter gradients are used 

for model updating. We also investigate an adjoint construction procedure that makes 

it relatively easy to create the adjoint and is applicable to any level of implicitness of 

the forward model. Polynomial chaos expansions provide optimal encapsulation of 

information contained in the input random fields and output random variables. This 

approach allows the forward model to be used as a black box but is much faster than 

standard Monte Carlo techniques. The K-L representation of input random fields 

allows for the direct application of adjoint techniques for history matching and 

uncertainty propagation algorithms while assuring that the two-point geostatistics of 

the reservoir description are maintained.  



 vi 

We further extend the basic closed-loop algorithms discussed above to address two 

important issues. The first concerns handling non-linear path inequality constraints 

during optimization. Such constraints always exist in practical production optimization 

problems, but are quite difficult to maintain with existing optimal control algorithms. 

We propose an approximate feasible direction algorithm combined with a feasible 

line-search to satisfy such constraints efficiently. The second issue concerns the 

Karhunen-Loeve expansion, used for both the uncertainty propagation and model-

updating problems. It is computationally very expensive and impractical for large-

scale simulation models, and since it only preserves two-point statistics of the input 

random field, it may not always be suitable for arbitrary non-Gaussian random fields. 

We use Kernel Principal Component Analysis (PCA) to address these issues 

efficiently. This approach is much more efficient, preserves high-order statistics of the 

random field, and is differentiable, meaning that gradient-based methods (and 

adjoints) can still be utilized with this representation.  

The benefits and efficiency of the overall closed-loop approach are demonstrated 

through realtime optimizations of net present value (NPV) for synthetic and real 

reservoirs under waterflood subject to production constraints and uncertain reservoir 

description. The closed-loop procedure is shown to provide a substantial improvement 

in NPV over the base case, and the results are seen to be very close to those obtained 

when the reservoir description is known apriori. 
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Chapter 1 

1. Introduction 

This work is an attempt to develop new algorithms and improve existing algorithms in 

order to establish an efficient and accurate framework for closed-loop production 

optimization of petroleum reservoirs under uncertainty. This chapter motivates the 

pressing need for maximizing oil recovery and asset value of reservoirs, discusses how 

closed-loop production optimization can be used as a means towards this end, and 

finally highlights a set of algorithms that can be utilized to create a framework for 

efficient realtime closed-loop management of reservoirs and production systems. 

1.1. The Growing Energy Demand 

Energy has played a pivotal role in the prosperity of mankind, and will in all 

probability continue to do so into the distant future. Worldwide economic growth is 

expected to be about 3% per year through 2030, a pace similar to the last 20 years [1]. 

This undiminishing growth and increasing personal income, notably in developing 

countries, will drive the global demand for energy. It is estimated that the energy 

demand will increase by 50% by the year 2030 [1], and will be close to 300 million 

barrels per day of oil equivalent (MBDOE) (see Figure 1-1). 

Among the gamut of energy sources available to meet this demand, oil and gas have 

been the predominant sources satisfying almost 60% of the current energy demand [1]. 

This percentage is expected to stay relatively stable in the future, at least to 2030, as 

seen in Figure 1-2 [1], reflecting the advantages of oil and gas in availability, 

performance, cost, and convenience. 

Although the oil and gas resource base is thought to be sufficient to meet the growing 

energy demand for many decades to come (see Figure 1-3), due to the non-renewable 
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nature of these resources, it will become increasingly harder to meet this ever-

increasing demand for oil and gas. Most of the existing oilfields are already at a 

mature stage, and the discovery of large new oilfields is becoming a rarity. Figure 1-4 

shows the new production that would be required in the future to meet this demand, 

assuming that no new oilfields are discovered and the current decline rate is sustained 

[1]. 

 
Figure 1-1 World energy demand projected to 2030, from [1]. 

 
Figure 1-2 Oil and gas will remain the predominant sources of energy, from [1]. 
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Figure 1-3 Estimated oil and gas reserves compared to production till date, from [2]. 

 

 
Figure 1-4 Required new production given the current production decline rate, from [1]. 
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In order to meet this gap between demand and supply, it will become increasingly 

important to maximize recovery from existing reservoirs. The current industry average 

for the recovery factor is a meager 35%, and that too for reservoirs with favorable 

production conditions [3]. This number could be as low as 15% for complex reservoirs 

such as naturally fractured reservoirs [4].  Furthermore, along with maximizing 

recovery, it will also be essential to minimize capital expenditure and increase asset 

net present value (NPV) in order to assure that a reservoir achieves its maximum 

potential. One possible approach to tackle this problem is through a wide array of 

techniques collectively termed “Production Optimization.” 

1.2. The Production Optimization Process 

Production optimization, within the context of this work, refers to long-term 

maximization of the performance of petroleum reservoirs by making optimal reservoir 

management and development decisions. The production optimization process is based 

on a sequence of activities that transform measured or collected data into optimal field 

management decisions, as seen in Figure 1-5. 

 
Figure 1-5 The production optimization process, from [3]. 
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Optimization is achieved by comparing measured data with predicted performance and 

executing a sequence of activities as iterative loops to ensure that the reservoir delivers 

to its maximum potential. Examples of decisions that constitute the process of 

production optimization are as follows: (1) where and how many wells should be 

drilled?  (2) what types of wells should be drilled? (3) which reservoir layers should be 

completed at each well? (4) how should the production/injection schedules be 

determined for each well? 

It is clear from the above that production optimization includes controlling wells in 

order to maximize (or minimize) some performance criteria. The ability to control 

wells provides the ability to control fluid flow behavior within the reservoir, thereby 

enabling maximization or minimization of any criteria by which production 

performance can be measured. Examples of such criteria could be maximizing oil 

production (or recovery factor), maximizing net present value, minimizing field 

watercut, etc. Since wells and their controllability is a key element of the production 

optimization process, a brief discussion about conventional wells and their evolution 

towards “smart well” technology is provided below. 

1.3. Smart Well Technology 

A conventional well is a vertical or a slightly deviated well, and has traditionally been 

the most common type of well drilled (see Figure 1-6). Although conventional wells 

are relatively inexpensive and easy to implement, a drawback is that their contact area 

with the reservoir is usually quite small, thus providing a minimum level of reservoir 

exposure. Further, they do not allow a high degree of controllability, thereby not 

providing much opportunity for optimization.  

Horizontal, highly deviated and multilateral wells are generally referred to as 

nonconventional or advanced wells (NCWs, see Figure 1-6). A nonconventional well 

may be as simple as a horizontal well or a vertical/horizontal wellbore with one 

sidetrack or as complex as a horizontal, extended reach well with multiple laterals. 



 6 

The drilling of nonconventional wells has become standard practice only during the 

past decade. A single NCW may be more cost effective than multiple vertical wells in 

terms of overall drilling and completion costs [6]. In addition, NCWs are well suited 

for the efficient exploitation of complex reservoirs since they act to increase drainage 

area and are capable of reaching attic hydrocarbon reserves or reservoir compartments 

[6]. Consequently, by drilling these wells, capital expenditures and operating costs can 

be reduced. Compared to conventional wells, these wells provide the same or better 

reservoir exposure but with fewer wells, hence improving production and injection 

strategies. However, even a standard NCW does not provide much controllability in 

realtime. 

 
Figure 1-6 Schematic of different types of wells, from [5]. 

In the last decade, the need to maximize recovery and minimize costs has resulted in 

the further development of technology to improve measurement and control of 

production processes through wells. A well equipped with such technology is called a 

“smart” (or intelligent) well [5,6]. Smart wells essentially have smart completions, 
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which can be defined as completions with instrumentation (special sensors and valves) 

installed on the production tubing which allow continuous in-situ monitoring and 

adjustment of fluid flow rates and pressures (see Figure 1-7). The sensors provide 

permanent downhole measurements of properties such as temperature, pressure, 

resistivity, etc., which can lead to a better understanding of the reservoir, thereby 

enabling more accurate modeling and optimization. Control valves provide the 

flexibility of controlling each branch or section of a multilateral well independently. In 

the case of a monobore well (such as a horizontal well), valves transform the wellbore 

into a multi-branch well, again providing control flexibility for each segmented 

branch. This controllability has two benefits, first being that it allows control of fluid 

movements within the reservoir, and second being the ability to react to unforeseen 

circumstances, thus providing the ability to maximize oil production, recovery factor 

or any other performance index, in the presence of uncertainty. 

 
Figure 1-7 Schematic of a smart well, from [7]. 

Compared to traditional wells, this tremendous increase in monitoring capability and 

controllability of smart wells truly enables realtime production optimization. The 



 8 

benefits of these wells have been demonstrated in the industry by various authors, and 

references can be found in Yeten [6]. 

1.4. Closed-loop Optimal Control 

In order that the maximum benefit from the enhanced monitoring capacity and 

controllability of smart wells be realized, an integrated monitoring and control 

approach known as model-based closed-loop optimal control may be applied [8]. This 

realtime model-based reservoir management process can be explained with reference 

to Figure 1-8. In the figure, the “System” box represents the real system over which 

some cost function, designated ( )J u , is to be optimized. In a typical application, 

( )J u  might be net present value or cumulative oil produced. The system consists of 

the reservoir, wells and surface facilities. Here u  is a set of controls including, for 

example, well rates and bottom hole pressures (BHP), which can be controlled in order 

to maximize or minimize ( )J u . It should be understood that the optimization process 

results in control of future performance to maximize or minimize ( )J u , and thus the 

process of optimization cannot be performed on the real reservoir, but must be carried 

out on some approximate model. The “Low-order model” box represents the 

approximate model of the system, which in our case is the simulation model of the 

reservoir and facilities. This simulation model is a dynamic system that relates the 

controls u  to the cost function ( )J u . Since our knowledge of the reservoir is 

generally uncertain, the simulation model and its output are also uncertain.  

The closed-loop process starts with an optimization loop (marked in blue in Figure 

1-8) performed over the current simulation model to maximize or minimize the cost 

function. This optimization must be performed, in general, on an uncertain simulation 

model. The optimization provides optimal settings of the controls u  for the next 

control step. These controls are then applied to the real reservoir (as input) over the 

control step, which impacts the outputs from the reservoir (such as watercuts, BHPs, 

etc.). These measurements provide new information about the reservoir, and therefore 
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enable the reservoir model to be updated (and model uncertainty to be reduced). This 

is called the model updating loop, marked in red in Figure 1-8. The optimization can 

then be performed on the updated model over the next control step, and the process 

repeated over the life of the reservoir. 

 
Figure 1-8 Schematic of the Closed-loop Optimal Control approach, from [8]. 

Many of the key ideas behind closed-loop reservoir management have been known to 

the oil industry for some time, although different names and forms have been used to 

describe them [8]. However, most of the earlier work on closed-loop control was 

geared towards short-term or instantaneous production optimization, and references 

for such approaches can be found in [9]. Although relatively little information is 

required to apply these techniques, long-term production performance is not really 

optimized as the effect of future events is not taken into account during the 

optimization process. In order to truly maximize production performance, a long-term 

closed-loop control approach is required, wherein, at each control step, optimization is 

performed throughout the remaining life of the reservoir in order that the effect of all 

future events may be taken into account to determine the current optimal controls. It 

has only been recently that closed-loop long-term production optimization has 
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generated some interest, and this is the main focus of this work. References to earlier 

work in long-term closed-loop reservoir management are cited in the following 

chapters as appropriate. 

1.5. Research Objectives and Approach 

As indicated above, the closed-loop approach for efficient realtime optimization 

consists of three key components: efficient optimization algorithms, efficient model 

updating algorithms, and efficient techniques for uncertainty propagation. Efficiency is 

essential because the closed-loop approach requires running the reservoir simulation 

model many times, and even a single evaluation of simulation models of real 

reservoirs can take many hours. The objective of this work is thus to address these key 

issues by developing new algorithms (and improving existing algorithms) that require 

a minimal number of evaluations of the simulation model, and integrating them 

together to realize an efficient closed-loop production optimization framework. This 

framework should not only be applicable to synthetic “university” reservoir models, 

but also to real large-scale reservoir models. The remainder of this section provides an 

outline of the thesis and describes these developments individually. Some references 

to earlier work are provided here; many others are contained within the following 

chapters. Note also that most of the material in the following chapters has already been 

published or submitted for publication (references provided). 

In Chapter 2, we develop and apply a gradient-based algorithm for production 

optimization using optimal control theory [10]. The choice of gradient-based 

algorithms over other algorithms is due to their efficiency, which as discussed above, 

is essential for practicality, even though they only provide locally optimal solutions. 

The approach is to use the underlying simulator as the forward model and its adjoint 

for the calculation of gradients. An adjoint model is required because practical 

production optimization problems typically involve large, highly complex reservoir 

models, thousands of unknowns and many nonlinear constraints, which makes the 

numerical calculation of gradients impractical. Direct coding of the adjoint model is, 
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however, complex and time consuming, and the code is dependent on the forward 

model in the sense that it must be updated whenever the forward model is modified. 

We investigate an adjoint procedure that avoids these limitations. For a fully implicit 

forward model and specific forms of the cost function, all information necessary for 

the adjoint run is calculated and stored during the forward run itself. The adjoint run 

then requires only the appropriate assembling of this information (and backward 

integration) to calculate the gradients. This makes the adjoint code relatively easy to 

construct and essentially independent of the forward model. This also leads to 

enhanced efficiency, as no calculations are repeated (generalization to arbitrary levels 

of implicitness is discussed in the Appendix). The forward model used in this work is 

the General Purpose Research Simulator (GPRS), a highly flexible 

compositional/black oil research simulator developed by Cao [11] and others at 

Stanford University. Through two examples, we demonstrate that the linkage proposed 

here provides a practical strategy for optimal control within a general purpose 

reservoir simulator. These examples illustrate production optimization with 

conventional wells and well configurations representative of smart wells. The efficient 

treatment of nonlinear constraints is considered in detail in Chapter 5. 

In Chapter 3, we discuss a simplified implementation of the closed-loop approach that 

combines the optimal control algorithm from Chapter 2 with an efficient model 

updating algorithm for realtime production optimization [12]. Although model 

updating (automatic history matching) has been a topic of active research for the past 

few decades, existing algorithms have only had limited success in applications to real 

reservoirs. This is primarily due to the scarcity of data/measurements and nonlinearity 

of the forward model, which makes this an inherently ill-posed problem. Therefore, 

additional sources of information such as prior knowledge in terms of geological 

constraints have to be utilized in order to generate a reliable set of model parameters 

and reduce the uncertainty envelope. 
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Again, gradient-based algorithms are applied due to their efficiency. However, 

standard gradient-based algorithms have the inherent problem that geological 

constraints cannot be satisfied, potentially leading to poor predictive capacity of the 

history matched model. In this work, Bayesian inversion theory [13] is used in 

combination with an optimal representation of the unknown parameter field in terms 

of a Karhunen-Loeve expansion [14]. This representation essentially transforms the 

correlated input random field into a much smaller set of independent random variables, 

assuring that the two-point geostatistics of the reservoir description are maintained, 

while also allowing for the direct application of efficient adjoint techniques. The 

standard Karhunen-Loeve representation is limited in that it cannot capture higher 

order statistics. This issue is addressed in detail in Chapter 6. Most of the adjoint code 

used for the optimal control problem can be reused for the updating problem. The 

benefits and efficiency of the overall closed-loop approach are demonstrated through 

realtime optimizations of NPV for synthetic reservoirs under waterflood subject to 

production constraints and uncertain reservoir description. For two example cases, the 

closed-loop optimization methodology is shown to provide a substantial improvement 

in NPV over the base case, and the results are seen to be quite close to those obtained 

when the reservoir description is known a priori. 

In the simplified closed-loop discussed above, uncertainty propagation was not 

considered. Neglecting uncertainty propagation essentially means that the closed-loop 

process is applied using a single realization of the uncertain parameters, for example, 

the maximum likelihood estimate. Such a procedure can be expected to provide near-

optimal results in many cases, though the treatment of uncertainty will of course be 

important in many applications. In Chapter 4, efficient uncertainty propagation 

algorithms are integrated with the closed-loop algorithm to realize a complete closed-

loop algorithm for realtime production optimization [16]. 

Traditionally, Monte-Carlo simulation has been a popular method for uncertainty 

propagation due to its simplicity and ease of implementation [17]. However, its main 
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drawback, rendering it infeasible for this application, is that many (e.g., hundreds) 

forward model evaluations are required for accurate results. On the other hand, 

techniques such as the perturbation method and stochastic finite elements are much 

more efficient, but such techniques generally contain underlying assumptions and 

require access to model equations, implying that a “black box” approach is not 

possible [17]. In this work, we apply polynomial chaos expansions [17, 18] within the 

probabilistic collocation method [19] for uncertainty propagation. Polynomial chaos 

expansions provide optimal encapsulation of information contained in the input 

random fields and output random variables. The method is similar in efficiency to 

stochastic finite elements, but allows the forward model to be used as a black box as in 

Monte-Carlo methods. As a result, implementation is straightforward and the method 

can be readily integrated with the optimal control and model updating algorithms. 

Again, the efficiency of the overall closed-loop approach is demonstrated through 

realtime optimizations of net present value (NPV) for synthetic reservoirs under 

waterflood. 

In the examples discussed in the previous chapters, nonlinear control-state path 

constraints were not present during optimization. These are constraints that are 

nonlinear with respect to the controls and have to be satisfied at every time step, for 

example a maximum water injection rate constraint when BHPs are used as controls. 

However, practical production optimization problems are usually constrained with 

such nonlinear control-state path inequality constraints, and it is acknowledged that 

path constraints involving state variables are particularly difficult to handle [20]. 

Currently, one category of methods implicitly incorporates the constraints into the 

forward and adjoint equations to tackle this issue. However, these are either 

impractical for the production optimization problem, or require complicated 

modifications to the forward model equations (simulator) [21]. Thus, the usual 

approach is to formulate the above problem as a constrained nonlinear programming 

problem (NLP) where the constraints are calculated explicitly after the dynamic system 

is solved [21]. The most popular of this category of methods (for optimal control 
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problems) has been the penalty function method [20] and its variants, which are, 

however, extremely inefficient. All other constrained NLP algorithms require the 

gradient of each constraint, which is impractical for an optimal control problem with 

path constraints, as one adjoint has to be solved for each constraint at every iteration of 

each time step. 

In Chapter 5, an approximate feasible direction NLP algorithm based on the objective 

function gradient and a combined gradient of the active constraints is proposed [21].  

This approximate feasible direction is then converted into a true feasible direction by 

projecting it onto the active constraints by solving the constraints during the forward 

model evaluation itself. The approach has various advantages. First, only two adjoint 

evaluations are required at each iteration. Second, all iterates obtained are always 

feasible, as feasibility is maintained by the forward model itself, implying that any 

iterate can be considered a useful solution. Third, large step sizes are possible during 

the line search, which can lead to significant reductions in forward and adjoint model 

evaluations and large reductions in the objective function. Through two examples, it is 

demonstrated that the algorithm provides a practical and efficient strategy for 

production optimization with nonlinear path constraints. 

It was shown in the Chapters 3 and 4 that the Karhunen-Loeve (K-L) expansion is 

required to create a differentiable parameterization of the input random fields (which 

are of dimension NC, with NC the number of cells) of the simulation model, in order to 

perform uncertainty propagation and model updating with adjoints. This requires an 

eigen decomposition of the covariance matrix (of size NC × NC) of the random field, 

which is usually created numerically from a number of realizations NR (large enough to 

capture the essence of the patterns present in the realizations). Eigen decomposition 

with standard techniques is a very expensive process of order n3 complexity, where n 

is the dimension of the matrix. Therefore, it is not practical to apply this technique 

directly to large-scale numerical models. In Chapter 6, the kernel formulation of the 

eigenvalue problem [22, 23] is applied, implying that instead of performing the eigen 
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decomposition of the original covariance matrix, an eigen decomposition of another 

matrix, the kernel matrix of size NR × NR, can be performed to determine the eigen 

decomposition of the original covariance matrix. Since an NR of order 103 is usually 

enough to capture the patterns of a typical random field even for an NC of order 105-6, 

the kernel matrix decomposition is extremely fast compared to the original matrix 

decomposition, thereby making the technique feasible even for million or more cell 

problems. 

Another issue with the K-L expansion (also called linear Principal Component 

Analysis, PCA) is that it only preserves two-point statistics of a random field, and is 

thus appropriate only for multi-Gaussian random fields. This may not be enough for 

complex geological scenarios, for example a channelized reservoir, for which the 

permeability field is far from Gaussian. Thus, in order to perform uncertainty 

propagation and model updating (with adjoints) with such random fields, an 

appropriate differentiable parameterization of the non-Gaussian random field is 

required in terms of a small number of independent random variables. Also in Chapter 

6, a nonlinear form of PCA known as kernel PCA (with high order polynomial 

kernels) [23] is applied to parameterize the non-Gaussian, non-stationary random 

fields. This allows preserving arbitrary high-order statistics of the random field, is 

differentiable, meaning that gradient-based methods can be utilized, and is essentially 

as efficient as linear PCA. Further, a polynomial chaos expansion or a histogram 

transform can be employed to additionally preserve the marginal distribution of the 

random field. Results indicate that the proposed method is far superior to just using the 

K-L expansion for non-Gaussian random fields in terms of reproducing geological 

features. The kernel PCA representation is then applied to history match a 

waterflooding problem. This example demonstrates that kernel PCA can be used with 

gradient-based history matching to provide models that match production history while 

maintaining multi-point geostatistics consistent with the underlying training image. 
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The seventh chapter is a culmination of all the algorithms discussed heretofore, and in 

this chapter, the integration of all these algorithms within an efficient closed-loop 

optimization framework with application to a realistic reservoir is presented. The 

closed-loop algorithm is applied on a sector of the simulation model of a Gulf of 

Mexico reservoir being waterflooded. The objective is to maximize the expected NPV 

of the sector over a period of eight years by controlling the BHPs of the injectors and 

producers. The optimization is subject to production constraints (nonlinear path 

constraints) and an uncertain reservoir description. The closed-loop procedure is 

shown to provide substantial improvement in NPV over the base case, and the results 

are very close to those obtained when the reservoir description is known a priori. 

Through this example, it is verified that the algorithms presented in this thesis indeed 

provide an efficient and accurate realtime closed-loop optimization framework 

applicable to real reservoirs.  

In Chapter 2, we applied a fully implicit forward model for use with the simplified 

adjoint construction procedure discussed therein. In the Appendix, it is shown that if 

the forward model is implemented with the general formulation approach [11], then a 

similar simplified adjoint construction approach is applicable for any level of 

implicitness (e.g., IMPES, IMPSAT) of the forward model. Again, all information 

necessary for the adjoint run is calculated and stored during the forward run itself. 

Further, the adjoint model is always consistent with the forward model and will have 

the same level of implicitness as the forward model with this approach. 
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Chapter 2 

2. Deterministic Optimization with Adjoints 

As mentioned in the previous chapter, in production optimization problems, the 

objective is to maximize or minimize some cost function ( )J u  such as net present 

value (NPV) of the reservoir, sweep efficiency, cumulative oil production, etc. by 

manipulating a set of controls u  that include, for example, well rates and bottom hole 

pressures (BHPs). In this chapter, only a deterministic form of this production 

optimization problem will be considered; that is, for the purpose of this chapter, the 

properties of the reservoir simulation model (dynamic system) are assumed to be 

known deterministically. Methods to incorporate uncertainty will be discussed in 

subsequent chapters. 

 
Figure 2-1 Schematic of simple production system 

Consider the simple schematic of a reservoir shown in Figure 2-1, where the cost 

function is cumulative oil production and the control is the injection rate. Changing the 
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injection rate changes the dynamic states of the system (pressures, saturations), which 

changes the oil production rate, which in turn impacts the cost function. Thus, the 

controls u  are related to ( )J u  through the dynamic system.  The dynamic system can 

also be thought of as a set of constraints that determine the dynamic state given a set of 

controls. Further, the controls u  themselves may be subject to other constraints that 

dictate the feasible or admissible values of the controls, such as surface facility 

constraints or fracture pressure limits. It is these additional constraints that in many 

cases complicate the problem and the solution process. In this chapter, only linear 

constraints on u  will be considered. Nonlinear constraints will be discussed in detail 

in Chapter 5. 

The existing optimization algorithms can be broadly classified into two categories: 

stochastic algorithms like Genetic Algorithms [24] and Simulated Annealing [25], and 

gradient based algorithms like Steepest Descent [26] and Quasi-Newton algorithms 

[26]. The first category usually requires many forward model evaluations and does not 

guarantee monotonic minimization/maximization of the objective function, but is 

capable (in theory) of finding the global optimum with a sufficiently large number of 

simulation runs. On the other hand, the second category is generally very efficient, 

requires few forward model evaluations and also guarantees reduction of the objective 

function at each iteration, but only assures local optima for non-convex problems [26]. 

For practical problems, where the simulation grid can be of the order of 106 cells, a 

single evaluation of the forward model may take many hours; implying that gradient 

based algorithms would be preferable for such problems. Furthermore, gradient-based 

algorithms might also be sufficient for the production optimization problem, as any 

increase in the objective function above the initial manually engineered model is 

always beneficial. In other words, finding a global optimum may not be necessary – 

the goal is to determine an operational scenario that represents an improvement over 

what would otherwise be done. 
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In order to use gradient-based optimization algorithms, the main requirement is an 

efficient technique to calculate the gradients of the cost function with respect to the 

controls. Since the dynamic system is too complicated to calculate the gradients 

analytically, the simplest approach is to approximate the gradients numerically. This 

method is very easy to implement, as the forward model is treated as a black box. 

However, doing so essentially renders the whole process highly inefficient, particularly 

in the presence of a large number of controls and updates, as one forward model 

evaluation (simulation) is required for each gradient to be calculated. In particular, 

considering the simple model mentioned before, in order to calculate the gradient of 

cumulative oil production with respect to water injection rate at a given time t, the 

injection rate over a time dt is perturbed slightly, and the model is evaluated again. 

The perturbation results in a perturbation of the oil rate (Figure 2-2) and therefore of 

the cumulative oil production, and the gradient is calculated with the simple forward 

difference formula as: 

�
( ) ( ) ( )J u J u du J u

u du

∂ + −
∂

� � ������

 
Figure 2-2 Perturbation of injection rate from numerical gradient calculation 

Thus, if the set of controls consists of any well variable such as rate or BHP, then the 

total number of controls would be the product of the total number of wells and the 
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total number of control updates in time (control steps). As seen in Table 2-1, this 

number can be very large even for a moderate number of wells and control steps. 

Another issue with this approach is the selection of the magnitude of each 

perturbation. 

 
Table 2-1 Number of model evaluations for gradient calculation with numerical 

approximation and optimal control theory (from Brouwer [5]) 

This chapter explores the application of adjoint models for efficient production 

optimization through the efficient calculation of gradients. Of the few existing 

methods for calculating gradients, adjoint techniques are the most efficient, especially 

for a large number of controls, as the algorithm is independent of the number of 

controls. However, the complexity of the adjoint calculations is similar to that of the 

forward simulation, which is one of the main drawbacks of the algorithm, and is also 

likely one of the primary reasons why adjoint methods have not gained greater 

popularity in the petroleum industry. There have been some investigations directed 

toward the use of (adjoint-based) optimal control for production optimization. Ramirez 

and coworkers have used it to optimize surfactant flooding [27], carbon dioxide 

flooding [28] and steam flooding [29]. Zakirov et al. [30] have used adjoint models to 

optimize production from a thin oil rim. Optimization of waterflooding using adjoints 

has been studied by many researchers including Asheim [31], Virnovsky [32], 

Sudaryanto and Yortsos [33], and recently by Brouwer and Jansen [5, 34]. In all of 
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these investigations, the major emphasis was on the results of the optimization 

process, rather than on the algorithm itself. Further, in some of the above papers, the 

forward model (simulator) used was highly simplified [31, 32] or even analytical in 

nature [33]. Also, almost all of the above studies lack the implementation of nonlinear 

constraints on the controls themselves, while, in practical production optimization 

problems, the optimization process is almost always subject to many nonlinear 

constraints on the controls. 

In this chapter, we investigate an adjoint construction procedure that makes it 

relatively easy to create the adjoint and has the additional advantage of making the 

adjoint code quite independent of the forward code. Note that the basic idea behind 

this approach has been known in the petroleum industry for quite some time, for 

example, Zakirov et al. [30] allude briefly to the idea, although without any detailed 

discussion of the steps necessary for its implementation. Li et al. [35] also discuss the 

idea in the context of the history matching problem. In this chapter, we discuss the 

procedure at a greater level of detail compared to Zakirov et al., with emphasis on its 

implementation for the production optimization problem. This procedure was 

implemented within the context of a general purpose research simulator [11]. The 

current implementation of the algorithm requires the forward model to be fully 

implicit (the more general case is discussed in the Appendix). Most of the previous 

investigators have used an IMPES [36] formulation. The performance and practicality 

of this approach is demonstrated through two examples. 

2.1. Mathematical Formulation of the Problem 

The production optimization problem discussed above requires finding a sequence of 

control vectors nu (of length m) for 0,1,..., 1n N= − , where n is the control step index 

and N is the total number of control steps, to maximize (or minimize) a performance 

measure ( )0 1,..., NJ −u u . The optimization can be described very generally with the 

following mathematical formulation: 



 22 

�

( ) ( ) ( )

( )

( )
( )

1
1

0

1

0
0

, 0,.., 1

,

                       (Initial Condition)

0,.., 1

max

subject to:
( , ) 0     0,.., 1

                    0,.., 1

           

N
N n n n

n

n n n n

n

n

n
L n N

n N

J

g n N

n N

φ
−

+

=

+

� �
+ ∀ ∈ −� �

� �

=

∀ ∈ −

=

= ∀ ∈ −

≤ ∀ ∈ −

≤ ≤

�x x u

x

x x

x u

Au b

LB u UB

u

� ������

Here, nx  refers to the dynamic states of the system, such as pressures, saturations, 

compositions etc. The cost function J consists of two terms. The first term φ  is only a 

function of the dynamic states of the last control step; in an application it could 

represent, for example, an abandonment cost. The second term, which is a summation 

over all control steps, consists of the kernel nL  known as the Lagrangian in control 

literature [37]. For our purposes, it could include the oil and water rates or some 

function of the saturations (for sweep efficiency). Since nL  usually consists of well 

parameters or quantities that are functions of well parameters, it is written here in a 

fully implicit form. 

The set of equations ng  together with the initial conditions define the dynamic system, 

which are basically the reservoir simulation equations for each grid block at each time 

step: 

� ( )1, ,n n n ng Accumulation Flux Well+ = − −x x u � ������

The last two equations of Equation (2.2) refer to the additional constraints for the 

controls, that is, linear constraints and bounds on controls. These are handled directly 

by the standard constrained optimization algorithm applied in the following examples. 

Nonlinear constraints (not shown in Equation (2.2)) are much more difficult to satisfy 

and a method to honor them will be discussed in Chapter 5. Note that in the above 

formulation of the problem, the control steps and the actual time steps of the simulator 
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are considered equivalent, and the derivations below are based on this assumption. 

This is however, not usually the case, and the number of time steps is generally greater 

than the number of control steps. The modifications necessary to handle the more 

general problem when the time steps and control steps are not the same are discussed 

at the end of the next section. 

2.2. Gradients with the Adjoint Model 

It was stated earlier that the gradients of the cost function with respect to the controls 

could be calculated very efficiently using the adjoint equations. The adjoint model 

equations are obtained from the necessary conditions of optimality of the optimization 

problem defined by Equation (2.2). These necessary conditions of optimality are 

obtained from the classical theory of calculus of variations. For a relatively simple 

treatment of this subject, refer to Stengel [37]. A more detailed and rigorous analysis 

of the problem and generalization to infinite dimensional problems in arbitrary vector 

spaces is given by Luenberger [38]. The essence of the theory is that the cost function 

of Equation (2.2) along with all the constraints can be written equivalently in the form 

of an augmented cost function given by Equation (2.4).  

� ( ) ( ) ( )
1 1

1 0 0 ( 1) 1
0

0 0

,  , ,  
N N

N n n n T T n n n n n
A

n n

L gJ φ
− −

+ + +

= =

� � + + − +� �= � �x x u � x x � x x u � ������

For the moment, only the simulation equations are considered. Treatment of the other 

constraints is discussed later. The vectors n�  are known as Lagrange multipliers, 

which can be thought of as elements of the dual space of the vector space to which nu  

belongs. One Lagrange multiplier is required for each constraint with which the cost 

function is augmented. That is, the total number of Lagrange multipliers is equal to the 

product of the number of dynamic states and control steps. For example, if we have a 

two-phase black oil model with 3000 grid blocks and 400 control steps, the number of 

Lagrange multipliers is equal to 2×3000×400 = 2.4×106.  
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For optimality of the original problem as well as the augmented cost function, the first 

variation (or Frechet  differential [38]) of the augmented cost function must equal 

zero. The first variation of AJ  is given by: 
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We observe that the total variation is a sum of the variations of ,n nx u  and n� . Since 

these variations are independent of one another, each of these terms must vanish for 

optimality [37, 38]. The ( 1)n T ng δ +�  and ( )0 0
0

Tδ−x x �  terms are zero by definition. 

The terms involving nδ x can be made to vanish by choosing n�  such that: 
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Equation (2.6) is known as the adjoint model. We notice that the Lagrange multipliers 
n�  depend on 1n+� . Thus the Lagrange multipliers for the last control step must be 

calculated first according to the second equation above. It is for this reason that the 

adjoint model is solved backwards in time. With the Lagrange multipliers calculated in 

this manner, Equation (2.5) reduces to the following: 
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Thus the required gradients of the cost function with respect to the controls are given 

as: 



 25 

�
( 1)      (0,...., 1)

n n
T nA

n n n n

dJdJ L g
n N

d d
+� �∂ ∂= = + ∀ ∈ −� �∂ ∂� �

�
u u u u

� ������

If these gradients are zero for some value of nu , then optimality has been achieved 

with respect to nu , otherwise, these gradients could be used with any iterative 

gradient-based algorithm to determine the new search direction. The basic steps 

required for gradient-based optimization with adjoints are summarized as follows: 

1. Solve the forward model equations for all time steps with given initial condition 

and initial control strategy. Store the dynamic states at each time step. 

2. Calculate the cost function with results of the forward simulation. 

3. Solve the adjoint model equations using the stored dynamic states to calculate 

the Lagrange multipliers with Equation (2.6). 

4. Use the Lagrange multipliers to calculate the gradients using Equation (2.8) for 

all control steps. 

5. Use these gradients with any optimization algorithm to choose new search 

direction and control strategy. 

6. Repeat process until optimum is achieved, that is, all gradients are close enough 

to zero. 

It is clear that one forward model evaluation and one adjoint model evaluation is 

required to calculate the gradients of the cost function, irrespective of the number of 

controls. The time required to solve the adjoint model is of the same order of 

magnitude as the forward simulation. Thus with this process, a time equivalent to 

approximately two simulations is all that is required to calculate any number of 

gradients (Table 2-1). This is why adjoint-based algorithms can be very efficient, and 

can potentially lead to huge time savings if the number of controls is large. 
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In the more general case when the time steps and control steps are not equivalent, that 

is, there is more than one time step in each control step, the production optimization 

problem can be formulated as follows: 
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Here, m is the control step index, and n is the time step index within each control step, 

and mN  is the number of time steps in control step m. Note that the φ  term has been 

removed from the objective function for simplicity. The adjoint equations are given as: 
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We see from the above that there is a final condition at the end of each control step 

with this formulation corresponding to the last time step of the control step, and this is 

obtained from the solution of the adjoint system of the first time step of the next 

control step. The gradients of the cost function with respect to the controls are finally 

given as: 
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Note that the following identities hold in the context of the above nomenclature: 

�
, , 11,0 1,1;m mm N m Nm m ++ += =x x � � � �������

This formulation is the actual implementation of the algorithm that is used for the 

examples demonstrated below. 

2.3. Modified Algorithm for Adjoint Construction 

Despite the great efficiency of the adjoint algorithm, a major drawback of the approach 

is that an adjoint code is required in order to apply the algorithm. The complexity of 

the adjoint equations is similar to that of the forward model [39]. Since in our case the 

forward model is the reservoir simulator, it is understandable why adjoint models have 

not gained popularity in the petroleum industry. We discuss a modified approach to 

constructing the adjoint that makes it relatively easy to create the adjoint code. The 

approach is possible due to certain properties of the fully implicit simulation code (in 

the current implementation) and the specific forms of the cost function used for 

production optimization. 

The main ingredients of the adjoint equations given by Equation (2.6) are the two 

Jacobians of the simulation equations: 
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Of all the terms comprising the adjoint equations, these are the most difficult terms to 

calculate, as they are functions of the simulation equations. Now, during the forward 

simulation, at each time step (assume time step = control step for the moment), we 

solve Equation (2.14) to determine 1n+x . 

� ( )1, , 0n n n ng + =x x u � �������
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Since these equations are nonlinear with respect to 1n+x , the usual method to solve 

them is through the Newton-Raphson algorithm [36]: 
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Here, k is the iteration index of the Newton-Raphson algorithm at a given time step. At 

convergence of the algorithm, we observe that the Jacobian used is the same as the 

second Jacobian appearing in Equation (2.13). In order to obtain the first Jacobian 

given in Equation (2.13), consider the general form of the fully implicit mass balance 

equations: 
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Here F refers to the flux terms, W refers to the source terms and A refers to the 

accumulation terms. Thus the first Jacobian of Equation (2.13) is given as: 
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Now, consider the mass balance equations of the previous time step: 
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The second Jacobian for this time step is given by: 
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The last term of Equation (2.19), scaled with t∆  of the two time steps, is the same as 

the RHS of Equation (2.17). Thus the first Jacobian of any given time step is 
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calculated during the computation of the second Jacobian of the previous time step. 

The rest of the terms constituting the adjoint equations are relatively easy to calculate, 

as they are functions of the scalar cost function. In fact, if the cost function can be 

written in the following manner:  
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That is, it is directly a function of the well terms of the simulation equations rather 

than a function of the dynamic states, then: 
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The first term is a function of the converged well term derivatives with respect to 

dynamic states at each time step. This is also calculated within the forward simulation 

as seen from Equation (2.19) and is relatively easy to extract. An example of a cost 

function of the form of Equation (2.20) is net present value given by the following 

equation (see the Nomenclature for definition of symbols): 
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Thus we see that all the terms required for calculating the Lagrange multipliers 

through the adjoint model can be calculated during the forward model evaluation 

itself. Furthermore, if NPV is the cost function, and BHP or rates are the controls, then 

the terms of Equation (2.8) can also be extracted from the forward run: 
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Therefore, the algorithm for gradient-based optimization using adjoints is modified as 

follows: 

1. Solve the forward model equations for all time steps with given initial condition 

and initial control strategy.  

2. Store the two Jacobians of the simulation equations and the well derivatives at 

each time step. 

3. Calculate the cost function with results of the forward simulation. 

4. Solve the adjoint model equations using the stored Jacobians and well 

derivatives with respect to dynamic states to calculate the Lagrange multipliers 

with Equation (2.6). 

5. Use the Lagrange multipliers and stored well derivatives with respect to controls 

to calculate the gradients using Equation (2.8) for all control steps. 

6. Use these gradients with any optimization algorithm to choose new search 

direction and control strategy. 

7. Repeat process until optimum is achieved, that is, all gradients are close to zero. 

It should be noted that mathematically there is no change in the algorithm, but the 

adjoint equations become much simpler to code. Specifically, the version of the 

General Purpose Research Simulator (GPRS) [11] developed at Stanford University 

and used as the forward simulator in the following examples consists of around 20000 

lines of C++ code, whereas the adjoint code consists of only around 500 lines of 

Matlab code. However, more importantly, this approach allows the adjoint code to 

remain fully consistent with the forward model code if any changes to the flux terms or 

accumulation terms are made or new terms reflecting new physics are added to 
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Equation (2.16). This is because the Jacobians are taken directly from the forward 

model, so any changes made to the simulation equations are reflected in these.  

For example, suppose a dual porosity model [40] is implemented into the forward 

simulator. This implies that a new term (the transfer function) is added to the 

simulation equations, changing ( )1, ,n n n ng +x x u . No change is required in the adjoint 

model code, however, as the partial derivatives of the simulation equations with 

respect to the states and controls are taken directly from the forward simulator. This is 

a useful algorithmic feature in general, but it is particularly important in a research or 

development setting where the forward model is updated frequently. Further, the 

modified approach is slightly more efficient than the standard approach as the Jacobian 

forming calculations are not repeated but are directly loaded from memory. However, 

because the Jacobians must be stored with the modified approach instead of the 

dynamic states, the storage requirement of the modified approach is much larger. The 

approximate memory requirements can be estimated with the following equation: 

� ( ) 2 8 1.6 1 /10D g c tTotal GB N N N N≈ + � �������

Here, DN  is the number of physical dimensions, gN  is the number of grid blocks, cN  

is the number of components and tN  is the number of time steps. For example, if a 

given problem is a 3D, 3-phase black oil model with 100000 cells and 100 time steps, 

the total storage requirement is around 6 GB. Note that this is hard disk memory and 

not RAM memory, as the Jacobians are stored to files in our implementation.  

2.4. Case Study – Horizontal Smart Wells 

The first case is a simple example adapted from Brouwer and Jansen [34] that 

effectively demonstrates the applicability of adjoint-based optimization to smart well 

control. The schematic of the reservoir and well configuration is shown in Figure 2-3. 

The model consists of one horizontal “smart” water injector and one horizontal 

“smart” producer, each having 45 controllable segments. The reservoir covers an area 
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of 450 × 450 m2 and has a thickness of 10 m and is modeled by a 45 × 45 × 1 

horizontal 2D grid. The fluid system is an essentially incompressible two-phase unit 

mobility oil-water system, with zero connate water saturation and zero residual oil 

saturation. Figure 2-4 shows the heterogeneous permeability field with two high 

permeability streaks running from the injector (left) to the producer (right). The 

contrast in permeability between the high permeability streaks and the rest of the 

reservoir is around a factor of 20-40, and it is this heterogeneity that makes the 

optimization results interesting.  

 
Figure 2-3 Schematic of reservoir and wells for Example 1 (From Brouwer and Jansen [34]) 

For purpose of optimization, the injector segments are placed under rate control, and 

the producer segments are under BHP control. There is a total injection constraint of 

2700 STB/day (STBD); thus the optimization essentially results in a redistribution of 

this water among the injection segments. Further, there are also bounds on the 

minimum and maximum rates allowed per segment, and also bounds on the BHPs of 

the producers, which could for example correspond to bubble point pressures or 

fracture pressures. The model is produced until exactly one pore volume of water is 

injected, which corresponds to around 950 days of injection. This time period is 

divided into five control steps of 190 days each. Thus the total number of controls is 
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equal to (45+45) × 5 = 450. All constraints in this problem are linear with respect to 

the controls.   

 
Figure 2-4 Permeability field for Example 1 (From Brouwer and Jansen [34]) 

In order to understand the benefit of any optimization process, it is usual to compare 

the optimization results against a base or reference case. In the case of production 

optimization, such a base case would be a reasonable production strategy that an 

engineer might devise given a simulation model and a set of constraints. It is, however, 

very difficult (and often nonintuitive) to understand the implications of varying well 

controls on the optimization process. It is thus usual for engineers to specify constant 

production/injection rates or BHPs until some detrimental reservoir response such as 

water breakthrough is observed. For this case study as well, the base case is kept quite 

simple. 

For the purpose of this case study, the base case is a constant rate/constant BHP 

production strategy. The 2700 STBD of injection water is distributed among the 45 

injection segments according to their kh (permeability × pay thickness), which 
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corresponds to an uncontrolled case. The producer BHPs are set in such a way that a 

balanced injection-production is obtained. 

 
Figure 2-5 Final oil saturations after 1 PV injection for reference case 

The objective of the optimization process is to maximize NPV as given in Equation 

(2.22). The NPV discounting factor is set to zero, meaning that the effect of 

discounting is neglected. Thus, maximizing NPV is essentially maximizing cumulative 

oil production and minimizing cumulative water production. The oil price is 

conservatively set at $80/m3, water injection costs at $0/m3, and water production 

costs at $20/m3 [34]. It should be noted that it is relatively easy to vary these 

cost/prices with time and even to implement uncertainty models for them, provided of 

course that such models can be inferred. 

Starting from 100% oil saturation throughout the reservoir, Figure 2-5 and Figure 2-6 

show the final oil saturations for the uncontrolled and the optimized case after exactly 

1 PV of water has been injected. It is clear that the optimization leads to a huge 

improvement in the sweep efficiency, leading to the increase in NPV of around 100%. 
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Note that the final oil saturations maps obtained are very similar to those obtained by 

Brouwer and Jansen [34].  

 
Figure 2-6 Final oil saturations after 1 PV injection for optimized case 

The reasons behind the better sweep in the optimized case can be easily explained by 

analyzing the optimized trajectories of the controls – rates/ BHPs of the injectors and 

producers – as seen in Figure 2-7 and Figure 2-8. The y-axis of Figure 2-7 corresponds 

to 45 injector segments and the x-axis corresponds to the 5 control steps. The color 

scale corresponds to injection rates of the segments, with blue being lowest rates 

(almost closed) and brown being highest (fully open). It is obvious that the injector 

segments completed in or near the high permeability streaks are shut down at early 

time, as they force water to move very quickly toward the producers, resulting in early 

breakthrough and thus poor sweep. Further, some of the injector segments completed 

in the lower streak tend to open up towards the later control steps, so that the water 

front between two streaks actually moves laterally (Figure 2-9) towards the streaks, 

resulting in the almost 100% sweep of this region.  
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Figure 2-7 Injection rate variation with time for optimized case (x-axis represents the control 

steps, and y-axis represents the 45 injector segments) 

 
Figure 2-8 Producer BHP variation with time for optimized case (x-axis represents the control 

steps, and y-axis represents the 45 producer segments) 

In Figure 2-8, the color scale corresponds to the BHPs of the producer segments, and 

we again observe that the producer segments completed in or near the high 
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permeability streaks are shut most of the time. Also, the producer segments in between 

the streaks again open towards the later control steps, so that the water present in the 

streaks moves toward this region leading to a better sweep. 

 
Figure 2-9 Lateral movement of water in optimized case 

Figure 2-10 shows the field water injection rate, the oil production rate and the water 

production rate for the base case and optimized case. In the optimized case, for most of 

the time, the oil production rate is significantly higher and the water production lower 

than the base case. The four peaks in the oil rate correspond to the start of the control 

steps. Because the actual time steps are smaller than the control steps, the oil or water 

production rate over a control step does not remain the same. It is interesting to note 

that although the final saturation map and increase in NPV are quite close to that 

obtained by Brouwer and Jansen [34], the optimal trajectories of the controls are 

somewhat different. These differences may be caused by the different control variables 

used on wells, slightly different fluid compressibilities, or different lengths of control 

steps, or it may be that the local optima obtained are different, but with similar values 

of the optima. 
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Figure 2-10 Comparison of total production rates for reference and optimized case 

 
Figure 2-11 Comparison of cumulatives for reference and optimized case 

Figure 2-11 shows that there is a substantial increase in cumulative oil production 

(70%), attributed to the better sweep, and a slight decrease in water production (6%) 

after the optimization process. The optimization process required five iterations of the 

optimization algorithm (Sequential Quadratic Programming from the Matlab 

Optimization Toolbox [41]); the total number of simulations required for the 

optimization was around 12-15. 
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2.5. Case Study – SPE 10 Layer 61 

This example is a more complex case adapted from the 10th SPE Comparative 

Solution Project [42]. The model is described on a regular Cartesian grid. The model 

dimensions are 1200 × 2200 × 170 (ft). The top 70 ft (35 layers) represents the Tarbert 

formation and the bottom 100 ft (50 layers) represents Upper Ness formation. The cell 

size is 20 ft × 10 ft × 2 ft. The model has 60 × 220 × 85 cells and consists of part of a 

Brent sequence. For this case study, only layer 61 belonging to the Upper Ness fluvial 

formation is selected. The highly heterogeneous permeability field for this layer is 

shown in Figure 2-12. 

 
Figure 2-12 Permeability field for SPE 10 Layer 61 

The fluid system is a two-phase oil water system with low compressibility and a very 

unfavorable mobility ratio (≅ 75). The relative permeabilities are the usual Corey type 

curves. The production model is a five-spot pattern with a vertical injector at the center 

and four vertical producers at the corners. Thus there are two drive mechanisms: 

depletion drive and water injection. The injector is under rate control and the 

producers are under BHP control. The reference case is again a constant rate/BHP 

case, with the injection rate set at 5000 STBD and all producer BHPs at 3000 psi. The 

injection rate is constrained at a maximum of 6000 STBD and the producer BHPs at a 

minimum of 500 psi and a maximum of 4000 psi. These are linear constraints with 

respect to the controls.   
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The objective is to maximize the NPV over a period of 4.5 years, divided into control 

periods of 30 days. Thus the total number of controls is equal to 5×55 = 275. The NPV 

discounting factor is again set at zero, meaning that the effect of discounting is 

neglected. The oil price is conservatively set at $30/Bbl and water injection costs at 

$3/Bbl. The case is made interesting by making it extremely expensive to process 

produced water, and the water production cost is set at $40/Bbl. Although this high 

water production cost is unrealistic in most settings, it makes the optimization process 

more complex and different from the first case, as the optimization must here reduce 

water production, even at the cost of reducing oil production.  

 
Figure 2-13 Comparison of injection rates for reference and optimized case 

Figure 2-13 compares the injection rate of the optimized case to that of the reference 

case. There is a substantial decrease in injection rate as expected. Due the extremely 

high water production costs, water injection is reduced so that water production may 

be reduced. However, in order to maintain the oil production rate, all of the producers 

except PROD 1 produce at around the minimum BHP (Figure 2-14), that is, they are 

fully open. The main drive mechanism thus changes from water injection in the 

reference case to depletion drive in the optimized case. PROD 1 on the other hand is 

producing the maximum amount of water in the reference case as seen in Figure 2-15. 
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Thus, in the optimized case, instead of a reduction of BHP, in an attempt to curtail the 

high watercut, the BHP of PROD 1 increases, and in fact goes towards the maximum 

allowed BHP at the end of the run (Figure 2-14). 

 
Figure 2-14 Comparison of BHPs of producers for reference and optimized case 

 

 

 
Figure 2-15 Comparison of watercuts for some producers for reference and optimized case 
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Figure 2-16 compares the cumulative water injection, oil production and water 

production of the base case and optimized case. It is clear that the increase in NPV (by 

200%) is due to the huge reduction in water injection (67%) and production (19%), 

while the cumulative oil production is not much reduced (11%). It is interesting to 

compare the final oil saturation maps for the reference and optimized case, as seen in 

Figure 2-17 and Figure 2-18. Unlike the previous case, the optimization results in a 

decrease of the overall sweep, as the water injected is much less, but the channels 

leading to PROD 2 and PROD 4 show a slightly better sweep, implying that the 

injected water is distributed more evenly compared to the reference case. 

 
Figure 2-16 Comparison of cumulatives for reference and optimized case 

 
Figure 2-17 Final oil saturation map for reference case 
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Figure 2-18 Final oil saturation map for optimized case 

The number of iterations of the Sequential Quadratic Programming [41] algorithm 

required for the above optimization was 10, which corresponds to around 25-30 

simulation runs. Average run time for one simulation on a 2.8 GHZ machine with 4 

GB RAM was around 10 minutes, and the total optimization time was around 5.7 

hours. 

2.6. Summary 

This chapter demonstrated the application of adjoint models for the efficient 

calculation of gradients. A modified approach for the construction of the adjoint model 

was also described, provided a fully implicit forward model is available, and the cost 

function can be cast into certain forms. It was shown that the modified approach 

makes it relatively easy to code the adjoint as compared to the standard approach. 

Further, another important advantage of this technique is that the consistency between 

the adjoint code and the forward model code is automatically maintained if any 

changes to the flux terms or accumulation terms are made or new terms reflecting new 

physics are added to the forward model. Two dynamic waterflood examples were 

discussed demonstrating the practicality and efficiency of the approach. 
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Chapter 3 

3. Adjoint-based Optimal Control and Model 

Updating 

As discussed in the first chapter, the closed-loop approach for efficient realtime 

optimization consists of three key components: efficient optimization algorithms, 

efficient model updating algorithms, and techniques for uncertainty propagation. In 

this chapter, we discuss a gradient-based model updating technique, and combine it 

with the optimal control algorithm presented in the last chapter to obtain a simplified 

implementation of the closed-loop approach. Uncertainty propagation is not 

considered here. Neglecting uncertainty propagation essentially means that the closed-

loop process is applied to a single realization of the uncertain parameters; e.g., the 

maximum likelihood estimate, which is updated at every control step. Such a 

procedure can be expected to provide near-optimal results in many cases, though the 

treatment of uncertainty will of course be important in many applications. Uncertainty 

propagation and the entire loop are discussed in Chapter 4. 

Within the context of closed-loop reservoir management, Brouwer et al. [9] used 

adjoint models for optimization and Kalman filters for model updating.  Adjoint 

models allow for very efficient optimization, although their implementation can be 

complicated. The ensemble Kalman filter has only recently been applied for history 

matching [43]. Although this approach is straightforward to implement [43,44], its 

efficiency compared to established methods like adjoint models may be an issue. 

Aitokhuehi and Durlofsky [45] used conjugate gradient algorithms with numerical 

gradients for optimization and the probability perturbation method [46] for model 

updating. The use of numerical gradients and the stochastic probability perturbation 
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method makes the implementation quite easy, but both algorithms are very expensive 

computationally, which may limit the use of this procedure in practical settings. 

In this chapter, we apply the adjoint methods described in the last chapter for the 

efficient calculation of gradients of the objective function with respect to the controls, 

which are then used by gradient-based optimization algorithms for the optimization 

part of the closed-loop. For the model updating procedure, we use Bayesian inversion 

theory and apply an efficient parameterization of the permeability field using the 

Karhunen-Loeve (K-L) expansion. This allows us to describe the uncertain parameter 

field (e.g., permeability), in terms of two-point statistics, using very few parameters. A 

key advantage of the K-L description is that these parameters can be varied 

continuously while maintaining the underlying geostatistical description. As a result, 

adjoint techniques can be applied for the history matching while preserving some 

degree of geological realism. This procedure is much faster than stochastic algorithms 

and, unlike standard gradient-based algorithms, implicitly honors the two-point 

statistics of the geological model. An extension of the K-L procedure described in this 

chapter which preserves multi-point statistics will be presented in Chapter 6.  

The use of adjoints for history matching was pioneered by Chen et al. [47] and 

Chavent et al. [48], who applied it to single-phase problems. Since then, many other 

researchers have modified and improved the application of adjoint models for 

multiphase history matching including Wasserman et al. [49], Watson et al. [50], Wu 

et al. [51], Li et al. [35], Wu and Datta-Gupta [52], and Zhang et al. [53]. Gavalas et 

al. [15] introduced the use of an eigenfunction expansion for efficient parameterization 

of reservoir properties, which was also used later by Oliver [54] and Reynolds et al. 

[55]. 

This chapter starts with a description of the model updating algorithm. It is then 

combined with the optimization algorithm of the last chapter in a sequential manner to 

perform optimization for an uncertain reservoir description. Two variants of the 

implementation of the model updating algorithm within the closed-loop are discussed.  
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Next, the efficiency and applicability of this approach is demonstrated through a 

realtime dynamic waterflood optimization of a synthetic reservoir under production 

constraints and with an uncertain permeability field. The closed-loop optimization 

methodology is shown to provide a substantial improvement in NPV and sweep 

efficiency over the base case, and the results are quite close to those obtained with 

known geology. 

3.1. Model Updating as a Minimization Problem 

A number of techniques are available for the history matching problem. Gradient-

based procedures are in general very efficient, but standard implementations suffer 

from two limitations. First, they tend to find local rather than global minima. Although 

this is the case to some extent with all history matching algorithms, stochastic 

optimization techniques introduce a random component to sample the parameter space 

more broadly. The second limitation inherent in standard gradient-based techniques is 

that geological constraints are not preserved. This occurs because, during the 

optimization, geostatistical correlations between model parameters are not maintained. 

The technique applied here circumvents this latter difficulty by introducing an efficient 

parameterization of the permeability field in terms of the Karhunen-Loeve expansion 

(the K-L expansion, described in more detail below, is essentially an eigenfunction 

expansion) [15, 54, 55]. Because the parameters appearing in the K-L expansion are 

uncorrelated, any set of these parameters provides a permeability field that honors the 

underlying two-point geostatistics. Thus, these parameters can be varied in any way to 

achieve a history match. The technique is much more efficient than stochastic search 

procedures and has the additional advantage that much of the adjoint code developed 

for the production optimization problem can also be applied with some modifications 

to the history matching problem. 

The model updating component of the closed-loop is a problem of inversion of 

production data (well pressures and flow rates) in order to determine reliable estimates 
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of uncertain model parameters (porosity and permeability). Within the context of 

Bayesian inverse modeling, the solution to the general inverse problem consists of 

combining all prior information as given by the prior probability density of the 

observed data d , given by ( )Dρ d , the prior probability density of the model 

parameters m , given by ( )Mρ m  and the forward model ( )f=d m  to determine the 

posterior probability density of the model parameters ( )Mσ m  given by the following 

general equation [13]: 

� ( ) ( ) ( )( )M M Dk fσ ρ ρ=m m m � �������

where k is a normalization constant. The most general approach for solving any 

nonlinear inverse problem involves determining the entire probability distribution 

( )Mσ m , which requires an extensive exploration of the model space, usually 

accomplished using random search techniques such as a Monte Carlo method [13].  

For the case of history matching, however, solving the forward model ( )f=d m  is 

usually quite time consuming, and in practical cases a single evaluation can take 

several hours of computation. Therefore we must often be satisfied with the 

determination of the maximum likelihood and a reasonable estimate of the dispersion 

of the distribution around it. This is generally accomplished through least-squares 

techniques, which is a special case of Equation (3.1), when both the prior probability 

densities ( )Mρ m  and ( )Dρ d  are Gaussian. Under these assumptions, the model 

updating problem reduces to the minimization of the following misfit function, where 

DC  and MC are the data and parameter prior covariance matrices [13]: 

� ( ) ( )( ) ( )( ) ( ) ( )-1 -1TT

obs D obs prior M priorS f f= − − + − −m m d C m d m m C m m � ������

In the general problem of model updating, the forward model ( )f=d m   (simulation 

equations and outputs) is not only a function of the model parameters m , but is also a 
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function of the dynamic states x  (grid pressures, saturations, etc.) and a set of controls 

u  (well rates, bottom hole pressures etc.), that is: ( )1, ,n nf +=d x u m , where n is the 

time step index (m is assumed to be time invariant). The dynamic states x  are 

functions of both m  and u . Thus the mathematical formulation of the general model 

updating problem is as follows: 
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The Lagrangian ( )1, ,n n nL +x u m  has the following form for the history matching 

problem (assuming that measurement uncertainties are independent): 
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Here n
iσ  is the standard deviation of the measured data and Nw is the number of wells. 

The set of equations 1, , ,( ) 0 n n n ng + =x u mx together with the initial condition 0
0=x x  

refers to the reservoir simulation equations (forward model) which constrain the 

dynamic states x . The geological constraints (last set of constraints in Equation (3.3)) 

are required because production data on its own is not fully constraining. Even with 

these geological constraints the system is still not fully constrained, but the use of 

these constraints guarantees that the resulting m  will be consistent with the 

geostatistical description. 
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3.2. Bi-orthogonal Expansions and Adjoints for Updating 

As mentioned before, standard gradient-based algorithms will not maintain the 

necessary geological constraints. As a result, although the objective function might be 

reduced by a large amount, the final m  may not be geologically realistic, which will 

generally result in poor predictions. By introducing the K-L expansion of the random 

parameter field m , the problem defined in Equation (3.3) is transformed such that the 

geological constraints (as defined by the covariance matrix of m ) are implicitly 

honored. In addition, the number of parameters defining m  is decreased significantly, 

resulting in a greater reduction of the uncertainty envelope compared to the direct 

solution of the original problem [54, 55].   

The Karhunen-Loeve expansion is a very powerful tool for representing stationary and 

non-stationary processes with explicitly known covariance functions. Any random 

field or process can be represented as a series expansion involving a complete set of 

deterministic functions with corresponding random coefficients [56]. This method 

provides a second-moment characterization in terms of random variables and 

deterministic functions. The use of K-L expansion with orthogonal deterministic basis 

functions and uncorrelated random coefficients has generated interest because of its bi-

orthogonality property, that is, both the deterministic basis functions (eigenfunctions) 

and the corresponding random coefficients are orthogonal. This allows for the optimal 

encapsulation of the information contained in the random process into a set of discrete 

uncorrelated random variables. For a random field ( ),m x θ  with a finite variance and a 

mean ( )m x , the K-L expansion in continuous form is given as [14]: 

� ( ) ( ) ( ) ( )
1

, i i i
i

m x m x f xθ λ ξ θ
∞

=
= +� � ���	��

Here, x is the spatial (or temporal) variable, θ  is a random event, ( )iξ θ  is a set of 

uncorrelated random variables, and iλ  and ( )if x  are the eigenvalues and 
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eigenfunctions of the covariance function ( )1 2,C x x  of ( ),m x θ . By definition 

( )1 2,C x x  is bounded, symmetric and positive definite. Following Mercer’s theorem 

[56], C has the following spectral or eigen decomposition: 

� ( ) ( ) ( )1 2 1 2
1

, i i i
i

C x x f x f xλ
∞

=
=� � ���
��

Because reservoir simulation models are defined on discrete grids, we are more 

interested in the discrete form of the K-L expansion. The truncated K-L expansion of 

the correlated (geologically constrained) random variables m  is given as [56]: 

� [ ] [ ] [ ] [ ] [ ],1 , , ,1 ,1H H K K K K H
= +m � � � m � ������

Here, �  is the matrix of the eigenvectors corresponding to the K largest eigenvalues 

of the covariance matrix MC , �  is a diagonal matrix consisting of the K largest 

standard deviations (square roots of eigenvalues), �  is a vector of uncorrelated 

standard random variables with zero mean and unit variance (dimension K), and m is 

the expected value of m . In practice, K << H, where H is the dimension of m  (e.g., if 

the geology is characterized by porosity and isotropic permeability, H=2NC, where NC 

is the total number of grid blocks in the problem). Thus m  is represented by a much 

smaller set of parameters � . Using this expansion for m , the proposed formulation of 

the model updating problem is as follows: 
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The problem is thus formulated with �  as the unknown parameters. Since the 

components of �  are uncorrelated, the optimization (minimization) algorithm is free to 

modify �  in any manner; i.e., whatever the values of � , the set of m  obtained from 

them using Equation (3.7) will always be correlated according to the correlation 

structure of the covariance matrix. Thus any gradient-based algorithm can be used to 

accomplish the minimization using �  as the unknowns while at the same time 

honoring the geological constraints for m . 

As in the optimization problem, an adjoint model is used to calculate the gradients of 

the objective function S with respect to the parameters � . Using the same approach as 

in the production optimization problem (i.e., adjoining the dynamic system to the 

objective function), the adjoint model is derived as: 
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After �  is calculated using the adjoint model, the derivative of S  with respect to m  is 

calculated as: 
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Equation (3.10) can be used to calculate the gradient of S  with respect to �  using the 

chain rule and Equation (3.7): 
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After the minimization is accomplished, if �  is the posterior mean of � , then the 

posterior covariance of �  can be approximated as [13]: 

� { } 1-1 1T
D

−−+� �C G C G C� � �������

Here the components of G are the partial derivatives of S  with respect to �  taken at 

the convergence point ( � ). This can be used to determine the posterior covariance of 

m , which can generally provide an accurate estimate of the dispersion of the 

distribution around m . �C  is also equal to the inverse of the Hessian at convergence 

and is thus directly given (approximately) by any Newton type algorithm [13]. Using 

the posterior mean �  and covariance �C , any number of posterior realizations of 

m can be obtained [13]. Note however, that in this simplified closed-loop, we only 

work with the mean realization m  (updated at every model updating step), and 

therefore �C is not required. However, in the complete closed-loop to be described in 

the next chapter, optimization is performed on more than one realization, implying that 

�C  will be required. 

This completes the description of the history matching procedure. Many of the main 

components of this adjoint, such as 1 /n ng −∂ ∂x , are already calculated and stored for 

the production optimization problem (as described in Chapter 2), and can thus be 

easily reused, leading to added efficiency. 

3.3. Implementation of the Closed-Loop 

The closed-loop process (without uncertainty propagation) can be implemented very 

efficiently with the components discussed above. The main steps required to complete 

the loop are as follows: 



 53 

1. From the prior model of the uncertain but correlated parameter field, calculate 

the covariance matrix, either numerically or analytically. Note that the 

covariance model may be non-stationary. 

2. Perform Karhunen-Loeve expansion to determine the eigenvectors and 

eigenvalues of the covariance matrix. Retain only the largest eigenpairs; the 

number to be retained can be determined from the percentage of the total energy 

contained in the eigenpairs. Typically, retaining 60-70% of the total energy is 

sufficient. 

3. Perform optimization from control step k to Nt (total control steps) starting with k 

= 1, that is, the first control step, using the current maximum likelihood estimate 

of the parameter field m . 

4. Apply the optimized trajectory of the controls on the “true” reservoir from 

control step k to k+1, and record the reservoir response for this time period. This 

provides the “data” to be used for history matching. 

5. Perform model updating to assimilate new data. Updating can be performed from 

control step 1 to the step k+1, that is, assimilate new data and re-assimilate 

earlier data, or from step k to k+1, that is, only assimilate new data. 

6. Perform optimization step 3 for the next control step, that is, step k+1, with the 

new maximum likelihood estimate of the parameter field obtained from step 5. 

Repeat steps 3 to 6 until k= Nt. 

Some of the above steps require further elaboration. If the prior model of the 

parameter field is multi-Gaussian, the covariance matrix can be calculated analytically. 

In general, especially if the prior model is obtained from multi-point geostatistics, the 

covariance matrix must be calculated numerically from a sufficiently large number of 

realizations of the prior model. The covariance matrix will be non-stationary if prior 

conditioning data such as hard data are present. The Karhunen-Loeve expansion can be 
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performed using singular value decomposition (SVD). However, since the standard 

implementation of SVD is a very expensive process, another formulation of the K-L 

expansion using kernels will be applied in Chapter 6 that provides a very efficient 

solution. 

For each optimization step, the optimization process must be performed to the last 

control step Nt, even though only the trajectory from step k to k+1 is actually applied 

on the “true” reservoir. This is because we are interested in long-term optimization, 

and future events (beyond step k+1) can have significant impact on the optimal 

trajectory from step k to k+1. However, if the maximum likelihood estimate of the 

parameter field does not change much from one update to the next, the optimal 

trajectory obtained in the next optimization loop should not be very different from the 

last optimization, and therefore, techniques like neighboring optimal control [37] 

might be used for added efficiency. 

The two methods to perform data assimilation discussed in step 5 constitute the two 

variants of the model updating process considered here. The traditional approach to 

history matching is to use all existing data at any given time to execute the updating 

process, even though some of that data may have been assimilated previously. This is 

required to maintain consistency (history match) with all existing data if the standard 

form of the least square error is used as the objective function (without the prior term 

as in Equation (3.8)).  

The updating process can, however, be made much more efficient by performing the 

update only from step k to k+1, that is, only assimilating new data. Consistency with 

previously assimilated data can be maintained approximately by using the prior term in 

the objective function (Equation (3.8)), with each new updating step starting with the 

maximum likelihood estimate from the previous step as priorm  and the posterior 

covariance matrix from the previous step (Equation (3.12)) as the new prior covariance 

MC . The covariance changes from one step to the next because the dynamic data 
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being assimilated introduces correlations into �  (independent initially by construction) 

after each model update. As a result, at each model updating step, a new K-L 

expansion must be performed on the small covariance matrix of �  (designated �C ) but 

not on MC   ( �C is of dimension 20×20 in the example below, as opposed to 

2025×2025, the size of MC ). This K-L expansion of the now correlated �  then 

replaces the vector �  in Equation (3.7), thus giving a new set of independent � , used 

for updating the next control step. 

Because �C generally reduces from step to step as new data are assimilated, the m  

associated with different choices of �  will look more and more similar to the most 

recent priorm . Using this approach, previously assimilated data, though not assimilated 

directly from step k to k+1, appear indirectly through priorm  and �C . Further, as we 

proceed from one control step to the next, since �C reduces (i.e., the variance of �  

reduces), the weight of the prior term in the objective function increases, implying that 

deviation from priorm  becomes more difficult as time proceeds. This can be helpful in 

alleviating problems such as those observed by [9], where late-time updates became 

problematic, presumably due to the assimilation of noise.   

The total time required to perform one cycle of the closed-loop at control step k can be 

quantified in terms of the total number of simulations required. One iteration of the 

optimization algorithm requires an equivalent of 2 simulations (from k = k  to Nt)  to 

calculate the gradients (if constraints are implemented internally) and 1-4 simulations 

(from k = k  to Nt) to calculate the step size in the search direction (using sequential 

quadratic programming). Typically 4-6 iterations result in substantial improvements in 

the objective function. Similarly, for the model updating component, using the first 

approach, an equivalent of 2 simulations (from k = 1 to k) is required to calculate the 

gradients and 1-4 simulations (from k = 1 to k) to calculate the step size in the search 

direction. Using the second approach for model updating, the simulation length is 
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reduced to one control step. Usually about 5 to 10 iterations result in convergence. 

Thus, if we update the reservoir model and controls 10 times over the course of the 

simulated production, the equivalent of about 300 (120 for optimization + 180 for 

model updating) complete simulations (from k=0 to Nt) would be required under the 

first approach, compared to about 155 (120 for optimization + 35 for model updating) 

complete simulations using the second approach. 

3.4. Case Study – Dynamic Waterflooding 

The closed-loop approach discussed above is now applied to an idealized example 

case somewhat similar to that used by Brouwer et al. [9], which was also discussed in 

the last chapter. This case was chosen primarily because it effectively demonstrates the 

applicability of adjoint-based optimization to smart well control and because it 

illustrates that the model updating approach can be successfully used with realizations 

based on multipoint (as opposed to two-point) geostatistics. In addition, this example 

allows us to qualitatively compare our model updating approach to Kalman filters as 

used by Brouwer et al. [9]. 

 
Figure 3-1 Training image used to create the original realizations (from Strebelle [57]) 
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The schematic of the reservoir and well configuration is shown in Figure 2-3. The 

model, as explained in the last chapter, consists of one horizontal “smart” water 

injector and one horizontal “smart” producer, each having 45 controllable segments. 

The reservoir covers an area of 450 × 450 m2 and has a thickness of 10 m and is 

modeled by a 45 × 45 × 1 horizontal 2D grid. The fluid system is essentially an 

incompressible two-phase unit mobility oil-water system, with zero connate water 

saturation and zero residual oil saturation. 

In order to apply the closed-loop approach, one or more of the reservoir properties 

must be unknown. For this example, permeability is assumed to be unknown and will 

be updated by assimilating production data. Further, it is assumed that we have some 

prior knowledge of the reservoir, which informs us that the reservoir is a fluvial 

channelized reservoir as depicted by the training image [57] shown in Figure 3-1, with 

the channel sand permeability being about 10 Darcy and the background sand 

permeability about 500 mD. The contrast in permeability between the high 

permeability sand and the background reservoir is about a factor of 20, and it is this 

heterogeneity that makes the optimization results interesting. 

Figure 3-2 shows some unconditioned realizations of the permeability field generated 

using the snesim software [57] with the training image of Figure 3-1. In order to 

validate our closed-loop approach, a “true” realization is required, against which the 

optimization and model updating results can be compared. Realization 9 from Figure 

3-2 is arbitrarily taken to be the true realization. Note that although we are using 

unconditioned realizations for this example, realizations conditioned to hard data can 

be used just as easily with this approach. In the absence of any other data, all 

realizations obtained from snesim are equiprobable, thus any realization could be 

chosen as an initial guess. We choose realization 8 to be the initial guess. Note that the 

connectivity and the location of the channels are quite different in these two 

realizations, and therefore the nature of the production data would also be very 

different, particularly in terms of important features like breakthrough times. 
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Figure 3-2 Some of the realizations created with snesim [57]; realization 9 is assumed to be 

the “true” realization for case 1 and realization 8 is the initial guess 

Karhunen-Loeve expansion is performed using the covariance matrix created from 

1000 initial realizations. The energy retained in the eigenpairs is plotted in Figure 3-3. 

We observe that most of the energy is associated with the first few eigenpairs. Figure 

3-4 and Figure 3-5 show the reconstructions of the true and initial permeability fields 

using 20 eigenpairs. It is clear that although the long correlation structures (low 

frequencies) are essentially preserved, the smaller correlation structures (high 

frequencies) are lost, which results in a smoothing effect. Although this smoothing 

results in an approximation of the actual multipoint geostatistics, it is beneficial in that 

it provides smoother gradients, which in turn leads to better convergence behavior of 

the minimization algorithm. For the purpose of model updating, we chose to retain 

only 20 eigenpairs; this corresponds to about 65% of the total energy. 

For purposes of optimization, the injector segments are placed under rate control, and 

the producer segments are under BHP control. There is a total injection constraint of 

2700 STBD; thus the optimization essentially results in a redistribution of this water 
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among the injection segments. There are also bounds on the minimum and maximum 

rates allowed per segment, as well as bounds on the BHPs of the producers, which 

could for example correspond to bubble point pressures or fracture pressures. The 

model is produced until exactly one pore volume of water is injected, which 

corresponds to around 950 days of injection. This time period is divided into seven 

control steps of 30, 60, 100, 190, 190, 190 and 190 days. Thus the total number of 

controls is equal to (45 + 45)×7 = 630. All constraints in this problem are linear with 

respect to the controls. These seven control steps also correspond to the model 

updating steps. The injection BHPs and producer water and oil rates from the “true” 

model are used as data to update the permeability field. Since these measurements are 

synthetic, they are noise-free, though in reality these measurements would also contain 

noise, which can be accounted for using DC . 

 
Figure 3-3 Energy retained in the first 100 eigenpairs 
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Figure 3-4 Reconstruction of “true” realization with 20 eigenpairs 
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Figure 3-5 Reconstruction of initial realization with 20 eigenpairs 

In order to understand the benefit of any optimization process, it is usual to compare 

the optimization results against a base or reference case. Here, the base case is a 

constant rate/constant BHP production strategy. The 2700 STBD of injection water is 

distributed among the 45 injection segments according to their kh, which corresponds 

to an uncontrolled case. The producer BHPs are set in such a way that a balanced 

injection-production is obtained, meaning that total liquid injection is equal to total 

liquid production. The objective of the optimization process is to maximize NPV, 

defined by Equation (2.22). Also, as in Chapter 2, the NPV discounting factor α is set 

to zero. The oil price is conservatively set at $80/m3, water injection cost at $0/m3, and 

water production cost at $20/m3. 
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Figure 3-6 Final oil saturations after 1 PV injection for reference case with “true” realization 

 

 

 
Figure 3-7 Final oil saturations after 1 PV injection for optimization with “true” realization 
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Figure 3-8 Injection rate variation with time for optimization with “true” realization (x-axis 

represents the control steps, and y-axis represents the 45 injector segments) 

 
Figure 3-9 Producer BHP variation with time for optimization with “true” realization (x-axis 

represents the control steps, and y-axis represents the 45 producer segments) 
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Figure 3-10 Permeability field updates with model updating performed using all available 

data and without prior term in objective 
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The optimization process is first demonstrated assuming that the “true” permeability 

field is known, and to realize the benefit of the process, it is compared against the 

reference case, also evaluated using the “true” permeability. This constitutes what is 

known as an “open loop” optimization. Starting from 100% oil saturation throughout 

the reservoir, Figure 3-6 and Figure 3-7 show the final oil saturations for the 

uncontrolled and the optimized case after exactly 1 PV of water has been injected. It is 

clear that the optimization leads to a substantial improvement in the sweep efficiency, 

leading to the increase in NPV of almost 100%. 

 
Figure 3-11 Final oil saturations after 1 PV injection for optimization with model updating 

using first approach 

Figure 3-8 and Figure 3-9 show the optimized trajectories of the controls – rates of the 

injectors and BHPs of the producers – that provide an insight as to why a better sweep 

is obtained after optimization. The y-axis of Figure 3-8 corresponds to 45 injector 

segments and the x-axis corresponds to the 7 control steps. The color scale 

corresponds to injection rates of the segments, with blue being lowest rates (almost 

closed) and brown being highest (fully open). As in the deterministic optimization of 

Chapter 2, the injector segments completed in or near the high permeability streaks are 



 65 

nearly shut for most of the time, resulting in early breakthrough and thus poor sweep. 

Again, the injector segments at the edges of the reservoir are almost fully open, which 

forces the water front away from the high permeability streaks to move laterally, 

resulting in the almost 100% sweep of these regions. In Figure 3-9, the color scale 

corresponds to the BHPs of the producer segments, and we again observe that the 

producer segments completed in or near the high permeability streaks are shut most of 

the time. Also, the producer segments between the streaks open more towards the later 

control steps, thus moving the water present in the streaks toward this region, which in 

turn leads to a better sweep. 

 
Figure 3-12 Injection rate variation with time for optimization with model updating using first 
approach (x-axis represents the control steps, and y-axis represents the 45 injector segments) 

The open loop approach discussed above required that the permeability field (and 

other reservoir properties) be known completely. However, in reality, we never have 

complete knowledge of the reservoir, and thus the closed-loop approach must be used. 

The results of the open loop approach can usually be thought of as the best possible 

results that can be achieved by any closed-loop approach, of course under the 
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assumption that the same search algorithms and the same initial starting point for the 

controls is used. It can thus be used as a benchmark against which closed-loop 

algorithms can be compared. In the following set of results, we apply the closed-loop 

procedure. 

 
Figure 3-13 Producer BHP variation with time for optimization with model updating using 

first approach (x-axis represents the control steps, and y-axis represents the 45 producer 
segments) 

Figure 3-10 shows the permeability field updates obtained using the first model 

updating approach, but without the prior term in the objective function. Comparing to 

the “true” realization (realization 9 in Figure 3-2), it is clear that the correct channel 

locations and connectivity are well approximated even after the first update at 30 days. 

However, the model appears to deteriorate somewhat at later times, and this may be 

due to over-fitting, which is possible due to the absence of the prior term. To 

elaborate, the prior term indirectly takes into account previously assimilated data by 

not allowing the solution to move too far from the previous prior estimate according to 

the weight of the prior term. Since the previous prior estimate was a result of 

assimilation of previous data, the amount of data “available” for the history match is 
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more (indirectly) when the prior term is present, although the number of parameters 

� is the same for both cases. 

 
Figure 3-14 Final oil saturations after 1 PV injection for optimization with model updating 

using second approach 

Figure 3-11 shows the final oil saturations obtained using this closed-loop approach. 

Comparing this to Figure 3-6 and Figure 3-7, we see that the sweep obtained is greatly 

improved over the uncontrolled case, and is almost as good as that using the open loop 

approach. Comparing Figure 3-12 and Figure 3-13 to Figure 3-8 and Figure 3-9, it is 

clear that the optimal control trajectories obtained are reasonably similar with the open 

and closed-loop approaches, which is why the sweeps are comparable. 

Figure 3-14 shows the final oil saturations obtained using the second variant of the 

closed-loop approach. The sweep obtained is even better than the first variant and is 

very close to that obtained with the open loop approach. This improvement is due to 

improved permeability updates. This is evident through comparison of the 

permeability updates using the second variant (Figure 3-15) with those using the first 

variant (Figure 3-10). Thus the second approach to model updating is not only more 
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efficient, but seems to provide better model updates by preventing over-fitting. The 

control trajectories (Figure 3-16 and Figure 3-17) again resemble those using the open 

loop approach. 

 
Figure 3-15 Permeability field updates with model updating performed by assimilating data 

only over last control step and with prior term in objective 
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Figure 3-16 Injection rate variation with time for optimization with model updating using 
second approach (x-axis represents the control steps, and y-axis represents the 45 injector 

segments) 

 
Figure 3-17 Producer BHP variation with time for optimization with model updating using 
second approach (x-axis represents the control steps, and y-axis represents the 45 producer 

segments) 
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Figure 3-18 Comparison of cumulative production for reference case, optimized case run with 

“true” realization, and closed-loop approach 

 
Figure 3-19 Final oil saturation for uncontrolled reference case (case 2) 

Since the reservoir model and the “true” permeability field are similar to that used by 

Brouwer et al. [9], a qualitative comparison can be made between the model updating 

approach followed here and their use of Kalman filters for the same purpose.  

Comparing Figure 3-15 with Figure 4 of [9], it is obvious that the channel structure is 

much more visible with the present approach. However, this is more likely due to the 
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use of a better prior model (channel training image compared to a Gaussian prior) than 

to any underlying advantage of the method itself. In any case, given that the objective 

at hand is to determine the posterior uncertainty of the parameters only, minimization 

with adjoints seems to be more efficient, as the number of simulations required for 

convergence is usually around 20-30, whereas with the ensemble Kalman filter, about 

100-200 forward simulations are required [9, 44]. However, the two methods are not 

exactly equivalent, as the Kalman filter can also provide the uncertainty in the states. 

Figure 3-18 shows that there is a substantial increase in cumulative oil production with 

both the open loop (70%) and closed-loop (60%) approaches, whereas water 

production is not much affected. This is directly attributable to improved sweep. The 

increase in NPV is about 100% for the open loop and 85% for the closed-loop. 

The second variant of the closed-loop approach is now applied to another, more 

geologically complex, example (realization 22, shown in Figure 3-2). Compared to 

realization 9, this model is more sinuous and the channels are also connected laterally. 

In this case the initial model is again taken to be realization 8. The final oil saturations 

for the uncontrolled case, the open loop and the closed-loop are shown in Figure 3-19, 

Figure 3-20 and Figure 3-21. The evolution of the model is shown in Figure 3-22. Due 

to the better connectivity of the channels, the final sweep even in the uncontrolled case 

is considerable. Figure 3-23 compares the cumulative oil and cumulative water 

produced. The increase in oil production is around 25% for both the open and closed-

loop cases, but there is also an increase in water production by around 30%. The 

increase in NPV is approximately 25% for both cases. 

It is interesting to note that although the model updates as seen in Figure 3-22 are not 

as accurate as in the previous case, the closed-loop results are quite close to those 

obtained by the open loop approach. This seems to suggest that even very approximate 

permeability updates may result in nearly correct optimal trajectories, resulting in 

improvements of the objective similar to those obtained using an open loop. The 

poorer permeability updates can be understood by observing that only very small 
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regions in the training image have similar sinuosity and connectivity as realization 22, 

implying that realizations similar to realization 22 are relatively rare in the parameter 

space. This is in contrast to realization 9, which resembles the training image and other 

realizations more closely, and was as a result better matched during the course of the 

permeability updates. 

 
Figure 3-20 Final oil saturation for optimization on “true” realization (case 2) 

 
Figure 3-21 Final oil saturation for optimization with model updating (case 2) 
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Figure 3-22 Permeability field updates with model updating performed by assimilating data 

only over last control step and with prior term in objective (case 2) 
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Figure 3-23 Comparison of cumulative production for reference case, optimized case run with 

“true” realization, and closed-loop results (case 2) 

 

3.5. Summary 

In this chapter, the use of adjoint-based models was shown to be very efficient for 

closed-loop optimal control, and significant improvements in recovery appear to be 

possible through the application of such techniques. In particular, the following may 

be concluded: 

1. Efficient parameterization of the uncertain reservoir properties in terms of the K-

L expansion, combined with Bayesian inversion and adjoint models, provides an 

efficient algorithm for model updating under geological constraints. 

2. The increase in NPV and sweep efficiency by the closed-loop approach is very 

close to that obtained using an open loop approach for both of the examples 

studied. In addition, the results from both examples indicate that approximate 

parameter fields may be adequate for obtaining near optimal trajectories of the 

controls. 
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3. Assimilating only the new production data at any control step (coupled with the 

use of the prior term in the history matching objective function) is much more 

efficient, and may be as effective as assimilating all existing data. 

4. Since adjoint models are used both for optimization and model updating, many 

components of the code can be reused, resulting in added efficiency. 

An important issue that has not been investigated here is the propagation of 

uncertainty and its effect on the optimal trajectories. Although for the relatively simple 

cases studied here uncertainty propagation may not be necessary, it can be important 

for more complex geological scenarios (as demonstrated in [45]). This issue is 

addressed in the next chapter. In addition, although the K-L representation performed 

well in the cases considered here, this representation may not always be adequate. This 

issue is considered in Chapter 6. 
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Chapter 4 

4. Efficient Closed-loop Production Optimization 

In this chapter, we extend the simplified closed-loop described in the last chapter to 

also include uncertainty propagation, thereby obtaining the complete closed-loop 

algorithm as proposed in Chapter 1. The optimization and model updating components 

of the closed-loop have already been explained in the last two chapters, and this 

chapter therefore will focus on uncertainty propagation and its integration within the 

closed-loop. Uncertainty propagation refers to determining the probability distribution 

of the output parameters of a mathematical model (in our case, the simulation model), 

given the probability distributions of its input parameters. In this regard, we apply 

polynomial chaos expansions (within the probabilistic collocation method [19]) 

together with the Karhunen-Loeve expansion for efficient uncertainty propagation. 

Polynomial chaos expansions are bi-orthogonal spectral expansions of random fields, 

and they allow optimal encapsulation of information contained in the input random 

fields and output random variables of any mathematical model, thereby generating 

accurate “polynomial chaos proxies” with relatively few evaluations of the 

mathematical model.  

As summarized by Xiu et al. [17], traditional approaches such as Monte Carlo 

simulation and its variants (e.g., Latin Hypercube sampling), although simple to 

implement, are in general computationally very expensive and may be infeasible for 

practical reservoir simulation models. The sensitivity method [17] is a more 

economical approach, based on the moments of samples, but it is less robust and 

depends strongly on the modeling assumptions. Another popular technique is the 

perturbation method [17] where all the stochastic quantities are expanded around their 

mean via Taylor series. This approach, however, is generally limited to small 
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perturbations and does not readily provide information on high-order statistics of the 

response, and also requires access to model equations. The resulting system of 

equations becomes extremely complicated beyond second-order expansion. Another 

approach is based on expanding the inverse of the stochastic operator in a Neumann 

series [17], but this too is limited to small fluctuations, and even combinations with 

the Monte Carlo method seem to result in computationally prohibitive algorithms for 

complex systems. Two more recent analytical and computationally efficient methods 

that also use polynomial chaos expansions are the spectral stochastic finite element 

method [17, 58, 59] and its combination with perturbation methods [60, 61]. These 

methods, however, also require access to the equations of the mathematical model 

(i.e., a “black box” approach is not possible). Some of these methods are discussed in 

detail by Isukapalli [18]. The approach we follow in this work is known as the 

probabilistic collocation method (PCM) [19, 62] and also the stochastic response 

surface method (SRSM) [18] and is based on the spectral expansion of the random 

variables and fields by polynomial chaos expansions and the Karhunen-Loeve 

expansion.  This approach is usually one or more orders of magnitude faster than 

Monte Carlo techniques, and has similar computational complexity as the Spectral 

Stochastic Finite Element method [17], but has the advantage that the forward model 

is treated as a black box, implying that implementation is relatively straightforward. 

The probabilistic collocation method has been used successfully in other fields for 

uncertainty propagation [19] but has not been used in reservoir modeling, although 

polynomial chaos expansions have been applied recently [60].  

Since the basis behind the PCM/SRSM is the polynomial chaos expansion (PCE), the 

general theory behind PCE is discussed in the next section. This is followed by a 

detailed explanation of the standard PCM/SRSM algorithm. Next, the application of 

PCM/SRSM on a quarter five-spot pattern with a lognormal random permeability field 

with exponential covariance is demonstrated. Finally, the steps necessary to combine 

the three elements (optimization, model updating and uncertainty propagation) to 

complete the closed-loop are discussed. The overall methodology is then successfully 
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applied to a realtime closed-loop dynamic waterflood optimization of a synthetic 

reservoir with an uncertain permeability field. 

4.1. Polynomial Chaos Expansions 

Polynomial chaos expansions, as introduced by Weiner (see discussion in Lucor et al. 

[58]), provide a means for expanding second-order random processes in terms of 

Hermite polynomials of Gaussian random variables (note that the term “chaos” as used 

in this context is completely distinct from the chaos that appears in solutions of 

nonlinear differential equations). Second-order random processes are processes with 

finite variance, and this applies to most physical processes. Thus, a general second-

order random variable ( )X θ , viewed as a function of θ  (the independent random 

event), can be represented in the following form: 
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Here, ( )
1
,....,

nn i iH ξ ξ  denotes the Hermite polynomials of order n in terms of the 

multi-dimensional independent standard Gaussian random variables ( )
1
,....,

ni iξ ξ  with 

zero mean and unit variance. The above equation is the discrete version of the original 

Wiener polynomial chaos expansion [58], where the continuous integrals are replaced 

by summations. The general expression of the Hermite polynomials nH  is given by 

[58]: 

� ( ) ( )
1

1

1 1
,...., exp 1 exp

2 .... 2n

n
nT T

n i i
i in

H ξ ξ
ξ ξ

∂� 	 � 	= − −
 � 
 �∂ ∂� 
 � 

� � � � � ������



 79 

Here, �  denotes the vector of n Gaussian random variables. The above expression can 

be reduced to simpler  forms. For example, the 1D Hermite polynomials can be written 

as: 

�
2 3

0 1 2 31,     ,     1,     3 ,....ψ ψ ξ ψ ξ ψ ξ ξ= = = − = − � ������

For notational convenience, Equation (4.1) can be rewritten as: 
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There is a one-to-one correspondence between the functions ( )
1
,....,

nn i iH ξ ξ and 

( )jψ � , and also between the coefficients. In Equation (4.1) the summation is carried 

out according to the order of the Hermite polynomials, while in Equation (4.4) it is 

simply a re-numbering with the polynomials of lower order counted first. The 

polynomial chaos forms a complete orthogonal basis in the 2L space of the Gaussian 

random variables � , i.e., 

� 2
i j i ijψ ψ ψ δ= � ���	��

Here ijδ  is the Kronecker delta and i jψ ψ  denotes the ensemble average. This is the 

inner product in the Hilbert space of the Gaussian random variables: 
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The weighting function ( )W � is given as: 
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Here n is the dimension of � . What distinguishes this Wiener–Hermite expansion 

from many other possible complete sets of expansions is that the polynomials here are 

orthogonal with respect to the weighting function ( )W � , which has the form of the 

multi-dimensional independent Gaussian probability distribution with unit variance. 

This is the main reason behind the use of polynomial chaos as opposed to any other 

arbitrary polynomial. As demonstrated by authors such as Xiu et al. [17] and Lucor et 

al. [58], the Hermite chaos expansion generally has an exponential convergence rate in 

a least square sense when �  is multi-Gaussian. However, for non-Gaussian random 

variables, the convergence rate may not be fast [17]. In order to handle general random 

inputs, one approach is the use of generalized polynomial chaos or Askey chaos as 

described by Xiu et al. [17]. Another approach is to use a normal score transformation 

of the non-normal random variables, after which the Hermite chaos expansion can be 

used [18]. 

4.2. The Probabilistic Collocation Method 

The polynomial chaos expansions discussed above can be used within the framework 

of the probabilistic collocation method (PCM) [19] (and the very similar stochastic 

response surface method (SRSM) [18]) to perform uncertainty analysis of 

computationally expensive models at a very low computational cost. The general 

collocation method is one of several mathematical techniques for reducing a model to 

a simpler form (e.g., differential equations to algebraic equations). Due to their 

similarity, we will discuss PCM and point out the differences in SRSM whenever 

necessary. The probabilistic collocation method described adapts the general technique 

by using random variables to represent the uncertain parameters. The two main 

advantages of this approach are that, firstly, it treats the forward model as a black box 

that has some set of inputs or parameters and some set of outputs or responses, and 

secondly, uncertainty in the input and output parameters are described by probability 

density functions, which is the most general representation of uncertainty [13]. Given 

the model and the uncertainty descriptions of the parameters, the method allows us to 
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determine: (a) the probability density function of the responses of interest, (b) 

sensitivity analysis information, (c) variance analysis information, and (d) correlations 

between parameters and responses. 

The basic concept of the probabilistic collocation method is to try to approximate the 

response of the model ( )y f= x , where x  is the vector of random variables, as some 

polynomial function of the uncertain parameters. From Equation (4.4): 
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Here, ( )jψ �  is the set of polynomial chaos expansions in terms of the independent 

random variables � , and y�  is the approximation of y . Note that the expansion is 

truncated to P terms for practical applications. In the case when �  is a set of Gaussian 

random variables, ( )jψ �  is the set of Hermite polynomials. In the case of SRSM, �  is 

always a set of Gaussian random variables obtained by normal score transformation of 

x , and therefore ( )jψ �  is always the set of Hermite polynomials [18]. In the case of 

PCM, =� x , and ( )jψ �  would be the specific polynomials orthogonal to the pdf of 

the random variables �  [19, 17]. ˆ ja  is a set of deterministic coefficients. ( )jψ �  is 

therefore known if the pdfs of the uncertain input parameters �  are known. Thus, in 

order to approximate the forward model ( )y f= x  with Equation (4.8), only the 

coefficients ˆ ja  have to be determined. By evaluating the true forward model P times, 

Equation (4.8) can be used to derive a set of linear equations that can be solved to 

determine ˆ ja . The attraction of the PCM approach derives from the fact that, given the 

distributions of the input random variables, we can in principle determine the 

polynomial chaos with an exponential convergence rate. For this reason, for a given 

level of accuracy, the PCM approach requires a small number of forward model 

evaluations compared to other possible expansions. Note that orthogonal polynomials 
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can also be derived for discrete probability distributions, implying that the method can 

be applied to discrete input random variables. 

 
Figure 4-1 Estimation of a function in a high probability region 

The crucial step in efficiently estimating a good approximation is the choice of the 

values of the input parameters at which the true model is evaluated. These values 

(collocation points) must be chosen in such a way that Equation (4.1) captures as much 

of the behavior of y  as possible. Since the uncertain input parameters have associated 

pdfs, the collocation points should be selected such that they adequately span the high 

probability regions of these pdfs. In order to achieve this, ideas from the Gaussian 

quadrature technique [62] for estimating integrals can be applied. Using this approach, 

an estimate of the integral of a polynomial can be obtained as a summation using the 

roots of the next higher order polynomial. Similarly, in the probabilistic collocation 
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method, we use the roots of the next higher order polynomial chaos as the points at 

which to solve the approximation. 

Assume, for example, that polynomials of different orders have to be derived based on 

the probability density function ( )P A  shown in Figure 4-1. To estimate a linear 

approximation of ( )y f A= , two points that span the high probability region of ( )P A  

are required. The roots of the second order polynomial ( )2ψ � provide these two 

points, as illustrated in Figure 4-1. By using the two points bounding the high 

probability region of ( )P A , an accurate estimate y�  for ( )y f A=  can be obtained. 

The larger deviation of y�  from y  only occurs in the low probability region and it thus 

contributes only a small error. 

What then is required is a way to derive a set of polynomials from the probability 

density function of each input parameter such that the roots of each polynomial are 

spread out over the high probability region for the parameter. Further, the number of 

terms P in the polynomial expansion of Equation (4.8) should be as small as possible 

(while providing a good approximation of the forward model at the same time) as the 

number of true model evaluations is equal to P. Both these properties are usually 

satisfied by the orthogonal polynomial chaos expansions and are the main reasons for 

their use as opposed to any arbitrary polynomial. The following elaborates on the steps 

involved in the application of PCM/SRSM [18,62]: 

Step 1: Representation of Stochastic Inputs 

The first step in the application of the SRSM is the representation of all the model 

input distributions in terms of a set of standardized random variables of zero mean and 

unit variance. This step is not required in PCM as the input random variables are 

directly used in the polynomial chaos expansions. Isukapalli [18] describes various 

methods for performing this transformation, including direct transformations, 
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transformation with series approximations and transformation of empirical 

distributions. 

Step 2: Derivation of Orthogonal Polynomials 

This step is not required for SRSM as the polynomial chaos always consists of 

Hermite polynomials. In the case of PCM, the set of orthogonal polynomials for each 

of these input distributions must be derived. In case of non-Gaussian but analytical 

distributions like uniform distribution, Poisson distribution, etc., the correct set of 

orthogonal polynomials can be determined from the Askey scheme [17]. In case of 

empirical distributions, software such as ORTHOPOL can be used to derive the 

appropriate set of orthogonal polynomials [62]. 

Step 3: Functional Approximations of Outputs 

Using Equation (4.8), the polynomial chaos expansion of the output can be written in 

terms of the orthogonal polynomials derived in step 2. Since the forward model is a 

black box, one might start with the simplest polynomial chaos, i.e., polynomial chaos 

of order 1 (linear chaos). For example, considering Gaussian random variables, the 1st 

and 2nd order polynomial chaos expansions are given as follows: 

�

( )

0,1 ,1
1

1
2

0,2 ,2 ,2 ,2
1 1 1

1

n

i i
i

n n n n

i i ii i ij i j
i i i j i

y a a

y a a a a

ξ

ξ ξ ξ ξ

=

−

= = = >

= +

= + + − +

�

� � ��

�

�

� ���
��

Here n is the number of random variables used to represent the uncertainty in the 

model inputs, and the coefficients , ,,i m ij ma a  are the coefficients to be estimated. Note 

that the higher the order of the expansion, the better is the approximation. However, 

the number of unknown coefficients to be determined and therefore the number of 

collocation points increases quickly as the order is increased. For example, the number 

of collocation points required for a 2nd order and 3rd order expansion are as follows: 
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Step 4: Estimation of Coefficients in Functional Approximation 

In order to find a good approximation for the model with the fewest number of model 

runs, it is important to carefully select the parameter values, or collocation points. As 

noted earlier, the method for selecting collocation points is derived from the same idea 

as the Gaussian quadrature method to numerically solve integrals [62]. In the 

collocation method, the points for the model runs are selected from the roots of the 

next higher order orthogonal polynomial for each uncertain parameter. In general, the 

number of roots is usually much larger than the number of collocation points required, 

especially when the number of input random variables is large. The highest probability 

roots are usually chosen first as the collocation points. For one-dimensional problems, 

this method gives the same results as Galerkin’s method [18] and hence is regarded as 

an “optimal method”. Once the P collocation points are chosen, the true model 

( )y f= x  is evaluated P times. Using Equation (4.8) and the P true responses, P linear 

equations can be derived, which can be solved to obtain the P coefficients ˆ ja . 

Step 5: Evaluation of Convergence of Approximation 

Before using the approximation, the convergence of the approximation has to be 

determined. To check the error of convergence, the model has to be run a few more 

times, and the model results compared to the approximation results. For the error 

check model runs, more collocation points are required. These points are derived from 

the next higher order orthogonal polynomials. The next higher order is used because if 

the errors are too large and a higher order of approximation is required, we will 

already have the model solutions needed to solve the approximation. 



 86 

For each of the higher order collocation points, both the true model ( )y f= x  and the 

approximation ( )
0

ˆ
P

j j
j

y a ψ
=

=� ��  have to be solved. The convergence error is computed 

as: 
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Here, ( )P� �  is the joint probability density at the corresponding values of the 

uncertain parameters. If the error is small enough, the approximation can be used for 

uncertainty analysis, otherwise, the next higher order approximation is evaluated and 

the process repeated until convergence is achieved. 

Step 6: Use Approximation for Uncertainty Analysis 

Once a sufficiently accurate approximation has been determined, it can be used for a 

variety of statistical analyses. For example, a Monte Carlo simulation can be used to 

obtain the probability density function of y , as the approximation is algebraic and 

therefore its evaluation very fast. Other information such as the mean or standard 

deviation is even simpler to obtain. For example, the mean of y  is the expected value 

[ ]E y , which is just the coefficient 0â  of the approximation. This is a result of the use 

of orthogonal polynomials; the expected value of every other term in y� is 0 because 

they contain products of different order orthogonal polynomials. In fact, for the closed-

loop application described below, only the mean of y ( y is NPV in the example) is 

required. The standard deviation is similarly simple to calculate. 

One problem with the PCM as described above is that the input random variables have 

to be independent. In the case when the random input properties consist of random 

fields (a set of spatially distributed correlated random variables) or random processes 

(a set of temporally distributed correlated random variables), the standard probabilistic 
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collocation method cannot be used directly due to the independence assumption of the 

input random variables � . This however is usually the case with reservoir simulation 

models, whose input parameters such as porosity and permeability of one grid cell are 

related to those of another grid cell. The Karhunen-Loeve expansion, as explained in 

the last chapter, allows the expression of a correlated random field or process in terms 

of a set of independent random variables while maintaining the covariance structure. 

Thus, once the K-L expansion of the input random field is performed, the PCM can 

then be performed using the independent random variables obtained with the K-L 

expansion. Further, the number of transformed independent random variables is much 

smaller than the initial correlated random variables, which is very beneficial for PCM 

as the number of collocation points and therefore the efficiency is directly dependent 

on the number of input variables. Refer to Chapter 3 for a description of the Karhunen-

Loeve expansion. 

4.3. Application of PCM+KLE to a Gaussian Random Field 

To demonstrate the validity of the PCM+KLE approach, we consider a multi-Gaussian 

permeability field (log permeability) with exponential covariance. The correlation 

length is 3/5 of the spatial dimension of the model, and there is a nugget effect of 0.1. 

The lognormal permeability distribution has a mean of 100 and standard deviation of 

48. The model size is 50×50, that is, the number of correlated random variables (log 

permeability) is 2500. All other input properties of the reservoir are assumed to be 

deterministic. The output random variable considered is net present value (NPV). A 

set of 1000 realizations is created by unconditional simulation using sgsim [63]. Some 

of the realizations are shown in Figure 4-2. The simulation model is a quarter 5-spot 

2D 2-phase black oil model with a water injector under rate control (left bottom 

corner) and a producer under BHP control (right top corner). The model is run for 900 

days. 

Karhunen-Loeve expansion is performed using the 1000 realizations and the 

eigenvalues and their energy are plotted in Figure 4-3 and Figure 4-4. We observe that 
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most of the energy is associated with the first few eigenpairs. For the purpose of model 

updating, we chose to retain only 10 eigenpairs; this corresponds to about 65% of the 

total energy. The number of independent random variables is thus reduced from 2500 

to 10. Note that the fraction of energy associated with a number of eigenpairs is 

primarily dependent of the correlation lengths and not on the number of grid cells, and 

therefore, as long as the correlation lengths are sufficiently long, such large reduction 

in retained eigenpairs should also be possible for large-scale models. Figure 4-5 and 

Figure 4-6 show the reconstruction of the reference permeability field with the first 10 

eigenpairs. As before, it is clear that although the long correlation features are 

preserved, the smaller correlation structures are lost. However, since flow behavior 

and therefore NPV is mainly dependent on longer correlation lengths, such an 

approximation should be reasonable, at least for multi-Gaussian type structures. 
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Figure 4-2 A few realizations with Gaussian permeability and exponential covariance 
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Figure 4-3 Eigenvalues of the Covariance Matrix 

Since the initial random field (log permeability) is Gaussian, Hermite polynomials can 

be used directly.  A 2nd order expansion is used, and as seen from Equation (4.10), as 

the number of random variables is 10, 66 collocation runs are required for a 2nd order 

expansion. Combinations of the roots of the 3rd order Hermite polynomial are used as 

collocation points according to the rule described earlier. Since an analytical solution 

is not possible, the validity of the approach is compared against Monte Carlo 

simulation . In order to determine the number of realizations of permeability required 

for Monte Carlo, a convergence study of the mean and variance of permeability is 

performed. Convergence of some of the permeabilities is shown in Figure 4-7. It is 

observed that the mean and variance of the realizations converge to the true mean and 

variance (i.e., the mean and variance used to generate the realizations) at around 600 

realizations, implying that about this many realizations would be required to obtain a 

reliable pdf of NPV by a Monte Carlo procedure. 
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Figure 4-4 Fraction of total energy associated with the eigenpairs 
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Figure 4-5 Original realization 1 and its reconstruction from first 10 eigenvectors 

Figure 4-8 compares the pdfs of NPV obtained by Polynomial Chaos and by Monte 

Carlo. It is clear the PCE pdf is a very close approximation to the pdf obtained by 

Monte Carlo. However, 66 simulations were required in the case of PCE as compared 

to 600 for Monte Carlo, demonstrating a significant increase in efficiency. This can be 

further improved if an adjoint model is also available. Note that the Monte Carlo 
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method used in this work is the most basic one, and more efficient Monte Carlo 

techniques such as Latin hypercube sampling are also available. 
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Figure 4-6 Original realization 2 and its reconstruction from first 10 Eigenvectors 

 
Figure 4-7 Convergence of mean and standard deviation of permeability 

Table 4-1 compares the mean and variance of NPV obtained from PCE, Monte Carlo 

and using the 66 collocation points directly (without any polynomial chaos expansion 

being used). PCE and Monte Carlo display a very good agreement (7% error). 

Although the 66 collocation points give a reasonable value for the mean, the variance 

is 35% less than that obtained by Monte Carlo. 
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Figure 4-8 NPV distribution from PCE and Monte Carlo 

 PCE Monte Carlo Collocation Points 
Mean 5.572e+007 5.548e+007 5.593e+007 
Variance 1.632e+013 1.768e+013 1.140e+013 

Table 4-1 Mean and variance from PCE and Monte Carlo 

4.4. Implementation of the Closed-Loop 

Before the closed-loop formulation can be completed, the optimization algorithm 

described in Chapter 2 and the uncertainty propagation algorithm described above 

must be combined. This is required because, due to the uncertainty of the model 

parameters, the outputs of the forward model that comprise the objective function of 

the optimization problem become random variables. Since the objective function is 

generally required to be a scalar quantity, it usually consists of some moment of the 

output random variables (such as the expected value) or a combination of different 

moments [45]. These moments and their gradients with respect to the controls can be 

calculated directly from the polynomial chaos expansion, provided that the gradients 

of output variables at the collocation points are available (for example using the 

deterministic adjoints discussed earlier). Consider for example the approximation of 
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some output ( )y f ξ= of a forward model with a second order Hermite chaos 

representation: 
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Here n is the number of input random variables. If the objective function consists only 

of the expected value of y , given by ( )E y , then, since ξ  is a set of Gaussian random 

variables with zero mean and unit variance, ( ) 0,2E y a= , i.e., the first coefficient of the 

expansion. As explained in the last section, using the solutions at the P collocation 

points, a linear system can be obtained to determine 0,2a  (and the other coefficients if 

required). The expected value and its gradient can then be written as: 
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Here iy  and /idy du are obtained from the collocation runs of the forward model and 

the adjoint model (at the collocation points). Using Equation (4.13), the expected 

value and its gradient, as required by the optimization algorithm, can be obtained. The 

coefficients ib  are obtained from the inverse of the matrix containing the Hermite 

polynomials evaluated at the collocation points [18]. Note that for a second order 

chaos expansion, the number of collocation runs P, which is equal to the number of 

coefficients 
1.. ni ia to be determined, is given by the first equation of Equation (4.10). 

Interestingly, if we only require the expected value y , then due to the nature of the 

roots of the third order Hermite chaos, 0,2a  is not affected by the i jξ ξ  terms of 

Equation (4.12). Thus the number of collocation runs actually reduces to 1 2n+ . This 

can be further reduced by only considering the larger 
1.. ni ia  coefficients and discarding 

the rest, as will be demonstrated in the example of the next section. Also, since the 

number of collocation runs depends on the number of input variables, reducing the 
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number of input variables using the K-L expansion to parameterize a random input 

field results in further speed up of the uncertainty propagation process. 

Combining all of the components discussed in this and previous sections, the 

formulation of the closed-loop can be implemented efficiently. The main steps 

required to complete the loop are as follows: 

1. From the prior model of the uncertain but correlated parameter field, calculate 

the covariance matrix, either numerically or analytically. Note that the 

covariance model may be non-stationary. 

2. Perform Karhunen-Loeve expansion to determine the eigenvectors and 

eigenvalues of the covariance matrix. Retain only the largest eigenpairs; the 

number to be retained can be determined from the percentage of the total energy 

contained in the eigenpairs.  

3. Determine the order and type of the polynomial chaos expansion to be used. 

Since the K-L expansion is being used for the correlated random field, an 

assumption of Gaussianity of this input random field has already been made. 

Thus the Hermite chaos representation should be used for these input random 

variables. Determine the coefficients ib  from the values of the polynomial chaos 

at the collocation points. 

4. Using the current estimate of the controls, evaluate the forward model and the 

adjoint model at the collocation points from control step k to Nt, (total control 

steps) starting with k = 1, that is, the first control step. 

5. Determine the objective function and its gradient with respect to the controls 

using the output from step 4 and Equation (4.13) (if the objective function only 

consists of the expected value of some output of the forward model) or similar 

equations depending on the nature of the objective function. 
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6. Perform optimization from control step k to Nt, starting with k = 1, that is, the 

first control step, to determine the new controls. 

7. Apply the optimized trajectory of the controls on the “true” reservoir from 

control step k to k+1, and record the reservoir response for this time period. This 

provides the “data” to be used for history matching. 

8. Perform model updating to assimilate new data. Updating can be performed from 

control step 1 to the step k+1, that is, assimilate new data and re-assimilate 

earlier data, or from step k to k+1, that is, only assimilate new data.  

9. Perform steps 4 to 8 for the next control step, (k=k+1) using the new maximum 

likelihood estimate of the parameter field and its posterior covariance to obtain 

the new collocation realizations. Repeat until k= Nt. 

Further discussion of some of the above steps (specifically those associated with 

model updating) is provided in Chapter 3. In addition, it should be noted that along 

with the input correlated random field, there might also be other independent input 

random variables of the forward model. For example, in the application demonstrated 

below, the permeability field is assumed unknown and is therefore the input random 

field. But, we may also have other unknowns such as the depth of the water-oil contact 

that are independent of the permeability field. These random variables can also be 

directly incorporated into the polynomial chaos expansion in addition to the random 

variables related to the K-L expansion of the correlated random field. 

4.5. Case Study – Dynamic Waterflooding 

Application of the closed-loop approach is demonstrated on a simple dynamic 

waterflooding example with smart wells. This example was also considered in Chapter 

3; the new element here is the incorporation of uncertainty propagation via polynomial 

chaos expansions. Thus, much of the description below follows that in Chapter 3. 

Further, in Chapter 3 we discussed two approaches for model updating. Here we apply 
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the second such approach in which only new data (rather than all of the historical data 

as in the first approach) is assimilated at every control step.  

 
Figure 4-9 Magnitude of the coefficients of the polynomial chaos expansion 

Since the simulation model is the same as in Chapter 3, it will not be discussed here. 

Again, permeability is assumed to be unknown and will be updated by assimilating 

production data. Prior knowledge of the reservoir is depicted by the training image 

[57] shown in Figure 3-1, with the channel sand permeability being about 10 Darcy 

and the background sand permeability about 500 mD.  Realization 22 from Figure 3-2 

is taken to be the true realization. Karhunen-Loeve expansion is performed using the 

covariance matrix created from 1000 initial realizations. For the purpose of model 

updating and uncertainty propagation, we chose to retain only 20 eigenpairs; this 

corresponds to about 68% of the total energy of the eigenpairs.  

The production scenario is also the same as in the example from Chapter 3. There is a 

total injection constraint of 2700 STB/day (STBD). The model is produced until 

exactly one pore volume of water is injected, which corresponds to around 950 days of 
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injection. This time period is divided into seven control steps of 30, 60, 100, 190, 190, 

190 and 190 days. Thus the total number of controls is equal to (45 + 45)×7 = 630. 

These seven control steps also correspond to the model updating steps. The injection 

BHPs and producer water and oil rates from the “true” model are used as data to 

update the permeability field.  

The base case is again a constant rate/constant BHP production strategy. The 2700 

STBD of injection water is distributed among the 45 injection segments according to 

their kh, which corresponds to an uncontrolled case. The producer BHPs are set in 

such a way that a balanced injection-production is obtained. 

The key difference from Chapter 3 is that NPV is now treated as a random variable. 

Thus, the objective of the optimization process is to maximize the expected value of 

NPV with discounting factor set to zero. The oil price is conservatively set at $80/m3, 

water injection cost at $0/m3, and water production cost at $20/m3.  

To perform uncertainty propagation, a second order Hermite chaos is chosen to 

represent NPV. As there are 20 input random variables (from the K-L expansion), and 

we are only interested in the expected value of NPV, the number of coefficients to be 

determined is equal to 41 (from Equation (4.10)). The magnitude of these coefficients 

calculated using the uncontrolled case is shown in Figure 4-9. We observe that most of 

the coefficients are quite small in magnitude, and can thus be eliminated without 

affecting the calculated NPV significantly. Using a cutoff of ± 0.4e6 (red lines in 

Figure 4-9), the number of coefficients is reduced to 9. This is the number of 

collocation runs that is required to calculate the expected value of NPV and its 

gradient (with the adjoint). Note that as the controls change during the optimization, 

the forward model that the Hermite chaos represents also changes, and thus the 

ranking (in magnitude) of the 41 coefficients may not remain the same, implying that 

the coefficients to be discarded may change. Retaining these particular 9 coefficients is 

thus based on the assumption that the change in the forward model does not affect the 

ranking of the coefficients. This issue requires further investigation. 
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Figure 4-10 Permeability field updates obtained with the closed-loop approach with 

uncertainty propagation 
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Figure 4-11 Final oil saturations obtained with the closed-loop approach with uncertainty 

propagation 

 
 

 
Figure 4-12 Comparison of cumulative production for base (uncontrolled) case and optimized 

case (OPTIM_TRU) run with “true” realization, and closed-loop with (OPTIM_CL2) and 
without (OPTIM_CL1) uncertainty propagation 



 100 

Figure 4-10 and Figure 4-11 show the maximum likelihood models and final 

saturation map obtained using the complete closed-loop with uncertainty propagation. 

Again, as in the simplified closed-loop of Chapter 3, the sweep obtained is almost as 

good as with the open loop, and in this case the sweep patterns are also very similar. 

This is due to the fact that the maximum likelihood estimates of the permeability field 

(Figure 4-10) provide reasonable optimization trajectories. This is also evident in the 

cumulative production profiles of Figure 4-12, where the production profiles obtained 

with the complete closed-loop follow the profiles obtained from the optimization on 

the true field very closely. Although the final NPV obtained at 950 days is very close 

for both closed-loop approaches (around 25% over reference), the loop with 

uncertainty propagation clearly displays better performance for the time period before 

about 750 days. 

 

4.6. Summary 

We have demonstrated that adjoint models combined with bi-orthogonal expansions, 

in particular K-L and Hermite expansions, can be used for efficient uncertainty 

propagation and closed-loop optimal control. Significant improvements in recovery 

appear to be possible through the application of such techniques. In particular, the 

following may be concluded: 

1. Polynomial chaos expansions may be used for efficient uncertainty propagation, 

with the main benefit that standard deterministic forward models and associated 

adjoints can be used as in a black box approach. 

2. For the example considered, the increase in NPV and sweep efficiency by the 

closed-loop approach is very close to that obtained using an open-loop approach. 

In addition, the results indicate that approximate parameter fields may be 

adequate for obtaining near optimal trajectories of the controls. 
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3. Including uncertainty propagation within the closed-loop results in more reliable 

estimates of the optimal trajectories, as opposed to a closed-loop applied only on 

the maximum likelihood estimate of the uncertain parameter field. 

A few additional issues concerning the polynomial chaos and Karhunen-Loeve 

expansions need to be addressed. We need to explore whether preserving two-point 

statistics is sufficient for the purpose of optimal control under complex geological 

scenarios. Further, the optimal order of polynomial chaos to be used, and the number 

of terms to be retained, is yet to be fully understood. Some of these issues will be 

addressed in later chapters. 
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Chapter 5 

5. Handling Nonlinear Path Inequality Constraints 

This chapter is focused on the optimization component of the closed-loop process with 

emphasis on handling nonlinear path inequality constraints. This problem can 

essentially be cast as a large-scale path constrained optimal control problem.  A large 

variety of methods for solving discrete-time optimal control problems now exist in 

control theory literature, including dynamic programming, neighboring extremal 

methods, gradient-based nonlinear programming methods (NLP), etc. These are 

discussed in detail in Stengel [37] and Bryson and Ho [20]. Of these approaches, the 

NLP method combined with the Maximum Principle [20] (adjoint models) generates a 

class of NLP methods in which only the control variables are the decision variables 

and the state variables are obtained from the dynamic equations. These algorithms are 

generally considered more efficient compared to the other methods. Further, within 

this class of NLP methods, there are many existing techniques available for handling 

nonlinear control-state path inequality constraints [20, 64, 65, 66]. However, as will be 

discussed later, these are either not practical for the production optimization problem 

or are difficult to implement with existing reservoir simulator codes. 

In petroleum engineering literature, papers by various authors such as Asheim [31], 

Vironovsky [32], Brouwer and Jansen [34], etc. have discussed the application of 

adjoint models and gradient techniques for the production optimization problem in 

significant detail. However, an important element that is missing from most of these 

papers is the effective treatment of nonlinear control-state path inequality constraints 

(for example, a maximum water injection rate constraint). Such constraints are always 

present in practical production optimization problems, and therefore their efficient 

treatment is essential for such algorithms to be useful. In one of our earlier papers [10], 



 103 

two methods to handle such constraints were discussed; however, they either do not 

satisfy the constraints exactly or are applicable only for small problems. In petroleum 

engineering literature, a paper by Zakirov et al. [30] discusses an approach to 

implement path constraints; however, there are certain theoretical issues with the 

approach, as discussed in a later section of this chapter. 

In this chapter, we propose an approximate feasible direction optimization algorithm 

suitable for large-scale optimal control problems that is able to handle nonlinear 

inequality path constraints effectively while always maintaining feasibility. Other 

advantages are that only two adjoint simulations are required at each iteration and 

large step sizes are possible during the line search at each iteration, leading possibly to 

large reductions in the objective function. This method belongs to the class of NLP 

methods combined with the maximum principle (adjoint models) discussed above. 

This chapter proceeds with a brief description of the mathematical formulation of the 

problem. This is followed by a discussion of the existing methods for handling 

nonlinear path constraints for optimal control problems, with a critical comparison of 

their advantages and disadvantages. The next section discusses the traditional feasible 

direction optimization algorithm in some detail, as it is the basis of the proposed 

algorithm. This is followed by detailed discussions of the proposed approximate 

feasible direction and feasible line search algorithms. The validity and effectiveness of 

the proposed algorithm for handling nonlinear path inequality constraints is 

demonstrated through two examples, one with a maximum water injection constraint, 

and the other with a maximum liquid production constraint, both of which are 

nonlinear with respect to the controls (BHPs in this case). 

5.1. Production Optimization with Adjoint Models 

Similar to Chapter 2, the problem definition is given by Equation (5.1). The difference 

of this problem definition compared to that of Chapter 2 is that the linear path 

constraints have been replaced by more general nonlinear path constraints. As in 
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Chapter 2, the set of equations ng  together with the initial condition define the 

dynamic system. In the current application, ng is the fully implicit reservoir simulation 

equations written for each grid block at each time step. 
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The last three equations of Equation (5.1) define additional constraints for the controls 

– nonlinear inequality path constraints that are functions of both states and controls, 

nonlinear inequality path constraints that are functions of states only, and bounds on 

the controls. Note that these are called path constraints because they have to be 

satisfied at every time step. Further, only inequality constraints are considered because 

almost all constraints in practical problems are inequality constraints. Examples of 

such constraints are maximum injection rate constraint, maximum watercut constraint, 

maximum liquid production rate constraint, etc. Note that whether a constraint is linear 

or nonlinear also depends on the choice of control variables. For example, well rates 

are nonlinear functions of the BHPs of wells, and hence any rate constraint will be a 

nonlinear path constraint if BHPs are controlled; but may become a linear constraint if 

well rates are controlled directly. The control-state constraints and state only 

constraints are written separately because in general, state only constraints are more 

difficult to handle, and some existing algorithms treat them in different ways. In our 

proposed method, however, both of them will be treated with one unified approach. 
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As discussed in Chapter 2, adjoint methods can be applied to calculate the gradient of 

the cost function ( )0 1,..., NJ −u u  with respect to the controls nu  very efficiently. 

However, the derivation in Chapter 2 did not include the nonlinear path constraints 

discussed above. In the absence of such additional constraints, the gradients derived in 

Chapter 2 can be used directly with any optimization algorithm. However, if nonlinear 

path constraints are present, their effect on the optimization has to be taken into 

account. The treatment of these constraints is discussed in the following sections. 

5.2. Existing Methods for Nonlinear Path Constraints 

It is acknowledged in control theory literature [20] that nonlinear control-state path 

inequality constraints involving state variables are the most difficult to incorporate 

effectively into optimal control algorithms. Even the maximum principle as given by 

Pontryagin does not apply directly to such problems [20].  As discussed earlier, among 

the various classes of algorithms available for optimal control problems, gradient-

based NLP algorithms combined with adjoint models are generally considered the 

most efficient, and there are a number of existing NLP algorithms designed for path 

constrained optimal control problems. This class of NLP algorithms can be further 

divided into two categories: (1) algorithms that solve the path constraints implicitly 

together with the dynamic system or convert them to simple bounds constraints, 

implying that the NLP becomes an unconstrained NLP, thus constraint gradients are 

not required, and (2) algorithms that calculate the path constraints explicitly after the 

dynamic system has been solved, implying that the NLP becomes a constrained NLP, 

thus constrained NLP algorithms are required. The first four algorithms discussed next 

belong to the first category, and the last two belong to the second category.  

One of the early methods given by Bryson et al. [20, 67, 68] incorporates the path 

constraints into the forward and adjoint equations in a manner similar to the dynamic 

system equations. In other words, the cost function is not only augmented with the 

dynamic system equations (see Equation (2.4)), but also with the path constraints, 

using an additional set of Lagrange multipliers. For example, if only control-state 
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constraints are present, the augmented cost function is given by the following 

equation, where n�  are the additional Lagrange multipliers: 
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There is, however, an additional requirement on the Lagrange multipliers n�  (see 

Bryson and Ho [20] for details). The numerical algorithm essentially involves joining 

together the constrained and unconstrained parts of the trajectories using the necessary 

conditions of optimality. This method is capable of finding the exact optimum quite 

efficiently and solves the path constraints implicitly together with the dynamic system, 

implying that solutions obtained at any iteration are always feasible. However, a major 

drawback of this technique is that the sequence of constrained and unconstrained parts 

of the trajectories at the optimum must be known apriori, and this information is not 

available for production optimization problems. Further, control-state and state only 

path constraints are not treated in the same manner, and state only constraints are 

generally quite difficult to implement with this approach [20].  

Another method known as the Generalized Gradient method given by Mehra and 

Davis [64] shows that the difficulties associated with the method given by Bryson et 

al. [20, 67, 68] can be avoided by choosing different combinations of the control and 

state variables as the independent variables, instead of always choosing the control 

variables as independent variables. The different combinations of the control and state 

variables as independent variables are dictated by the constraints and could result in 

different combinations along different parts of the trajectory. The gradient of the cost 

function with respect to the independent variables, called the generalized gradient, is 

calculated by solving a set of equations similar to the Euler-Lagrange equations [64]. 

Unfortunately, there are a few disadvantages of this method as well. The path 

constraints are only calculated explicitly after the dynamic system has been solved, 

resulting in possible infeasible solutions, in which case one has to start from a new 
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guess. More importantly, since this method requires the ability to independently 

control the state variables, implementing this method is difficult in conjunction with 

existing simulator codes. For the same reason, standard NLP software cannot be easily 

used with this approach. 

Yet another method known as the slack variable method (Jacobson and Lele [69]; 

Feehery [65]) essentially changes the original inequality constraint to an equality 

constraint by means of a slack variable a(t): 
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The slack variable is squared so that any value of a is admissible. The principle of the 

method is to make one of the control variables appearing in the constraint a new state 

variable for the corresponding constraint. Thus, the constraint is appended as an 

equality constraint to the dynamic system, the control variable is solved as a state 

variable during the forward solve and the slack variable a(t) becomes the new control 

variable. Although the method is appealing and efficient, and like the first method, 

only generates feasible solutions, it again has some drawbacks, the main one being 

that, as the method changes the category of a control variable to a state variable, this 

means that any possible bounds on control variables cannot be satisfied. 

Unfortunately, almost all control variables for production optimization problems have 

either physical or economic bounds. Also, if more than one control variable is a 

candidate for conversion to a state variable, no suitable selection strategy exists. In 

practice, since a combination of control variables influences the state constraint, the 

method is not able to choose the correct one. Further, this method also requires 

significant modifications to existing simulation code. 

In petroleum engineering literature, Zakirov et al. [30] have proposed an algorithm for 

implementing inequality path constraints. Their method is similar to that of Bryson et 

al. [20, 67, 68] in the sense that the active constraints are adjoined to the cost function 
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by an additional set of Lagrange multipliers. The gradient of the objective function 

with respect to the independent controls is then calculated using the usual Euler-

Lagrange equations (adjoint system). In order to calculate the step size, it is required 

that none of the constraints is violated by taking that step in the search direction. To do 

this, a problem of variations is solved. However, in order to do so, it is implied that the 

constraints that are active at a given iteration will also remain active in the next and 

succeeding iterations. There is no reason why this should be true, and such a scheme 

would result in the problem becoming overly constrained with succeeding iterations. It 

is also not clear how it is determined which constraints will be active at the optimum, 

and which controls will be kept independent. 

The algorithms considered above solve the constraints implicitly together with the 

dynamic system. At the other extreme are algorithms that calculate the constraints 

explicitly after the dynamic system (forward model) has been solved, in order to 

determine whether the constraints were violated or not. The most popular among this 

class of algorithms for optimal control problems has been the penalty function 

approach and its variants [20, 70]. Penalty function methods transform the constrained 

optimization problem into alternative formulations such that the numerical solutions 

are sought by solving a sequence of unconstrained optimization problems [70]. For 

example, the production optimization as given by Equation (5.1) is converted to the 

following problem: 
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Here, ( )1,n nnc +� �
� �

ϒ ux is some function of the constraint ( )1,n nnc + ux  and kr is a 

positive constant known as the penalty parameter. With respect to 0 1,.., N −u u , the 
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above optimization problem is an unconstrained optimization problem (except for the 

simple bounds which can be satisfied easily). If the unconstrained optimization of the 

function kΦ  is repeated for a sequence of values of kr , the solution may be brought to 

converge to the solution of the original problem. The main reason for the popularity of 

the penalty function method within this class of methods (where constraints are 

calculated explicitly) is because constrained NLP becomes an unconstrained NLP, 

implying that only one gradient (that of the kΦ ) is required at each iteration; thus only 

one adjoint system has to be solved at each iteration. All other constrained NLP 

algorithms require the gradient of all active constraints at each iteration, and since for 

a path constrained optimal control problem, the number of active constraints and 

therefore the number of adjoint solves could be as large as the number of time steps of 

the forward problem (or more, if more than one path constraint is present), these 

algorithms are not practical for the production optimization problem. However, a key 

disadvantage of the penalty function method, which renders it impractical for the 

production optimization problem, is its inefficiency. Specifically, a large number of 

iterations for various values of kr  are typically required for significant improvement of 

the objective function. The problem is more severe when the initial guess is close to 

the constraint boundaries and one or more constraints are active at the optimum, and 

this is often the case with production optimization problems. 

Due to the fact that the constrained NLP methods require the gradients of all active 

constraints, and thus become very expensive for path constrained optimal control 

problems, one approach is to construct a single constraint from all the constraints, such 

that satisfying this single equivalent constraint ensures that all constraints will be 

satisfied. Such an approach is called constraint lumping [71]. With this approach, only 

two gradient calculations and therefore only two adjoint evaluations will be required at 

each iteration (one for the objective function and one for the equivalent constraint), 

which is a huge improvement compared to retaining all constraints. Various lumping 
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schemes are available in the literature [71, 66], with the following being commonly 

used for optimal control problems: 
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The second approach is an improvement over the first because the gradient of the first 

is discontinuous, although the second representation is also more nonlinear. Another 

approach is to create a smooth approximation to the max function, as given by 

Jennings et al. [66]: 
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The advantage of Equation (5.6) over the second equation of Equation (5.5) is the 

elimination of squaring, implying small deviations are penalized more heavily. In the 

algorithm proposed here, constraint lumping is applied in conjunction with the feasible 

direction algorithm. To our knowledge, this combination of algorithms has not been 

used previously for optimal control problems. Also the lumping scheme used, a 

relatively new procedure [72], is more rigorous compared to Equation (5.6) and has 

not been used for optimal control problems before. The feasible direction algorithm 

and the particular constraint lumping scheme used here are discussed in the next 

sections. 
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5.3. Feasible Direction Optimization Algorithm 

The basic idea behind the method of feasible directions is to start from a feasible point 

(a point that satisfies all constraints) and move to a better point (with a lower objective 

function value) according to the iterative scheme [70]: 

� 1i i iβ+ = +u u S � �	����

Note that u  here represents the entire set of controls 0 1,.., N −u u , and iu is the starting 

point for the ith iteration, iS  is the search direction, β  is the step length, and 1i+u  is 

the final point obtained at the end of the iteration. The search direction iS  is found 

such that the following two properties are satisfied (1) a small move in the direction 

violates no constraint, and (2) the value of the objective function is reduced in that 

direction. The iterative process is repeated until no search direction can be found 

satisfying both properties. The final iterate represents a constrained local minimum of 

the problem. A direction satisfying both above-mentioned properties is called a usable 

feasible direction [70].  

To exemplify, consider the optimization problem depicted by Figure 5-1. The figure 

shows the objective function contours (orange lines, dot-dash) and three constraints 

(green lines, solid), which are functions of two control variables only. No state 

variables are present for simplicity. The blue dot labeled “optimum” depicts the 

constrained minimum of the problem, constrained by 3c . Thus only constraint 3c  is 

active at the optimum. The initial guess or starting point is at the intersection of 

constraints 1c  and 2c , meaning that 1c  and 2c  are active at the initial guess. The blue 

arrow (dashed) is the negative of the objective function gradient, and the purple arrows 

(dashed) are the negatives of the active constraint gradients. The thick orange lines 

represent the cone of feasibility at the initial guess, that is, any search direction within 

this cone will satisfy property 1. The pink arrow (solid) is a usable feasible direction, 

that is, a search direction that satisfies both properties 1 and 2. Such a direction at a 
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point iu  can be determined mathematically by a direction iS  that satisfies the 

following equations [70]: 
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Here, ( )iJ∇ u  and ( )n
ic∇ u  are the gradients of the objective function and the active 

constraints at point iu . It is possible to reduce the objective function J at least by a 

small amount by taking a step length 0β >  along such a direction. 

 
Figure 5-1 Schematic of a simple optimization problem with constraints 

There are many different ways to determine a usable feasible direction, giving rise to 

different feasible direction algorithms. In the current work, the well-known 

Zoutendijk’s method of feasible directions is used [70], and will therefore be discussed 
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here. In this method, the usable feasible direction at the current iterate is taken as the 

negative of the objective function gradient if the iterate lies in the interior of the 

feasible region. However, if it lies on the constraint boundary (or close to the boundary 

within some pre-set tolerance), a usable feasible direction that satisfies Equation (5.8), 

is found by solving a linear programming problem [70]: 
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Here, ,i ks is the kth component of iS  (recall that i designates iteration), and the first p 

constraints are assumed to be active (or almost active) at point iu  (the constraints can 

always be renumbered to satisfy this requirement). Here γ  is taken as an additional 

design variable. Any value of 0γ >  would provide a usable feasible direction iS . The 

maximum value of γ  gives the best direction iS  that makes the value of ( )T
i iJ∇S u  

maximally negative and the values of ( )T n
i ic∇S u  as negative as possible 

simultaneously. In other words, the maximum value of γ  makes the direction iS  steer 

away from the active nonlinear constraints. Different values of nθ  for different 

constraints allow us to give more importance to certain constraint boundaries as 

compared to others. For more details, refer to Rao [70]. 

The feasible direction algorithm is useful when the initial guess point is at (or close to) 

constraint boundaries and the steepest descent direction (negative objective function 

gradient direction) is pointing away from the feasible region. This is often the case 

with production optimization problems. In such a case, first order algorithms (like the 

steepest descent algorithm) or even quasi-Newton algorithms would provide search 



 114 

directions moving along which would violate one or more constraints, thereby 

providing infeasible iterates.  

5.4. Approximate Feasible Direction Algorithm 

Zoutendijk’s method of feasible directions [70], like all other constrained NLP 

algorithms, requires the gradients of all active constraints. As seen in Equation (5.9), 

these gradients are required to calculate the feasible direction. However, as mentioned 

earlier, this is not practical for an optimal control problem with path constraints due to 

the excessive number of adjoint evaluations required to calculate these gradients. One 

approach to alleviate this problem is to apply constraint lumping to create one 

equivalent constraint from all active constraints, with the benefit that only two adjoint 

solutions will be required at each iteration, one for the objective function and one for 

the equivalent constraint. The particular lumping scheme used in this work is given by 

Liu et al. [72]. It is essentially a smooth differentiable approximation of the max 

function, but is more rigorous compared to Equation (5.6). In their work, the lumping 

scheme is used within a penalty function method, whereas in this work we apply it in 

conjunction with the feasible direction method, which leads to a different 

interpretation. 

Consider the discontinuous unit-step function and its approximation, the sigmoid 

function, given by the following equations: 
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The max function is an integral of the unit-step function and is given by the following 

equation: 

� { } ( )max ,0
x
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Figure 5-2 The max function and its approximations for various values of α  

Substituting ( ),s y α  for ( )yσ  in the expression above, it can be shown that the 

following equation approximates the max function [72]: 
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The function ( ),p x α  has infinitely many continuous derivatives. Some other 

properties of the function ( ),p x α  relevant to its application with the feasible 

direction algorithm are as follows: 
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Figure 5-3 Schematic of a simple optimization problem with constraints, illustrating an 

approximate feasible direction 

Due to the above properties, the function ( ),p x α  can be used as an approximation of 

the max function for constraint lumping. This circumvents the main disadvantage of 

the max function, which is its non-differentiability (this makes it difficult to implement 

the max function with gradient-based algorithms). However, due to the infinite 

differentiability property mentioned above, ( ){ }1, ,n n np c α+x u  will be as many times 

differentiable as ( )1,n n nc +x u . Figure 5-2 shows the max function and its 

approximation with ( ),p x α  for various values of α . The equivalent constraint 

replacing the max constraint lumping scheme for the path constraints of Equation (5.1) 

is given as: 
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Figure 5-4 Zoomed in version of the above schematic 

The log 2 /α  term appears in the above equation because ( )0, log 2 /np c α α= =  and 

( ),np c α  increases monotonically with nc . With this definition, the optimal control 

problem equivalent of Equation (5.1) is given by Equation (5.15) below. The nonlinear 

path constraint has been replaced by the single integral constraint C. The bounds on 

the controls are still present, but they can be easily satisfied using standard techniques 

like gradient projection. 
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From the perspective of the feasible gradient algorithm, since the function 

( ){ }1, ,n n np c α+x u  is an approximation of ( ){ }1max , ,0n n nc +x u , it is clear that the 
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equivalent constraint C is essentially a sum of the active constraints, for large enough 

α . Therefore, the gradient of the equivalent constraint C is the sum of the gradients of 

the active constraints. This is demonstrated in Figure 5-3, where the dashed brown 

arrow is the sum of the gradients of the active constraints 1c  and 2c , and these 

gradients themselves are depicted by the dashed purple arrows. Therefore, the 

implication of using this particular constraint lumping as opposed to directly solving 

the original problem is that, instead of obtaining the gradients of all the active 

constraints individually, only a single gradient direction is obtained, which is the sum 

of the gradients of all active constraints. With only this single direction, the apparent 

feasibility cone is given by the thick gray line. This apparent feasibility cone will 

always be equal to or wider than the true feasibility cone (thick orange line). Again, a 

linear program can be solved to determine the feasible direction: 
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Note that, because the apparent feasibility cone may be wider than the true feasibility 

cone, the feasible direction obtained may not be actually feasible. For example, using 

Equation (5.16), a direction such as the solid pink arrow (Figure 5-3) may be obtained 

as the feasible direction. Although this direction is within the apparent feasibility cone, 

it is outside the true feasibility cone, and is therefore not truly a feasible direction. 

Moving in this direction even infinitesimally would result in the violation of constraint 

2c  (but not 1c ). This direction is therefore called an approximate feasible direction. 

However, this direction will usually be better than just the steepest descent direction 

(negative objective function gradient). For example, as seen in Figure 5-3, moving in 

the steepest descent direction violates both active constraints.  
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In order to solve the above problem of approximate feasibility, a feasible line search 

algorithm is employed. The key idea behind the feasible line search algorithm is to 

implement the path constraints within the forward model and modify the search 

direction within the forward model if the path constraints are violated. The 

approximate feasible direction is thus projected onto the infeasible active constraints 

during line-search by solving the constraints during the forward simulation. Note that 

projecting this direction onto the infeasible active constraints during line-search is 

equivalent to performing a “curved” line search along the infeasible active constraints, 

as seen in Figure 5-4. Gradient information from previous iterations and our 

knowledge of the dynamic system can be used to determine which controls need to be 

modified to satisfy an infeasible constraint. For example, if a path constraint such as a 

maximum injection rate constraint is violated at a given time step of the forward 

simulation, the controls associated with the injectors at that time step will have the 

maximum influence on the constraint, and should therefore be modified to satisfy the 

constraint. Note that there could be many possible choices of controls or combinations 

thereof that can be modified to satisfy a constraint, and it is not clear at the moment if 

a particular “best” strategy exists that could be employed to choose the right controls.  

In the current work, a maximum total water injection constraint and a maximum total 

liquid production constraint have been implemented. For the maximum total water 

injection rate constraint, if the constraint is violated at a given time step, controls 

associated with all the injectors (BHPs) at that time step are modified to satisfy the 

constraint. Similarly, for the maximum total liquid production constraint, the producer 

BHPs are modified to satisfy the constraint. In the current implementation, a simple, 

easy to implement iterative approach is used to determine the modified controls if the 

path constraints are violated at a given time step. The approach assumes that a linear 

relationship exists between the injection rate of an injector (or liquid production rate of 

producer) and the pressure difference between its BHP and well block pressure, as 

depicted by the following equation: 
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To clarify, after solving the forward model at a given time step with the values of the 

controls as provided by the optimization algorithm (approximate feasible direction 

algorithm in this case), if a constraint is violated (i.e., tgt curq q< ), new values of the 

controls to be modified ( tgt
wp ) are obtained with the above equation using the current 

values of the controls ( cur
wp ), and the forward model is solved again at the same time 

step with the new control values. The process is repeated until the constraint is 

satisfied. ω  is a relaxation factor used to accelerate convergence. This approach is 

certainly not the most efficient, and the best approach would be to solve the violated 

constraints together with the dynamic system.  

The main benefits of the feasible line search algorithm are that all iterates obtained are 

always feasible, implying that any iterate can be considered a useful solution, and large 

step sizes are possible during the feasible line search, leading to significant reductions 

in forward model evaluations and possibly also the objective function. 

In order to account for the bounds on the controls, a projected gradient algorithm (with 

the approximate feasible direction as the search direction) is used. Refer to Kelley [73] 

for more details about gradient projection. The simulator used in this work is the 

General Purpose Research Simulator (GPRS) developed at Stanford [11], and the 

adjoint models are built directly from the simulator code, as described in Chapter 2 

and [10]. 

5.5. Example 1 – Horizontal Smart Wells 

The first case is a simple example adapted from Brouwer and Jansen [34] that 

effectively demonstrates the applicability of the proposed algorithm to smart well 

control with nonlinear path constraints. The schematic of the reservoir and well 
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configuration is shown in Figure 2-3. The model description is the same as in Chapter 

2 and is therefore not described here.  

  
Figure 5-5 Permeability field for first example on left, and final oil saturation for uncontrolled 

case on right 

  
Figure 5-6 Final oil saturation for rate controlled case on left, and for BHP controlled case on 

right 

For purposes of optimization, the injector and producer segments are placed under 

BHP control. Everything else is the same as in Chapter 2. Because the injector 

segments were under rate control in Chapter 2, the maximum injection rate constraint 

of 2710 STBD was a linear constraint. However, because the controls are the BHPs of 

segments in this case, the same constraint becomes a nonlinear path constraint. Thus, 

comparing against our earlier results, this case demonstrates the validity and 



 122 

effectiveness of the proposed approach to handle nonlinear path constraints. The base 

case is also the same as before. 

 
Figure 5-7 Cumulative water and oil production for uncontrolled reference case and optimized 

case 

Starting from an initial oil saturation of 100% throughout the reservoir, Figure 5-5 

(right) shows the final oil saturations for the uncontrolled case obtained after 950 days 

of production. Figure 5-6 shows the final oil saturations after 950 days for the 

optimized cases, the left image with the injector segments under rate control (from 

Chapter 2), and the right image with the injector segments under BHP control 

(performed with the proposed algorithm). As discussed above, rate controlled injectors 

correspond to the injection rate constraint being a linear path constraint, and for BHP 

controlled injectors, the rate constraint becomes nonlinear. It is clear that the 

optimization leads to a large improvement in the sweep efficiency for both cases, and 

the proposed algorithm with BHP controlled injectors performs almost as well as the 
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original algorithm [10] with linear constraints only, validating the effectiveness of the 

approach. The optimization leads to an increase in NPV of approximately 100%. 

Figure 5-7 shows that there is a substantial increase in cumulative oil production 

(70%), attributed to the better sweep, and a slight decrease in water production (6%) 

after the optimization process. The optimization process required 4 iterations and the 

total number of simulations (including adjoint simulations) required for the 

optimization was around 15. 

 
Figure 5-8 Maximum water injection constraint before and after optimization 

Figure 5-8 shows the injection rates for the reference case and the optimized case (with 

BHP controlled injectors). It is clear that the constraint (2710 STBD) is satisfied to 

within 1% tolerance after optimization. Note that even after the optimization, the water 

injection rate remains near the maximum for most of the time, thus implying that the 

optimization essentially results in redistribution of the injected water among the 

injection segments. 
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As in Chapter 2, the reasons behind the better sweep in the optimized case can be 

explained by analyzing the optimized trajectories of the controls as seen in Figure 5-9. 

The y-axis of Figure 5-9 corresponds to 45 segments (injectors on the left and 

producers on the right) and the x-axis corresponds to the 5 control steps. The color 

scale corresponds to BHPs of the segments. It is obvious that the injector segments 

completed in or near the high permeability streaks are shut-in most of the time, as they 

would otherwise force water to move very quickly toward the producers, resulting in 

early breakthrough and thus poor sweep. For the producers, we again observe that the 

segments completed in or near the high permeability streaks are shut most of the time, 

in order to force the injected water into the low permeability regions to improve 

sweep. 
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Figure 5-9 Control trajectories for injectors and producers after optimization (x-axis 

represents the control steps, and y-axis represents the 45 injector and producer segments) 

5.6. Example 2 – Arab-D Formation, Ghawar Reservoir 

The second example studied is a more realistic example adapted from Yeten [6] and 

Sengul et al. [74]. The simulation model is a conceptual representation of a small 

portion of the Arab-D formation of the Ghawar reservoir (see Figure 5-10 left). The 

3D simulation model, populated with the initial oil distribution, is shown in Figure 

5-11 (left). The red blocks indicate oil and blue blocks indicate water, while the blocks 

in between indicate the transition zone. The reservoir model consists of 25 × 33 × 10 

cells with grid sizes in the x and y directions of 200 feet. The thickness of each layer 
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varies, and properties are provided in [6]. The movable oil originally in place is around 

18 MMSTB. The model has aquifer support along the east flank. The other boundaries 

were modeled as no-flow. 

  
Figure 5-10 The Ghawar oil field with small rectangle depicting area under study on the left, 

orientation of fractures and Super – K layers in simulation grid on the right [74] 

This field is a naturally fractured carbonate reservoir. Fractures act as the fastest fluid 

flow paths within the reservoir. The matrix also has reasonable permeability and 

contributes significantly to fluid flow. Two distinct fracture distributions are identified 

within the field. Here they will be referred to as fractures and stratiform “Super - K” 

layers. The fractures are modeled as vertical high permeability zones, oriented along 

the east-west plane, cutting all layers from top to bottom. The stratiform Super - K 

layers are modeled as thin layers with high permeability. Figure 5-10 (right) shows 

how the fractures and the stratiform Super - K layers are oriented. The refined grids in 

the y direction in Figure 5-11 (left) represent the vertical fractures, and the thin layers 

(5 and 9) represent the Super - K layers. Additional properties are provided in [6]. 

Because the field is operated above the bubble point pressure, the simulation model 

only includes oil and water phases. A tri-lateral production well is completed in the 

second layer of the simulation model (Figure 5-11 right). All laterals as well as the 

main-bore are horizontal. The heel of the main-bore is highlighted with a full white 

circle on this plot. The branch closest to the heel of the well will be referred to as 

Branch 1, the one just below it will be referred to as Branch 2, and the last one will be 



 126 

referred to as Branch 3, as shown in Figure 5-11 (right). Note that Branch 2 intersects 

a fracture and Branch 1 is very close to a fracture. Branches 1 and 2 are about 2000 ft 

long and Branch 3 is about 3000 ft long. The branches are spaced approximately 1400 

ft apart from each other, and all have open-hole completions. The laterals are fully 

perforated (no partial perforation) and the main-bore is not perforated. 

  

Figure 5-11 3D simulation model of the Ghawar example on the left, and the tri-lateral well 
on the right 

The simulation model was run for 1800 days (approximately 5 years). Production is 

subject to a maximum liquid production constraint of 6000 STBD, and the controls are 

the BHPs of each lateral, thereby making the liquid production constraint a nonlinear 

path constraint. The minimum allowable BHP at the heel of the well was set at 2600 

psi (equivalent approximately to a WHP of 250 psi, as in [6]). The objective is to 

maximize the cumulative oil production of the reservoir. The base case is an 

uncontrolled case producing at the maximum liquid rate (6000 STBD). Uncontrolled 

implies that the BHPs of the laterals are not controlled directly, and they adjust 

themselves according to the production rate and the BHP at the heel of the well. 

Because the GPRS version used in this work did not have downhole choke models 

implemented, the tri-lateral well was actually modeled as three separate horizontal 

wells. To maintain approximate consistency with Yeten’s model [6], for the 

uncontrolled case the BHPs at the junctions of the laterals and the main-bore were 

1 

2 

3 
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specified based on the ECLIPSE [75] simulation results generated in [6]. This entailed 

specification of time-varying BHP for each lateral. The resulting oil rates and 

watercuts generated by GPRS are close to the original ECLIPSE results of Yeten [6], 

indicating that our base case is consistent with the earlier model. 

 
Figure 5-12 Oil production rates for the three branches for the uncontrolled and optimized 

cases 

 

Figure 5-13 Watercuts for the three branches for the uncontrolled and optimized cases 

Figure 5-12 shows the oil production profiles for individual branches. As explained in 

[6], the resulting production is unbalanced. In the uncontrolled (reference) case, 

Branch 1, which is closest to the heel of the well, produces more oil than the other two 
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branches. Branch 2 produces significantly more than Branch 3, especially for the early 

times before the water breaks through, due to its intersection with a fracture.  

Figure 5-13 presents the watercut for each branch. The watercut of Branch 3 

(reference) is much less compared to the others, likely due to the proximity of 

Branches 1 and 2 to the fractures and Super – K layers, which act as fast conduits to 

the aquifer. This results in unbalanced production and unbalanced sweep (Figure 5-14 

left) which are detrimental to overall recovery. 

   
Figure 5-14 Final oil saturation for layer 2 for the uncontrolled case (left) and the optimized 

case (right) 

 
Figure 5-15 Field watercut for the uncontrolled and optimized cases 



 129 

Figure 5-12 also shows the oil production profiles after optimization with the proposed 

algorithm. The 1800 days of production was divided into 18 controls steps of 100 days 

each, resulting in a total of 18x3 = 54 controls. As would be expected, the algorithm 

allocates more production to Branch 3 than the other branches. It can also be seen that 

Branch 2 has been allocated the least amount of production due to its direct connection 

to a fracture.  

 
Figure 5-16 Cumulative oil and water production for the uncontrolled and optimized cases 

 

 
Figure 5-17 Maximum liquid production constraint for the uncontrolled and optimized cases 
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Figure 5-13 also shows the watercut profiles of the branches after optimization. The 

water breaks through in Branch 3 earlier. This water comes from the matrix and its 

watercut does not increase as rapidly as in the other branches. Therefore the 

breakthrough in Branch 3 does not affect the overall performance as much as the 

breakthrough in other branches. Figure 5-14 (right) also shows that the final sweep 

pattern obtained after optimization is more balanced, resulting in more oil being 

produced. 

Figure 5-15 shows the field watercuts for the uncontrolled and optimized cases. It is 

clear that because there is a maximum liquid production constraint (which is 

essentially active in the uncontrolled case), the only way to increase cumulative oil 

production is to reduce the field watercut. It is observed from Figure 5-15 that the field 

watercut is higher for the optimized case for about 300 days, after which it reduces 

below the base case. The final watercut after 1800 days is reduced from 0.66 to 0.54, 

resulting in an increase in cumulative oil production of about 16% over the base case, 

as seen in Figure 5-16. The liquid production rates for the uncontrolled and the 

optimized cases are plotted in Figure 5-17. The optimization clearly satisfies the 

maximum constraint of 6000 STBD at all times, again validating the effectiveness of 

the proposed algorithm. The total number of iterations of the optimization algorithm 

was 11, and the total number of simulations required including adjoint simulations was 

68. Yeten [6] used a conjugate gradient algorithm with numerical gradients for the 

optimization, with ECLIPSE as the simulator, and he also found a similar 

improvement in cumulative oil production. However, the number of simulations 

required with his approach will in general be much more due to the use of numerical 

gradients. 

5.7. Summary 

In this chapter, an approximate feasible direction algorithm combined with a feasible 

line search was proposed to handle production optimization problems with nonlinear 

path inequality constraints, with the following major benefits: 
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1. Due to constraint lumping, only two adjoint evaluations are required at each 

iteration of the optimization algorithm, which is one of the reasons behind the 

efficiency of the algorithm. 

2. All iterates obtained are always feasible, implying that the optimization may be 

stopped at any iteration and the final iterate can be considered a useful solution. 

3. Large step sizes are possible during the modified line search, leading to 

significant reductions in forward model evaluations during the line search, and 

may also result in significant reduction of the objective function. 

4. Problems associated with starting close to the boundary of the feasible region, 

which may limit the effectiveness of penalty function methods, are avoided. Such 

starting points often occur in production optimization problems. 

The effectiveness and applicability of the algorithm was demonstrated through two 

examples: the first was a dynamic waterflood optimization problem with a maximum 

injection rate constraint, and the second was a tri-lateral well optimization problem 

with aquifer support and a maximum liquid production rate constraint. Both 

optimizations resulted in significant improvement in the objective functions (NPV and 

cumulative oil production), implying that model-based optimization has considerable 

potential for practical reservoir management. 
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Chapter 6 

6. Kernel PCA for Parameterizing Geology 

As described in Chapter 3 and Chapter 4, a continuous and differentiable 

parameterization of input random fields of simulation or geological models relating the 

output realizations and input parameters is required because such a parameterization 

may be used in conjunction with, or as a subset of, other gradient-based algorithms 

that constitute the reservoir modeling and management workflow, such as history 

matching or uncertainty propagation algorithms. The emphasis here on gradient-based 

algorithms is due to their efficiency compared to stochastic algorithms, because in 

general, gradient-based algorithms require many fewer evaluations of the reservoir 

flow simulation model compared to stochastic algorithms. This is essential for many 

practical applications, because a single evaluation of a large-scale reservoir simulation 

model can require many hours. Furthermore, as seen in earlier chapters, efficiency has 

become even more critical with the advent of closed-loop reservoir management [8, 

16], which requires continuous realtime application of various algorithms such as 

model updating, uncertainty propagation and optimization. 

To elaborate, a differentiable mathematical parameterization of the form ( )f=y �  is 

desirable, where vector y  is a realization of a discrete random field, CNR∈y , (NC = 

number of cells in geological model) and vector �  (input parameters), of dimension 

much smaller than NC, is a set of independent random variables with a specified 

distribution (for example standard Gaussian). Such a mathematical model can be used 

for geostatistical simulation just as standard geostatistical algorithms, because by 

drawing a random vector �  from the specified distribution, a realization y  of the 

given random field can be generated. In comparison, a key issue with both the 

traditional two-point [63] and the more recent multi-point geostatistical algorithms 
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[76, 57, 77] is that the algorithms do not provide a differentiable functional 

relationship between the output realizations (of the simulated random field) and the 

input parameters of the algorithms. Further, the input parameterization is not very 

general or flexible, for example, a parameterization in terms of a single random 

variable (random seed) is used in most geostatistical algorithms to generate the 

realizations of the random field. 

As seen in Chapter 3, the Karhunen-Loeve (K-L) expansion or linear principal 

component analysis (PCA) was used within the closed-loop for a differentiable 

parameterization of subsurface properties in terms of a small set of independent 

random variables. However, the K-L expansion has two major drawbacks limiting its 

application to practical geological or simulation models. First, as is the case with 

standard two-point geostatistical algorithms, it only preserves the covariance of the 

random field (two-point statistics), and therefore is suitable only for multi-Gaussian 

random fields. It cannot be applied to model complex geological structures such as 

channels. Second, the K-L expansion requires a computationally expensive eigen 

decomposition of a large covariance matrix of size NC × NC, and this is exceedingly 

demanding for large-scale simulation models even with current computational 

capability. To our knowledge, there are no differentiable mathematical models applied 

in the petroleum industry for parameterizing non-Gaussian random fields (multi-point 

statistics) that are capable of representing complex geological structures. 

Both problems of the K-L expansion discussed above can be solved elegantly with a 

recently developed theory from the field of neural computing and pattern recognition, 

known as kernel principal component analysis (KPCA), which is a nonlinear form of 

PCA [22, 78]. The basic idea is that the kernel method can be applied to create 

different nonlinear versions of any algorithm (such as the K-L expansion) that can be 

written exclusively in terms of dot products [22]. Kernel PCA has proven to be a 

powerful tool as a nonlinear feature extractor for classification algorithms [79] from 
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high dimensional data sets, which is similar to what multi-point geostatistical 

algorithms attempt to accomplish using training images.  

In this chapter, we first apply the kernel formulation of the eigenvalue problem 

associated with the standard K-L expansion (this corresponds to a polynomial kernel 

of order one), which results in a much more efficient representation of the K-L 

expansion compared to a direct solution of the standard eigenvalue problem. Using the 

kernel formulation of the eigenvalue problem, instead of performing an eigen 

decomposition of an NC × NC covariance matrix, an eigen decomposition of a different 

matrix, the so-called kernel matrix of dimension NR × NR (NR is the number of 

realizations required to achieve a converged covariance matrix), is performed. This 

can be accomplished very efficiently, as NR is usually quite small compared to NC.  

Next, kernel principal component analysis with high order polynomial kernels is 

applied to preserve multi-point statistics of non-Gaussian random fields, thereby 

creating a differentiable mathematical model capable of simulating random fields 

representing complex geological structures. The kernel PCA parameterization is not 

created from analytical multi-point statistical descriptions but rather from realizations 

of the random field generated using existing multi-point geostatistical algorithms. The 

kernel PCA parameterization thus provides a differentiable model that enables the use 

of gradient-based algorithms for a variety of applications. Kernel PCA is a nonlinear 

generalization of the K-L expansion, and the basic idea is that instead of performing 

the K-L expansion in the input space CNR  of the original random field, the K-L 

expansion is performed in a possibly high order feature space F, which is nonlinearly 

related to the input space. Application of dth order polynomial kernels implies that the 

feature space F is a dth order product space of the original input space CNR . Therefore, 

a K-L expansion in the feature space F results in preserving moments up to order 2d 

(2d-point statistics) of the original random field in CNR .  



 135 

Because the K-L expansion is performed in the feature space, the resulting realizations 

lie in the feature space, and therefore an appropriate “pre-image problem” (inversion) 

is performed [79, 80] to generate realizations in the input space CNR . This results in a 

nonlinear, implicit, and differentiable parameterization of the input random field in 

terms of a small number of independent random variables. Again, because the kernel 

formulation of the eigenvalue problem is solved in the feature space, an eigen 

decomposition of only a small kernel matrix of size NR × NR is required even though 

the dimension of the feature space could be extremely large. The approach is therefore 

essentially as efficient as the kernel formulation of the standard K-L expansion.  

This chapter proceeds as follows. We first describe the basic K-L expansion and then 

formulate this expansion as a kernel eigenvalue problem. Next, kernel PCA procedures 

are applied to handle multi-point geostatistics, after which our approach for the pre-

image problem is described. We then apply the kernel PCA approach for the solution 

of a history matching problem involving a channelized subsurface model. We note that 

many of the kernel PCA ideas and approaches described here are due to Scholkopf et 

al. [22] and Scholkopf and Smola [78] and have been described in detail previously 

within the machine learning literature. Although our presentation in some places 

closely follows these earlier expositions, we present the approaches in full detail in 

this chapter as these ideas appear to be new within the context of subsurface 

characterization and history matching. We note further that several of the algorithms 

applied in this work were modified from the Statistical Pattern Recognition Toolbox 

for Matlab [81]. 

6.1. The Karhunen-Loeve Expansion of Random Fields 

The basic theory of the Karhunen-Loeve expansion has been described in Chapter 3 

and will not be discussed here. This and the next section focus on the eigenvalue 

problem that has to be solved in order to perform the K-L expansion. Given a set of 

discrete centered (i.e., mean = 0) conditioned or unconditioned realizations of a 



 136 

random field ky , k = 1,..,NR, ( )CN
k R∈y , the covariance matrix  can be calculated as 

[22]: 

�
1

1 RN
T

j j
jRN =

= �C y y � �
����

The number of realizations NR should be large enough to yield a converged covariance 

matrix C. This approach of calculating the covariance matrix numerically from a set of 

realizations of the random field as above, instead of using some analytical covariance 

model, is the most general approach for calculating the covariance. This is because for 

any arbitrary random field, an analytical covariance model may not exist, but the 

numerical approach can always be applied. For example, if a number of realizations 

are created using a multi-point geostatistical algorithm such as snesim [76], the 

covariance matrix can always be calculated numerically from those realizations; 

however, it is very likely that an analytical covariance model associated with those 

realizations may not exist.  

The discrete K-L expansion that generates realizations with the above covariance C is 

given as [56]: 

� ( )        f= ≡ =1/2y E� � y � � �
����

In the above, E is the matrix of eigenvectors of the covariance matrix C, �  is a 

diagonal matrix of the eigenvalues of C, and � (vector) is a set of uncorrelated random 

variables, and these random variables are also independent if the random field is multi-

Gaussian. In other words, if the elements of �  are drawn from the standard Gaussian 

distribution, the y obtained using Equation (6.2) will be multi-Gaussian correlated 

with covariance C. Thus, the K-L expansion can be used for simulation of multi-

Gaussian random fields. On the other hand, if the covariance matrix C is obtained 

from a set of realizations having higher order statistics, Equation (6.2) can still be used 
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to obtain realizations y , but those realizations will only have the same covariance C as 

the original realizations used to calculate C. The higher order moments in the original 

realizations will in general not be reproduced. 

The K-L expansion is thus a parameterization of the form ( )f=y � , where the 

functional relationship is linear. Here, matrix C is of size NC × NC.  The maximum size 

of the matrices E and �  is NC × NC, and that of vector �  is NC × 1. Note that the word 

maximum is used because we may choose to retain only the largest NM of the total NC 

eigenvalues, in which case E is of size NC × NM, �  is of size NM × NM, and �  is of 

size NM × 1. Further, as we will see later, the maximum number of non-zero 

eigenvalues is actually the minimum of NC and NR, implying that NC non-zero 

eigenvalues do not exist if NR < NC. Thus, the random field y  finally is parameterized 

in terms of NM independent random variables� .  

 
Figure 6-1 Channel training image used to create the original realizations [77] 

Discarding the (NC - NM) smallest eigenvalues implies that we are discarding the 

shortest correlation lengths. However, because the K-L expansion is an optimal 

expansion for multi-Gaussian random fields in a least-square sense [56], this implies 

that of all possible parameterizations of the multi-Gaussian random field with NM 
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random variables, the K-L expansion minimizes the least-square approximation error. 

Even when the random field is not multi-Gaussian, the K-L expansion minimizes the 

least-square approximation error of representing the realizations used to create the 

covariance matrix C. This is a very favorable property of the K-L expansion for the 

applications discussed earlier, because a relatively small NM is essential for efficiency 

of these applications, though this still provides accurate approximations of multi-

Gaussian random fields. 
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Figure 6-2 Some of the realizations created using snesim 

In order to determine the K-L expansion, the following eigenvalue problem is solved 

[22, 78]: 

� λ =v Cv � �
����

Here, λ  are the eigenvalues of C and v  are the eigenvectors of C. However, solving 

this problem directly with standard algorithms such as singular value decomposition 

(SVD) is a very expensive process of O( 3
CN ) complexity [82]. It is thus almost 

impossible to solve this problem for a large-scale simulation model with a few 

hundred thousand or more cells, and real simulation models are usually of this size. 

However, as introduced earlier, an alternative but exactly equivalent formulation of the 
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same problem, called the kernel eigenvalue problem, can be solved much more 

efficiently to determine the non-zero eigenvalues λ  and eigenvectors v  of covariance 

matrix C. The kernel eigenvalue formulation of the K-L expansion will be motivated 

with the following example. 

 
Figure 6-3 Eigenvalues (total = NC = 2025) of C arranged according to their magnitude 

 
Figure 6-4 Neighborhood of the 1000th eigenvalue (NR = 1000) 

Using the channel training image shown in Figure 6-1, 1000 (NR = 1000) 2D 

unconditional realizations of a channel permeability field, of dimension 45 × 45 (NC = 

2025), are created using the snesim software [76]. Some of the realizations created are 

shown in Figure 6-2. These realizations are used to calculate the covariance matrix C, 

and Figure 6-3 shows the eigenvalues of matrix C arranged according to their 

magnitude. Note that the total number of possible eigenvalues is equal to NC (2025). 

We observe that the eigenvalues reduce very rapidly and become close to zero at 
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around the 100th eigenvalue, but are not exactly zero. More importantly, if we focus on 

the neighborhood of the 1000th eigenvalue (Figure 6-4), we observe that the 

eigenvalues become exactly zero after the 1000th eigenvalue. This is precisely equal to 

the number of realizations NR used to create C. This occurrence is always the case (as 

proved in [22]), indicating that the maximum number of non-zero eigenvalues of C is 

equal to NR if NR < NC and to NC if NC < NR. This key observation serves as the basis 

for the kernel eigenvalue problem. 

6.2. The K-L Expansion as a Kernel Eigenvalue Problem 

Using the definition of the covariance matrix C from Equation (6.1) and the 

eigenvalue problem given by Equation (6.3), the following equation is obtained [22, 

78]: 

� ( )
1

1
.

RN

j j
jRN =

= �Cv y v y � �
����

From elementary linear algebra, this implies that all solutions v  with 0λ ≠ must lie in 

the span of the NR realizations 1,...., RNy y . Since eigenvectors v  must lie in the span of 

NR realizations, and there cannot be more than NR orthogonal directions in the span of 

NR realizations, therefore, there can only be NR non-zero eigenvalues associated with 

these NR eigenvectors. Thus, as indicated above, C can have a maximum of only NR 

non-zero eigenvalues if NR < NC. This has two important consequences [22, 78]. First, 

Equation (6.3) can be written in the following equivalent manner: 

� ( ) ( ). .        1,...,k k Rk Nλ = ∀ =y v y Cv � �
�	��

and second, there exist coefficients jα  such that: 

�
1

RN

j j
j

α
=

=�v y � �
�
��
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Combining Equations (6.5) and (6.6), we obtain [22, 78]: 

� ( ) ( )
1 1 1

1
. .  .       1,...,

R R RN N N

i k i i k j j i R
i i jR

k N
N

λ α α
= = =

� 	
= ∀ =
 �

� 

� � �y y y y y y � �
����

Now, defining an NR × NR matrix K where ( ).ij i jK = y y , that is, ijK  is the dot product 

of realizations i and j, Equation (6.7) can be written as [22, 78]: 

� RN λ = 2K� K � � �
����

K is called the kernel matrix, and it is of size NR × NR, whereas, the covariance matrix 

C is of size NC × NC. Here ( ).ij i jK = y y  is called the polynomial kernel of order 1 [22, 

78]. In the next section, this will be generalized with higher order polynomial kernels 

that will allow us to preserve higher order moments (multi-point statistics). It can be 

shown that the eigenvalues and eigenvectors of the eigenvalue problem of Equation 

(6.8) are equivalent to those of the following eigenvalue problem [22, 78]: 

� RN λ =� K� � �
�
��

Equation (6.9) is known as the kernel eigenvalue problem. The eigenvalues of this are 

given by RN λ  and the eigenvectors are given by � . Solving this problem is exactly 

equivalent to solving Equation (6.3), because the non-zero eigenvalues of Equation 

(6.3) are just that of Equation (6.9) scaled by NR, and the eigenvectors v  associated 

with the non-zero eigenvalues λ  of Equation (6.3) can be obtained from �  by using 

Equation (6.6). The rest of the NC – NR eigenvalues of C are equal to zero, as was also 

seen in the earlier example. The attractiveness of solving the kernel eigenvalue 

problem of Equation (6.9), instead of the original problem of Equation (6.3), is that for 

practical problems R CN N� , and therefore the eigen decomposition of the kernel 

matrix K can be done extremely efficiently compared to that of the covariance matrix 

C, which may not even be possible with current computing technology.  
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Figure 6-5 Convergence of variance of permeability of a few cells 

Consider the example discussed in the previous section. We can calculate the number 

of realizations that would be required in this problem to obtain a converged covariance 

matrix (of permeability). In order to determine the convergence of the covariance 

matrix and therefore the appropriate NR, the convergence of the variance of 

permeability of a few cells of the permeability field (chosen randomly) are calculated 

using an increasing number of realizations. Figure 6-5 shows the variance of these 

cells calculated using increasing numbers of realizations (10 cells were chosen, but 

most of the curves overlap, thus we see only 2 curves).  We see that about 100 

realizations are required for the variance of the cell permeabilities to converge. This 

implies that NR = 100 is sufficient for this problem, whereas NC = 2025, corroborating 

the fact that R CN N� . Thus the kernel matrix K is of size 100 × 100 in this problem 

and is much smaller than the covariance matrix C of size 2025 × 2025. In general, an 

NR of the order 102-3 should be sufficient even for problems with NC of the order 105-6, 

which is the usual size of practical simulation models. 
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6.3. Preserving Multi-point Statistics using Kernel PCA 

In the previous section, the eigenvalue problem associated with the Karhunen-Loeve 

expansion (linear PCA) was expressed in terms of the kernel eigenvalue problem with 

a polynomial kernel of order one, resulting in significant improvement in the 

efficiency of the solution of the eigenvalue problem. However, kernel methods have a 

much wider range of applicability than this. In this section, polynomial kernels of 

higher orders are applied to perform the Karhunen-Loeve expansion not in the original 

space of the realizations CNR , but in a high order space called feature space F, thereby 

preserving higher order moments (multi-point statistics) rather than just the second 

moment (two-point statistics). Recall that the standard K-L expansion only preserves 

the two-point statistics of the random field, however, multi-point statistics have to be 

preserved in order to accurately model complex geological structures like channels. 

Since the feature space F is nonlinearly related to the original space CNR , this is 

essentially a form of nonlinear PCA. The efficiency of performing nonlinear PCA with 

kernels is similar to that of linear PCA with kernels, as will be demonstrated later. 

Note that other types of kernels also exist, such as radial kernels and exponential 

kernels, which are used in other applications (e.g., support vector machines [22, 78]). 

In order to motivate the necessity of creating a parameterization capable of preserving 

multi-point statistics, consider a permeability field represented by the training image of 

Figure 6-1. As explained before, 1000 realizations are created using the snesim 

software [76], some of which are shown in Figure 6-2. These 1000 realizations are 

used to create the standard K-L expansion using the kernel formulation with a 

polynomial kernel of order one. Although there are 1000 non-zero eigenvalues (NR = 

1000), only the largest 30 are retained for the K-L expansion (NM = 30), which 

corresponds to about 75% of the energy of the random field as seen in Figure 6-6. 

This K-L expansion can now be used for geostatistical simulation by drawing 30 

standard normal random variables and applying the K-L expansion to generate a 

realization y  having the same covariance as the random field depicted by the training 
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image of Figure 6-1. Some of these realizations are shown in Figure 6-7. It is clear that 

although the realizations show a longer correlation length in the horizontal direction 

(direction of the channels), they do not reproduce channelized models. Further, the 

marginal distribution is not reproduced, which is clearly a binary bimodal distribution 

for the original realizations. This is because only the covariance (two-point statistics) 

of the original realizations is preserved by the K-L expansion. However, the original 

realizations are clearly non-Gaussian with higher order statistics, which should be 

preserved by the parameterization if the original channel structure is to be reproduced 

to a reasonable degree of accuracy. 

 
Figure 6-6 Energy retained in the first 100 eigenpairs 

Our solution to the above problem, as mentioned earlier, is to apply nonlinear PCA 

with high order polynomial kernels. Figure 6-8 demonstrates the basic idea behind 

nonlinear kernel PCA [22, 78]. Consider an arbitrary random field in 2R  (NC = 2), that 

is, each realization is a vector of dimension two, ( )1 2, T
y y=y . Each realization can 
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thus be easily plotted as a point on a 2D graph, as shown in the left graph of Figure 

6-8. Note that the realizations are nonlinearly related to each other. However, if linear 

PCA or the standard Karhunen-Loeve expansion were used, the major principal 

component obtained would be in the direction drawn as an arrow in the graph, and it is 

clearly not able to capture the nonlinear relationship among the realizations. Thus, the 

Karhunen-Loeve expansion is only able to capture linear relationships among the 

realizations in the space where it is performed, in this case 2R . 
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Figure 6-7 Some realizations and their marginal distributions with the standard K-L expansion 



 146 

Now, consider a nonlinear mapping Φ  that relates the input space CNR  to another 

space F. That is: 

� ( ):    ;    ;    ,C CN NR F R FΦ → = Φ ∈ ∈Y y y Y � �
�����

F is called the feature space, and it could have an arbitrarily large dimensionality. The 

definition will become clearer when space F is associated with a kernel function 

below. Now, as seen in the right graph of Figure 6-8, after this Φ  transform, the 

realizations that were nonlinearly related in 2R  become linearly related in the feature 

space F. Thus, standard linear PCA or the Karhunen-Loeve expansion can now be 

performed in F in order to determine the principal eigenvectors in this space. 

 
Figure 6-8 Basic idea behind kernel PCA (modified from [22]) 

To clarify further, in the context of geostatistical simulation, consider that a large 

number of realizations (each of length NC) of a channelized permeability field have 

been obtained using some geostatistical software. Thus, the input space is CNR , and the 

realizations can be thought of as points in this space. These points (realizations) are 

nonlinearly related in CNR , however, because if they were linearly related, standard 

Karhunen-Loeve expansion (linear PCA) could be performed in CNR  to obtain 

channelized realizations (which does not occur as seen in the pervious example). 

Kernel PCA captures the nonlinear relationship between these realizations, thereby 
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allowing us to form new (channelized) realizations that satisfy this nonlinear 

relationship. Thus we create images that “look like” those generated using existing 

multi-point geostatistical software. The advantage, however, of the kernel PCA 

representation is that it provides a parameterized (differentiable) mathematical model 

that can be used with gradient-based methods. 

Realizing that nonlinear kernel PCA is essentially linear PCA in a high dimensional 

feature space F (as opposed to the input space CNR ), all results discussed in the first 

section on linear PCA can be readily generalized for general kernel PCA. That is, the 

maps of the realizations ky , k = 1,..,NR in the feature space F are ( )kΦ y , k = 1,..,NR , 

and assuming ( )kΦ y  are centered (if not, they can be centered as in [79, 80]), the 

covariance matrix in the feature space F is given as [22, 78]: 

� ( ) ( )
1

1 RN
T

j j
jRN =

= Φ Φ�C y y � �
�����

Note that the dimension of this covariance matrix is not NC × NC, but NF × NF, where 

NF is the length of ( )Φ y , which could be extremely large.  Similar to linear PCA, an 

eigenvalue problem again must be solved, but using C  instead of C: 

� λ =V CV � �
�����

Here, λ  are the eigenvalues of C  and V are the eigenvectors of C . Again, instead of 

solving this problem directly (which is impossible with current computing technology 

due to extremely large NF), a kernel eigenvalue problem associated with Equation 

(6.12) is formulated [22, 78]: 

� RN λ =� K� � �
�����

Here, the kernel matrix K is different from the kernel matrix applied for linear PCA, 

and is defined as [22, 78]: 
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� ( ) ( )( ):      .ij i jK = Φ ΦK y y � �
�����

Note that now each element of the kernel matrix is a dot product of vectors in the 

feature space F, and not the dot product of vectors of the input space of the 

realizations, CNR . However, the dimension of the kernel matrix is still NR × NR, just as 

for linear PCA. The kernel formulation of Equation (6.13) is again exactly equivalent 

to the eigenvalue problem of Equation (6.12) without any assumptions. That is, as in 

linear PCA, we can obtain all the non-zero eigenvalues λ  and eigenvectors V of C  

from the eigenvalues RN λ  and eigenvectors �  of K. There are only NR non-zero 

eigenvalues of C , if R FN N< , and in general R FN N� . 

Observe that in order to calculate the kernel matrix K, only the dot product of vectors 

in the feature space F are required; the explicit calculation of the map ( )Φ y  is not 

required. This is extremely important, because it may not even be possible to calculate 

and store ( )Φ y  in the memory of current computers due to its very large dimension 

(as will be illustrated below). Since only the dot products in the space F are required 

for application of kernel PCA, and not ( )Φ y  itself, this can be calculated very 

efficiently with what is known as a kernel function [22, 78]: 

� ( ) ( )( ) ( ). ,kΦ Φ =x y x y � �
��	��

The kernel function ( ),k x y  calculates the dot product in space F directly from the 

elements of the input space CNR . That is, the right hand side of Equation (6.15) does 

not directly involve the mapping ( )Φ y . As mentioned before, there are various kinds 

of kernel functions available, but the kernel function of interest in this application is 

the polynomial kernel defined as [22, 78]: 

� ( ) ( )( ) ( ) ( ). , . d
kΦ Φ = =x y x y x y � �
��
��
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Here, d is the order of the polynomial kernel. Every kernel function (satisfying 

Mercer’s theorem) is uniquely associated to a mapping Φ  [22, 78]. The polynomial 

kernel of order d, ( ). dx y , corresponds to a feature space F of dth order monomials of 

CNR . For example, if we take d = 2 and the input space is 3R [22, 78]: 

�

( ) ( ) ( ) ( )
( )
( ) ( )

2
1 2 3 1 2 3

2 2 2 2 2 2
1 1 2 2 3 3 1 2 1 2 1 3 1 3 2 3 2 3

2 2 2
1 2 3 1 2 1 3 2 3

, . ;   , , ; , ,

, 2 2 2

, , , 2 , 2 , 2

T T

T

k x x x y y y

k x y x y x y x x y y x x y y x x y y

x x x x x x x x x

= = =

= + + + + +

Φ =

x y x y x y

x y

x

� �
�����

Notice that ( )Φ x  contains the product of 2 elements of x at a time (for d = 3, we 

would take the product of 3 elements of x at a time, etc.). Thus, for d = 2, the 

covariance matrix in F, given by C , corresponds to fourth order moments or four-

point statistics of the input space CNR . In general, for the polynomial kernel ( ). dx y  of 

the order d, C  corresponds to the 2dth order moment of CNR . Therefore, performing 

linear PCA or the Karhunen-Loeve expansion in the feature space F corresponding to 

the polynomial kernel ( ). dx y  corresponds to preserving the 2dth order moment or 2d-

point statistics of CNR . However, since we are interested not only in preserving the 

2dth order moment but all the moments up to the 2dth order moment, the following 

kernel is used: 

� ( ) ( )( ) ( ) ( )
1

. , .
d

i

i

k
=

Φ Φ = =�x y x y x y � �
�����

A similar result can be obtained using an inhomogeneous polynomial kernel as 

described in [78]. Note that the first moment or mean is easily preserved by directly 

adding it to the parameterization as in the standard K-L expansion. 
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 It was mentioned earlier that the dimensionality of the feature space F could be very 

large. For the polynomial kernel ( ). dx y  and an input space of realizations CNR , the 

dimension of F is given as [22, 78]: 

�
( )

( )
1 !

 
! 1 !
C

F
C

N d
N

d N

+ −
=

−
� �
��
��

which can be readily seen to scale as ( )d
CN . Thus if NC (length of realization) is 105 

(a relatively small value for geological models), and d is moderately small, say 3 

(corresponding to preserving the 6th order moments of the realizations in CNR ), 
1510FN ≈ , which is extremely large.  

The physical argument why we are able to perform the Karhunen-Loeve expansion in 

such a large dimensional space is because we are not working in the full feature space 

F, but in a comparably small linear subspace of it, whose dimension equals at most the 

number of realizations NR. The method automatically chooses this subspace and 

provides a means of taking advantage of the lower dimensionality. Kernel PCA does 

not explicitly compute all dimensions of F (all possible features), but works only in a 

relevant subspace of F, which is spanned by ( )kΦ y , k = 1,..,NR, and therefore only 

takes the features present in the ( )kΦ y  realizations into account. The numerical 

argument is that we are calculating the dot products using the kernel function directly 

on elements of CNR , which can be done very efficiently, and explicit calculation of the 

mapping ( )Φ x  is not required. 

6.4. The Pre-image Problem for Parameterizing Geology 

It was mentioned in the last section that because linear K-L expansion is performed in 

the high order feature space F, the results of the K-L expansion (realizations) thus lie 

in the feature space, that is, a simulated realization F∈Y . We are, however, 

interested in obtaining realizations in the original space of the input random field CNR , 
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because the goal is to obtain a parameterization of this input random field. In order to 

obtain a realization y in the original space of the realizations CNR  that corresponds to 

this simulated realization F∈Y , an inverse Φ  map of Y is required, that is, 

( )−= Φ 1y Y . This is known as the pre-image problem [79, 80]. However, due to the 

very large dimensionality of the feature space F, it may not be possible to calculate this 

pre-image, and further, such a pre-image may not even exist, or, if it exists, it may be 

non-unique [79, 80]. All these issues can be resolved by solving a minimization 

problem, in which a vector y is sought such that the least-square error between ( )Φ y  

and Y is minimized [79, 80]:  

� ( ) ( ) ( ) ( ) ( )2
  . 2 . .min ρ = Φ − = Φ Φ − Φ +y y y Y y y Y y Y Y � �
�����

Now, using the counterparts of Equations (6.2) and (6.6) in the feature space F, it can 

be shown that any realization Y is a linear combination of the Φ  maps ( )kΦ y of the 

input realizations ky , k = 1,..,NR. That is: 

� ( )
1

RN

i i
i

β
=

= Φ�Y y � �
�����

Note that the coefficients iβ  are functions of the independent random variables �  and 

are given as: 

� 1/ 2

1

1 RN

i ij j j
jRN

β α δ ξ
=

= � � �
�����

Here, 1 2, ,...,
R

T

i i i N iα α α� �= � ��  and iδ  are the ith eigenvector and eigenvalue of the 

kernel matrix K respectively. Using Equation (6.21) and replacing the dot products in 

Equation (6.20) with the kernel function, the objective function of Equation (6.20) can 

be written as: 
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Figure 6-9 Typical realizations obtained with linear PCA and their marginal pdfs 
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Figure 6-10 Typical realizations obtained with kernel PCA of order 2 and their marginal pdfs 
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Figure 6-11 Typical realizations obtained with kernel PCA of order 3 and their marginal pdfs 
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Figure 6-12 Pictorial representation of cdf transform 
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The minimum of the objective function ( )ρ y  can be obtained by setting its gradient to 

zero, resulting in the following equation: 

�
( ) ( )

1

, ,
2 0

RN
i

i
i

dk dk
d d

β
=

− =�
y y y y
y y

� �
�����

This equation can be further reduced to the following specific equation for the kernel 

given by Equation (6.18): 

� ( ) ( ) ( )1 1

1 1 1

. . 0
RNd d

j j
i i i

j i j

j jβ− −

= = =
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This is a differentiable parameterization relating a realization y in the input space CNR  

to a set of independent random variables � , because iβ  are functions of � . Note that 

this is a nonlinear implicit parameterization of the form ( ), 0f =y � . An efficient 

method to solve for y for a given �  using Equation (6.25) is to apply a fixed-point 

iteration method [79], wherein the iteration scheme is given as: 

�
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1
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=
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y y y
y

y y
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��
��

Unfortunately, this iteration scheme is not very stable for the above kernel, although 

the method is quite stable for other kernels such as the Gaussian kernel [79]. However, 

by noticing that the denominator of the above equation is a function of the magnitude 

of y and therefore essentially acts as a normalization term, and also by comparison to 

the iteration scheme using the Gaussian kernel [79], the denominator is modified to 

obtain the final iteration scheme: 
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Not only is the scheme quite stable, but even more importantly, it results in a nonlinear 

combination of the original realizations with the weights summing up to one. This 

implies that if the original realizations all honor certain hard data, any realization 

obtained with Equation (6.27) will also honor the same hard data. Thus, any hard data 

conditioning incorporated into the original realizations is maintained with the above 

scheme. The final implicit parameterization consistent with Equation (6.27) is thus 

given as: 
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� ( ) ( ) ( )1 1
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Application of this parameterization in conjunction with other gradient-based 

algorithms would usually require the gradient of y with respect to � . This is obtained 

by setting 0df = . 

�

1
d f f
d

−
� 	∂ ∂= −
 �∂ ∂� 


y
� y �

� �
��
��

Note that the above gradient is obtained analytically using Equation (6.28) and no 

optimization or any other numerical problem has to be solved in order to do so. 
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Figure 6-13 Realizations before and after histogram transform 

In order to demonstrate the validity of kernel PCA for parameterizing multi-point 

geostatistics, Equation (6.28) is applied for geostatistical simulation of the channel 

sand example discussed earlier. Using the channel training image shown in Figure 6-1, 



 158 

1000 (NR = 1000) 2D unconditional realizations of a channelized permeability field of 

dimension 45 × 45 (NC = 2025) are created using the snesim software [76]. Some of 

the realizations are shown in Figure 6-2. These realizations are used to create kernel 

matrices of orders 1, 2 and 3, and kernel PCA is then carried out to create the 

parameterization given by Equation (6.28) corresponding to these different orders. The 

Statistical Pattern Recognition Toolbox for Matlab [81] is modified and used for this 

purpose. Geostatistical simulation can now be accomplished by drawing �  from the 

standard normal distribution and obtaining a realization y.  
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Figure 6-14 Realizations before and after histogram transform 

Figure 6-9 to Figure 6-11 illustrate the results of the simulation. In each figure, the left 

images are simulated realizations and the right plots are the histogram of the 

corresponding realization. Figure 6-9 shows typical realizations obtained using 

standard Karhunen-Loeve expansion (kernel matrix of order 1) in the original input 

space of the realizations CNR , Figure 6-10 shows typical realizations obtained using 

kernel PCA with the polynomial kernel of order 2 (preserving up to 4th order 
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statistics), and Figure 6-11 shows that obtained using kernel PCA with the polynomial 

kernel of order 3 (preserving up to 6th order statistics). The number of eigenvalues 

retained for the parameterization was 30 for all simulations (the maximum number of 

eigenvalues in this case is NR = 1000).  The same numerical values of the 30 random 

variables ( )�  drawn from the standard Gaussian distribution were used to create the 

corresponding realizations in all three figures.  

The results clearly indicate that although the standard Karhunen-Loeve expansion 

produces images that do have a longer correlation length in the direction of the 

channels, they do not look like channelized models. However, with kernel PCA, the 

features clearly have a better resemblance to channels, and further, as the order of the 

polynomial kernel is increased, the channel structure becomes more prominent as 

expected. Note that although the original realizations are binary and discontinuous in 

nature (the original realizations as seen in Figure 6-2 consist of only 0s and 1s, where 

0 is shale and 1 sand), the realizations constructed with kernel PCA are continuous and 

smooth due to the fact that the original realizations have higher order statistics than 

just the 6th order, and only 30 eigenvalues have been retained for kernel PCA. In a 

numerical context, this continuity implies that the parameterization is indeed 

differentiable with smooth derivatives. 

The above parameterization can be further improved to also provide a better 

approximation of the histograms if necessary. The basic idea is to perform an 

additional transform on a realization y obtained using Equation (6.28) to obtain 

another realization ( )h=y y�  having a specified target histogram. One approach is to 

use polynomial chaos expansions, as explained in [83]. Another simpler approach is to 

apply a cdf transform where, if ( )Tf y  is the target cdf and ( )If y  is the initial cdf, 

then y� is obtained as ( )1
T If f−=y y� . This is depicted pictorially in Figure 6-12. The 

polynomial chaos approach provides the analytical functional relationship ( )h y  

directly, but for this method to work properly, the nature of the input histogram must 
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be known accurately (for example whether it is Gaussian, uniform etc.). On the other 

hand, the second approach does not require knowledge of the nature of the input 

histogram, but it does not provide any analytical functional relationship ( )h y  (which 

is required for example to calculate gradients /d dy �� ), and therefore, curve-fitting 

techniques (like splines, polynomials etc.) have to be applied to obtain the functional 

form ( )h y . Figure 6-13 and Figure 6-14 demonstrate the application of the cdf 

transform method on realizations obtained with kernel PCA of order 2, and the 

modified histograms are clearly better approximations of the original binary histogram. 

Note that the target histogram in this case is a smooth approximation of the actual 

binary histogram, obtained using a limited number of eigenpairs for the reconstruction 

of a typical realization. 

6.5. Applications to the History Matching Problem 

One immediate application of the kernel PCA parameterization of multi-point 

geostatistics is to the solution of the history matching (or model updating) problem 

with gradient-based methods. A gradient-based approach was discussed in Chapter 3, 

in which the history matching problem was defined as a minimization problem, 

wherein a better estimate of the unknown random field was obtained by minimizing 

the data mismatch error between actual observed data and data calculated by the 

simulation model subject to dynamic and geological constraints. The random field to 

be estimated (permeability field in Chapter 3) was parameterized with the standard 

Karhunen-Loeve expansion, which allowed for the application of gradient-based 

minimization algorithms.  

If the geological constraints correspond to complex geological structures, however, the 

Karhunen-Loeve expansion cannot be used for an accurate parameterization, and in 

such circumstances a kernel PCA parameterization would be more appropriate. Note 

that there are other existing methods able to preserve geological constraints, such as 

the probability perturbation method [84] and the gradual deformation method [85], but 
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these methods, unlike the approach described here, are stochastic rather than gradient-

based. Although in general more time consuming, stochastic methods have some 

advantageous features (e.g., avoidance of local minima). For some applications it may 

therefore be useful to consider a hybrid algorithm with gradient (kernel PCA) and 

stochastic components for the history matching problem.  

Our interest here is in the application of the kernel PCA parameterization to the history 

matching problem, which we now consider. The procedure described in Chapter 3 can 

be followed exactly with the exception that the Karhunen-Loeve expansion is replaced 

with a kernel PCA parameterization. The final form of the minimization problem is 

(for additional details, refer to Chapter 3):  

�

( ) ( ){ } ( ) ( ){ } ( )( )

( ) ( )

1
1

0

1

1 ,

, ,

min

subject to:
( ) 0                                              0,.., 1        

N
n n

prior prior
n

n n n

T
M LS C

g n N

−
+

=

+

−� �− − +� �
� �

=

= ∀ ∈ −

�
�

y � y � y � y � x y �

x y �x
� �
�����

In the above equation, S is the objective function to be minimized, CM is the 

covariance matrix of the random field y (obtained numerically from initial realizations 

of y), L is the usual least-square error between observed and calculated data, x now 

represents the dynamic states, the system of equations ( ).g  represents the dynamic 

system (i.e., flow simulation), and n is the time step index. The random field y is a 

function of independent random variables � , and this relationship is obtained using 

kernel PCA. The geological constraints are implicitly honored through this 

parameterization, and therefore do not appear directly in the minimization problem. 

Note that the objective function S is obtained from Bayesian inverse theory under the 

assumption that y is multi-Gaussian and the dynamics ( ).g  is linear. Thus, 

minimizing S in general does not guarantee that the maximum likelihood estimate of y 

would be obtained when y is non-Gaussian or ( ).g  is highly nonlinear [13]. 
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The applicability of kernel PCA to the history matching problem is demonstrated on a 

dynamic waterflooding example. The simulation model is that of a simple 2D 

horizontal square reservoir with one horizontal “smart” water injector on the left edge 

and one horizontal “smart” producer on the right edge, each having 45 independently 

controllable segments. The reservoir covers an area of 450×450 m2 and has a thickness 

of 10 m and is modeled by a 45×45×1 horizontal 2D grid. It is essentially an 

incompressible two-phase unit mobility oil-water system, with zero connate water 

saturation and zero residual oil saturation. The injector segments are placed under rate 

control, and the producer segments are under bottom hole pressure (BHP) control with 

predefined rates and BHPs. The objective is to estimate the unknown permeability 

field using observed data that consists of the injector segment BHPs and producer 

segment watercuts. 

Although the permeability field is unknown, it is assumed that we have some prior 

knowledge of the reservoir which informs us that the reservoir is a fluvial channelized 

reservoir as depicted by the training image shown in Figure 6-1, with the sand 

permeability being about 10 Darcy and the background permeability about 500 mD. 

The contrast in permeability between the high permeability sand and the background 

reservoir is about a factor of 20. Since this is a validation study, a “true” realization is 

required, against which the history matching results can be compared. Realization 9 

from Figure 6-2 is arbitrarily taken to be the true realization that will provide the 

observed data. 

A kernel PCA parameterization of the permeability field with a polynomial kernel of 

order 2 is created using the 1000 realizations obtained from the training image as 

discussed earlier. Only 30 eigenpairs are retained for the parameterization, which 

corresponds to about 75% of the energy. Histogram transform is not applied in this 

problem. Note that as the order of the kernel PCA is increased, the parameterization 

becomes more and more nonlinear, and therefore it becomes more difficult for the 

gradient-based minimization algorithm to converge. Thus the minimum order kernel 
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should be chosen that is sufficient to appropriately represent the structures present in 

the geological model. 
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Figure 6-15 Initial guess realization (left) and converged realization (right) 

 
Figure 6-16 Watercut profiles using true (red with squares), initial guess (green with circles) 

and converged (blue with plus) realizations 

Starting from an arbitrary initial guess (Figure 6-15 left), the final converged 

realization obtained is shown in Figure 6-15 (right). About 10 iterations were required 

to obtain this final realization, and this corresponds to about 30-40 simulations if 
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adjoint models are used to calculate the gradients. The final realization obtained 

clearly resembles the true realization, although this realization is continuous (for 

reasons discussed earlier) whereas the original realization is binary and discontinuous. 

The watercut profiles of some of the producer segments are shown in Figure 6-16. The 

red curves (with squares) are obtained from the true permeability field, the green 

curves (with circles) are obtained from the initial guess realization, and the blue curves 

(with plus signs) are obtained from the history matched realization. It is clear that the 

history match is quite reasonable, thus demonstrating the applicability and efficiency 

of kernel PCA to the history matching problem. 

Further application of kernel PCA within the closed-loop optimal control approach for 

long-term production optimization is demonstrated in Sarma et al. [86] and also in 

Chapter 7. 

6.6. Summary 

In this chapter, a novel differentiable parameterization of non-Gaussian random fields 

(characterized by multi-point geostatistics) was proposed. This parameterization is 

capable of representing complex geological structures and has many applications 

including but not limited to closed-loop control, where it can be used within the model 

updating and uncertainty propagation algorithms. In Chapter 3, the Karhunen-Loeve 

expansion was used for creating differentiable parameterizations of random fields. 

This, however, has two major disadvantages rendering it incapable of application to 

practical large-scale random-fields and associated reservoir simulation models. First, it 

only preserves the covariance of the random field (two-point statistics), and therefore 

is only suitable for multi-Gaussian random fields, and cannot be applied to model 

complex geological structures such as channels. Second, the K-L expansion requires a 

computationally expensive eigen decomposition of a large covariance matrix of size 

NC × NC, and this is prohibitive for large-scale simulation models even with current 

computational capability.  
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It was shown that both these problems could be solved elegantly and efficiently with 

kernel principal component analysis, which is a nonlinear form of principal component 

analysis. Using higher order polynomial kernels, multi-point geostatistics can be 

preserved instead of two-point statistics, thereby creating a differentiable 

parameterization capable of preserving complex geology. Further, the approach 

requires an eigen decomposition of a small kernel matrix instead of a covariance 

matrix, which can be readily accomplished even for large-scale random fields. The 

application of the parameterization to history matching (using a gradient-based 

procedure) was demonstrated using a simple dynamic waterflooding example, with the 

results clearly indicating the efficiency and applicability of the kernel PCA 

representation. The approach is very general and can be applied to realistic three-

dimensional reservoir problems. 
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Chapter 7 

7. Application to a Gulf of Mexico Reservoir 

In Chapter 4, a closed-loop control approach was proposed which employed adjoint 

models and standard gradient-based algorithms for optimization, the Karhunen-Loeve 

(K-L) expansion and Bayesian inversion theory for model updating, and the K-L 

expansion and polynomial chaos expansions for uncertainty propagation. There are 

two main issues limiting the application of that procedure to practical problems. The 

first is the difficulty in handling nonlinear path constraints during optimization. The 

second limitation is that the K-L expansion is not able to represent complex geology 

and is also computationally very expensive. New algorithms to address these issues 

were discussed in Chapter 5 and Chapter 6. 

This chapter modifies the closed-loop algorithm of Chapter 4 with the new algorithms 

of Chapters 5 and 6 to provide a closed-loop algorithm applicable to practical, large-

scale simulation models.  Specifically, we apply the approximate feasible direction 

optimization algorithm of Chapter 5 to efficiently handle path constraints, and kernel 

principal component analysis (PCA) discussed in Chapter 6 to resolve the issues 

associated with the K-L expansion. Except for these modifications, the integration of 

the various algorithms within the closed-loop remains the same as in Chapter 4. The 

modified closed-loop algorithm is then applied on a sector of the simulation model of 

a Gulf of Mexico reservoir being waterflooded. The objective is to maximize the 

expected net present value (NPV) of the sector over a period of eight years by 

controlling the bottom hole pressures (BHPs) of the injectors and producers. The 

optimization is subject to production constraints (path constraints) and an uncertain 

reservoir description. The closed-loop procedure is shown to provide substantial 



 167 

improvement in NPV over the base case, and the results are very close to those 

obtained when the reservoir description is known a priori. 

7.1. Model Description 

The simulation model used for this study represents a reservoir located in the Gulf of 

Mexico, USA. As seen in Figure 7-1, the model consists of a 3D structured grid with 

68,800 (86×100×8) cells, out of which about 40,000 are active. The reservoir spans an 

area of approximately 25 square miles and is located at a depth of about 10,000 ft with 

an initial reservoir pressure at datum of 5,280 psi. The fluid system is represented by a 

three-phase black oil model, though it acts as a two-phase system because pressure 

stays above the bubble point. The reservoir is flanked by an aquifer as seen in Figure 

7-1. The relative permeability curves used are the usual Corey type. Capillary 

pressures are assumed to be zero for modeling purposes. The closed-loop approach is 

applied on a 46×32×8 sector of this model highlighted by the black rectangle in Figure 

7-1. 

 
Figure 7-1 Reservoir model with the sector under study highlighted by black rectangle 

In order to demonstrate the closed-loop approach, the permeability field is assumed to 

be unknown and will be updated by assimilating production data. Further, it is 
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assumed that we have some prior knowledge of the reservoir (for example from 

outcrop studies), which informs us that the permeability field is moderately 

heterogeneous, ranging from 10 md to   10 D, with the lower end of the scale 

corresponding to low permeability shale bodies depicted by the training image shown 

in Figure 7-2. A multi-point geostatistical software application called filtersim [87] is 

used to generate 120 realizations using this training image. Note that filtersim is 

applied because the training image used in this study is continuous, and other MPS 

software are not able to handle continuous training images. These realizations are then 

used to create a kernel PCA parameterization of the permeability field with a 

polynomial kernel of order 1 (note that, for this case, the geological model is 

sufficiently simple that we only need to maintain two-point statistics).  
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Figure 7-2 Top four layers of the training image used to create kernel PCA parameterization 
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Figure 7-3 Top four layers of the true permeability field of the sector model 
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In order to validate our closed-loop approach, a “true” realization is required, against 

which the optimization and model updating results can be compared. The realization 

shown in Figure 7-3 is taken to be the true model. Note that the training image and the 

true realization look structurally similar, but the locations of the low permeability 

bodies are quite different, so the two models will display different flow behavior. 

7.2. Production Scenario and Constraints 

The sector under study has 3 vertical injectors (blue triangles) and 4 vertical producers 

(black circles), with locations as depicted in Figure 7-1.  All wells are perforated in all 

eight layers of the model. For the purpose of closed-loop optimization, the BHPs of 

the injectors and producers are used as controls and these are varied in time to 

maximize the expected NPV of the sector over a period of about eight years (3060 

days). This time period is divided into 17 control steps of 180 days each. Thus the total 

number of controls is equal to 17×7 = 119. The NPV discounting factor is set at zero, 

meaning that the effect of discounting is neglected. Thus, maximizing NPV is 

essentially maximizing cumulative oil production and minimizing cumulative water 

production. As in Chapter 4, for uncertainty propagation, a Hermite chaos expansion is 

used to represent NPV. The oil price is conservatively set at $30/bbl, water injection 

costs at $3/bbl, and water production costs at $6/bbl. The injection rates of the 

injectors and the watercuts of the producers are the observed data used to update the 

permeability field. The model updates are performed at 180, 360, 720, 1260 and 2160 

days. 

Most optimization problems are associated with a set of constraints on the controls. In 

the absence of such constraints, the solution of the optimization problem is often 

straightforward. In this case, the BHPs of the wells are bounded below at 4500 psi and 

above at 9000 psi, which could for example correspond to bubble point pressure and 

fracture pressure. More importantly, there are two nonlinear inequality path 

constraints, namely a maximum total injection rate constraint of 20,000 bbl/d and a 

maximum watercut constraint of 95%.   
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7.3. Base Case Production Strategy 

In order to quantify the benefit of any optimization process, it is usual to compare the 

optimization results against a base or reference case. For production optimization, such 

a base case would be a reasonable production strategy that an engineer might devise 

given a simulation model and a set of constraints.  

  

  

  
Figure 7-4 Final oil saturations of layers 1 (left) and 2 (right) of the reference case (top), 

open-loop case (middle) and closed-loop case (bottom); red is oil and blue is water 
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For the purpose of this case study, the base case is a constant rate/constant BHP 

production strategy. The 20,000 bbl/d of available injection water is distributed among 

the three injectors according to their kh (product of permeability and pay-thickness), 

which corresponds to an uncontrolled case. This actually turns out to be a good 

strategy, as it results in a relatively high sweep (see Figure 7-4 top) and late 

breakthroughs. The producers are kept fully open, that is, at the minimum allowed 

BHP of 4,500 psi. In the absence of any other information, this is often a viable 

approach as it maximizes initial oil production. Overall, the base case represents a 

reasonable production strategy as demonstrated by the simulation results. 

7.4. Closed-loop Optimization Results 

Figure 7-4 shows the final oil saturation after eight years for layer 1 (left) and layer 2 

(right) for the base case (top), open-loop case (middle), and closed-loop case (bottom) 

starting from an initial condition as seen in Figure 7-1. The open-loop case constitutes 

an approach wherein the optimization is directly performed on the true permeability 

field. This approach cannot be applied in reality, as we never have complete 

knowledge of the reservoir, and thus the closed-loop approach must be used. However, 

the results of the open-loop approach can be thought of as essentially the best that can 

be achieved by a closed-loop approach, and it can thus be used as a benchmark against 

which closed-loop algorithms can be compared.  

It is clear that in this case the closed-loop and open-loop sweep efficiencies are very 

similar, and both lead to a significant improvement in sweep efficiency over the base 

case. This is also confirmed by the cumulative oil and water production profiles as 

seen in Figure 7-5. Both the closed-loop and open-loop approaches result in an 

increase in oil production of approximately 16%, a decrease in water production of 

approximately 50-55%, and an increase in NPV of 25%. The total water injection 

remains close to the base case. However, the optimal BHPs obtained with the closed-

loop are not exactly the same as those from the open-loop, and this can be understood 
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by comparing the field watercuts of the two cases as in Figure 7-6. They are however 

close enough to provide similar sweeps and similar increases in NPV. 

 
Figure 7-5 Cumulative oil and water production profiles of the reference, open-loop and 

closed-loop cases 

 
Figure 7-6 Field watercut profiles of the reference, open-loop and closed-loop cases 

Starting with a nearly homogeneous permeability field as seen in Figure 7-7, the final 

updated permeability field is shown in Figure 7-8. Comparing to Figure 7-3, it is clear 

that the highs and lows in the permeability field are obtained at the correct locations, 

demonstrating the validity of kernel PCA for model updating. However, the variation 

in the magnitude of permeability is not as high as in the true permeability field. It is 

interesting to note that even this approximate permeability field results in nearly 

correct optimal trajectories. A similar result was also observed in Chapter 4. 
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Figure 7-7 Top four layers of the initial permeability field, which is nearly homogeneous 
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Figure 7-8 Top four layers of the final permeability field obtained after the fifth model update 

Figure 7-9 shows the total injection rate (normalized) after closed-loop optimization. It 

is clear that this constraint is satisfied to within 1% tolerance after optimization, 

demonstrating the validity of the approximate feasible direction algorithm. Note that 

after the optimization, the water injection rate remains near the maximum for most of 

the simulation time, indicating that the optimization essentially results in the time-

dependent redistribution of the injected water among the injectors. The watercut 

constraint never becomes active over the eight years, and therefore does not affect the 

optimization. 
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Figure 7-9 Normalized maximum injection rate constraint after optimization 

Taken in total, the results presented here demonstrate the applicability of the overall 

closed-loop procedure to practical reservoir management. This is achieved as a result 

of the efficiency and robustness of the optimization, history matching and uncertainty 

propagation algorithms developed and applied in this work. 
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Chapter 8 

8.  Conclusions and Recommendations 

Since detailed conclusions are provided at the end of each chapter, here we only list 

the major accomplishments of this work: 

1. It was demonstrated that adjoint models provide an efficient method for 

calculating gradients for the production optimization problem, thereby enabling 

efficient optimization, especially when the number of controls is large. 

2. A modified approach for the construction of the adjoint model applicable to 

arbitrary level of implicitness of the forward model was also described, and it 

was shown that with this approach, it is relatively easy to code the adjoint as 

compared to the standard approach.  

3. An efficient model updating algorithm that is able to preserve geological 

constraints was described. This approach applies the Karhunen-Loeve expansion 

for parameterizing uncertain reservoir properties, combined with Bayesian 

inversion theory and adjoint models. 

4. Polynomial chaos expansions were applied for uncertainty propagation within 

the closed-loop. This approach is straightforward to integrate with the other 

algorithms that comprise the closed-loop, is very efficient compared to standard 

Monte Carlo techniques, but still allows a “black box” approach. 

5. An efficient approximate feasible direction algorithm for handling path 

inequality constraints during optimization was proposed. The method has many 

benefits, including guaranteed feasibility and large step sizes during line search. 
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6. A novel differentiable parameterization of non-Gaussian random fields 

(characterized by multi-point geostatistics) using Kernel Principal Component 

Analysis was proposed. This approach addresses the two main limitations 

associated with the standard Karhunen-Loeve expansion. 

7. Application of the proposed closed-loop approach (and its various components) 

was demonstrated on several dynamic waterflood optimization problems 

including a realistic example. It was seen that there is a significant potential to 

maximize production and enhance recovery using the methods developed in this 

thesis. 

Although many of the issues associated with the closed-loop production 

optimization approach have been addressed in this work, further research is certainly 

required in many areas, including: 

1. The modified adjoint construction approach has only been tested for the FIM 

approach, and it should be further developed and tested for other implicit levels.  

2. The adjoint code and construction procedure should be tested for three-phase and 

compositional models. 

3. Automatic differentiation techniques for constructing the adjoint could be 

investigated. 

4. The efficiency of the proposed model updating algorithm against other methods 

like the ensemble Kalman filter requires further testing, especially in conjunction 

with uncertainty propagation. 

5. Only production data was assimilated in the examples described in this work. 

Necessary modifications to the algorithms for assimilating other kinds of data 

such as 4D seismic have to be investigated. 
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6. The Probabilistic Collocation Method loses efficiency as the number of input 

parameters increases, and therefore modifications or other methods may be 

necessary for efficient uncertainty propagation. 

7. It may be useful to test more sophisticated feasible direction algorithms for 

handling nonlinear path constraints, such as feasible arc Sequential Quadratic 

Programming. 

8. The Kernel PCA parameterization should be applied to other geological models. 

Its applicability for large-scale history matching and other applications should 

also be further assessed. 

9. One issue with kernel PCA or any other continuous parameterization is that such 

parameterizations cannot be applied when the input properties are scenario-based 

and cannot be represented as random fields. Other methods should be 

investigated to handle such scenario-based properties. 

10. This work only addressed the optimization of continuous control variables; 

however, the more general problem of combined optimization of discrete 

variables (such as well locations, type etc.) and continuous controls is a more 

difficult problem and needs further research. 

11. The particular closed-loop approach described in this work does not take value of 

information and risk attitude into account during optimization. Further research 

is required to develop modifications or other methods to address these issues. 
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Appendix A 

A.  A General Adjoint for Arbitrary Implicit Level 

The formulation of the adjoint system of equations is directly dependent on the 

forward system of equations, and thus, for the adjoint system to be consistent with the 

forward system, it has to be derived for the exact set of equations comprising the 

forward system. For example, an adjoint model derived for the fully implicit (FIM) 

forward equations cannot be used with an IMPES forward model. In this appendix, an 

adjoint system of equations is derived that is suitable for any level of implicitness of 

the forward model including Adaptive Implicit Method (AIM). The sequential implicit 

schemes are of a different form and are not considered here. 

For a general adaptive implicit forward model, the optimal control problem to be 

solved can be written as follows: 
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Note that additional path constraints are not discussed here, as the modifications 

necessary to implement them are similar to that of the dynamic system. Here, the 

dynamic states are ,p s� �= � �x x x , where, px  are the implicit variables and sx  are the 

explicit variables, pf  are the implicit equations and sf  are the explicit equations. In 

the forward simulation, the implicit equations (for example, the pressure equation in 
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IMPES) are first solved implicitly for 1n
p
+x , and then 1n

s
+x  is solved explicitly using the 

explicit equations (for example, the saturation equations). As in the FIM approach of 

Chapter 2, we would also like to perform all the calculations in the forward simulation 

itself, so that the adjoint can be constructed easily. This is possible for the general 

adaptive implicit forward system if it is created using the General Formulation 

Approach [11], as in this approach, the fully implicit Jacobian is always created, and 

terms are then discarded and the equations decoupled in order to arrive at the IMPES 

and IMPSAT equations. Note that nL  consists of well terms for the production 

optimization problem, and thus it is written in the fully implicit form. This is 

consistent with GPRS [11], in which the wells are always fully implicit. 

The augmented cost function for Equation (A.1) is given as: 
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Note that the terms that are zero by definition are not shown here. 1n+�  are the 

Lagrange multipliers associated with the implicit equations pf  and 1n+�  are the 

Lagrange multipliers associated with the explicit equations sf . The first variation of 

the augmented cost function AJ  is given as: 
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Again, the terms that are zero by definition are not shown. The adjoint equations can 

be derived from the above equation, and are given as: 
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After the Lagrange multipliers have been obtained using Equation (A.4), the required 

gradient of the cost function can be obtained as follows: 
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This adjoint model can be used for any level of implicitness of the forward model as in 

an AIM method. It is interesting to note that in the adjoint model, first n�  has to be 

solved before n�  can be solved. As defined before, n�  is associated with the explicit 

equations, and n�  is associated with the implicit equations, and therefore the order of 

solution is opposite to that of the forward model. This is consistent as the adjoint is 

solved backwards in time. 

As seen from Equations (A.4) and (A.5), in order to calculate the Lagrange multipliers 

and the final gradient, the following Jacobian matrices are required: 
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In order to determine how to construct these from the forward equations, it is essential 

to determine how pf  and sf  are related to the conservation equations. 
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Here nF  refers to the flux terms, nW  refers to the source terms and nA  refers to the 

accumulation terms. The functionality of nF  is not shown in the above equation, as it 

depends on the level of implicitness of the grid block. nF  comprises of four terms that 

are dependent on x . 
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( )...ϒ  represents the transmissibility terms, ( )...Ρ  represents the  density and mobility 

terms, ( )...Ψ  represents the mole fraction terms and ∆Φ  represents the potential 

difference terms. The functionality of each term depends on the implicit level of the 

conservation equations. The equation below demonstrates this functionality for 

IMPES, IMPSAT, and FIM systems. 
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In GPRS, Local Inversion [11] is used to obtain n
pf  and n

sf  from ng . Thus, 
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Since the Jacobians appearing in the above equations are constant at any given 

iteration, n
pf  is therefore just a linear combination of the conservation equations ng . 
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For example, ( ) 11 1/ /n n n n
p s s sg g

−+ +∂ ∂ ∂ ∂x x  is a vector for the IMPES model, and is also 

known as the IMPES Reduction Factor [11, 88]. Also from Cao [11]: 
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Again, the Jacobians in the above equation are constant at any given iteration, and 

therefore n
sf  is also a linear combination of the conservation equations and x . Thus, 

the required Jacobians can be obtained as follows: 
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This is the simplest Jacobian to construct, as it is the converged implicit Jacobian (for 

example, of the pressure equation only for IMPES) at the nth time step, and is already 

decoupled and extracted in the forward run. 

�

1

1 1 12
n n n

s s s
n n n
p s p

f g g
−

+ + +

� 	∂ ∂ ∂= − 
 �∂ ∂ ∂� 
x x x
� �������

The Jacobians on the right hand side (RHS) of the above equation can be obtained 

from the converged full Jacobian of the conservations equations at the nth time step. 

The full Jacobian and the Newton-Raphson iteration used to solve the system are given 

as: 
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The remaining four Jacobians of n
pf  and n

sf  with respect to x  are obtained as follows: 
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As seen from Equation (A.14), most of the Jacobians on the right hand side of the 

above equations are obtained from the converged full Jacobian of the conservations 

equations. However, there are a few terms on the RHS of Equation (A.15) that still 

remain to be calculated: 
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Since n
pg  and n

sg  both represent conservation equations, their form is the same, and 

therefore, the subscript will be dropped in the following derivation of the above 

Jacobians. The procedure to calculate /n n
pg∂ ∂x  and /n n

sg∂ ∂x  depends on the level of 

implicitness of the grid block. For example, for the FIM case, as seen in Chapter 2: 
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These are the derivatives of the accumulation terms of the previous time step. For the 

IMPES system: 
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The second terms on the RHS are the same as in the FIM case, and the first terms are 

the terms that are discarded before IMPES decoupling of the previous time step [11]. 
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The approach remains the same for the IMPSAT grid blocks as the IMPES case. The 

Jacobians with respect to the controls nu  can be calculated as follows: 
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The only new Jacobians on the RHS of the above equation are /n n
pg∂ ∂u , and since nu  

only appears in the well terms: 
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These terms can be obtained exactly as in the FIM case discussed in Chapter 2. 

Furthermore, the terms 1 /n n
pL −∂ ∂x , 1 /n n

sL −∂ ∂x  and /n nL∂ ∂u  can also be obtained just 

as in the FIM case, as L is only a function of the well terms. 

To conclude, we have seen that all information necessary to construct the adjoint is 

calculated in the forward run even in the AIM case, provided the General Formulation 

Approach for constructing the forward system is followed. Also, very importantly, if 

all these Jacobians are stored from the forward run, it is not necessary to keep track of 

the implicit levels of the grid blocks for the adjoint run. Further, variable switching is 

also not an issue as none of the terms of the adjoint is a direct function of x . 
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Nomenclature 

a  Coefficients of polynomial chaos, slack variable 

A  Accumulation terms of simulation equations 

b  RHS of linear constraints 

B  Matrix of coefficients for linear constraints 

c  Nonlinear constraints 

C  Equivalent constraint 

AC  Augmented cost function of constraint 

C  Covariance matrix 

C  Covariance matrix in feature space 

,w pC  Water production costs per Bbl 

d  Order of polynomial kernel 

d  RHS of linear constraints, observed data calculated by model 

obsd  Actual observed data 

E  Matrix of eigenvectors 

F  Flux terms of simulation equations, feature space 

g  Dynamic system equations  

G  Jacobian of misfit with respect to parameters 

nH  Polynomial chaos functionals 

J  Cost function 

AJ  Augmented cost function 

K  Kernel matrix 

L  Lagrangian 

LB  Lower bounds on controls 

m  Uncertain parameters in geological model 

N  Number of control steps 
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cN  Number of components 

CN  Number of grid cells of simulations model 

DN  Physical dimensions of the model 

FN  Dimension of feature space 

gN  Number of grid blocks 

PN  Number of producers 

IN  Number of injectors 

MN  Number of eigenpairs retained in the K-L expansion 

RN  Number of realizations 

tN  Number of time steps 

p  Number of active constraints 

bp  Well block pressure 

wp  Well BHP 

P  Number of terms in polynomial chaos 

,o pP  Oil price per Bbl 

wiq  Water injection rate 

q  Fluid flow rate 

kr  Penalty parameter at kth iteration 

S  Usable feasible direction, model updating error 

s  Slack variable 

t  Time 

u  Control vector 

UB  Upper bounds on controls 

v  Eigenvector of covariance matrix 

V  Eigenvector in feature space 

W  Well terms of simulation equations, weighting function 

x  Spatial variable 
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x  Dynamic states 

X  Output random variable 

y  Forward model output, spatial variable 

y�  Output calculated by polynomial chaos, approximate realization 

y  Realization of random field 

Y  Output random variable 

Y  Feature space vector 

 

Greek  

α  Discounting factor, tolerance for max function approximation 

�  Eigenvector of kernel matrix 

β  Line search step length, coefficients in pre-image parameterization 

γ  Parameter to maximize 

ε  Tolerance for max function approximation 

∆Φ  Potential difference terms of flux terms 

�  Tolerance for max function approximation, diagonal matrix of eigenvalues 

φ  Part of cost function 

Φ  Nonlinear mapping to feature space 

kΦ  Penalty function at kth iteration 

�  Matrix of eigenvectors 

λ  Eigenvalues 

�  Lagrange multipliers 

�  Lagrange multipliers 

ρ  Fluid density, least square error in pre-image problem 

Dρ  Prior observed data distribution 

Mρ  Prior model parameters distribution 

Ρ  Mobility terms of flux terms 

σ  Data standard deviations 
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Mσ  Posterior model parameters distribution 

θ  Random event, weight on constraints 

�  Diagonal matrix of standard deviations 

ϒ  Function of constraints, transmissibility terms of flux terms 

ω  Relaxation factor 

ξ  Parameters from K-L expansion 

�  Vector of parameters from K-L expansion 

ψ  Hermite polynomials 

Ψ  Mole fraction terms of flux terms 

 

Subscripts 

D  Observed data 

H  Number of original parameters 

i  Summation index, iteration index 

j  Summation index 

k  Vector component index 

K  Number of parameters in K-L expansion 

M  Model parameters 

o  Oil 

p  Implicit terms 

prior  Prior term 

s  Explicit terms 

SC  Standard conditions 

w  Water 

�  K-L expansion parameters 

 

Superscripts 

d  Polynomial kernel order  

j  Polynomial kernel order index 
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k  Newton-Raphson iteration index 

m  Time level 

n  Time level 

T  Transpose of matrix or vector 

 

Abbreviations 

AIM Adaptive implicit method 

BHP Well bottom hole pressure 

FIM Fully implicit method 

FLPR Field liquid production rate 

FOPR Field oil production rate 

FOPT Field oil production total 

FWCT Field watercut 

FWIR Field water injection rate 

FWPR Field water production rate 

FWPT Field water production total 

IMPES Implicit pressure explicit saturation method 

IMPSAT Implicit pressure and saturation method 

K-L Karhunen-Loeve 

KPCA Kernel principal component analysis 

NLP Nonlinear programming 

NPV Net present value 

PCA Principal Component Analysis 

PCE Polynomial chaos expansion 

PCM Probabilistic collocation method 

SQP Sequential quadratic programming  

WBHP Well bottom hole pressure 

WHP Well head pressure 

WOPR  Well oil production rate 

WWCT Well watercut 
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