Efficient Computation of Radial Distribution Function on GPUs

Yi-Cheng Tu * and Anand Kumar

Department of Computer Science and Engineering

University of South Florida, Tampa, Florida

Overview

- Introduction and Motivation
- Spatial Distance Histogram (SDH)
- GPU Architecture
- Brute-force SDH Algorithm on GPU
- Advanced SDH Algorithms on GPU
- Conclusions and Future Work

Introduction and Motivation

- Scientific databases: very large amount of data
- CERN Hadron Collider generates 15 PB every year
- Next Generation Genome Sequencer generates 100s of GB in few days
- Molecular / Particle simulations
- Study physical systems through simulations
- System state is stored at many time instances
- Each instance is named a frame
- Frame constitutes - system state
- Measurement of particle properties
- Physical location, velocity, charge, mass etc.
- Thousands of frames are generated in a simulation

Introduction and Motivation

- Millions of particles / atoms are simulated
- Analytical query processing in MS data
- Center of mass
- System density, energy
- Mean square displacement
- Radial distribution function (RDF)

Spatial Distance Histogram (SDH)

- Key step for computing RDF and other queries
- Interesting and tough as compared to others - $\mathrm{O}\left(N^{2}\right)$

Overview

- Introduction and Motivation
- Spatial Distance Histogram (SDH)
- GPU Architecture
- Brute-force SDH Algorithm on GPU
- Advanced SDH Algorithms on GPU
- Conclusions and Future Work

SDH Algorithms on CPUs

- Naïve algorithm in simulation software (e.g., GROMACS)
- Space partitioning trees (kd-tree) [NIPS00]
- Process group of particles as one unit
- Density-Map SDH (DM-SDH) based on Quad/Oct-trees [ICDE09,VLDBJ11,EDBT12,TKDE13,TKDE14]
- Runs in $O\left(N^{(2 d-1) / d}\right)$ for d-dimensional data
- Approximate variants with running time independent of N
- Modern multicore hardware posses tremendous power
- Utilize the power for On-the-fly SDH computation
- All aforementioned algorithms are easily parallelizable

Overview

- Introduction and Motivation
- Spatial Distance Histogram (SDH)
- GPU Architecture
- Brute-force SDH Algorithm on GPU
- Advanced SDH Algorithms on GPU
- Conclusions and Future Work

GPU Architecture

- GPU host thousands of cores
- Hierarchy of memory with different access latency
- Process data in SIMD fashion
- Multiple threads access memory in parallel

Multi-Processor

Overview

- Introduction and Motivation
- Spatial Distance Histogram (SDH)
- GPU Architecture
- Brute-force SDH Algorithm on GPU
- Advanced SDH Algorithms on GPU
- Conclusions and Future Work

Brute-force SDH on GPU - Naïve Method

- Load all N points into GPU global memory
- Compute all distances and generate histogram
for each point p
Compute distance with all other $N-1$ points

Addresses:

Read 4-byte word per thread

Each thread computes distance of
one point to other points on right

SDH on GPU - Shared Memory Method

- To deal with:
- High access latency of global memory
- Histogram buckets are updated by all threads -> serialized writes into buckets

Device Level Global Memory

Experimental Results

- GeForce GTX TITAN

- CUDA Driver Version / Runtime Version:
- CUDA Capability Major/Minor version number:
- (14) Multiprocessors x (192) CUDA Cores/MP:
- Total amount of global memory:

$$
6.0 / 5.0
$$

- Total amount of shared memory per block:

2688 CUDA Cores
6144 Mbytes
49152 bytes

- SDH of various number of data points
- Histogram is assumed to fit in portion of shared memory
- All data is assumed to fit in global memory

Experimental Results - Time

GPU running time Comparison

Data Points	CPU Main Memory	Shared Memory	Global Memory
100,000	$424.7(7 \mathrm{~m})$	1.54	3.40
300,000	$3812(1 \mathrm{~h})$	11.39	26.42
800,000	$27142(7 \mathrm{~h})$	77.20	177.92
$1,600,000$	1.5 Day	316.01	699.16
$3,200,000$	Days	1317.21	2771.21
$6,400,000$	Days	5335.71	11036.78

Experimental Results - Speedup

GPU Speedup Comparison with respect to CPU

Data Points	Shared Memory	Global Memory
100,000	275.7	124.9
300,000	334.6	144.2
800,000	351.5	152.5
$1,600,000$	410.1	185.3
$3,200,000$		
$6,400,000$		

Overview

- Introduction and Motivation
- Spatial Distance Histogram (SDH)
- GPU Architecture
- Brute-force SDH Algorithm on GPU
- Advanced SDH Algorithms on GPU
- Conclusions and Future Work

Background of DM-SDH

- Main idea: avoid the calculation of pairwise distances
- Observation:
- two groups of points can be processed in one shot if the range of all inter-group distances falls into a histogram bucket
- We say these two groups are resolved into that bucket

Background of DM-SDH

The simulation space

Density Map - DM 0

Density Map - DM			
2	3	10	6
7	5	12	1
15	8	6	9
6	13	4	2

Spatial Uniformity

- Closed from PDF of distances - approximate PDF is derived
- Monte-Carlo simulation is another approximation to PDF

Theorem: Number of distinct Monte-Carlo simulations performed for all pair of cells in density map of M cells is $O(M)$

DM-SDH on GPUs

- Load all density maps on global memory.
- Shared memory is loaded by threads in a CUDA block
- Each thread loads information about one cell
- Each thread processes a pair of cells
- Replacing only one cell in loop until all cell are processed
- Next a new cell is loaded and paired with distinct other cells

DM-SDH Algorithm on GPUs

DM-SDH Algorithm on GPUs

- Each CUDA thread
- Processes a pair of cells from DM
- If pair of cells contain uniformly distributed points
- Threads in each CUDA block perform Monte-Carlo simulations
- The probability distribution function for histogram buckets is hashed
- Now for each pair of cells
- If they have uniformly distributed points
- Retrieve information from hash and update histogram buckets
- Else
- Either compute pair-wise distance of all pairs of points in both cells by naïve way
- Or use some heuristics

Experimental Results - Performance

MM: CPU version, GM: GPU version

Experimental Results - Performance

MM: CPU version, GM: GPU Global Memory, SM: GPU Shared Memory

Experimental Results - Energy Consumption

DM-SDH vs. Brute-force

- Brute-force algorithm more suitable for GPU deployment
- Main problems for DM-SDH on GPUs:
- Code divergence (i.e., tree traverse)
- Size of a cell is much larger than size of a point

Overview

- Introduction and Motivation
- Spatial Distance Histogram (SDH)
- GPU Architecture
- Brute-force SDH Algorithm on GPU
- Advanced SDH Algorithms on GPU
- Conclusions and Future Work

Conclusions and Future Work

- Computing power of GPUs can be harnessed for SDH processing
- Speedup varies (3X - 400X) with the algorithm implemented and problem parameter
- Take advantage of new GPU/CUDA features
- Shuffle instruction
- Large register pool
- Read-only cache
- Extension to other correlation functions

Relevant Publications

[TKDE14] A. Kumar, V. Grupcev, Y. Yuan, Y. Tu, Jin Huang, and G. Shen. Computing Spatial Distance Histograms for Large Scientific Datasets On-the-fly. To appear in IEEE Transactions on Knowledge and Data Engineering (TKDE).

- [TKDE13] V. Grupcev, Y. Yuan, Y. Tu, Jin Huang, S. Chen, S. Pandit, and M. Weng. Approximate Algorithms for Computing Distance Histograms with Accuracy Guarantees. IEEE Transactions on Knowledge and Data Engineering (TKDE) 25(9):1982-1996, September 2013.
- [VLDBJ11] S. Chen, Y. Tu, and Y. Xia. Performance Analysis of A Dual-Tree Algorithm for Computing Spatial Distance Histograms. The VLDB Journal. 20(4): 471-494, August 2011.
[EDBT12] A. Kumar, V. Grupcev, Y. Tu, Y. Yuan, and G. Shen. Distance Histogram Computation Based on Spatiotemporal Uniformity in Scientific Data. In Procs. of 15th IEEE International Conference on Extending Database Technology (EDBT). pp.288-299, Berlin, Germany, March 26-30, 2012.
[ICDE09] Y. Tu, S. Chen, and S. Pandit. Computing Distance Histograms Efficiently in Scientific Databases. In Procs. of 25th International Conference on Data Engineering (ICDE), pp. 796-807, Shanghai, China, March 2009.
[NIPS00] Gray, A.G., Moore, A.W. N-body problems in statistical learning. In Advances in Neural Information Processing Systems (NIPS), 1408 pp. 521-527, MIT Press (2000)
（actions ？

Questions ？
THAR YOU
Q AN

Questions ？
Questions ？
Questions ？
THANK YOU
Questions ？
Questions ？

Questions ？

（1）

．

$$
\nabla
$$

$+$

都

Abstract

．

\qquad
\qquad
\qquad
\square ，
 \square
\qquad

\qquad （ \square \square \square正都

\qquad
\square
THANK YOU
Questions ？
\qquad
\square
\square

 \square （ \square \square \square \square －
（

 \square

THANK YOU
Questions？
THANK YOU
Questions？
THANK YOU
Questions？
THANK YOU
Questions？
Questions？
Questions？
Questions ？
Questions ？
Questions ？
Questions ？
Questions ？

 \qquad
$+$
\qquad
完

\qquad
（
．
\qquad
\qquad

\square
\qquad

\qquad
\qquad
\qquad
\qquad
\square
$+$

 \square

Background of DM-SDH

- The Approximate Algorithm (ADM-SDH)
- Organize all data into a Quad-tree (2D data) or Oct-tree (3D data).
- Cache the atoms counts of each tree node (cell)
- Density map: all counts in one tree level

```
start from one proper density map M
FOR every pair of cells A and B in Mo
    resolve A and B
    IF A and B are not resolvable
    THEN IF at desired density map level
        THEN distribute distances proportionally
        into overlapping buckets
        ELSE FOR each child cell A' of A
        FOR each child cell B' of B
        resolve A' and B'
```


SDH on GPU - Using Registers

- GPU with compute capability 3.0 and up support the _shift__instruction.
- Load large number of registers with distinct point
- Compute the SDH by shifting one set of register
- While keeping another set constant
- All pairs of distances between the two sets will be computed

SDH on GPU - Using Registers

Shift left after one iteration
of pair-wise computation

Points in global memory of device

