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Introduction and Motivation 
•  Scientific databases: very large amount of data 

•  CERN Hadron Collider generates 15 PB every year 
•  Next Generation Genome Sequencer generates 

100s of GB in few days 

•  Molecular / Particle simulations 
•  Study physical systems through simulations 
•  System state is stored at many time instances 
•  Each instance is named a frame 

•  Frame constitutes – system state 
•  Measurement of particle properties 

•  Physical location, velocity, charge, mass etc. 
•  Thousands of frames are generated in a simulation 
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Introduction and Motivation 
•  Millions of particles / atoms are 

simulated 
•  Analytical query processing in 

MS data 
•  Center of mass 
•  System density, energy 
•  Mean square displacement 
•  Radial distribution function (RDF) 
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Spatial Distance Histogram (SDH) 
•  Key step for computing RDF 

and other queries 
•  Interesting and tough as 

compared to others - O(N2) 
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SDH Algorithms on CPUs 
• Naïve algorithm in simulation software (e.g., GROMACS) 
• Space partitioning trees (kd-tree) [NIPS00] 

•  Process group of particles as one unit 

• Density-Map SDH (DM-SDH) based on Quad/Oct-trees 
[ICDE09,VLDBJ11,EDBT12,TKDE13,TKDE14] 
•  Runs in O(N(2d-1)/d) for d-dimensional data 
•  Approximate variants with running time independent of N 

• Modern multicore hardware posses tremendous power 
• Utilize the power for On-the-fly SDH computation 
• All aforementioned algorithms are easily parallelizable 
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GPU Architecture 
•  GPU host thousands of cores 
•  Hierarchy of memory with different 

access latency 
•  Process data in SIMD fashion 
•  Multiple threads access memory in 

parallel 
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Brute-force SDH on GPU – Naïve Method 
•  Load all N points into GPU global memory 
• Compute all distances and generate histogram 

!for each point p!
! !Compute distance with all other N-1 points!
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SDH on GPU – Shared Memory Method 
•  To deal with: 

•  High access latency of global memory 
•  Histogram buckets are updated by all threads -> serialized writes 

into buckets 
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Experimental Results 
• GeForce GTX TITAN 

•   CUDA Driver Version / Runtime Version:                      6.0 / 5.0 
•   CUDA Capability Major/Minor version number:            3.5 
•   (14) Multiprocessors x (192) CUDA Cores/MP:            2688 CUDA Cores 
•   Total amount of global memory:                                    6144 Mbytes 
•   Total amount of shared memory per block:                   49152 bytes 

•  SDH of various number of data points 
•  Histogram is assumed to fit in portion of shared memory 
•  All data is assumed to fit in global memory 
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Experimental Results – Time 
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GPU running time Comparison 

Data 
Points 

CPU Main 
Memory 

Shared 
Memory 

Global 
Memory 

100,000 424.7 (7m) 1.54 3.40 
300,000 3812 (1h) 11.39 26.42 
800,000 27142 (7h) 77.20 177.92 
1,600,000 1.5 Day 316.01 699.16 
3,200,000 Days 1317.21 2771.21 
6,400,000 Days 5335.71 11036.78 



Experimental Results – Speedup 

Data Points Shared 
Memory 

Global 
Memory 

100,000 275.7 124.9 
300,000 334.6 144.2 
800,000 351.5 152.5 
1,600,000 410.1 185.3 
3,200,000 
6,400,000 
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GPU Speedup Comparison with respect to CPU 



Overview 
•  Introduction and Motivation 
• Spatial Distance Histogram (SDH) 
• GPU Architecture 
• Brute-force SDH Algorithm on GPU 
• Advanced SDH Algorithms on GPU 
• Conclusions and Future Work 

15 



Background of DM-SDH 
• Main idea: avoid the calculation of pairwise distances 
• Observation: 

•  two groups of points can be processed in one shot if the range of 
all inter-group distances falls into a histogram bucket 

•  We say these two groups are resolved into that bucket  
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Background of DM-SDH 
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Spatial Uniformity 
•  Closed from PDF of distances – approximate PDF is derived 
•  Monte-Carlo simulation is another approximation to PDF 
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DM-SDH on GPUs 
•  Load all density maps on global memory. 
• Shared memory is loaded by threads in a CUDA block 

•  Each thread loads information about one cell 

• Each thread processes a pair of cells 
•  Replacing only one cell in loop until all cell are processed 
•  Next a new cell is loaded and paired with distinct other cells 
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DM-SDH Algorithm on GPUs 
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DM-SDH Algorithm on GPUs 
• Each CUDA thread 

•  Processes a pair of cells from DM 

•  If pair of cells contain uniformly distributed points 
•  Threads in each CUDA block perform Monte-Carlo simulations 
•  The probability distribution function for histogram buckets is hashed 

• Now for each pair of cells 
•  If they have uniformly distributed points 

•  Retrieve information from hash and update histogram buckets 
•  Else 

•  Either compute pair-wise distance of all pairs of points in both cells by 
naïve way 

•  Or use some heuristics 
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Experimental Results – Performance 
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MM: CPU version, GM: GPU version 



Experimental Results – Performance 
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MM: CPU version, GM: GPU Global Memory, SM: GPU Shared 
Memory 



Experimental Results - Energy 
Consumption 
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DM-SDH vs. Brute-force  
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• Brute-force algorithm more suitable for GPU 
deployment 

• Main problems for DM-SDH on GPUs: 
• Code divergence (i.e., tree traverse) 
• Size of a cell is much larger than size of a point  
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Conclusions and Future Work 

• Computing power of GPUs can be harnessed for SDH 
processing 

• Speedup varies (3X – 400X) with the algorithm 
implemented and problem parameter 

•  Take advantage of new GPU/CUDA features 
•  Shuffle instruction 
•  Large register pool 
•  Read-only cache 

• Extension to other correlation functions  

27 



Relevant Publications 
•  [TKDE14] A. Kumar, V. Grupcev, Y. Yuan, Y. Tu, Jin Huang, and G. Shen. 

Computing Spatial Distance Histograms for Large Scientific Datasets On-the-fly. 
To appear in IEEE Transactions on Knowledge and Data Engineering (TKDE). 

•  [TKDE13] V. Grupcev, Y. Yuan, Y. Tu, Jin Huang, S. Chen, S. Pandit, and M. 
Weng. Approximate Algorithms for Computing Distance Histograms with Accuracy 
Guarantees. IEEE Transactions on Knowledge and Data Engineering (TKDE) 
25(9):1982-1996, September 2013. 

•  [VLDBJ11] S. Chen, Y. Tu, and Y. Xia. Performance Analysis of A Dual-Tree 
Algorithm for Computing Spatial Distance Histograms. The VLDB Journal. 20(4):
471-494, August 2011. 

•  [EDBT12] A. Kumar, V. Grupcev, Y. Tu, Y. Yuan, and G. Shen. Distance Histogram 
Computation Based on Spatiotemporal Uniformity in Scientific Data. In Procs. of 
15th IEEE International Conference on Extending Database Technology (EDBT). 
pp.288-299, Berlin, Germany, March 26-30, 2012. 

•  [ICDE09] Y. Tu, S. Chen, and S. Pandit. Computing Distance Histograms 
Efficiently in Scientific Databases. In Procs. of 25th International Conference on 
Data Engineering (ICDE), pp. 796-807, Shanghai, China, March 2009. 

•  [NIPS00] Gray, A.G., Moore, A.W. N-body problems in statistical learning. In 
Advances in Neural Information Processing Systems (NIPS), 1408 pp. 521–527, 
MIT Press (2000)  

28 



THANK YOU 
Questions ? 

29 



Background of DM-SDH 
•  The Approximate Algorithm (ADM-SDH) 

•  Organize	
  all	
  data	
  into	
  a	
  Quad-­‐tree	
  (2D	
  data)	
  or	
  Oct-­‐tree	
  (3D	
  data).	
  	
  
•  Cache	
  the	
  atoms	
  counts	
  of	
  each	
  tree	
  node	
  (cell)	
  

•  Density	
  map:	
  all	
  counts	
  in	
  one	
  tree	
  level	
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start from one proper density map M0 
FOR every pair of cells A and B in M0 

 resolve A and B 
 IF A and B are not resolvable 
 THEN IF at desired density map level 
  THEN distribute distances proportionally 
   into overlapping buckets 
  ELSE FOR each child cell A’ of A 
   FOR each child cell B’ of B 
    resolve A’ and B’ 



SDH on GPU – Using Registers 
• GPU with compute capability 3.0 and up support  the 

_shift__ instruction. 
•  Load large number of registers with distinct point 
• Compute the SDH by shifting one set of register 

•  While keeping another set constant 
•  All pairs of distances between the two sets will be computed 
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SDH on GPU – Using Registers 
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Pair-wise distance 

Points in global memory of device 

Shift left after one iteration 
of pair-wise computation 

If N is odd  – N/2  shifts 
If N is even – (N-1)/2 shifts 

Keep moving selection 


