
Efficient Computation of Radial
Distribution Function on GPUs

Yi-Cheng Tu * and Anand Kumar

Department of Computer Science and
Engineering
University of South Florida, Tampa, Florida

Overview
•  Introduction and Motivation
• Spatial Distance Histogram (SDH)
• GPU Architecture
• Brute-force SDH Algorithm on GPU
• Advanced SDH Algorithms on GPU
• Conclusions and Future Work

2

Introduction and Motivation
•  Scientific databases: very large amount of data

•  CERN Hadron Collider generates 15 PB every year
•  Next Generation Genome Sequencer generates

100s of GB in few days

•  Molecular / Particle simulations
•  Study physical systems through simulations
•  System state is stored at many time instances
•  Each instance is named a frame

•  Frame constitutes – system state
•  Measurement of particle properties

•  Physical location, velocity, charge, mass etc.
•  Thousands of frames are generated in a simulation

3

Introduction and Motivation
•  Millions of particles / atoms are

simulated
•  Analytical query processing in

MS data
•  Center of mass
•  System density, energy
•  Mean square displacement
•  Radial distribution function (RDF)

4

Simulation Space
(diagonal 4w)

0 w 2w 3w 4w

Histogram buckets
(of width w)

Spatial Distance Histogram (SDH)
•  Key step for computing RDF

and other queries
•  Interesting and tough as

compared to others - O(N2)

Overview
•  Introduction and Motivation
• Spatial Distance Histogram (SDH)
• GPU Architecture
• Brute-force SDH Algorithm on GPU
• Advanced SDH Algorithms on GPU
• Conclusions and Future Work

5

SDH Algorithms on CPUs
• Naïve algorithm in simulation software (e.g., GROMACS)
• Space partitioning trees (kd-tree) [NIPS00]

•  Process group of particles as one unit

• Density-Map SDH (DM-SDH) based on Quad/Oct-trees
[ICDE09,VLDBJ11,EDBT12,TKDE13,TKDE14]
•  Runs in O(N(2d-1)/d) for d-dimensional data
•  Approximate variants with running time independent of N

• Modern multicore hardware posses tremendous power
• Utilize the power for On-the-fly SDH computation
• All aforementioned algorithms are easily parallelizable

6

Overview
•  Introduction and Motivation
• Spatial Distance Histogram (SDH)
• GPU Architecture
• Brute-force SDH Algorithm on GPU
• Advanced SDH Algorithms on GPU
• Conclusions and Future Work

7

GPU Architecture
•  GPU host thousands of cores
•  Hierarchy of memory with different

access latency
•  Process data in SIMD fashion
•  Multiple threads access memory in

parallel

8

Multi-
Processor

Global Memory

GPU Device

CPU Main
Memory

Host

Multi-
Processor

Multi-
Processor

Core

Register File

Instruction Cache

Shared Memory | L1 Cache

L2 Cache

Multi-Processor

Core Core Core

Core Core Core Core

Block (1, 1)

Thread BlockThread Block (0, 0)

Device Level Global Memory
Shared Memory
Block Level

Private Memory
Thread Level

Block (1, 0)

Block (0, 1)

Block (2, 0)
Multiprocessor Blocks

Block (2, 1)

Overview
•  Introduction and Motivation
• Spatial Distance Histogram (SDH)
• GPU Architecture
• Brute-force SDH Algorithm on GPU
• Advanced SDH Algorithms on GPU
• Conclusions and Future Work

9

Brute-force SDH on GPU – Naïve Method
•  Load all N points into GPU global memory
• Compute all distances and generate histogram

!for each point p!
! !Compute distance with all other N-1 points!

10

Read 4-byte word per thread

one point to other points on right
Each thread computes distance of

Multiprocessor 1

Multiprocessor 3
Multiprocessor 2

Multiprocessor 4

Hisotgram Buckets

Device Level Global Memory

SDH on GPU – Shared Memory Method
•  To deal with:

•  High access latency of global memory
•  Histogram buckets are updated by all threads -> serialized writes

into buckets

11

Device Level Global Memory

Hisotgram Buckets

Hisotgram Buckets

Multiprocessor Level Shared Memory

Multiprocessor
Interïsegment distances
Intraïsegment distances

Experimental Results
• GeForce GTX TITAN

•  CUDA Driver Version / Runtime Version: 6.0 / 5.0
•  CUDA Capability Major/Minor version number: 3.5
•  (14) Multiprocessors x (192) CUDA Cores/MP: 2688 CUDA Cores
•  Total amount of global memory: 6144 Mbytes
•  Total amount of shared memory per block: 49152 bytes

•  SDH of various number of data points
•  Histogram is assumed to fit in portion of shared memory
•  All data is assumed to fit in global memory

12

Experimental Results – Time

13

GPU running time Comparison

Data
Points

CPU Main
Memory

Shared
Memory

Global
Memory

100,000 424.7 (7m) 1.54 3.40
300,000 3812 (1h) 11.39 26.42
800,000 27142 (7h) 77.20 177.92
1,600,000 1.5 Day 316.01 699.16
3,200,000 Days 1317.21 2771.21
6,400,000 Days 5335.71 11036.78

Experimental Results – Speedup

Data Points Shared
Memory

Global
Memory

100,000 275.7 124.9
300,000 334.6 144.2
800,000 351.5 152.5
1,600,000 410.1 185.3
3,200,000
6,400,000

14

GPU Speedup Comparison with respect to CPU

Overview
•  Introduction and Motivation
• Spatial Distance Histogram (SDH)
• GPU Architecture
• Brute-force SDH Algorithm on GPU
• Advanced SDH Algorithms on GPU
• Conclusions and Future Work

15

Background of DM-SDH
• Main idea: avoid the calculation of pairwise distances
• Observation:

•  two groups of points can be processed in one shot if the range of
all inter-group distances falls into a histogram bucket

•  We say these two groups are resolved into that bucket

16

17	

21	

29	

bucket i

Histogram[i] += 17*29;

Background of DM-SDH

17

2

7

15

6 13 4 2

9

1

6 10 3

5 12

6 8

Density Map - DM2

17

42 21

29

Density Map - DM1

The simulation space
Density Map – DM0

x%

Distances = 17*21

y% z%

bucket i bucket i+1 bucket i+2

Min distance Max distance

17	

21	

29	

Spatial Uniformity
•  Closed from PDF of distances – approximate PDF is derived
•  Monte-Carlo simulation is another approximation to PDF

18

bucket i bucket i+1 bucket i+2

x% y% z%

A	

B	

Uniform cells Monte-Carlo
Simulations

Compute Exact
Proportions to
Buckets

Theorem: Number of distinct Monte-Carlo simulations performed for
all pair of cells in density map of M cells is O(M)

DM-SDH on GPUs
•  Load all density maps on global memory.
• Shared memory is loaded by threads in a CUDA block

•  Each thread loads information about one cell

• Each thread processes a pair of cells
•  Replacing only one cell in loop until all cell are processed
•  Next a new cell is loaded and paired with distinct other cells

19

DM-SDH Algorithm on GPUs

20

Gi Gj Gk

slide

Density Map (DM) Tree

Load DM cells

Global Memory

Shared Memory

Histogram Buckets

Histogram
Buckets

Inter-group
cell pairs

Intra-group
cell pairs

DM-SDH Algorithm on GPUs
• Each CUDA thread

•  Processes a pair of cells from DM

•  If pair of cells contain uniformly distributed points
•  Threads in each CUDA block perform Monte-Carlo simulations
•  The probability distribution function for histogram buckets is hashed

• Now for each pair of cells
•  If they have uniformly distributed points

•  Retrieve information from hash and update histogram buckets
•  Else

•  Either compute pair-wise distance of all pairs of points in both cells by
naïve way

•  Or use some heuristics

21

Experimental Results – Performance

22

MM: CPU version, GM: GPU version

Experimental Results – Performance

23

MM: CPU version, GM: GPU Global Memory, SM: GPU Shared
Memory

Experimental Results - Energy
Consumption

24

DM-SDH vs. Brute-force

25

• Brute-force algorithm more suitable for GPU
deployment

• Main problems for DM-SDH on GPUs:
• Code divergence (i.e., tree traverse)
• Size of a cell is much larger than size of a point

Overview
•  Introduction and Motivation
• Spatial Distance Histogram (SDH)
• GPU Architecture
• Brute-force SDH Algorithm on GPU
• Advanced SDH Algorithms on GPU
• Conclusions and Future Work

26

Conclusions and Future Work

• Computing power of GPUs can be harnessed for SDH
processing

• Speedup varies (3X – 400X) with the algorithm
implemented and problem parameter

•  Take advantage of new GPU/CUDA features
•  Shuffle instruction
•  Large register pool
•  Read-only cache

• Extension to other correlation functions

27

Relevant Publications
•  [TKDE14] A. Kumar, V. Grupcev, Y. Yuan, Y. Tu, Jin Huang, and G. Shen.

Computing Spatial Distance Histograms for Large Scientific Datasets On-the-fly.
To appear in IEEE Transactions on Knowledge and Data Engineering (TKDE).

•  [TKDE13] V. Grupcev, Y. Yuan, Y. Tu, Jin Huang, S. Chen, S. Pandit, and M.
Weng. Approximate Algorithms for Computing Distance Histograms with Accuracy
Guarantees. IEEE Transactions on Knowledge and Data Engineering (TKDE)
25(9):1982-1996, September 2013.

•  [VLDBJ11] S. Chen, Y. Tu, and Y. Xia. Performance Analysis of A Dual-Tree
Algorithm for Computing Spatial Distance Histograms. The VLDB Journal. 20(4):
471-494, August 2011.

•  [EDBT12] A. Kumar, V. Grupcev, Y. Tu, Y. Yuan, and G. Shen. Distance Histogram
Computation Based on Spatiotemporal Uniformity in Scientific Data. In Procs. of
15th IEEE International Conference on Extending Database Technology (EDBT).
pp.288-299, Berlin, Germany, March 26-30, 2012.

•  [ICDE09] Y. Tu, S. Chen, and S. Pandit. Computing Distance Histograms
Efficiently in Scientific Databases. In Procs. of 25th International Conference on
Data Engineering (ICDE), pp. 796-807, Shanghai, China, March 2009.

•  [NIPS00] Gray, A.G., Moore, A.W. N-body problems in statistical learning. In
Advances in Neural Information Processing Systems (NIPS), 1408 pp. 521–527,
MIT Press (2000)

28

THANK YOU
Questions ?

29

Background of DM-SDH
•  The Approximate Algorithm (ADM-SDH)

•  Organize	
 all	
 data	
 into	
 a	
 Quad-­‐tree	
 (2D	
 data)	
 or	
 Oct-­‐tree	
 (3D	
 data).	
 	

•  Cache	
 the	
 atoms	
 counts	
 of	
 each	
 tree	
 node	
 (cell)	

•  Density	
 map:	
 all	
 counts	
 in	
 one	
 tree	
 level	

30

start from one proper density map M0
FOR every pair of cells A and B in M0

 resolve A and B
 IF A and B are not resolvable
 THEN IF at desired density map level
 THEN distribute distances proportionally
 into overlapping buckets
 ELSE FOR each child cell A’ of A
 FOR each child cell B’ of B
 resolve A’ and B’

SDH on GPU – Using Registers
• GPU with compute capability 3.0 and up support the

_shift__ instruction.
•  Load large number of registers with distinct point
• Compute the SDH by shifting one set of register

•  While keeping another set constant
•  All pairs of distances between the two sets will be computed

31

SDH on GPU – Using Registers

32

Pair-wise distance

Points in global memory of device

Shift left after one iteration
of pair-wise computation

If N is odd – N/2 shifts
If N is even – (N-1)/2 shifts

Keep moving selection

