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Abstract

Recent studies on recommendation have largely focused on
exploring state-of-the-art neural networks to improve the ex-
pressiveness of models, while typically apply the Negative
Sampling (NS) strategy for efficient learning. Despite effec-
tiveness, two important issues have not been well-considered
in existing methods: 1) NS suffers from dramatic fluctuation,
making sampling-based methods difficult to achieve the op-
timal ranking performance in practical applications; 2) al-
though heterogeneous feedback (e.g., view, click, and pur-
chase) is widespread in many online systems, most existing
methods leverage only one primary type of user feedback
such as purchase. In this work, we propose a novel non-
sampling transfer learning solution, named Efficient Hetero-
geneous Collaborative Filtering (EHCF) for Top-N recom-
mendation. It can not only model fine-grained user-item re-
lations, but also efficiently learn model parameters from the
whole heterogeneous data (including all unlabeled data) with
a rather low time complexity. Extensive experiments on three
real-world datasets show that EHCF significantly outper-
forms state-of-the-art recommendation methods in both tradi-
tional (single-behavior) and heterogeneous scenarios. More-
over, EHCF shows significant improvements in training ef-
ficiency, making it more applicable to real-world large-scale
systems. Our implementation has been released 1 to facili-
tate further developments on efficient whole-data based neu-
ral methods.

Introduction
Recommender systems are designed to help deal with the in-
formation explosion problem and have been applied to vari-
ous scenarios (Ricci, Rokach, and Shapira 2011; Chen et al.
2018b). In online information platforms, users can interact
with items in various types of behavior. Figure 1 shows an
example of heterogeneous user behaviors on E-commerce
scenarios. Users can view an item, add an item to shop-
ping cart, or purchase an item, etc. These heterogeneous be-
haviors provide valuable signals of users preferences, which
are helpful for building a fine-grained recommender system
(Gao et al. 2019).
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Figure 1: An example of multiple types of user feedback
(not limited to these behaviors). Generally there are strong
transfer relations among different behaviors (dotted lines).

In recent years, many recommendation models have been
proposed and shown to be effective. However, two impor-
tant issues have not been well-considered in existing models.
First, most state-of-the-art methods, especially deep learning
models, rely on Negative Sampling (NS) to increase com-
putational efficiency (Chen et al. 2019a; Gao et al. 2019;
He et al. 2017). While previous studies (He et al. 2017;
Wang et al. 2018; Chen et al. 2019b) have shown that the
performance of NS is not robust as it is highly sensitive to
the sampling distribution and the number of negative sam-
ples. Essentially, sampling is biased, making it difficult to
converge to the optimal ranking performance regardless of
how many update steps have been taken (Xin et al. 2018).
Besides, to leverage heterogeneous user behavior, NS strat-
egy needs to sample a negative instance for every observed
interaction (regardless of the behavior type), which produces
a very large randomness in total (about K times than single-
behavior scenario whereK is the number of behavior types).
As such, it is more difficult for sampling-based methods to
achieve the optimal performance due to the explosive growth
of sampling randomness.

Second, in previous work, there is a lack of in-depth in-
vestigation of relationships between user behavior types.
Specifically, in heterogeneous scenarios, each behavior has
its own contexts and there exist strong transfer relations
among different behaviors (Gao et al. 2019). An example
is shown in Figure 1 by dotted lines, the behaviors may rep-
resent the action sequence of a user on an item: view should



happen prior to adding-to-cart and purchase, while purchase
may happen after adding-to-cart or view. However, existing
heterogeneous recommendation models either focus on ex-
tending the Matrix Factorization (MF) methods to perform
multiple learning of different behaviors (Tang et al. 2016;
Krohn-Grimberghe et al. 2012; Singh and Gordon 2008), or
change the negative sampling strategy to enrich the train-
ing set from the auxiliary behavioral data (Ding et al. 2018;
Loni et al. 2016; Qiu et al. 2018). As a result, these mod-
els have largely ignored the translation relationship among
different behaviors.

In light of the above limitations, we propose a novel
model named Efficient Heterogeneous Collaborative Filter-
ing (EHCF). Particularly, we apply non-sampling optimiza-
tion for our neural model, which is more effective and stable
due to the consideration of all samples in each parameter up-
date (Hu, Koren, and Volinsky 2008; He et al. 2016). To cope
with the efficiency challenges caused by non-sampling strat-
egy, we develop an efficient optimization method. Through
rigorous mathematical analysis, we resolve computational
bottlenecks in optimization by leveraging the sparsity of
positive-only data. Moreover, to incorporate the behavior
contexts, we link the model prediction of each behavior in
a transfer manner. The prediction of a high-level behavior
(i.e., purchase) is influenced by transferring the prediction
of the low-level behavior (i.e., view). Through this way, the
proposed model can capture the underlying contexts of each
behavior. The main contributions of this work are as follows:
• We derive an efficient optimization method that solves the

challenging problem of learning neural models from the
whole data with a controllable time complexity.

• We propose a novel neural model named EHCF for rec-
ommendation, which correlates the prediction of each be-
havior in a transfer way to capture the complicated rela-
tions among different behaviors.

• Extensive experiments on three real-world recommenda-
tion datasets show that EHCF not only outperforms the
state-of-the-art models in both traditional single-behavior
and heterogeneous scenarios, but also has a rather fast
training process.

Related Work
Heterogeneous Collaborative Filtering Heterogeneous
Collaborative Filtering (CF) or multi-behavior CF (Loni et
al. 2016) is an emerging branch in the research commu-
nity of recommender systems. In previous work, Singh and
Gordon (Singh and Gordon 2008) propose Collective Ma-
trix Factorization model (CMF) to simultaneously factorize
multiple user-item interactions with sharing item-side em-
beddings across matrices. CMF is then extended to leverage
multiple user behaviors for recommender systems (Krohn-
Grimberghe et al. 2012; Zhao et al. 2015). Recently, Gao
et al. (Gao et al. 2019) propose a Neural Multi-Task Rec-
ommendation (NMTR) model, which combines the recent
advances of NCF (He et al. 2017) and the efficacy of
Multi-Task Learning (MTL) (Argyriou, Evgeniou, and Pon-
til 2007) to exploit heterogeneous user behaviors. Another
line of research approaches heterogeneous problem from the

perspective of learning (Ding et al. 2018; Loni et al. 2016;
Qiu et al. 2018). Specifically, Loni et al. (Loni et al. 2016)
propose an extension of Bayesian Personalized Ranking
(BPR) (Rendle et al. 2009) to adapt the sampling rule from
different types of behavior in training. Ding et al. (Ding et al.
2018) develop a margin-based pairwise learning framework
when view-data is available. Through the literature review
above, it can be found that the existing approaches proposed
to handle heterogeneous feedback recommendation tasks are
relatively simple. There is a lack of in-depth investigation of
relationships between user feedback types, which is one of
the main concerns of our EHCF model.

Model Learning from Positive-only Data Learning
sparse features from positive-only data is a fundamen-
tal task. Generally, there are two strategies to learn from
positive-only data: 1) NS strategy (Chen et al. 2019a;
He et al. 2017; Rendle et al. 2009) that samples nega-
tive instances from unlabeled data; 2) whole-data based
strategy (Hu, Koren, and Volinsky 2008; Pan et al. 2008;
Liang et al. 2016) that sees all the unlabeled data as neg-
ative. Both strategies have pros and cons: NS strategy is
more efficient, but may decrease the model’s performance;
whole-data based strategy leverages the full data with a po-
tentially better coverage, but inefficiency can be an issue.
To the best of our knowledge, existing deep learning based
recommendation methods almost all rely on NS for effi-
cient model learning. In previous work, some efforts have
been devoted to resolving the inefficiency issue of whole-
data based strategy. Most of them (e.g., (He et al. 2016;
Pilászy, Zibriczky, and Tikk 2010; Chen et al. 2018a)) are
based on Alternating Least Squares (ALS) (Hu, Koren, and
Volinsky 2008). Unfortunately, ALS based methods are not
applicable to neural models which use Gradient Descent
(GD) for optimization. Recently, (Xin et al. 2018) and (Yuan
et al. 2018) design fast Batch Gradient Descent (BGD)
methods to learn from all training examples. However, they
only focus on optimizing traditional models. Distinct from
previous studies, we derive a novel loss that can be used to
learn neural models efficiently from the whole positive and
unlabeled data.

Efficient Heterogeneous Collaborative
Filtering

In this section, we first formally define the heterogeneous
collaborative filtering problem, then introduce our proposed
EHCF model in detail.

Problem Formulation
Suppose we have users U and items V in the dataset, and
we use the index u to denote a user and v to denote an
item. Let {R(1),R(2), ...,R(K)} denote the user-item inter-
action matrices for all the K types of behaviors, where
R(k) = [R(k)uv]|U|×|V| ∈ {0, 1} indicates whether user u
has interacted with item v under behavior k. Generally, het-
erogeneous collaborative filtering has a target behavior to
be optimized, which is denoted as R(K). An example of the
target behavior is the purchase behavior in E-commerce, and
other behaviors can include the view, click, adding to cart,
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Figure 2: An overview of EHCF model. (a) Illustration of the model framework. (b) An example of the relationships among
behaviors, where h1,h2, andh3 denotes the prediction functions of behaviors: view, add-to-cart, and purchase, respectively
(note that EHCF is not limited to these examples). (c) Illustration of the transfer scheme of two relational behaviors.

etc. The task of heterogeneous collaborative filtering is to es-
timate the likelihood R̂(K)uv that a user u will interact with
an item v under the target behavior. The items (uninteracted
under the target behavior) are ranked in descending order of
R̂(K)uv to provide the Top-N item recommendation list.

Model Overview
The overall EHCF model is described in Figure 2. Users
and items are first converted to dense vector representations
through an embedding layer. Note that distinct from previ-
ous work that typically input a user-item pair (u, v), we use a
user and all his/her item interactions as inputs in our frame-
work. Besides, instead of applying a sampling-based strat-
egy to optimize the interaction between user and item, we
propose an efficient optimization method to learn the model
from the whole data without sampling. To make it reason-
able under the paradigm of representation learning, we share
the embedding layer of users and items for the modeling of
all behavior types. Then for each user-item instance (u, v),
a mapping function is defined as:

φ (pu,qv) = pu � qv (1)

where pu ∈ Rd and qv ∈ Rd are latent vectors of user u
and item v, d denotes the embedding size, and � denotes
the element-wise product of vectors.

To predict the likelihood of multiple behaviors with the
same input, it is essential to learn a separated prediction
layer for each behavior. Let hk denotes the prediction layer
for the k-th behavior, the likelihood that u will perform the
k-th behavior on v is estimated by:

R̂(k)uv = hT
k (pu � qv) =

d∑
i=1

hk,ipu,iqv,i (2)

Transfer-based Multi-Behavior Prediction
As discussed in the introduction, generally there are certain
transfer relations among users’ behaviors in real life (Figure

1). So the predictive layers for different behaviors should be
related to each other, rather than being independent. To cap-
ture the transfer features, we enforce that the prediction on
a behavior lies in the predictions of its precedent behaviors.
Motivated by transfer mechanisms in knowledge representa-
tions (Bordes et al. 2013), we assume that the relationships
between two behaviors can also be portrayed as translations
in the representation space. Specifically, the transfer scheme
of two relational behaviors (from ht to hk) is defined as:

fht→hk
= htMtk + rtk (3)

where Mtk ∈ Rd×d is a transfer matrix which projects ht

from the t-th behavior space to the k-th behavior space.
rtk ∈ Rd is the bias vector. A graphical illustration of the
transfer scheme is shown in Figure 2(c). Based on that, the
prediction layer of the k-th behavior is calculated as:

hk =
∑
t

(fht→hk
) =

∑
t

(htMtk + rtk) (4)

where t denotes the precedent behaviors of the k-th behavior.
The initial behavior which has no precedent relation (e.g.,
view) is randomly initialized.

Our transfer-based prediction is not only able to incor-
porate heterogeneous user behaviors, but also particularly
useful for predicting the preference of inactive users that
have few data on the target behavior. Typically, the data of
low-level behaviors (e.g., view) is easier to collect and has a
larger volume than the target behavior (e.g., purchase).

Efficient Optimization without Sampling
We introduce the efficient optimization method without
sampling in this section, which is the basis for learning our
model from the whole heterogeneous feedback data. For
positive-only data, the observed interactions are rather lim-
ited, and non-observed examples are of a much larger scale.
To learn model parameters, Hu and Volinsky (Hu, Koren,
and Volinsky 2008) introduce a weighted regression loss,



which associates a confidence to each prediction in the im-
plicit data matrix. Following this idea, for a batch of users B
and the whole item set V, the loss of a single behavior matrix
R(k) is:

Lk(Θ) =
∑
u∈B

∑
v∈V

ckuv(R(k)uv − R̂(k)uv)2

=
∑
u∈B

∑
v∈V

ckuv(R2
(k)uv − 2R(k)uvR̂(k)uv + R̂2

(k)uv)

(5)

where ckuv denotes the weight of entry R(k)uv . As can
be seen, the time complexity of computing this loss is
O(|B||V|d), which means the straightforward way to calcu-
late gradients is generally unaffordable in practice.

While note that in positive-only data, the non-observed
instances are usually set to a label of R(k)uv = 0 (He et
al. 2016; Wang et al. 2018; Yuan et al. 2018). So the non-
observed R(k)uv can be eliminated to simplify the equation.
Also, the loss of non-observed data can be expressed by the
residual between the loss of all data and that of positive data.
We have the following derivation:

L̃k(Θ) = −2
∑
u∈B

∑
v∈Vk+

ck+
uv R(k)uvR̂(k)uv +

∑
u∈B

∑
v∈V

ckuvR̂
2
(k)uv

=

LP
k (Θ)︷ ︸︸ ︷∑

u∈B

∑
v∈Vk+

(
(ck+

uv − ck−uv )R̂2
(k)uv − 2ck+

uv R(k)uvR̂(k)uv

)

+

LA
k (Θ)︷ ︸︸ ︷∑

u∈B

∑
v∈V

ck−uv R̂
2
(k)uv

(6)

where the Θ-invariant constant value has be eliminated,
LP
k (Θ) denotes the loss for positive data, and LA

k (Θ) de-
notes the loss for all data. Thus, Lk(Θ) can be seen as a
combination of the loss of positive data and the loss of all
data. And the loss of unlabeled data has been eliminated.
The new computational bottleneck lies in LA

k (Θ) now.
Recall the prediction of R̂(k)uv (Eq.(2)), based on a de-

couple manipulation for the inner product operation, the
summation operator and elements in pu & qv can be rear-
ranged:

R̂2
(k)uv =

d∑
i=1

hk,ipu,iqv,i

d∑
j=1

hk,jpu,jqv,j

=

d∑
i=1

d∑
j=1

(hk,ihk,j) (pu,ipu,j) (qv,iqv,j)

(7)

By substituting Eq.(7) in LA
k (Θ), there emerges a nice struc-

ture: usually ck−uv is a uniform (Hu, Koren, and Volinsky
2008) or item-dependent (Liang et al. 2016) parameter ck−v ,
so the interaction between pu,i and qv,i can be properly
separated. Then, the optimization of

∑
v∈V c

k−
v qv,iqv,j and∑

u∈B pu,ipu,j are independent from each other, and we
can achieve a significant speed-up by precomputing the two

terms. The final efficient whole-data based loss for a single
k-th behavior is as follows:

L̃k(Θ) = LP
k (Θ)

+

d∑
i=1

d∑
j=1

(
(hk,ihk,j)

(∑
u∈B

pu,ipu,j

)(∑
v∈V

ck−v qv,iqv,j

))
(8)

The rearrangement of nested sums in LA
k (Θ) is the key

transformation that allows the fast optimization. The com-
puting complexity of LA

k (Θ) is reduced from O(|B||V|d) to
O((|B|+ |V|)d2). Note that in this section we present a user-
based batch optimization loss, the item-based loss can also
be derived in the same way.

Multi-Task Learning
Multi-task learning (MTL) is a paradigm that performs joint
training on the models of different but correlated tasks, so as
to obtain a better model for each task (Argyriou, Evgeniou,
and Pontil 2007). We propose a MTL objective function de-
fined as follows:

L(Θ) =

K∑
k=1

λkL̃k(Θ) (9)

where K is the number of types of users’ behavior, λk is
added to control the influence of the k-th behavior on the
joint training, which is a hyper-parameter to be specified for
different datasets. We additionally enforce that

∑K
k=1 λk =

1 to facilitate the tuning of these hyper-parameters.
Our efficient optimization method can be naturally imple-

mented in modern machine learning tools like Tensorflow
and PyTorch. To optimize the objective function, we use
mini-batch Adagrad (Duchi, Hazan, and Singer 2011) as the
optimizer. Its main advantage is that the learning rate can be
self-adaptive during the training phase, which eases the pain
of choosing a proper learning rate. Dropout is an effective
solution to prevent neural networks from overfitting (Srivas-
tava et al. 2014), which is also adopted in our model.

Discussion
We first discuss the time complexity of our model, in
Eq.(8), updating a batch of users for the k-th behavior takes
O((|B| + |V|)d2 + |Rk

B|d) time, where Rk
B denotes posi-

tive item interactions of this batch of users under the k-th
behavior. When updating the whole model through multi-
task learning for all the K types of behavior, one batch
takes O(K(|B| + |V|)d2 +

∑K
k=1 |Rk

B|d) time (the time
overhead of behavior transferring is rather small and can be
ignored). For the original regression loss (Eq.(5)), it takes
O(K|B||V|d) time. Since |Rk

B| � |B||V| and d � |B| in
practice, the computional complexity of our model is re-
duced by several magnitudes. Moreover, since no approxi-
mation is introduced during the derivation process, the opti-
mization results are exactly the same as the original whole-
data based regression loss. It is also noteworthy that our
EHCF model is applicable to traditional single-behavior rec-
ommendation by optimizing the target behavior loss only.



Table 1: Statistical details of the evaluation datasets.
Dataset #User #Item #View #Add-to-cart #Purchase
Movielens 6,940 3,706 – – 1,000,209
Beibei 21,716 7,977 2,412,586 642,622 304,576
Taobao 48,749 39,493 1,548,126 193,747 259,747

As fast whole-data based learning is a challenging prob-
lem, the designed efficient optimization method is still pre-
liminary. It is now limited to learn models with linear predic-
tion layer, because the rearrange operation in Eq.(7) requires
the prediction of R̂(k)uv to be linear. We leave the extension
of the method as future work.

Experiments and Results
Experimental Settings
Datasets We conduct extensive experiments on three real-
world recommendation system datasets. 1) Movielens-1M 2

(Harper and Konstan 2016) is a single-behavior dataset, 2)
Beibei 3 (Gao et al. 2019), and 3) Taobao 4 (Zhu et al. 2018)
contain heterogeneous user behaviors (view, add-to-cart, and
purchase). The datasets were constructed following previous
work (Ding et al. 2018; Gao et al. 2019). First, we merge
the duplicated user-item interactions by keeping the earliest
one. Second, we filter out users and items with less than 5
purchase interactions. After that, the last purchase records of
users are used as test data, the second last records are used as
validation data, and the remaining records are used for train-
ing. The statistical details of these datasets are summarized
in Table 1.

Baselines We compare the performance of our EHCF
model with the various recommendation methods, which
can be divided into two groups based on whether it mod-
els single-behavior or heterogeneous data. The compared
single-behavior methods include:
• BPR (Rendle et al. 2009), a widely used pairwise learning

method for item recommendation.
• ExpoMF (Liang et al. 2016), a whole-data based MF

method which treats all missing interactions as negative
and weighs them by item popularity.

• NCF (He et al. 2017), a state-of-the-art deep learning
method which combines MF with a multilayer perceptron
(MLP) model for item ranking.

The second group that can leverage heterogeneous data are
as follows:
• CMF (Zhao et al. 2015), it decomposes the data matrices

of multiple behavior types simultaneously.
• MC-BPR (Loni et al. 2016), it adapts the negative sam-

pling rule in BPR for heterogeneous data.
• NMTR (Gao et al. 2019), a state-of-the-art heterogeneous

method, which combines the recent advances of NCF
modeling and the efficacy of multi-task learning.
2https://grouplens.org/datasets/movielens/1m/
3Provided by the authors of (Gao et al. 2019)
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

Evaluation Methodology We apply the widely used
leave-one-out technique (Gao et al. 2019; Rendle et al. 2009;
Wang et al. 2018) and then adopt two popular metrics, HR
(Hit Ratio) and NDCG (Normalized Discounted Cumula-
tive Gain), to judge the performance of the ranking list.
HR is a recall-based metric, measuring whether the test-
ing item is in the Top-N list, while NDCG is position-
sensitive, which assigns higher score to hits at higher po-
sitions. Note that for a user, our evaluation protocol ranks
all unobserved items in the training set. Through this way,
the obtained results are more persuasive than ranking a
random subset of negative times only (Gao et al. 2019;
Dacrema, Cremonesi, and Jannach 2019).

Parameter settings We search for the optimal parameters
on validation data and evaluate the model on test data. For
the parameters of baseline models, we refer to their original
papers and follow their tuning strategies. After the tuning
process, the batch size is set to 512, the size of the latent
factor dimension d is set to 64. The learning rate is set to
0.05, and the dropout ratio ρ is set to 0.8 for Movielens, and
0.5 for Beibei & Taobao to prevent overfitting. We set the
negative sampling ratio as 4 for sampling-based methods,
an empirical value that shows good performance.

Performance Comparison
The results of the comparison of different methods on three
datasets are shown in Table 2. We investigate the Top-N per-
formance with N setting to [10, 50, 100, 200]. From the
results, the following observations can be made:

1) The methods using heterogeneous feedback generally
outperform methods that only making use of purchase be-
havior, which shows the complementarity of users hetero-
geneous feedback. 2) The methods using whole-data based
learning strategies generally perform better than sampling-
based methods. For example, in Table 2, the performances
of ExpoMF are better than BPR; and our EHCF outper-
forms all the baselines. This is consistent with previous work
(Yuan et al. 2018; Xin et al. 2018), which indicates that re-
gardless of what sampler is utilized or how many updates
are taken, sampling is still a biased approach. 3) Our EHCF
significantly outperforms the state-of-the-art CF methods in
both traditional (single-behavior) and heterogeneous scenar-
ios. In particular, compared to NMTR – a recently proposed
heterogeneous deep learning model, EHCF exhibits remark-
able average improvements of 47.5% on Beibei dataset and
57.1% on Taobao dataset.

Discussion on the Remarkable Improvements Although
sampling has been widely adopted in previous work, it is
still reasonable to argue that sampling is not suitable for
learning from heterogeneous behavior data. To generate a
training instance, sampling-based methods (e.g., MC-BPR,
NMTR) need to sample a negative instance for every ob-
served interaction (regardless of the behavior type). This
produces a very large randomness in total (K times than
single-behavior scenario), and can ignore many important
instances. Different from previous work, the parameters in
our model are jointly optimized on the whole data. This
explains why our EHCF outperforms EHCF-sin by 79.4%



Table 2: Performance of different models on three datasets. * and ** denotes the statistical significance for p < 0.05 and p <
0.01, respectively, compared to the best baseline.

Movielens-1M HR@10 HR@50 HR@100 HR@200 NDCG@10 NDCG@50 NDCG@100 NDCG@200

Single
BPR 0.0822 0.2637 0.4048 0.5710 0.0418 0.0757 0.0986 0.1217
ExpoMF 0.0892 0.2808 0.4253 0.5864 0.0457 0.0764 0.1053 0.1309
NCF 0.0936 0.2902 0.4316 0.6023 0.0481 0.0837 0.1097 0.1324

EHCF-Sin 0.1025** 0.3104** 0.4597** 0.6177** 0.0508** 0.0934** 0.1169** 0.1392**

Beibei HR@10 HR@50 HR@100 HR@200 NDCG@10 NDCG@50 NDCG@100 NDCG@200

Single
BPR 0.0437 0.1246 0.2192 0.3057 0.0213 0.0407 0.0539 0.0689
ExpoMF 0.0452 0.1465 0.2246 0.3282 0.0227 0.0426 0.0553 0.0723
NCF 0.0441 0.1562 0.2343 0.3583 0.0225 0.0445 0.0584 0.0757

EHCF-Sin 0.0464** 0.1637** 0.2586** 0.3743** 0.0247** 0.0484** 0.0639** 0.0799**

Heterogeneous

CMF 0.0482 0.1582 0.2843 0.4288 0.0251 0.0462 0.0661 0.0852
MC-BPR 0.0504 0.1743 0.2755 0.3862 0.0254 0.0503 0.0653 0.0796
NMTR 0.0524 0.2047 0.3189 0.4735 0.0285 0.0609 0.0764 0.0968

EHCF 0.0608** 0.3316** 0.4312** 0.5460** 0.0325** 0.1213** 0.1374** 0.1535**

Taobao HR@10 HR@50 HR@100 HR@200 NDCG@10 NDCG@50 NDCG@100 NDCG@200

Single
BPR 0.0376 0.0708 0.0871 0.1035 0.0227 0.0269 0.0305 0.0329
ExpoMF 0.0386 0.0713 0.0911 0.1068 0.0238 0.0270 0.0302 0.0334
NCF 0.0391 0.0728 0.0897 0.1072 0.0233 0.0281 0.0321 0.0345

EHCF-Sin 0.0398* 0.0743** 0.0936** 0.1141** 0.0244* 0.0298** 0.0339** 0.0372**

Heterogeneous

CMF 0.0483 0.0774 0.1185 0.1563 0.0252 0.0293 0.0357 0.0379
MC-BPR 0.0547 0.0791 0.1264 0.1597 0.0263 0.0297 0.0361 0.0397
NMTR 0.0585 0.0942 0.1368 0.1868 0.0278 0.0334 0.0394 0.0537

EHCF 0.0717** 0.1618** 0.2211** 0.2921** 0.0403** 0.0594** 0.0690** 0.0789**

Table 3: Performance of variants of EHCF on Taobao dataset.
Taobao HR@10 HR@50 HR@100 HR@200 NDCG@10 NDCG@50 NDCG@100 NDCG@200

Data Ablation
Purchase 0.0398 0.0743 0.0936 0.1141 0.0244 0.0298 0.0339 0.0372
Purchase&Add-to-cart 0.0612 0.1187 0.1569 0.2008 0.0297 0.0465 0.0527 0.0589
Purchase&View 0.0673 0.1438 0.2061 0.2824 0.0384 0.0493 0.0593 0.0700

Model Ablation Without Transferring 0.0633 0.1112 0.1525 0.2088 0.0312 0.0389 0.0457 0.0535
Without MTL 0.0611 0.1171 0.1552 0.2003 0.0304 0.0448 0.0509 0.0573

Full Model EHCF 0.0717** 0.1618** 0.2211** 0.2921** 0.0403** 0.0594** 0.0690** 0.0789**

on Beibei and 108.8% on Taobao, while the state-of-the-
art NMTR only outperforms NCF by 34.6% and 46.9% on
the two datasets (consistent with (Gao et al. 2019)). Exist-
ing sampling-based heterogeneous methods have not fully
leveraged the auxiliary behavior data, which is also one of
the major points of this work.

Ablation Study
To understand the effectiveness of auxiliary behavior data,
transfer based prediction, and multi-task learning strategy,
we conduct experiments with several variants of EHCF. Note
that without transferring, the prediction layer of each behav-
ior (hk) is randomly initialized and independent. Without
MTL, the prediction of each behavior is trained alternately
within an epoch. The results on Taobao dataset are recorded
in Table 3 and the results on Beibei dataset are similar.

As shown in the table, both adding view data and cart data
to our model lead to improvements, which verify the effec-
tiveness of auxiliary behaviors for user preference modeling.
The remarkable improvements of our methods also show
the necessary of applying non-sampling strategy for learn-
ing from heterogeneous feedback. Besides, variants without

transferring and without MTL both perform worse than the
full EHCF model, which verifies the effectiveness of the pro-
posed transfer-based prediction layer and multi-task training
component.

Efficiency Analysis
We conduct further experiments to explore the training effi-
ciencies of our EHCF and two state-of-the-art neural rec-
ommendation methods: NCF and NMTR. In our experi-
ments, the neural models are all trained on a single NVIDIA
GeForce GTX TITAN X GPU. The runtime results are
shown in Table 4. From the table, first, the training time
cost of EHCF is much less than that using original regres-
sion loss (Eq.(4)), which verifies that the derived loss can
be learned more efficiently. Second, the training of EHCF
is much faster on both single-behavior data and heteroge-
neous data compared to NCF and NMTR, respectively. In
real-world systems, the cost of training time is an important
factor to be considered. Our EHCF model shows significant
advantage in training efficiency, which makes it more practi-
cal to be applied in real life. We also investigate the training
process of NCF, NMTR, and our EHCF. Figure 3 shows the



Table 4: Comparisons of runtime (second/minute [s/m]).
“S”, “I”, and “T” represent the training time for a single it-
eration, the number of iterations to converge, and the total
training time, respectively.
Model Movielens-1M Beibei Taobao

S I T S I T S I T
NCF 91s 100 152m 62s 100 104m 115s 100 192m
EHCF-Sin 4.5s 100 8m 3.2s 100 6m 6s 100 10m
NMTR – – – 165s 200 550m 180s 200 600m
EHCF-Original – – – 62s 200 207m 192s 200 640m
EHCF – – – 7s 200 24m 16s 200 54m
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Figure 3: Performance curves of NCF (best single-behavior
baseline), NMTR (best heterogeneous baseline), EHCF-Sin,
and EHCF.

prediction accuracy of the models with respect to different
training epochs. Due to the space limitation, we only show
the results on HR@100 metrics. For other metrics, the obser-
vations are similar. From the figure, we can see that EHCF
converges much faster on both single-behavior data and het-
erogeneous data than NCF and NMTR.

Handling Data Sparsity Issue
Data sparsity is a big challenge in recommendation
(Volkovs, Yu, and Poutanen 2017), and heterogeneous col-
laborative filtering provides a solution. Thus, we further
study how EHCF model performs for the users with few
records of target behavior. The results are shown in Figure 4.
From the results, we can see that EHCF consistently outper-
forms other methods by a big margin. Particularly in the first
user group with only 5-8 purchase records, our EHCF still
keeps a good HR@100 performance of 0.4460 on Beibei
dataset and 0.2217 on Taobao dataset, which outperforms
the best baseline NMTR by 70.6% and 62.5%, respectively.
Since EHCF learns all types of behaviors in a reasonable
way, it can achieve a good performance for users with sparse
interactions.

Impact of Parameters
To understand how hyper-parameters influence the perfor-
mance of EHCF model, we test the impact of coefficient λk
in the joint loss function of MTL since it is a key parame-
ter of our method. There are three behavior types for Beibei
and Taobao, which means there are three loss coefficients
λ1, λ2, and λ3. As λ1 + λ2 + λ3 = 1, when λ1 and λ2 are
given, the value of λ3 is determined. We tune the three coef-
ficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1] and plot the results
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Figure 4: Performances of NCF, NMTR, EHCF-Sin, and
EHCF on users with different number of purchase records.

Figure 5: Performance of EHCF with different loss coeffi-
cient.

of HR@100 in Figure 5 where darker blocks means better
performance. In the figure, outermost blocks are rather shal-
low since they represent a zero λ3, which is the coefficient of
purchase behavior. On Beibei dataset, a relative large coeffi-
cient of carting behavior outperforms that of view behavior,
while on Taobao dataset, a relative large λ1 leads to better
performance. The reason may be the size difference of aux-
iliary behavioral data in two datasets.

Conclusions

In this paper we introduce a novel end-to-end model named
EHCF for recommendation with heterogeneous user feed-
back. The proposed EHCF has two key characteristics: 1)
a newly designed optimization method is used for efficient
whole-data based model learning; 2) the prediction of each
behavior is correlated in a transfer way to capture the com-
plicated relations among different behaviors. Extensive ex-
periments on three real-world datasets show that EHCF not
only outperforms the state-of-the-art recommendation mod-
els by a big margin, but also has a rather fast training pro-
cess. This work complements the mainstream sampling-
based neural models for recommendation with implicit feed-
back, opening up a new avenue of research possibilities
for neural recommendation models. The designed efficient
whole-data based strategy has the potential to benefit many
tasks where only positive data is observed. Future work in-
cludes exploring our EHCF model in other related tasks
such as network embedding and multi-label classification.
We will also try to extend our optimization method to make
it applicable to learn non-linear models.
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