
Logistic Regression on Homomorphic Encrypted Data at Scale

Kyoohyung Han
Seoul National University

Seoul, South Korea
satanigh@snu.ac.kr

Seungwan Hong
Seoul National University

Seoul, South Korea
swanhong@snu.ac.kr

Jung Hee Cheon
Seoul National University

Seoul, South Korea
jhcheon@snu.ac.kr

Daejun Park
University of Illinois

Urbana-Champaign, IL, USA
dpark69@illinois.edu

Abstract

Machine learning on (homomorphic) encrypted data is a
cryptographic method for analyzing private and/or sensitive
data while keeping privacy. In the training phase, it takes as
input an encrypted training data and outputs an encrypted
model without ever decrypting. In the prediction phase, it
uses the encrypted model to predict results on new encrypted
data. In each phase, no decryption key is needed, and thus
the data privacy is ultimately guaranteed. It has many appli-
cations in various areas such as finance, education, genomics,
and medical field that have sensitive private data. While sev-
eral studies have been reported on the prediction phase, few
studies have been conducted on the training phase.
In this paper, we present an efficient algorithm for logistic re-
gression on homomorphic encrypted data, and evaluate our
algorithm on real financial data consisting of 422,108 sam-
ples over 200 features. Our experiment shows that an en-
crypted model with a sufficient Kolmogorov Smirnow statis-
tic value can be obtained in ∼17 hours in a single machine.
We also evaluate our algorithm on the public MNIST dataset,
and it takes ∼2 hours to learn an encrypted model with 96.4%
accuracy. Considering the inefficiency of homomorphic en-
cryption, our result is encouraging and demonstrates the prac-
tical feasibility of the logistic regression training on large en-
crypted data, for the first time to the best of our knowledge.

1 Introduction
Suppose multiple financial institutions want to predict the
credit scores of their customers. Although each institution
could independently learn a prediction model using various
machine learning techniques, they may be able to collec-
tively learn a better model by considering all of their data
together for training. However, it is risky in terms of data
security to share financial data between institutions, being
even illegal in many countries.

Homomorphic encryption (HE), an encryption scheme
that allows arbitrary computations on encrypted data,1 can
be used to solve this dilemma. Using HE, multiple insti-
tutions can share their data in an encrypted form and run

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Precisely, it is a fully homomorphic encryption (FHE) that sup-
ports the unlimited number of operations on ciphertexts. However,
throughout the paper, we will refer to it as simply HE as long as the
precise meaning is clear in the context.

Figure 1: Machine learning on homomorphic encrypted data

machine learning algorithms on the encrypted data with-
out ever decrypting. Figure 1 illustrates this idea. First, each
data owner shares the public key of the HE scheme and up-
loads his data to the cloud after encrypting with HE. Then
the cloud performs the machine learning training on the en-
crypted data and outputs an encrypted model. This model
can be decrypted by a decryptor who owns the private key.
Here the decryptor can be either a single entity or a group
of entities that have their own share of the private key.2 Note
that, in this HE-based approach, no information is revealed
to each other except the learned model unless the underlying
HE scheme is broken or its secret key is disclosed. This is
the case even if the cloud is compromised. Thus it could be
an ultimate solution for analyzing private or sensitive data
while keeping privacy.

This HE-based approach is also flexible in that the train-
ing computation can be delegated to any party (or even an
untrusted third party) without revealing the training data
(other than their own). This flexibility is desirable, as other
approaches require additional assumptions and conditions
that may not be realizable in practice. For example, in the
multi-party computation (MPC)-based approaches (see Sec-
tion 5), it is not straightforward to delegate the machine
learning training to untrusted (or colluding) third parties.
Also, they incur large communication overhead, where the

2In the latter case, an additional key sharing protocol is required
for the public key to be jointly generated from the entities that have
a random share of the private key, by using, e.g., the threshold HE
schemes (Jain, Rasmussen, and Sahai 2017; Cramer, Damgård, and
Nielsen 2001).

communication overhead increases drastically as the num-
ber of participants increases. Moreover, they require all of
the participants to be online during the entire training pro-
cess, which adds another limitation in practice.

Despite many advantages, however, HE has not been used
for computation-intensive tasks such as machine learning
(especially on the training phase), having been thought to
be impractical due to its large computation overhead. In-
deed, basic operations (e.g., addition or multiplication) on
ciphertexts are several (i.e., three to seven) orders of magni-
tude slower than the corresponding operations on plaintexts
even in the state-of-the-art (Brakerski 2012; Brakerski, Gen-
try, and Vaikuntanathan 2012; Cheon et al. 2017).

In addition to the sheer amount of computation, the use
of various complex operations, such as floating-point arith-
metic and non-polynomial functions (e.g., sigmoid), makes
it challenging to apply HE to machine learning algorithms.
Indeed, HEs have been applied to machine learning algo-
rithms only in non-realistic settings (Graepel, Lauter, and
Naehrig 2012; Kim et al. 2018a) where only small-size
training datasets over a small number of features are con-
sidered; or, they have been applied only on the predic-
tion phase (Gilad-Bachrach et al. 2016; Li et al. 2017;
Juvekar, Vaikuntanathan, and Chandrakasan 2018; Bourse et
al. 2017) where the amount of computation is much smaller
than that of the training phase.

Contributions In this paper, we present an efficient al-
gorithm for logistic regression on homomorphic encrypted
data, and demonstrate its practical feasibility against realis-
tic size datasets, for the first time to the best of our knowl-
edge. We evaluate our algorithm against a real, private finan-
cial dataset consisting of 422,108 samples over 200 features.
Our implementation successfully learned a quality model in
∼17 hours on a single machine, where we tested it against a
validation set of 844,217 samples and obtained a sufficient
Kolmogorov Smirnow statistic value of 50.84. The perfor-
mance is “only” two to three orders of magnitude slower
than that of plaintext learning, which is encouraging, con-
sidering the inherent computational overhead of HEs. We
also executed our algorithm on the public MNIST dataset
for more detailed evaluation, and it took ∼2 hours to learn
an encrypted model with 96.4% accuracy.

The principal techniques used to achieve this result are
two-fold. First, we adopt the approximate HE scheme and
the approximate bootstrapping method to reduce the com-
putational overhead. The approximate HE can quickly com-
pute approximated results of complex operations, avoiding
the bit-manipulation overhead. (Refer to Section 5 for com-
parison with other HE schemes.) Similarly, the approximate
bootstrapping can efficiently bootstrap a ciphertext at the
cost of additional approximation noise.3

Also, we carefully design the logistic regression algo-
rithm to be suitable for the HE scheme, and further optimize
it to improve performance and reduce the approximation
noise. Specifically, we vectorize our logistic regression algo-

3We empirically show that the approximation noise is not sig-
nificant to deteriorate the overall learning performance. Refer to
Section 4 for more details.

rithm to utilize the HE-specific, single-instruction-multiple-
data (SIMD) operations. Also, we parallelize the bootstrap-
ping, the most expensive HE operation, by splitting a cipher-
text, while we carefully design the partition of a training
dataset to avoid reconstructing the split ciphertexts, which
significantly reduces the parallelization overhead. We also
fine-tune the evaluation order to minimize the accumulated
approximation noises due to the approximate HE scheme.

2 Preliminaries
Here we provide background on homomorphic encryption.

Fully Homomorphic Encryption Fully homomorphic
encryption (FHE) is an encryption scheme that allows ar-
bitrary computation on ciphertexts without decrypting. The
first secure FHE (based on the hardness assumption of a
plausible number-theoretic problem) was proposed by Gen-
try (Gentry 2009). He first constructed a scheme, so-called
somewhat homomorphic encryption (SHE), that allows a
limited number of addition and multiplication operations.4
A notable aspect of the scheme is the addition of a random
noise for each encryption. The SHE scheme allows only a
limited number of operations, since the plaintext may not be
recovered once more than the limited number of operations
has been performed, due to the noise accumulated in the ci-
phertext by the operations. To address the limitation, he pro-
posed the so-called bootstrapping procedure that converts a
ciphertext with large noise into another ciphertext with the
same plaintext but small noise. Using the bootstrapping, he
constructed an FHE scheme on top of the SHE scheme.

Various FHE schemes have been proposed since Gentry’s
construction. Their message space is either Zp or a vector
space over Zp. In a bit-wise FHE (p = 2), bit-manipulation
and bootstrapping are efficient, but integer arithmetic is not.
In a word-wise FHE (p � 2), however, the integer arith-
metic is efficient as long as the result is smaller than p.

Recently, an approximate FHE scheme has been proposed
by (Cheon et al. 2017). The scheme, called HEAAN, sup-
ports efficient approximate computation. In addition to ad-
dition and multiplication, it supports a rounding operation,
called rescaling, that is essential for approximate real arith-
metic (e.g., floating-point arithmetic).

HEAAN Scheme In HEAAN, a vector of real numbers is
encrypted in a single ciphertext. Below are the operations
(over ciphertext) provided by HEAAN.
• Addition/Multiplication: Point-wise addition and multi-

plication over (encrypted) vectors.
• Rotation: Given a ciphertext c of a plaintext vec-

tor (m1, · · · ,mn), the rotation of c with k returns
a new ciphertext c′ that encrypts the rotated vector
(mk+1, · · · ,mn,m1, · · · ,mk−1).

• Rescaling: Given a ciphertext c of a plaintext vector
(m1, · · · ,mn), the rescaling of c with k returns a new ci-
phertext c′ that encrypts the rescaled (i.e., rounded) vector
(m′1, · · · ,m′n) where m′i = bmi · 2−ke for 1 ≤ i ≤ n.

4Note that an arbitrary computation can be composed of addi-
tion and multiplication on Z2.

• Bootstrapping: Converting a ciphertext with large noise
to another ciphertext of the same plaintext with small
noise.

The computation cost of each operation is different. The cost
comparison is roughly as follows:5 rescaling (10ms) < ad-
dition (50ms) < rotation (1s) < multiplication (2s)� boot-
strapping (∼10 mins).

3 Logistic Regression on Encrypted Data
We present our algorithm for efficient logistic regression
on homomorphic encrypted data. We first explain a base-
line (plaintext) logistic regression algorithm, designed to be
friendly to homomorphic evaluation (Section 3.1). Then we
explain our optimization of the baseline algorithm for effi-
cient homomorphic evaluation (Sections 3.2). Here, due to
the space limit, we omit the detailed algorithm, referring the
readers to the companion technical report (Han et al. 2018).

3.1 HE-Friendly Logistic Regression Algorithm
We design the baseline algorithm to be friendly to homo-
morphic evaluation by avoiding the use of certain types of
computations that are expensive in HEs.

Mini-Batch Gradient Descent We use the mini-batch
gradient descent method, where we set the mini-batch size
based on the number of slots in a packed ciphertext, so as to
maximize the utilization of the packed ciphertext capacity.

Nesterov Accelerated Gradient Optimizer We adopt
Nesterov accelerated gradient (NAG) as the gradient descent
optimization method. We choose NAG among the various
optimization methods, since it provides decent optimization
performance without using the division operation that is ex-
pensive in HEs.

Polynomial Approximation of Activation Function An
essential step of the logistic regression training is to apply
an activation function, e.g., the sigmoid function σ(x) =
1/(1 + e−x). Since non-polynomials are very expensive to
evaluate in HEs, we consider its (low-degree) polynomial
approximation σ′ as an alternative in our algorithm. We use
the least squares fitting method (Kreyszig 2011) to approx-
imate the sigmoid function. The least squares fitting poly-
nomial provides a sufficient approximation within the given
interval. Figure 2, for example, plots the original sigmoid
function, its least squares fitting polynomial (of degree 3)
within the interval [−8, 8], and its Taylor expansion (of de-
gree 3) at the point x = 0. Note that the Taylor polynomial
provides an accurate approximation only around the given
point, while the least squares fitting polynomial provides a
good approximation in a wider range.

3.2 HE-Optimized Logistic Regression Algorithm
Now we optimize the baseline algorithm to be efficiently
evaluated in HEs against large encrypted data. Conceptually,
the optimization is two-fold: vectorization using homomor-
phic SIMD operations, and fine-tuning the evaluation order.

5The time is measured in the machine specified in Section 4.

−8 −6 −4 −2 0 2 4 6 8

−0.5

0

0.5

1

1.5

y = 1/(1 + exp(−x))
y = 0.5 + 0.15x− 0.0015x3

y = 0.5 + x
4 + x3

48

Figure 2: Sigmoid (the first) and its two approximations us-
ing the least squares fitting method (the second) and the Tay-
lor expansion (the third).

HE-Specific Vectorization of Logistic Regression The
approximate HE scheme we use supports the packing
method (Cheon et al. 2017) which can further reduce the
computation overhead. In the packed HEs, a single ci-
phertext represents an encryption of a vector of plaintexts,
and ciphertext operations correspond to point-wise opera-
tions on plaintext vectors, i.e., single-instruction-multiple-
data (SIMD) operations.

To maximize the benefits of the packed scheme, we vec-
torize our logistic regression algorithm to utilize the SIMD
operations as much as possible. For example, multiple in-
ner products can be performed by a SIMD-multiplication
followed by several rotations and SIMD-additions (Han et
al. 2018). Moreover, we carefully design the vectorization
to minimize redundant computations caused by the use of
the SIMD operations, reduce the depth of nested multiplica-
tions, and minimize the approximation noises by reordering
operations. Refer to (Han et al. 2018) for more details.

Parallelized Bootstrapping One of the most expensive
operations of HEs is the bootstrapping operation (even
with the approximate bootstrapping method). This operation
needs to be periodically executed during the entire compu-
tation. In logistic regression, for example, it should be exe-
cuted every few iterations, and dominates the overall train-
ing time. It is critical for performance to optimize the boot-
strapping operation.

We design our algorithm to parallelize the bootstrap-
ping operation. It splits a ciphertext into multiple smaller
chunks and executes bootstrapping on each chunk in par-
allel, achieving a significant speedup of the overall perfor-
mance. Moreover, we carefully design the packing of train-
ing data (see below) so that our algorithm continues to use
the chunks without merging them in the next training itera-
tions, which additionally saves time it takes to reconstruct a
ciphertext from the chucks.

HE-Optimized, Efficient Partition of Training Data As
mentioned above, we pack multiple plaintexts in a single ci-
phertext, and it is critical for performance how to pack (i.e.,
partition) the training dataset. The training data can be seen

as an n×m matrix with n samples and m features. A naive
encoding would pack each row (or column) into a ciphertext,
resulting in a total of n (or m) ciphertexts. This encoding,
however, is not efficient, since it either does not utilize the
maximum capacity of the ciphertexts, or requires too much
capacity, increasing the computation overhead drastically.

We design an efficient partition of training data in which a
sub n′ ×m′ matrix is packed into a single ciphertext, where
the size of the matrix is set to the maximum capacity of each
ciphertext, and m′ is set to align with the aforementioned
parallelization technique, avoiding an extra overhead of the
ciphertext reconstruction.

4 Evaluation
We evaluate our algorithm of logistic regression on homo-
morphic encrypted data using both a real financial training
dataset and the MNIST dataset. Our artifact is publicly avail-
able at (Han 2018).

Real Financial Dataset We executed our algorithm on a
private, real financial dataset to evaluate the efficiency and
the scalability of our algorithm on a large dataset.

The encrypted dataset we consider to evaluate our logistic
regression algorithm is the real consumer credit information
maintained by a credit reporting agency, Korea Credit Bu-
reau (KCB). Owned by nine major financial institutions in
Korea, KCB provides and analyzes the credit information
on individuals. The dataset (for both training and valida-
tion), randomly sampled by KCB, consists of 1,266,325 in-
dividuals’ credit information over 200 features that are used
for credit rating. Examples of the features are the loan in-
formation (such as the number of credit loans and personal
mortgages), the credit card information (such as the average
amount of credit card purchases and cash advances in the
last three months), and the delinquency information (such
as the days of credit card delinquency). The samples are la-
beled with a binary classification that refers to whether each
individual’s credit rating is below the threshold.

We executed our logistic regression algorithm on the en-
crypted training set of 422,108 samples over 200 features.
Having 200 iterations, it took 1,060 minutes to learn an en-
crypted model, i.e.,∼5 minutes per iteration on average, in a
machine with IBM POWER8 (8 cores, 4.0GHz) and 256GB
RAM. We sent the learned model to the data owner, KCB,
and they decrypted and evaluated it on the validation set of
844,217 samples, having 80% accuracy and the KS value of
50.84. KCB confirmed that it provides a sufficient accuracy
compared to their internal model learned using the plaintext
dataset.6 They also confirmed that our learned model gives
appropriate weights on the important features (e.g., delin-
quency, loan, and credit card information) as expected.

Table 1 shows the detailed result of our experiment. We
set the learning rate to 0.01, and the mini-batch size to 512.
The ciphertext size of each mini-batch block is 4.87 MB,
and thus the total size of the encrypted dataset is ∼4 GB =
4.87 MB × (422,108 / 512). The public key size is ∼2 GB.

6According to their report, it took several minutes to learn a
model on the plaintext using the same algorithm, and the model
provides the KS value of 51.99.

5 10 15 20 25 30
0.88

0.9

0.92

0.94

0.96

0.98

Iteration Number

A
cc

ur
ac

y

Plaintext
Encrypted

Figure 3: Comparison between encrypted and plaintext
training

MNIST We executed our logistic regression algorithm on
the public MNIST dataset for more detailed evaluation.

We took the MNIST dataset (LeCun, Cortes, and Burges
1999), and restructured it for the binary classification prob-
lem between 3 and 8. We compressed the original images of
28×28 pixels into 14×14 pixels, by compressing 2×2 pixels
to their arithmetic mean. The restructured dataset consists of
11,982 samples of the training dataset and 1,984 samples of
the validation dataset.

We encrypted the MNIST dataset and executed our logis-
tic regression algorithm. Table 1 shows the result. With 32
iterations, our logistic algorithm took 132 minutes to learn
an encrypted model. The average time for each iteration is
∼4 minutes, which is similar to that of the financial dataset,
as expected. We decrypted the learned model and evaluated
it on the validation dataset, obtaining 96.4% accuracy.7

Microbenchmarks We also executed our logistic regres-
sion algorithm on the plaintext dataset, and compared the
result to that of the ciphertext learning. Recall that the ap-
proximate HE used in our algorithm introduces the approxi-
mation noise for each computation step, but it had not been
clear how much the noise affects the overall training process.
To evaluate the impact of the approximation noise on the
overall learning performance (e.g., the convergence rate and
accuracy), we measured the accuracy for each iteration for
both plaintext and ciphertext training, and compared those
results. Figure 3 shows the comparison result. It shows that
the accuracy for each iteration in the ciphertext training is
marginally different from that of the plaintext, especially in
the early stage of the training process, but they eventually
converged at the final step. This result implies that the addi-
tional noise introduced by the approximate HE evaluation is
not significant to deteriorate the accuracy of a learned model
and the training performance.

For more detailed evaluation and discussion, we refer the
readers to the companion technical report (Han et al. 2018).

7The accuracy seems to be lower than the usual, but the differ-
ence is mainly due to the image compression. See the microbench-
mark result.

Data Logistic Regression Accuracy Memory Running Time

Financial # Samples (training) 422,108 # Iterations 200 Accuracy 80% Public
Key

Encrypted
Block Total Time / Iter.

Samples (validation) 844,217 Learning Rate 0.01 AUROC 0.8 ≈ 2 GB 4.87 MB 1060 min 5.3 min
Features 200 Mini-batch

Block Size 512 K-S value 50.84

MNIST # Samples (training) 11,982 # Iterations 32 Accuracy 96.4% Public
Key

Encrypted
Block Total Time / Iter.

Samples (validation) 1,984 Learning Rate 1.0 AUROC 0.99 ≈ 1.5 GB 3.96 MB 132 min 4.1 min
Features 196 Mini-batch

Block Size 1024 K-S value N/A

Table 1: Result of machine learning on encrypted data

15 20 25 30
0.92

0.93

0.94

0.95

0.96

0.97

Iteration Number

A
cc

ur
ac

y

Least Squares Fitting
Sigmoid

Figure 4: Comparison between sigmoid and least squares fit-
ting (of degree 3)

Discussion It is not straightforward to provide the fair
comparison of our performance with those of the related
works, since the previous HE-based approaches are not ca-
pable of admitting such realistic size training data consid-
ered in this paper, and the MPC-based approach can be used
in a limited environment where either the number of partic-
ipants is small, or the two servers are trusted to not collude.
As a rough comparison, however, the recent MPC-based ap-
proach (Mohassel and Zhang 2017) will take minutes8 to
learn a model on the MNIST dataset used in this paper,
which is one or two orders of magnitude faster than ours.

Our algorithm requires the number of iterations to be pro-
vided in advance, which is inevitable due to the security of
the underlying HE schemes. In our experiment on the finan-
cial data, the number was obtained by asking the data owner
to provide a rough bound. We note that, however, one can
use our algorithm in an interactive way that the data own-
ers decrypt the learned model periodically (e.g., every 100
iterations), and decide whether to proceed further or not, de-
pending on the quality of the model at the moment.

5 Related Work
There have been several studies on performing a machine
learning without revealing private information. Here we con-
sider two major types of approaches: HE-based approaches
and the multi-party computation (MPC)-based approaches.

8The time is obtained by extrapolating their experimental result
on the MNIST dataset.

HE-Based Approaches Graepel et al. (Graepel, Lauter,
and Naehrig 2012) presented a homomorphic evaluation al-
gorithm of two binary classifiers (i.e., linear means and
Fisher’s linear discriminant classifiers), and Kim et al. (Kim
et al. 2018b; 2018a) proposed a homomorphic evaluation of
logistic regression. However, they provided only a proof-
of-concept evaluation, where small-scale training datasets
(consisting of only dozens of samples and features) are con-
sidered. Moreover, it is not clear how scalable their ap-
proaches are as the size of datasets and the number of it-
erations increase. Indeed, their implementations require the
multiplication depth (i.e., the number of iterations) to be
bounded, meaning that their implementations are not scal-
able. Our algorithm, however, is scalable in the sense that
it can admit an arbitrary number of iterations, and the time
complexity is linear in terms of the number of iterations.

There also have been reported studies on homomorphic
evaluation of the prediction phase of machine learning al-
gorithms including neural networks (Gilad-Bachrach et al.
2016; Li et al. 2017; Juvekar, Vaikuntanathan, and Chan-
drakasan 2018; Bourse et al. 2017). However, the prediction
phase is much simpler than the training phase in terms of
the amount of computation (especially in terms of the mul-
tiplication depth), and thus their techniques are hard to be
applied to the training phase directly.

On the other hand, Aono et al. (Aono et al. 2016) pre-
sented a protocol for secure logistic regression using the ad-
ditively homomorphic encryption. It approximates the cost
function by a low-degree polynomial, and encrypts the train-
ing data in the form of the monomials of the polynomial.
Then, the approximated cost function can be homomorphi-
cally evaluated by simply adding the encrypted monomials.
This protocol, however, has the disadvantage that the num-
ber and/or the size of ciphertexts increase exponentially as
the degree of the polynomial approximation increases.

MPC-Based Approaches Nikolaenko et al. (Nikolaenko
et al. 2013) proposed an MPC-based protocol for training
linear regression model, which combines a linear homo-
morphic encryption and the Yao’s garbled circuit construc-
tion (Yao 1986). Mohassel and Zhang (Mohassel and Zhang
2017) improved the protocol by using secure arithmetic op-
erations on shared decimal numbers, and applied it to logis-
tic regression and neural network training.

However, as mentioned eariler, the MPC-based ap-
proaches incur large communication overhead, and require

all of the participants to be online. To mitigate this prob-
lem, an approach using two delegating servers was pro-
posed (Mohassel and Zhang 2017), where multiple parties
upload their data to two servers and delegate the training
task to the servers using the two-party computation (2PC).
This approach, however, requires an additional assumption
that two servers do not collude. Recall that our HE-based ap-
proach requires no assumption on the server, and can admit
even a compromised server.

Other HE Schemes The bit-wise HE schemes (Ducas
and Micciancio 2015; Chillotti et al. 2017) provide an ef-
ficient bootstrapping operation, and can admit a boolean
circuit directly as a complex operation that involves bit-
manipulation. However, their operations are inherently slow
due to their large circuit depth. On the other hand, the
word-wise HE schemes (Brakerski, Gentry, and Vaikun-
tanathan 2012; Fan and Vercauteren 2012; Brakerski 2012;
Cheon et al. 2017) provide more efficient operations since
their circuit depth can be significantly reduced. However,
they suffer from an expensive bootstrapping operation due
to the large size of ciphertexts. Also, they do not provide the
same level of efficiency for complex operations that involve
bit-manipulation, as their circuit depth is still large in the
form of an arithmetic circuit over words.

The word-wise approximate HE scheme, adopted in our
algorithm, can improve the efficiency of bit-manipulating
complex operations at the cost of approximation noises. It is
useful in applications where the small approximation noises
in the intermediate computation steps are not critical for the
final computation result, which is indeed the case for most
of the machine learning algorithms.

6 Conclusion and Further Work
In this paper, we presented an efficient logistic regression
algorithm on large (fully) homomorphically encrypted data,
and evaluated it against both the private financial data and
the public MNIST dataset. Our implementation successfully
learned a quality model in about 17 and 2 hours, respec-
tively, which demonstrates the practical feasibility of our al-
gorithm on realistic size data. We believe that the techniques
we developed here can be also readily used for homomor-
phically evaluating other machine learning algorithms such
as neural networks, which we leave as a future work.

References
Aono, Y.; Hayashi, T.; Phong, L. T.; and Wang, L. 2016. Scal-
able and secure logistic regression via homomorphic encryption.
Cryptology ePrint Archive, Report 2016/111.

Bourse, F.; Minelli, M.; Minihold, M.; and Paillier, P. 2017.
Fast homomorphic evaluation of deep discretized neural networks.
Cryptology ePrint Archive, Report 2017/1114.

Brakerski, Z.; Gentry, C.; and Vaikuntanathan, V. 2012. (Leveled)
fully homomorphic encryption without bootstrapping. In Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Con-
ference, 309–325. ACM.

Brakerski, Z. 2012. Fully homomorphic encryption without mod-
ulus switching from classical GapSVP. In CRYPTO, 868–886.

Cheon, J. H.; Kim, A.; Kim, M.; and Song, Y. 2017. Homomorphic
encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and In-
formation Security, 409–437. Springer.
Chillotti, I.; Gama, N.; Georgieva, M.; and Izabachène, M. 2017.
Improving TFHE: faster packed homomorphic operations and effi-
cient circuit bootstrapping.
Cramer, R.; Damgård, I.; and Nielsen, J. B. 2001. Multiparty com-
putation from threshold homomorphic encryption. In International
Conference on the Theory and Applications of Cryptographic Tech-
niques, 280–300. Springer.
Ducas, L., and Micciancio, D. 2015. FHEW: Bootstrapping ho-
momorphic encryption in less than a second. In Advances in
Cryptology–EUROCRYPT 2015. Springer. 617–640.
Fan, J., and Vercauteren, F. 2012. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144.
Gentry, C. 2009. Fully homomorphic encryption using ideal lat-
tices. In STOC, volume 9, 169–178.
Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig,
M.; and Wernsing, J. 2016. Cryptonets: Applying neural networks
to encrypted data with high throughput and accuracy. In Interna-
tional Conference on Machine Learning, 201–210.
Graepel, T.; Lauter, K.; and Naehrig, M. 2012. Ml confidential:
Machine learning on encrypted data. In International Conference
on Information Security and Cryptology, 1–21. Springer.
Han, K.; Hong, S.; Cheon, J. H.; and Park, D. 2018. Efficient logis-
tic regression on large encrypted data. Cryptology ePrint Archive,
Report 2018/662.
Han, K. 2018. https://github.com/HanKyoohyung/
Logistic_Regression_on_Encrypted_Data.
Jain, A.; Rasmussen, P. M.; and Sahai, A. 2017. Threshold fully ho-
momorphic encryption. IACR Cryptology ePrint Archive 2017:257.
Juvekar, C.; Vaikuntanathan, V.; and Chandrakasan, A. 2018.
GAZELLE: A low latency framework for secure neural network
inference. In 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association.
Kim, A.; Song, Y.; Kim, M.; Lee, K.; and Cheon, J. H. 2018a.
Logistic regression model training based on the approximate ho-
momorphic encryption.
Kim, M.; Song, Y.; Wang, S.; Xia, Y.; and Jiang, X. 2018b. Secure
logistic regression based on homomorphic encryption: Design and
evaluation. JMIR medical informatics 6(2):e19.
Kreyszig, E. 2011. Advanced Engineering Mathematics. Wiley,
10th edition.
LeCun, Y.; Cortes, C.; and Burges, C. J. 1999. The MNIST
Database of Handwritten Digits.
Li, P.; Li, J.; Huang, Z.; Gao, C.-Z.; Chen, W.-B.; and Chen, K.
2017. Privacy-preserving outsourced classification in cloud com-
puting. Cluster Computing 1–10.
Mohassel, P., and Zhang, Y. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In Security and Privacy (SP),
2017 IEEE Symposium on, 19–38. IEEE.
Nikolaenko, V.; Weinsberg, U.; Ioannidis, S.; Joye, M.; Boneh, D.;
and Taft, N. 2013. Privacy-preserving ridge regression on hundreds
of millions of records. In Security and Privacy (SP), 2013 IEEE
Symposium on, 334–348. IEEE.
Yao, A. C.-C. 1986. How to generate and exchange secrets. In
Foundations of Computer Science, 1986., 27th Annual Symposium
on, 162–167. IEEE.

