
EFFICIENT METHODS AND HARDWARE FOR DEEP LEARNING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Song Han
September 2017

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/qf934gh3708

© 2017 by Song Han. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/qf934gh3708

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Bill Dally, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Fei-Fei Li

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

The future will be populated with intelligent devices that require inexpensive, low-power hardware
platforms. Deep neural networks have evolved to be the state-of-the-art technique for machine
learning tasks. However, these algorithms are computationally intensive, which makes it difficult to
deploy on embedded devices with limited hardware resources and a tight power budget. Since Moore’s
law and technology scaling are slowing down, technology alone will not address this issue. To solve
this problem, we focus on efficient algorithms and domain-specific architectures specially designed for
the algorithm. By performing optimizations across the full stack from application through hardware,
we improved the efficiency of deep learning through smaller model size, higher prediction accuracy,
faster prediction speed, and lower power consumption.

Our approach starts by changing the algorithm, using "Deep Compression" that significantly
reduces the number of parameters and computation requirements of deep learning models by pruning,
trained quantization, and variable length coding. "Deep Compression" can reduce the model size
by 18× to 49× without hurting the prediction accuracy. We also discovered that pruning and the
sparsity constraint not only applies to model compression but also applies to regularization, and
we proposed dense-sparse-dense training (DSD), which can improve the prediction accuracy for a
wide range of deep learning models. To efficiently implement "Deep Compression" in hardware,
we developed EIE, the "Efficient Inference Engine", a domain-specific hardware accelerator that
performs inference directly on the compressed model which significantly saves memory bandwidth.
Taking advantage of the compressed model, and being able to deal with the irregular computation
pattern efficiently, EIE improves the speed by 13× and energy efficiency by 3,400× over GPU.

iv

Acknowledgments

First and foremost, I would like to thank my Ph.D. advisor, Professor Bill Dally. Bill has been an
exceptional advisor and I have been very fortunate to receive his guidance for the five years of Ph.D.
journey. In retrospect, I learned from Bill how to define a problem in year one and two, solve this
problem in year three and four, and spread the discovery in year five. In each step, Bill gave me
extremely visionary advice, most generous support, and most sincere and constructive feedback.
Bill’s industrial experience made his advice insightful beyond academic research contexts. Bill’s
enthusiastic of impactful research greatly motivated me. Bill’s research foresight, technical depth,
and commitment to the students is a valuable treasure for me.

I would also thank my co-advisor, Professor Mark Horowitz. I met Mark in my junior year and I
was encouraged by him to pursue a Ph.D. After coming to Stanford, I had the unique privilege to
have access to Mark’s professional expertise and brilliant thinking. Mark offered me invaluable advice
and diligently guided me through challenging problems. He taught me to perceive the philosophy. I
feel so fortunate to have Mark be my co-advisor.

I gave my sincere thanks to Professor Fei-Fei Li. She is my first mentor in computer vision and
deep learning. Her ambition and foresight ignited my passion for bridging the research in deep
learning and hardware. Sitting on the same floor with Fei-Fei and her students spawned many
research spark. I sincerely thank Fei-Fei’s students Andrej Karpathy, Yuke Zhu, Justin Johnson,
Serena Yeung and Olga Russakovsky for the insightful discussions that helped my interdisciplinary
research between deep learning and hardware.

I also thank Professor Christos Kozyrakis, Professor Kunle Olukotun, Professor Subhasish Mitra
and Dr. Ofer Shacham for the fatalistic course offerings that nurtured me in the field of computer
architecture and VLSI systems. I would thank my friends and lab mates in the CVA group: Milad
Mohammadi, Subhasis Das, Nic McDonald, Albert Ng, Yatish Turakhia, Xingyu Liu, Huizi Mao,
and also the CVA interns Chenzhuo Zhu, Kaidi Cao, Yujun Liu. It was a pleasure working together
with you all.

It has been an honor to work with many great collaborators outside Stanford. I would like to
thank Professor Kurt Keutzer, Forrest Iandola, Bichen Wu and Matthew Moskewicz for teaming up
on the SqueezeNet project. I would like to thank Jensen Huang for the ambitious encouragements and

v

the generous GPU support. I really enjoyed the collaborations with Jeff Pool, John Tran, Peter Vajda,
Manohar Paluri, Sharan Narang and Greg Diamos. Thank you all and looking forward to future
collaborations. Also many thanks to Steve Keckler, Jan Kautz, Andrew Ng, Rob Fergus, Yangqing
Jia, Liang Peng, Yu Wang, Song Yao and Yi Shan for many insightful and valuable discussions.

And I give sincere thanks to my family, Mom and Dad. I can’t forget the encouragements I get
from you when I came to US thousands of miles away from home, and I can’t accomplish what I
did without your love. Thank you for nurturing me and set me a great role model. And to my
grandparents, thank you for the influence you gave me when I was young.

Finally, I would like to thank the funding support from Stanford Vice Provost for Graduate
Education and Rambus Inc. through the Stanford Graduate Fellowship.

vi

Contents

Abstract iv

Acknowledgments v

1. Introduction 1
1.1. Motivation . 2
1.2. Contribution and Thesis Outline . 5

2. Background 7
2.1. Neural Network Architectures . 9
2.2. Datasets . 13
2.3. Deep Learning Frameworks . 14
2.4. Related Work . 15

2.4.1. Compressing Neural Networks . 15
2.4.2. Regularizing Neural Networks . 16
2.4.3. Specialized Hardware for Neural Networks . 17

3. Pruning Deep Neural Networks 19
3.1. Introduction . 19
3.2. Pruning Methodology . 20
3.3. Hardware Efficiency Considerations . 24
3.4. Experiments . 26

3.4.1. Pruning for MNIST . 26
3.4.2. Pruning for ImageNet . 28
3.4.3. Pruning RNNs and LSTMs . 33

3.5. Speedup and Energy Efficiency . 35
3.6. Discussion . 38
3.7. Conclusion . 40

vii

4. Trained Quantization and Deep Compression 41
4.1. Introduction . 41
4.2. Trained Quantization and Weight Sharing . 42
4.3. Storing the Meta Data . 45
4.4. Variable-Length Coding . 47
4.5. Experiments . 48
4.6. Discussion . 55
4.7. Conclusion . 60

5. DSD: Dense-Sparse-Dense Training 61
5.1. Introduction . 61
5.2. DSD Training . 62
5.3. Experiments . 65

5.3.1. DSD for CNN . 65
5.3.2. DSD for RNN . 67

5.4. Significance of DSD Improvements . 70
5.5. Reducing Training Time . 71
5.6. Discussion . 73
5.7. Conclusion . 74

6. EIE: Efficient Inference Engine for Sparse Neural Network 77
6.1. Introduction . 77
6.2. Parallelization on Sparse Neural Network . 79

6.2.1. Computation . 79
6.2.2. Representation . 80
6.2.3. Parallelization . 80

6.3. Hardware Implementation . 82
6.4. Evaluation Methodology . 85
6.5. Experimental Results . 86

6.5.1. Performance . 88
6.5.2. Energy . 89
6.5.3. Design Space Exploration . 90

6.6. Discussion . 92
6.6.1. Partitioning . 92
6.6.2. Scalability . 93
6.6.3. Flexibility . 94
6.6.4. Comparison . 94

6.7. Conclusion . 96

viii

7. Conclusion 97

Bibliography 101

ix

List of Tables

3.1. Summary of pruning deep neural networks. 27
3.2. Pruning Lenet-300-100 reduces the number of weights by 12× and computation by 12×. 27
3.3. Pruning Lenet-5 reduces the number of weights by 12× and computation by 6×. . . 28
3.4. Pruning AlexNet reduces the number of weights by 9× and computation by 3×. . . 29
3.5. Pruning VGG-16 reduces the number of weights by 12× and computation by 5×. . . 29
3.6. Pruning GoogleNet reduces the number of weights by 3.5× and computation by 5×. 29
3.7. Pruning SqueezeNet reduces the number of weights by 3.2× and computation by 3.5×. 31
3.8. Pruning ResNet-50 reduces the number of weights by 3.4× and computation by 6.25×. 32

4.1. Deep Compression saves 17× to 49× parameter storage with no loss of accuracy. . . 49
4.2. Compression statistics for LeNet-300-100. P: pruning, Q: quantization, H: Huffman

coding. 49
4.3. Compression statistics for LeNet-5. P: pruning, Q: quantization, H: Huffman coding. 49
4.4. Accuracy of AlexNet with different quantization bits. 50
4.5. Compression statistics for AlexNet. P: pruning, Q: quantization, H: Huffman coding. 50
4.6. Compression statistics for VGG-16. P: pruning, Q: quantization, H: Huffman coding. 51
4.7. Compression statistics for Inception-V3. P: pruning, Q: quantization, H: Huffman

coding. 52
4.8. Compression statistics for ResNet-50. P: pruning, Q: quantization, H: Huffman coding. 54
4.9. Comparison of uniform quantization and non-uniform quantization (this work) with

different update methods. -c: updating centroid only; -c+l: update both centroid and
label. Baseline ResNet-50 accuracy: 76.15%, 92.87%. All results are after retraining. 57

4.10. Comparison with other compression methods on AlexNet. 60

5.1. Overview of the neural networks, data sets and performance improvements from DSD. 65
5.2. DSD results on GoogleNet . 66
5.3. DSD results on VGG-16 . 66
5.4. DSD results on ResNet-18 and ResNet-50 . 66
5.5. DSD results on NeuralTalk . 67

x

5.6. Deep Speech 1 Architecture . 69
5.7. DSD results on Deep Speech 1 . 69
5.8. Deep Speech 2 Architecture . 70
5.9. DSD results on Deep Speech 2 . 70
5.10. DSD results for ResNet-20 on Cifar-10. The experiment is repeated 16 times to get

rid of noise. 71

6.1. Benchmark from state-of-the-art DNN models . 86
6.2. The implementation results of one PE in EIE and the breakdown by component type

and by module. The critical path of EIE is 1.15 ns. 87
6.3. Wall clock time comparison between CPU, GPU, mobile GPU and EIE. The batch

processing time has been divided by the batch size. Unit: µs 89
6.4. Comparison with existing hardware platforms for DNNs. 95

xi

List of Figures

1.1. This thesis focused on algorithm and hardware co-design for deep learning. This thesis
answers the two questions: what methods can make deep learning algorithm more
efficient, and what is the best hardware architecture for such algorithm. 3

1.2. Thesis contributions: regularized training, model compression, and accelerated inference. 5
1.3. We exploit sparsity to improve the efficiency of neural networks from multiple aspects. 6

2.1. The basic setup for deep learning and the virtuous loop. Hardware plays an important
role speeding up the cycle. 8

2.2. Lenet-5 [1] Architecture. 10
2.3. AlexNet [2] Architecture. 10
2.4. VGG-16 [3] Architecture. 10
2.5. GoogleNet [4] Architecture. 11
2.6. ResNet [5] Architecture. 11
2.7. SqueezeNet [6] Architecture. 11
2.8. NeuralTalk [7] Architecture. 12
2.9. DeepSpeech1 [8] (Left) and DeepSpeech2 [9] (Right) Architecture. 12

3.1. Pruning the synapses and neurons of a deep neural network. 20
3.2. The pipeline for iteratively pruning deep neural networks. 21
3.3. Pruning and Iterative Pruning. 23
3.4. Load-balance-aware pruning saves processing cycles for sparse neural network. 24
3.5. Pruning at different granularities: from un-structured pruning to structured pruning. 25
3.6. Visualization of the sparsity pattern. 28
3.7. Pruning the NeuralTalk LSTM reduces the number of weights by 10×. 34
3.8. Pruning the NeuralTalk LSTM does not hurt image caption quality. 35
3.9. Speedup of sparse neural networks on CPU, GPU and mobile GPU with batch size of 1. 36
3.10. Energy efficiency improvement of sparse neural networks on CPU, GPU and mobile

GPU with batch size of 1. 36
3.11. Accuracy comparison of load-balance-aware pruning and original pruning. 37

xii

3.12. Speedup comparison of load-balance-aware pruning and original pruning. 37
3.13. Trade-off curve for parameter reduction and loss in top-5 accuracy. 39
3.14. Pruning sensitivity for CONV layer (left) and FC layer (right) of AlexNet. 39

4.1. Deep Compression pipeline: pruning, quantization and variable-length coding. 42
4.2. Trained quantization by weight sharing (top) and centroids fine-tuning (bottom). . . 43
4.3. Different methods of centroid initialization: density-based, linear, and random. . . . 44
4.4. Distribution of weights and codebook before (green) and after fine-tuning (red). . . . 45
4.5. Pad a filler zero to handle overflow when representing a sparse vector with relative index. 46
4.6. Reserve a special code to indicate overflow when representing a sparse vector with

relative index. 46
4.7. Storage ratio of weight, index, and codebook. 47
4.8. The non-uniform distribution for weight (Top) and index (Bottom) gives opportunity

for variable-length coding. 48
4.9. Accuracy vs. compression rates under different compression methods. Pruning and

quantization works best when combined. 56
4.10. Non-uniform quantization performs better than uniform quantization. 57
4.11. Fine-tuning is important for trained quantization. It can fully recover the accuracy

when quantizing ResNet-50 to 4 bits. 58
4.12. Accuracy of different initialization methods. Left: top-1 accuracy. Right: top-5

accuracy. Linear initialization gives the best result. 59

5.1. Dense-Sparse-Dense training consists of iteratively pruning and restoring the weights. 62
5.2. Weight distribution for the original GoogleNet (a), pruned (b), after retraining with

the sparsity constraint (c), recovering the zero weights (d), and after retraining the
dense network (e). 64

5.3. Visualization of DSD training improving the performance of image captioning. . . . 67
5.4. Learning curve of early pruning: Random-Cut (Left) and Keepmax-Cut (Right). . . 72

6.1. Efficient inference engine that works on the compressed deep neural network model
for machine learning applications. 78

6.2. Matrix W and vectors a and b are interleaved over 4 PEs. Elements of the same color
are stored in the same PE. 81

6.3. Memory layout for the relative indexed, indirect weighted and interleaved CSC format,
corresponding to PE0 in Figure 6.2. 81

6.4. The architecture of the processing element of EIE. 82
6.5. Without the activation queue, synchronization is needed after each column. There is

load-balance problem within each column, leading to longer computation time. . . . 83

xiii

6.6. With the activation queue, no synchronization is needed after each column, leading to
shorter computation time. 83

6.7. Layout of the processing element of EIE. 87
6.8. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed

DNN model. There is no batching in all cases. 88
6.9. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncom-

pressed DNN model. There is no batching in all cases. 88
6.10. Load efficiency improves as FIFO size increases. When FIFO deepth>8, the marginal

gain quickly diminishes. So we choose FIFO depth=8. 90
6.11. Prediction accuracy and multiplier energy with different arithmetic precision. . . . 90
6.12. SRAM read energy and number of reads benchmarked on AlexNet. 91
6.13. Total energy consumed by SRAM read at different bit width. 91
6.14. System scalability. It measures the speedups with different numbers of PEs. The

speedup is near-linear. 93
6.15. As the number of PEs goes up, the number of padding zeros decreases, leading to less

padding zeros and less redundant work, thus better compute efficiency. 93
6.16. Load efficiency is measured by the ratio of stalled cycles over total cycles in ALU. More

PEs lead to worse load balance, but less padding zeros and more useful computation. 94

7.1. Summary of the thesis. 98

xiv

Chapter 1

Introduction

Deep neural networks (DNNs) have shown significant improvements in many AI applications, including
computer vision [5], natural language processing [10], speech recognition [9], and machine translation
[11]. The performance of DNN is improving rapidly: the winner of ImageNet challenge has increased
the classification accuracy from 84.7% in 2012 (AlexNet [2]) to 96.5% in 2015 (ResNet-152 [5]). Such
exceptional performance enables DNNs to bring artificial intelligence to far-reaching applications,
such as in smart phones [12], drones [13], and self-driving cars [14].

However, this accuracy improvement comes at the cost of high computational complexity. For
example, AlexNet takes 1.4GOPS to process a single 224×224 image, while ResNet-152 takes
22.6GOPS, more than an order of magnitude more computation. Running ResNet-152 in a self-
driving car with 8 cameras at 1080p 30 frames/sec requires the hardware to deliver 22.6GOPS ×
30fps× 8× 1920× 1280/(224× 224) = 265 Teraop/sec computational throughput; using multiple
neural networks on each camera will make the computation even larger. For embedded mobile devices
that have limited computational resources, such high demands for computational resource become
prohibitive.

Another key challenge is energy consumption: because mobile devices are battery-constrained,
heavy computations will quickly drain the battery. The energy cost per 32b operation in a 45nm
technology ranges from 3pJ for multiplication to 640pJ for off-chip memory access [15]. Running
a larger model needs more memory references, and each memory reference requires two orders of
magnitude more energy than an arithmetic operation. Large DNN models do not fit in on-chip
storage and hence require costlier DRAM accesses. To a first-order approximation, running a 1-billion
connection neural network, for example, at 30Hz would require 30Hz × 1G× 640pJ = 19.2W just
for DRAM accesses, which is well beyond the power envelope of a typical mobile device.

Despite the challenges and constraints, we have witnessed rapid progress in the area of efficient
deep learning hardware. Designers have designed custom hardware accelerators specialized for neural
networks [16–23]. Thanks to specialization, these accelerators tailored the hardware architecture

1

CHAPTER 1. INTRODUCTION 2

given the computation pattern of deep learning and achieved higher efficiency compared with CPUs
and GPUs. The first wave of accelerators efficiently implemented the computational primitives for
neural networks [16, 18, 24]. Researchers then realized that memory access is more expensive and
critically needs optimization, so the second wave of accelerators efficiently optimized memory transfer
and data movement [19–23]. These two generations of accelerators have made promising progress in
improving the speed and energy efficiency of running DNNs.

However, both generations of deep learning accelerators treated the algorithm as a black box and
focused on only optimizing the hardware architecture. In fact, there is plenty of room at the top by
optimizing the algorithm. We found that DNN models can be significantly compressed and simplified
before touching the hardware; if we treat these DNN models merely as a black box and hand them
directly to hardware, there is massive redundancy in the workload. However, existing hardware
accelerators are optimized for uncompressed DNN models, resulting in huge wastes of computation
cycles and memory bandwidth compared with running on compressed DNN models. We therefore
need to co-design the algorithm and the hardware.

In this dissertation, we co-designed the algorithm and hardware for deep learning to make it run
faster and more energy-efficiently. We developed techniques to make the deep learning workload
more efficient and compact to begin with and then designed the hardware architecture specialized for
the optimized DNN workload. Figure 1.1 illustrates the design methodology of this thesis. Breaking
the boundary between the algorithm and the hardware stack creates a much larger design space with
many degrees of freedom that researchers have not explored before, enabling better optimization of
deep learning.

On the algorithm side, we investigated how to simplify and compress DNN models to make them
less computation and memory intensive. We aggressively compressed the DNNs by up to 49× without
losing prediction accuracy on ImageNet [25,26]. We also found that the model compression algorithm
removes the redundancy, prevents overfitting, and serve as a suitable regularization method [27].

From the hardware perspective, a compressed model has great potential to improve speed and
energy efficiency because it requires less computation and memory. However, the model compression
algorithm makes the computation pattern irregular and hard to parallelize. Thus we designed
customized hardware for the compressed model, tailoring the data layout and control flow to model
compression. This hardware accelerator achieved 3,400 × better energy efficiency than GPU and an
order of magnitude better than previous accelerators [28]. The architecture has been prototyped on
FPGA and applied to accelerate speech recognition systems [29].

1.1 Motivation

"Less is more"
— Robert Browning, 1855

CHAPTER 1. INTRODUCTION 3

Domain-Specific
Hardware

Efficient  
AlgorithmBenchmark

Hardware

Algorithm

?

co-design

CPU/GPU… ?PU

design across the full stack

�1

Figure 1.1: This thesis focused on algorithm and hardware co-design for deep learning. This thesis
answers the two questions: what methods can make deep learning algorithm more efficient, and
what is the best hardware architecture for such algorithm.

The philosophy of this thesis is to make neural network inference less complicated and make it
more efficient through algorithm and hardware co-design.

Motivation for Model Compression: First, a smaller model means less overhead when
exporting models to clients. Take autonomous driving for example; Tesla periodically copies new
models from their servers to customers’ cars. Smaller models require less communication in such
over-the-air (OTA) updates, making frequent updates more feasible. Another example is the Apple
Store: mobile applications above 100 MB will not download until a user connects to Wi-Fi. As a
result, a new feature that increases the binary size by 100MB will receive much more scrutiny than
one that increases it by 10MB. Thus, putting a large DNN model in a mobile application is infeasible.

The second reason is inference speed. Many mobile scenarios require low-latency, real-time
inference, including self-driving cars and AR glasses, where latency is critical to guarantee safety
or user experience. A smaller model helps improve the inference speed on such devices: from the
computational perspective, smaller DNN models require fewer arithmetic operations and computation
cycles; from the memory perspective, smaller DNN models take less memory reference cycles. If the
model is small enough it can fit in the on-chip SRAM, which is faster to access than off-chip DRAM
memory.

The third reason is energy consumption. Running large neural networks requires significant
memory bandwidth to fetch the weights — this consumes considerable energy and is problematic for
battery-constrained mobile devices. As a result, iOS 10 requires iPhones to be plugged into chargers
while performing photo analysis. Memory access dominates energy consumption. Smaller neural
networks require less memory access to fetch the model, saving energy and extending battery life.

The fourth reason is cost. When deploying DNNs on Application-Specific Integrated Circuits
(ASICs), a sufficiently small model can be stored on-chip directly. As smaller models require less
on-chip SRAM, this permits a smaller ASIC die thus making the chip less expensive.

Smaller deep learning models are also appealing when deployed in large-scale data centers as

CHAPTER 1. INTRODUCTION 4

cloud AI. Future data center workloads would be populated with AI applications, such as Google
Cloud Machine Learning and Amazon Rekognition. The cost of maintaining such large-scale data
centers is tremendous. Smaller DNN models reduce the computation of the workload and take less
energy to run. This helps to reduce the electricity bill and the total cost of ownership (TCO) of
running a data center with deep learning workloads.

A byproduct of model compression is that it can remove the redundancy during training and
prevents overfitting. The compression algorithm automatically selects the optimal set of parameters
as well as their precision. It additionally regularizes the network by avoiding capturing the noise in
the training data.

Motivation for Specialized Hardware: Though model compression reduces the total number
operations deep learning algorithms require, the irregular pattern caused by compression hinders
the efficient acceleration on general-purpose processors. The irregularity limited the benefits of
model compression, and we achieved only 3× energy efficiency improvement on these machines. The
potential saving is much larger: 1− 2 orders of magnitude comes from model compression, another
two orders of magnitude come from DRAM ⇒ SRAM. The compressed model is small enough to fit
in about 10MB of SRAM (verified with AlexNet, VGG-16, Inception-V3, ResNet-50, as discussed in
Chapter 4) rather than having to be stored in a larger capacity DRAM.

Why is there such a big gap between the theoretical and the actual efficiency improvement? The
first reason is the inefficient data path. First, running on compressed models requires traversing a
sparse tensor, which has poor locality on general-purpose processors. Secondly, model compression
incurs a level of indirection for the weights, which requires dedicated buffers for fast access. Lastly,
the bit width of an aggressively compressed model is not byte aligned, which results in serialization
and de-serialization overhead on general-purpose processors.

The second reason for the gap is inefficient control flow. Out-of-order CPU processors have
complicated front ends attempting to speculate the parallelism in the workload; this has a costly
consequence (flushing the pipeline) if any speculation is wrong. However, once narrowed down to deep
learning workloads, the computation pattern is known to the processor ahead of time. Neither branch
prediction nor caching are needed, and the execution is deterministic, not speculative. Therefore,
such speculative units are wasteful in out-of-order processors.

There are alternatives, but they are not perfect. SIMD units can amortize the instruction overhead
among multiple pieces of data. SIMT units can also hide the memory latency by having a pool of
threads. These architectures prefer the workload to be executed lockstep and in a parallel manner.
However, model compression leads to irregular computation patterns and makes it hard to parallelize,
causing divergence problem on these architectures.

While previously proposed DNN accelerators [19–21] can efficiently handle the dense, uncompressed
DNN model; they are unable to handle the aggressively compressed DNN model due to different
computation patterns. There is an enormous waste of computation and memory bandwidth for

CHAPTER 1. INTRODUCTION 5

Model
Compression

Accelerated
Inference

Regularized
Training

InferenceTraining

pruning
neurons

pruning
synapses

after pruningbefore pruning

pruning
neurons

pruning
synapses

after pruningbefore pruning

pruning
neurons

pruning
synapses

after pruningbefore pruning

Conventional

Proposed

Fast Power-
Efficient

Slow Power-
Hungry

Chapter 5
 

Han et al. ICLR’17 Chapter 3, 4
Han et al. NIPS’15
Han et al. ICLR’16

Chapter 6
Han et al. ISCA’16
Han et al. FPGA’17

�1

Figure 1.2: Thesis contributions: regularized training, model compression, and accelerated inference.

previous accelerators running the uncompressed model. Previously proposed sparse linear algebra
accelerators [30–32] do not address weight sharing, extremely narrow bits, or the activation sparsity,
the other benefits of model compression. These factors motivate us to build a specialized hardware
accelerator that can operate efficiently on a deeply compressed neural network.

1.2 Contribution and Thesis Outline

We optimize the efficiency of deep learning with a top-down approach from algorithm to hardware.
This thesis proposes the techniques for regularized training ⇒ model compression ⇒ accelerated
inference, illustrated in Figure 1.2. The contributions of this thesis are:

• A model compression technique, called Deep Compression, that consists of pruning, trained
quantization and variable length coding, which can compress DNN models by 18− 49× while
fully preserving the prediction accuracy.

• A regularization technique, called Dense-Sparse-Dense (DSD) Training, that can regularize
neural network training and prevent overfitting to improve the accuracy for a wide range of
CNNs, RNNs, and LSTMs. The DSD model zoo is available online.

• An efficient hardware architecture, called "Efficient Inference Engine" (EIE), that can perform
inference on the sparse, compressed DNNs and save a significant amount of memory bandwidth.
EIE achieved 13× speed up and 3, 400× better energy efficiency than a GPU.

All these techniques center around exploiting the sparsity in neural networks, shown in Figure 1.3.

https://songhan.github.io/DSD/

CHAPTER 1. INTRODUCTION 6

Higher Accuracy:

Smaller:

Faster, Energy Efficient: EIE Acceleration

Sparsity

Deep Compression

DSD Regularization

[Chapter 3,4]

[Chapter 6]

[Chapter 5]

�2

Figure 1.3: We exploit sparsity to improve the efficiency of neural networks from multiple aspects.

Chapter 2 provides the background for the deep neural networks, datasets, training system, and
hardware platform that we used in the thesis. We also survey the related works in model compression,
regularization, and hardware acceleration.

Chapter 3 describes the pruning technique which reduces the number of parameters of deep
neural networks, thus reducing the computation complexity and memory requirements. We also
introduce the iterative retraining methods to fully recover the prediction accuracy, together with
hardware efficiency consideration for pruning techniques. The content of this chapter is based
primarily on Han et al. [25].

Chapter 4 describes the trained quantization technique to reduce the bit width of the parameters
in deep neural networks. Combining pruning, trained quantization, and variable length coding, we
propose "Deep Compression" that can compress deep neural networks by an order of magnitude
without losing accuracy. The content of this chapter is based primarily on Han et al. [26].

Chapter 5 explains another benefit of pruning, which is to regularize deep neural networks and
prevent overfitting. We propose dense-sparse-dense training (DSD) that periodically prunes and
restores the connections, which serves as a regularizor to improve the optimization performance. The
content of this chapter is based primarily on Han et al. [27].

Chapter 6 presents the "Efficient Inference Engine" (EIE) to efficiently implement deep com-
pression. EIE is a hardware accelerator that performs decompression and inference simultaneously
and accelerates the resulting sparse matrix-vector multiplication with weight sharing. EIE takes
advantage of the compressed model, which significantly saves memory bandwidth. EIE is also able to
deal with the irregular computation pattern efficiently. As a result, EIE achieved significant speedup
and energy efficiency improvement over GPU. The content of this chapter is based primarily on Han
et al. [28] and briefly on Han et al. [29].

In Chapter 7 we summarize the thesis and discuss the future work for efficient deep learning.

Chapter 2

Background

In this chapter, we first introduce what is deep learning, how it works, and its applications. Then we
introduce the neural network architectures we experimented with, the datasets, and the frameworks
we use to train the architectures on the datasets. After this introduction, we describe previous work
in compression, regularization, and acceleration.

Deep learning uses deep neural networks to solve machine learning tasks. Neural networks consist
of a collection of neurons and connections. A neuron receives many inputs from predecessor neurons
and produces one output. The output is a weighted sum of the inputs followed by the neuron’s
activation function, which is usually nonlinear. Neurons are organized as layers. Neurons in the
same layer are not connected. Neurons with no predecessor are called input neurons, neurons with
no successor are called output neurons. If the number of layers between the input neuron and the
output neuron is large, then it is called deep neural network. There is no strict definition, but in
general, with more than eight layers it is considered "deep" [2]. Modern deep neural networks can
have hundreds of layers [5]. Neurons are wired through connections. Each connection transfers the
output of a neuron i to the input of another neuron j. Each connection has a weight wij that will
be multiplied with the activation, which will increase or decrease the signal. This weight will be
adjusted during the learning process, and this process is called training.

Gradient descent is the most common technique for training deep neural networks. It is a
first-order optimization method by calculating the gradient of the loss function over the variable
and moving the variable in the negative direction of the gradient. The step size is proportional
to the absolute value of the gradient. The ratio between the step size and the absolute value of
the gradient is called learning rate. Calculating the gradient is the key step when performing
gradient descent, which is based on the back-propagation algorithm. To calculate the gradient with
back-propagation, we need to first calculate each layer’s activation by performing a feed-forward
pass from the input neuron to the output neuron. This forward pass is also called inference, the
output of inference could either be a continuous value in regression problems, or a discrete value

7

CHAPTER 2. BACKGROUND 8

Training Hardware

Training Data Inference Data

Inference Hardware

Neural Network Models  
CNN, RNN, LSTM…

Users

Generate More Attract More

Bigger Model Better Accuracy

Efficient Hardware Speeds up  
 this Virtuous Cycle  

InferenceTraining
pruning
neurons

pruning
synapses

after pruningbefore pruning

�1

Figure 2.1: The basic setup for deep learning and the virtuous loop. Hardware plays an important
role speeding up the cycle.

in classification problems. The inference result could be correct or wrong, which is quantitatively
measured by the loss function. Next, we calculate the gradient of the loss function for each neuron
and each weight. The gradients are calculated iteratively from the output layer to the input layer
according to the chain rule. Then we update the weights with gradient descent wt+1

i,j = wt
i,j −α ∂L

∂wi,j
.

Such feed-forward, back-propagation, and weight update constitute one training iteration. It usually
takes hundreds of thousands of iterations to train a deep neural network. Training ResNet-50 on
ImageNet, for example, takes 450,450 iterations.

Figure 2.1 summarizes the setup of deep learning. Training on the left, inference on the right,
model in the middle. There is a virtuous loop with user, data and neural network models. More users
will generate more training data (it could be images, speech, search histories or driving actions). The
performance of DNNs scales with the amount of training data. With a larger amount of training data,
we can train larger models without overfitting, resulting in higher inference accuracy. Better accuracy
will attract more users, which will generate more data...This is a positive feedback forming a virtuous
cycle. Hardware plays an important role in this cycle. At training time, efficient hardware can
improve the productivity of designing new models; deep learning researcher can quickly iterate over
different model architectures. At inference time, efficient hardware can improve the user experience
by reducing the latency and achieving real-time inference; efficient hardware can also reduce the cost.
For example, running DNNs on cheap mobile devices. In sum, hardware makes this virtuous cycle
turn faster.

CHAPTER 2. BACKGROUND 9

Deep learning has a wide range of applications. The performance of computer vision tasks greatly
benefited from deep learning by replacing hand-crafted features with features automatically extracted
from deep neural networks [2]. With recent techniques such as batch normalization [33] and residual
blocks [5], we can train even deeper neural networks and the image classification accuracy can
surpass human beings [5]. These advancements has spawned many vision-related applications, such
as self-driving cars [34], medical diagnostics [35] and video surveillance [36]. Deep learning techniques
have made significant advancements in generative models, which have improved the efficiency and
quality of compressed sensing [37], super resolution [38]. Generative models have born many new
applications such as image style transfer [39], visual manipulation [40] and image synthesis [41].
Recurrent neural networks have the power to model sequences of data and greatly improved the
accuracy of speech recognition [42], natural language processing [43], and machine translation [11].
Deep reinforcement learning have made progress in game playing [44], visual navigation [45], device
placement [46], automatic neural network architecture design [47] and robotic grasping [48]. The
big-bang of deep learning applications highlight the importance of improving the efficiency of deep
learning computation, as will be discussed in this thesis.

2.1 Neural Network Architectures

In this section, we give an overview of different types of neural networks, including multi-layer
perceptron (MLP), convolutional neural network (CNN), and recurrent neural network (RNN). MLP
consists of many fully-connected layers each followed by a non-linear function. In a MLP, each neuron
from layeri is connected to layeri+1, and the computation boils down to matrix-vector multiplication.
MLP accounted for more than 61% of Google TPU’s workload [49]. Convolutional Neural Network
(CNN) takes advantage of the spatial locality of the input signal (such as images) and shares the
weights in space, which makes it invariant to translations of the input. Such weight sharing makes
the number of weight much smaller compared to fully-connected layer with the same input/output
dimensions. From the hardware perspective, the CNN architecture have good data locality since
the kernel can be reused across different places; CNNs are usually computation bounded. Recurrent
Neural Network (RNN) captures the temporal information of the input signal (such as speech) and
share the weights in time. As time stamp gets longer, RNNs are prone to suffer from the gradient
explosion or gradient vanishing problem. Long Short-Term Memory networks (LSTMs) [50] is a
popular variant of RNN. LSTM solves the gradient vanishing problem by enabling uninterrupted
gradient flow with the hidden cell. From the hardware perspective, RNN and LSTM have a low
ratio of operations per weight, which is less efficient for hardware because computation is cheap but
fetching the data is expensive. RNNs and LSTMs are usually memory bounded. LSTM accounts for
29% of the workload in TPU [49].

We used the following neural network architectures to evaluate the techniques we proposed for

CHAPTER 2. BACKGROUND 10

Actually, it happened a while ago…

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998.

Figure 2.2: Lenet-5 [1] Architecture.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Figure 2.3: AlexNet [2] Architecture.

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
si

nc
re

as
e

di
m

en
si

on
s.

Ta
bl

e1
sh

ow
s

m
or

e
de

ta
ils

an
d

ot
he

rv
ar

ia
nt

s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
56

,4
80

]
fo

r
sc

al
e

au
gm

en
ta

tio
n

[4
1]

.
A

22
4⇥

22
4

cr
op

is
ra

nd
om

ly
sa

m
pl

ed
fr

om
an

im
ag

e
or

its
ho

ri
zo

nt
al

fli
p,

w
ith

th
e

pe
r-

pi
xe

lm
ea

n
su

bt
ra

ct
ed

[2
1]

.T
he

st
an

da
rd

co
lo

ra
ug

m
en

ta
tio

n
in

[2
1]

is
us

ed
.W

e
ad

op
tb

at
ch

no
rm

al
iz

at
io

n
(B

N
)

[1
6]

ri
gh

t
af

te
r

ea
ch

co
nv

ol
ut

io
n

an
d

be
fo

re
ac

tiv
at

io
n,

fo
llo

w
in

g
[1

6]
.

W
e

in
iti

al
iz

e
th

e
w

ei
gh

ts
as

in
[1

3]
an

d
tr

ai
n

al
lp

la
in

/r
es

id
ua

ln
et

s
fr

om
sc

ra
tc

h.
W

e
us

e
SG

D
w

ith
a

m
in

i-
ba

tc
h

si
ze

of
25

6.
T

he
le

ar
ni

ng
ra

te
st

ar
ts

fr
om

0.
1

an
d

is
di

vi
de

d
by

10
w

he
n

th
e

er
ro

rp
la

te
au

s,
an

d
th

e
m

od
el

s
ar

e
tr

ai
ne

d
fo

ru
p

to
60

⇥
10

4
ite

ra
tio

ns
.W

e
us

e
a

w
ei

gh
td

ec
ay

of
0.

00
01

an
d

a
m

om
en

tu
m

of
0.

9.
W

e
do

no
tu

se
dr

op
ou

t[
14

],
fo

llo
w

in
g

th
e

pr
ac

tic
e

in
[1

6]
.

In
te

st
in

g,
fo

rc
om

pa
ri

so
n

st
ud

ie
s

w
e

ad
op

tt
he

st
an

da
rd

10
-c

ro
p

te
st

in
g

[2
1]

.
Fo

r
be

st
re

su
lts

,
w

e
ad

op
t

th
e

fu
lly

-
co

nv
ol

ut
io

na
l

fo
rm

as
in

[4
1,

13
],

an
d

av
er

ag
e

th
e

sc
or

es
at

m
ul

tip
le

sc
al

es
(i

m
ag

es
ar

e
re

si
ze

d
su

ch
th

at
th

e
sh

or
te

r
si

de
is

in
{2

24
,2
56

,3
84

,4
80

,6
40

})
.

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

36
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
ri

ng
th

e
tr

ai
ni

ng
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r

p

l
a

i
n

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
l
a

y
e

r

r
e

s
i
d

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
s

in
cr

ea
se

di
m

en
si

on
s.

Ta
bl

e
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
t

re
si

du
al

ve
rs

io
n.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
5
6
,4
8
0
]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

1]
.

A
22

4⇥
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
ri

zo
nt

al
fli

p,
w

ith
th

e
pe

r-
pi

xe
lm

ea
n

su
bt

ra
ct

ed
[2

1]
.T

he
st

an
da

rd
co

lo
ra

ug
m

en
ta

tio
n

in
[2

1]
is

us
ed

.W
e

ad
op

tb
at

ch
no

rm
al

iz
at

io
n

(B
N

)
[1

6]
ri

gh
t

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
3]

an
d

tr
ai

n
al

lp
la

in
/r

es
id

ua
ln

et
s

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-

ba
tc

h
si

ze
of

25
6.

T
he

le
ar

ni
ng

ra
te

st
ar

ts
fr

om
0.

1
an

d
is

di
vi

de
d

by
10

w
he

n
th

e
er

ro
rp

la
te

au
s,

an
d

th
e

m
od

el
s

ar
e

tr
ai

ne
d

fo
ru

p
to

6
0
⇥
1
0
4

ite
ra

tio
ns

.W
e

us
e

a
w

ei
gh

td
ec

ay
of

0.
00

01
an

d
a

m
om

en
tu

m
of

0.
9.

W
e

do
no

tu
se

dr
op

ou
t[

14
],

fo
llo

w
in

g
th

e
pr

ac
tic

e
in

[1
6]

.
In

te
st

in
g,

fo
r

co
m

pa
ri

so
n

st
ud

ie
s

w
e

ad
op

tt
he

st
an

da
rd

10
-c

ro
p

te
st

in
g

[2
1]

.
Fo

r
be

st
re

su
lts

,
w

e
ad

op
t

th
e

fu
lly

-
co

nv
ol

ut
io

na
l

fo
rm

as
in

[4
1,

13
],

an
d

av
er

ag
e

th
e

sc
or

es
at

m
ul

tip
le

sc
al

es
(i

m
ag

es
ar

e
re

si
ze

d
su

ch
th

at
th

e
sh

or
te

r
si

de
is

in
{2

2
4
,2
5
6
,3
8
4
,4
8
0
,6
4
0
})

.

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

36
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
r

tr
ai

ni
ng

/v
al

id
at

io
n

er
ro

rs
du

ri
ng

th
e

tr
ai

ni
ng

pr
o-

ce
du

re
.

W
e

ha
ve

ob
se

rv
ed

th
e

de
gr

ad
at

io
n

pr
ob

le
m

-
th

e

4

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
si

nc
re

as
e

di
m

en
si

on
s.

Ta
bl

e
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
56

,4
80

]
fo

r
sc

al
e

au
gm

en
ta

tio
n

[4
1]

.
A

22
4⇥

22
4

cr
op

is
ra

nd
om

ly
sa

m
pl

ed
fr

om
an

im
ag

e
or

its
ho

ri
zo

nt
al

fli
p,

w
ith

th
e

pe
r-

pi
xe

lm
ea

n
su

bt
ra

ct
ed

[2
1]

.T
he

st
an

da
rd

co
lo

ra
ug

m
en

ta
tio

n
in

[2
1]

is
us

ed
.W

e
ad

op
tb

at
ch

no
rm

al
iz

at
io

n
(B

N
)

[1
6]

ri
gh

t
af

te
r

ea
ch

co
nv

ol
ut

io
n

an
d

be
fo

re
ac

tiv
at

io
n,

fo
llo

w
in

g
[1

6]
.

W
e

in
iti

al
iz

e
th

e
w

ei
gh

ts
as

in
[1

3]
an

d
tr

ai
n

al
lp

la
in

/r
es

id
ua

ln
et

s
fr

om
sc

ra
tc

h.
W

e
us

e
SG

D
w

ith
a

m
in

i-
ba

tc
h

si
ze

of
25

6.
T

he
le

ar
ni

ng
ra

te
st

ar
ts

fr
om

0.
1

an
d

is
di

vi
de

d
by

10
w

he
n

th
e

er
ro

rp
la

te
au

s,
an

d
th

e
m

od
el

s
ar

e
tr

ai
ne

d
fo

ru
p

to
60

⇥
10

4
ite

ra
tio

ns
.W

e
us

e
a

w
ei

gh
td

ec
ay

of
0.

00
01

an
d

a
m

om
en

tu
m

of
0.

9.
W

e
do

no
tu

se
dr

op
ou

t[
14

],
fo

llo
w

in
g

th
e

pr
ac

tic
e

in
[1

6]
.

In
te

st
in

g,
fo

rc
om

pa
ri

so
n

st
ud

ie
s

w
e

ad
op

tt
he

st
an

da
rd

10
-c

ro
p

te
st

in
g

[2
1]

.
Fo

r
be

st
re

su
lts

,
w

e
ad

op
t

th
e

fu
lly

-
co

nv
ol

ut
io

na
l

fo
rm

as
in

[4
1,

13
],

an
d

av
er

ag
e

th
e

sc
or

es
at

m
ul

tip
le

sc
al

es
(i

m
ag

es
ar

e
re

si
ze

d
su

ch
th

at
th

e
sh

or
te

r
si

de
is

in
{2

24
,2
56

,3
84

,4
80

,6
40

})
.

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

36
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
ri

ng
th

e
tr

ai
ni

ng
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
s

in
cr

ea
se

di
m

en
si

on
s.

Ta
bl

e
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
5
6
,4
8
0
]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

1]
.

A
22

4⇥
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
ri

zo
nt

al
fli

p,
w

ith
th

e
pe

r-
pi

xe
lm

ea
n

su
bt

ra
ct

ed
[2

1]
.T

he
st

an
da

rd
co

lo
ra

ug
m

en
ta

tio
n

in
[2

1]
is

us
ed

.W
e

ad
op

tb
at

ch
no

rm
al

iz
at

io
n

(B
N

)
[1

6]
ri

gh
t

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
3]

an
d

tr
ai

n
al

lp
la

in
/r

es
id

ua
ln

et
s

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-

ba
tc

h
si

ze
of

25
6.

T
he

le
ar

ni
ng

ra
te

st
ar

ts
fr

om
0.

1
an

d
is

di
vi

de
d

by
10

w
he

n
th

e
er

ro
rp

la
te

au
s,

an
d

th
e

m
od

el
s

ar
e

tr
ai

ne
d

fo
ru

p
to

6
0
⇥
1
0
4

ite
ra

tio
ns

.W
e

us
e

a
w

ei
gh

td
ec

ay
of

0.
00

01
an

d
a

m
om

en
tu

m
of

0.
9.

W
e

do
no

tu
se

dr
op

ou
t[

14
],

fo
llo

w
in

g
th

e
pr

ac
tic

e
in

[1
6]

.
In

te
st

in
g,

fo
r

co
m

pa
ri

so
n

st
ud

ie
s

w
e

ad
op

tt
he

st
an

da
rd

10
-c

ro
p

te
st

in
g

[2
1]

.
Fo

r
be

st
re

su
lts

,
w

e
ad

op
t

th
e

fu
lly

-
co

nv
ol

ut
io

na
l

fo
rm

as
in

[4
1,

13
],

an
d

av
er

ag
e

th
e

sc
or

es
at

m
ul

tip
le

sc
al

es
(i

m
ag

es
ar

e
re

si
ze

d
su

ch
th

at
th

e
sh

or
te

r
si

de
is

in
{2

2
4
,2
5
6
,3
8
4
,4
8
0
,6
4
0
})

.

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

36
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
ri

ng
th

e
tr

ai
ni

ng
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4

7
x

7
 c

o
n

v
,

6
4

,
/
2

p
o

o
l,

 /
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
/
2

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,
 2

5
6

,
/
2

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,
 5

1
2

,
/
2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

a
v

g
 p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

6
4

3
x

3
 c

o
n

v
,

6
4

p
o

o
l,

 /
2

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

p
o

o
l,

 /
2

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

p
o

o
l,

 /
2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

p
o

o
l,

 /
2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

p
o

o
l,

 /
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

im
a

g
e

o
u

t
p

u
t

s
iz

e
:
 1

1
2

o
u

t
p

u
t

s
iz

e
:
 2

2
4

o
u

t
p

u
t

s
iz

e
:
 5

6

o
u

t
p

u
t

s
iz

e
:
 2

8

o
u

t
p

u
t

s
iz

e
:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7
 c

o
n

v
,

6
4

,
/
2

p
o

o
l,

 /
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
/
2

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,

1
2

8

3
x

3
 c

o
n

v
,
 2

5
6

,
/
2

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,

2
5

6

3
x

3
 c

o
n

v
,
 5

1
2

,
/
2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

3
x

3
 c

o
n

v
,

5
1

2

a
v

g
 p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

Ex
am

pl
e

ne
tw

or
k

ar
ch

ite
ct

ur
es

fo
rI

m
ag

eN
et

.
Le

ft:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

Th
e

do
tte

d
sh

or
tc

ut
si

nc
re

as
e

di
m

en
si

on
s.

Ta
bl

e1
sh

ow
s

m
or

e
de

ta
ils

an
d

ot
he

rv
ar

ia
nt

s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
rig

ht
)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

Th
e

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

Th
e

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tra
ze

ro
en

tri
es

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

Th
is

op
tio

n
in

tro
du

ce
s

no
ex

tra
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

Eq
n.

(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
rid

e
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

Th
e

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
56

,4
80
]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

1]
.

A
22

4⇥
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
riz

on
ta

lfl
ip

,w
ith

th
e

pe
r-

pi
xe

lm
ea

n
su

bt
ra

ct
ed

[2
1]

.T
he

st
an

da
rd

co
lo

ra
ug

m
en

ta
tio

n
in

[2
1]

is
us

ed
.W

e
ad

op
tb

at
ch

no
rm

al
iz

at
io

n
(B

N
)

[1
6]

rig
ht

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
3]

an
d

tra
in

al
lp

la
in

/re
si

du
al

ne
ts

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-b

at
ch

si
ze

of
25

6.
Th

e
le

ar
ni

ng
ra

te
st

ar
ts

fr
om

0.
1

an
d

is
di

vi
de

d
by

10
w

he
n

th
e

er
ro

rp
la

te
au

s,
an

d
th

e
m

od
el

s
ar

e
tra

in
ed

fo
ru

p
to

60
⇥
10

4
ite

ra
tio

ns
.W

e
us

e
a

w
ei

gh
td

ec
ay

of
0.

00
01

an
d

a
m

om
en

tu
m

of
0.

9.
W

e
do

no
tu

se
dr

op
ou

t[
14

],
fo

llo
w

in
g

th
e

pr
ac

tic
e

in
[1

6]
.

In
te

st
in

g,
fo

rc
om

pa
ris

on
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,w

e
ad

op
t

th
e

fu
lly

-
co

nv
ol

ut
io

na
l

fo
rm

as
in

[4
1,

13
],

an
d

av
er

ag
e

th
e

sc
or

es
at

m
ul

tip
le

sc
al

es
(im

ag
es

ar
e

re
si

ze
d

su
ch

th
at

th
e

sh
or

te
r

si
de

is
in

{2
24

,2
56

,3
84

,4
80

,6
40

})
.

4.
Ex

pe
ri

m
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

36
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
Th

e
m

od
el

s
ar

e
tra

in
ed

on
th

e
1.

28
m

ill
io

n
tra

in
in

g
im

ag
es

,a
nd

ev
al

u-
at

ed
on

th
e

50
k

va
lid

at
io

n
im

ag
es

.
W

e
al

so
ob

ta
in

a
fin

al
re

su
lt

on
th

e
10

0k
te

st
im

ag
es

,r
ep

or
te

d
by

th
e

te
st

se
rv

er
.

W
e

ev
al

ua
te

bo
th

to
p-

1
an

d
to

p-
5

er
ro

rr
at

es
.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-la
ye

r
an

d
34

-la
ye

r
pl

ai
n

ne
ts

.T
he

34
-la

ye
rp

la
in

ne
ti

s
in

Fi
g.

3
(m

id
dl

e)
.T

he
18

-la
ye

r
pl

ai
n

ne
ti

s
of

a
si

m
ila

r
fo

rm
.

Se
e

Ta
bl

e
1

fo
r

de
-

ta
ile

d
ar

ch
ite

ct
ur

es
.

Th
e

re
su

lts
in

Ta
bl

e
2

sh
ow

th
at

th
e

de
ep

er
34

-la
ye

rp
la

in
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-la

ye
r

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(le

ft)
w

e
co

m
-

pa
re

th
ei

rt
ra

in
in

g/
va

lid
at

io
n

er
ro

rs
du

rin
g

th
e

tra
in

in
g

pr
o-

ce
du

re
.

W
e

ha
ve

ob
se

rv
ed

th
e

de
gr

ad
at

io
n

pr
ob

le
m

-
th

e

4

�1

Figure 2.4: VGG-16 [3] Architecture.

model compression and regularization; we also used them as a benchmark to evaluate the performance
on different hardware platforms.

LeNet-300-100 [1] (1998) is a fully connected network with two hidden layers harboring 300 and
100 neurons each. LeNet-5 [1] (1998) is a convolutional network which has two convolutional layers
and two fully connected layers. Both of them are designed for hand written digits recognition.

AlexNet [2] (2012) significantly decreased the error rate of image classification compared with
previous approaches based on hand crafted features. AlexNet has 61 million parameters across five
convolutional layers and three fully connected layers. The AlexNet Caffe model achieved a top-1
accuracy of 57.2% and a top-5 accuracy of 80.3% on ImageNet. The convolution layer of AlexNet
has three different kernel sizes: 11×11, 5×5, and 3×3.

VGGNet [3] (2014) has 138 million parameters across 13 convolutional layers and three fully
connected layers. The VGG-16 Caffe model achieved a top-1 accuracy of 68.5% and a top-5 accuracy
of 88.7% on ImageNet. All the convolutional layers of VGG-16 have the same kernel sizes of 3×3.

CHAPTER 2. BACKGROUND 11
•

A
linear

layer
w

ith
softm

ax
loss

as
the

classifier
(pre-

dicting
the

sam
e

1000
classesasthe

m
ain

classifier,but
rem

oved
atinference

tim
e).

A
schem

atic
view

ofthe
resulting

netw
ork

is
depicted

in
Figure

3.

6.Training
M

ethodology

G
oogL

eN
et

netw
orks

w
ere

trained
using

the
D

istB
e-

lief
[4]

distributed
m

achine
learning

system
using

m
od-

est
am

ount
of

m
odel

and
data-parallelism

.
A

lthough
w

e
used

a
C

PU
based

im
plem

entation
only,

a
rough

estim
ate

suggests
that

the
G

oogL
eN

et
netw

ork
could

be
trained

to
convergence

using
few

high-end
G

PU
s

w
ithin

a
w

eek,the
m

ain
lim

itation
being

the
m

em
ory

usage.O
urtraining

used
asynchronous

stochastic
gradientdescentw

ith
0.9

m
om

en-
tum

[17],fixed
learning

rate
schedule

(decreasing
the

learn-
ing

rate
by

4%
every

8
epochs).Polyak

averaging
[13]w

as
used

to
create

the
finalm

odelused
atinference

tim
e.

Im
age

sam
pling

m
ethods

have
changed

substantially
over

the
m

onths
leading

to
the

com
petition,

and
already

converged
m

odelsw
ere

trained
on

w
ith

otheroptions,som
e-

tim
es

in
conjunction

w
ith

changed
hyperparam

eters,
such

as
dropout

and
the

learning
rate.

T
herefore,

it
is

hard
to

give
a

definitive
guidance

to
the

m
osteffective

single
w

ay
to

train
these

netw
orks.To

com
plicate

m
attersfurther,som

e
ofthe

m
odels

w
ere

m
ainly

trained
on

sm
allerrelative

crops,
others

on
larger

ones,
inspired

by
[8].

Still,
one

prescrip-
tion

thatw
as

verified
to

w
ork

very
w

ellafter
the

com
peti-

tion,includes
sam

pling
of

various
sized

patches
of

the
im

-
age

w
hose

size
is

distributed
evenly

betw
een

8%
and

100%
ofthe

im
age

area
w

ith
aspectratio

constrained
to

the
inter-

val
[
34
,
43
].

A
lso,w

e
found

thatthe
photom

etric
distortions

ofA
ndrew

H
ow

ard
[8]w

ere
usefulto

com
batoverfitting

to
the

im
aging

conditions
oftraining

data.

7.
IL

SV
R

C
2014

C
lassification

C
hallenge

Setup
and

R
esults

T
he

IL
SV

R
C

2014
classification

challenge
involves

the
task

ofclassifying
the

im
age

into
one

of1000
leaf-node

cat-
egories

in
the

Im
agenethierarchy.

T
here

are
about1.2

m
il-

lion
im

ages
for

training,50,000
for

validation
and

100,000
im

ages
for

testing.
E

ach
im

age
is

associated
w

ith
one

ground
truth

category,and
perform

ance
is

m
easured

based
on

the
highest

scoring
classifier

predictions.
Tw

o
num

-
bers

are
usually

reported:
the

top-1
accuracy

rate,
w

hich
com

pares
the

ground
truth

againstthe
firstpredicted

class,
and

the
top-5

error
rate,

w
hich

com
pares

the
ground

truth
against

the
first

5
predicted

classes:
an

im
age

is
deem

ed
correctly

classified
if

the
ground

truth
is

am
ong

the
top-5,

regardless
ofits

rank
in

them
.T

he
challenge

uses
the

top-5
errorrate

forranking
purposes.

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogL
eN

etnetw
ork

w
ith

allthe
bells

and
w

histles.

Figure 2.5: GoogleNet [4] Architecture.

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,

/
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

i
m

a
g

e

3
x

3
 c

o
n

v
,
 5

1
2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

p
o

o
l
,

/
2

f
c

 4
0

9
6

f
c

 4
0

9
6

f
c

 1
0

0
0

i
m

a
g

e

o
u

t
p

u
t

s
iz

e
:

1

1
2

o
u

t
p

u
t

s
iz

e
:

2

2
4

o
u

t
p

u
t

s
i
z
e

:
 5

6

o
u

t
p

u
t

s
i
z
e

:
 2

8

o
u

t
p

u
t

s
i
z
e

:
 1

4

o
u

t
p

u
t

s
iz

e
:
 7

o
u

t
p

u
t

s
iz

e
:
 1

V
G

G
-
1

9
3

4
-
l
a

y
e

r
 p

l
a

in

7
x

7

c
o

n
v

,

6

4
,

/
2

p
o

o
l
,
 /

2

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 6

4

3
x

3
 c

o
n

v
,
 1

2
8

,
 /

2

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3

c
o

n
v

,

1

2
8

3
x

3
 c

o
n

v
,
 2

5
6

,
 /

2

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3

c
o

n
v

,

2

5
6

3
x

3
 c

o
n

v
,
 5

1
2

,
 /

2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

3
x

3

c
o

n
v

,

5

1
2

a
v

g

p

o
o

l

f
c

 1
0

0
0

im
a

g
e

3
4

-
la

y
e

r
 r

e
s
id

u
a

l

Fi
gu

re
3.

E
xa

m
pl

e
ne

tw
or

k
ar

ch
ite

ct
ur

es
fo

r
Im

ag
eN

et
.

L
ef

t:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-
dl

e:
a

pl
ai

n
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
R

ig
ht

:
a

re
si

du
al

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

T
he

do
tte

d
sh

or
tc

ut
si

nc
re

as
e

di
m

en
si

on
s.

Ta
bl

e
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
es

id
ua

lN
et

w
or

k.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
ri

gh
t)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

T
he

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

T
he

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tr
a

ze
ro

en
tr

ie
s

pa
dd

ed
fo

r
in

cr
ea

si
ng

di
m

en
si

on
s.

T
hi

s
op

tio
n

in
tr

od
uc

es
no

ex
tr

a
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

E
qn

.(2
)i

s
us

ed
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
ri

de
of

2.

3.
4.

Im
pl

em
en

ta
tio

n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

T
he

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
56

,4
80

]
fo

r
sc

al
e

au
gm

en
ta

tio
n

[4
1]

.
A

22
4⇥

22
4

cr
op

is
ra

nd
om

ly
sa

m
pl

ed
fr

om
an

im
ag

e
or

its
ho

ri
zo

nt
al

fli
p,

w
ith

th
e

pe
r-

pi
xe

lm
ea

n
su

bt
ra

ct
ed

[2
1]

.T
he

st
an

da
rd

co
lo

ra
ug

m
en

ta
tio

n
in

[2
1]

is
us

ed
.W

e
ad

op
tb

at
ch

no
rm

al
iz

at
io

n
(B

N
)

[1
6]

ri
gh

t
af

te
r

ea
ch

co
nv

ol
ut

io
n

an
d

be
fo

re
ac

tiv
at

io
n,

fo
llo

w
in

g
[1

6]
.

W
e

in
iti

al
iz

e
th

e
w

ei
gh

ts
as

in
[1

3]
an

d
tr

ai
n

al
lp

la
in

/r
es

id
ua

ln
et

s
fr

om
sc

ra
tc

h.
W

e
us

e
SG

D
w

ith
a

m
in

i-
ba

tc
h

si
ze

of
25

6.
T

he
le

ar
ni

ng
ra

te
st

ar
ts

fr
om

0.
1

an
d

is
di

vi
de

d
by

10
w

he
n

th
e

er
ro

rp
la

te
au

s,
an

d
th

e
m

od
el

s
ar

e
tr

ai
ne

d
fo

ru
p

to
60

⇥
1
0
4

ite
ra

tio
ns

.W
e

us
e

a
w

ei
gh

td
ec

ay
of

0.
00

01
an

d
a

m
om

en
tu

m
of

0.
9.

W
e

do
no

tu
se

dr
op

ou
t[

14
],

fo
llo

w
in

g
th

e
pr

ac
tic

e
in

[1
6]

.
In

te
st

in
g,

fo
rc

om
pa

ri
so

n
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,

w
e

ad
op

t
th

e
fu

lly
-

co
nv

ol
ut

io
na

l
fo

rm
as

in
[4

1,
13

],
an

d
av

er
ag

e
th

e
sc

or
es

at
m

ul
tip

le
sc

al
es

(i
m

ag
es

ar
e

re
si

ze
d

su
ch

th
at

th
e

sh
or

te
r

si
de

is
in

{2
24

,2
56

,3
84

,4
8
0
,6
40

})
.

4.
E

xp
er

im
en

ts
4.

1.
Im

ag
eN

et
C

la
ss

ifi
ca

tio
n

W
e

ev
al

ua
te

ou
r

m
et

ho
d

on
th

e
Im

ag
eN

et
20

12
cl

as
si

fi-
ca

tio
n

da
ta

se
t[

36
]t

ha
tc

on
si

st
so

f1
00

0
cl

as
se

s.
T

he
m

od
el

s
ar

e
tr

ai
ne

d
on

th
e

1.
28

m
ill

io
n

tr
ai

ni
ng

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

Pl
ai

n
N

et
w

or
ks

.
W

e
fir

st
ev

al
ua

te
18

-l
ay

er
an

d
34

-l
ay

er
pl

ai
n

ne
ts

.T
he

34
-l

ay
er

pl
ai

n
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-l

ay
er

pl
ai

n
ne

ti
s

of
a

si
m

ila
r

fo
rm

.
Se

e
Ta

bl
e

1
fo

r
de

-
ta

ile
d

ar
ch

ite
ct

ur
es

.
T

he
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-l

ay
er

pl
ai

n
ne

th
as

hi
gh

er
va

lid
at

io
n

er
ro

r
th

an
th

e
sh

al
lo

w
er

18
-l

ay
er

pl
ai

n
ne

t.
To

re
ve

al
th

e
re

as
on

s,
in

Fi
g.

4
(l

ef
t)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
ri

ng
th

e
tr

ai
ni

ng
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4

Figure 2.6: ResNet [5] Architecture.

U
nd

er
re

vi
ew

as
a

co
nf

er
en

ce
pa

pe
ra

tI
C

L
R

20
17

"l
ab

ra
do

r

re
tr

ie
ve

r

do
g"

co
nv
1 96

fir
e2 12

8

fir
e3 12

8

fir
e4 25

6

fir
e5 25

6

fir
e6 38

4

fir
e7 38

4

fir
e8

51
2

fir
e9 51

2

co
nv
10 10

00

so
ft
m
ax

m
ax
po

ol
/2

m
ax
po

ol
/2

m
ax
po

ol
/2

gl
ob

al
	a
vg
po

ol

co
nv
1 96

fir
e2 12

8

fir
e3 12

8

fir
e4 25

6

fir
e5 25

6

fir
e6 38

4

fir
e7 38

4

fir
e8

51
2

fir
e9 51

2

co
nv
10 10

00

so
ft
m
ax

m
ax
po

ol
/2

m
ax
po

ol
/2

m
ax
po

ol
/2

gl
ob

al
	a
vg
po

ol

co
nv
1 96

fir
e2 12

8

fir
e3 12

8

fir
e4 25

6

fir
e5 25

6

fir
e6 38

4

fir
e7 38

4

fir
e8

51
2

fir
e9 51

2

co
nv
10 10

00

so
ft
m
ax

m
ax
po

ol
/2

m
ax
po

ol
/2

m
ax
po

ol
/2

gl
ob

al
	a
vg
po

ol

co
nv
1x
1

co
nv
1x
1

co
nv
1x
1

co
nv
1x
1

96

Fi
gu

re
2:

M
ac

ro
ar

ch
ite

ct
ur

al
vi

ew
of

ou
rS

qu
ee

ze
N

et
ar

ch
ite

ct
ur

e.
L

ef
t:

Sq
ue

ez
eN

et
(S

ec
tio

n
3.

3)
;

M
id

dl
e:

Sq
ue

ez
eN

et
w

ith
si

m
pl

e
by

pa
ss

(S
ec

tio
n

6)
;R

ig
ht

:S
qu

ee
ze

N
et

w
ith

co
m

pl
ex

by
pa

ss
(S

ec
-

tio
n

6)
.

3.
3.

1
O

T
H

E
R

S
Q

U
E

E
Z

E
N

E
T

D
E

TA
IL

S

Fo
r

br
ev

ity
,w

e
ha

ve
om

itt
ed

nu
m

be
r

of
de

ta
ils

an
d

de
si

gn
ch

oi
ce

s
ab

ou
tS

qu
ee

ze
N

et
fr

om
Ta

bl
e

1
an

d
Fi

gu
re

2.
W

e
pr

ov
id

e
th

es
e

de
si

gn
ch

oi
ce

s
in

th
e

fo
llo

w
in

g.
T

he
in

tu
iti

on
be

hi
nd

th
es

e
ch

oi
ce

s
m

ay
be

fo
un

d
in

th
e

pa
pe

rs
ci

te
d

be
lo

w
.

•
So

th
at

th
e

ou
tp

ut
ac

tiv
at

io
ns

fr
om

1x
1

an
d

3x
3

fil
te

rs
ha

ve
th

e
sa

m
e

he
ig

ht
an

d
w

id
th

,w
e

ad
d

a
1-

pi
xe

lb
or

de
ro

fz
er

o-
pa

dd
in

g
in

th
e

in
pu

td
at

a
to

3x
3

fil
te

rs
of

ex
pa

nd
m

od
ul

es
.

•
R

eL
U

(N
ai

r&
H

in
to

n,
20

10
)i

s
ap

pl
ie

d
to

ac
tiv

at
io

ns
fr

om
sq

ue
ez

e
an

d
ex

pa
nd

la
ye

rs
.

•
D

ro
po

ut
(S

riv
as

ta
va

et
al

.,
20

14
)w

ith
a

ra
tio

of
50

%
is

ap
pl

ie
d

af
te

rt
he

fir
e9

m
od

ul
e.

•
N

ot
e

th
e

la
ck

of
fu

lly
-c

on
ne

ct
ed

la
ye

rs
in

Sq
ue

ez
eN

et
;t

hi
s

de
si

gn
ch

oi
ce

w
as

in
sp

ir
ed

by
th

e
N

iN
(L

in
et

al
.,

20
13

)a
rc

hi
te

ct
ur

e.
•

W
he

n
tr

ai
ni

ng
Sq

ue
ez

eN
et

,
w

e
be

gi
n

w
ith

a
le

ar
ni

ng
ra

te
of

0.
04

,
an

d
w

e
lin

-
ea

rl
y

de
cr

ea
se

th
e

le
ar

ni
ng

ra
te

th
ro

ug
ho

ut
tr

ai
ni

ng
,

as
de

sc
ri

be
d

in
(M

is
hk

in
et

al
.,

20
16

).
Fo

r
de

ta
ils

on
th

e
tr

ai
ni

ng
pr

ot
oc

ol
(e

.g
.

ba
tc

h
si

ze
,

le
ar

ni
ng

ra
te

,
pa

ra
m

e-
te

r
in

iti
al

iz
at

io
n)

,
pl

ea
se

re
fe

r
to

ou
r

C
af

fe
-c

om
pa

tib
le

co
nfi

gu
ra

tio
n

fil
es

lo
ca

te
d

he
re

:
ht

tp
s:

//g
ith

ub
.c

om
/D

ee
pS

ca
le

/S
qu

ee
ze

N
et

.
•

T
he

C
af

fe
fr

am
ew

or
k

do
es

no
tn

at
iv

el
y

su
pp

or
ta

co
nv

ol
ut

io
n

la
ye

r
th

at
co

nt
ai

ns
m

ul
tip

le
fil

te
r

re
so

lu
tio

ns
(e

.g
.

1x
1

an
d

3x
3)

(J
ia

et
al

.,
20

14
).

To
ge

ta
ro

un
d

th
is

,w
e

im
pl

em
en

t
ou

re
xp

an
d

la
ye

rw
ith

tw
o

se
pa

ra
te

co
nv

ol
ut

io
n

la
ye

rs
:a

la
ye

rw
ith

1x
1

fil
te

rs
,a

nd
a

la
ye

r
w

ith
3x

3
fil

te
rs

.
T

he
n,

w
e

co
nc

at
en

at
e

th
e

ou
tp

ut
s

of
th

es
e

la
ye

rs
to

ge
th

er
in

th
e

ch
an

ne
l

di
m

en
si

on
.

T
hi

s
is

nu
m

er
ic

al
ly

eq
ui

va
le

nt
to

im
pl

em
en

tin
g

on
e

la
ye

r
th

at
co

nt
ai

ns
bo

th
1x

1
an

d
3x

3
fil

te
rs

.

W
e

re
le

as
ed

th
e

Sq
ue

ez
eN

et
co

nfi
gu

ra
tio

n
fil

es
in

th
e

fo
rm

at
de

fin
ed

by
th

e
C

af
fe

C
N

N
fr

am
e-

w
or

k.
H

ow
ev

er
,

in
ad

di
tio

n
to

C
af

fe
,

se
ve

ra
l

ot
he

r
C

N
N

fr
am

ew
or

ks
ha

ve
em

er
ge

d,
in

cl
ud

in
g

M
X

N
et

(C
he

n
et

al
.,

20
15

a)
,C

ha
in

er
(T

ok
ui

et
al

.,
20

15
),

K
er

as
(C

ho
lle

t,
20

16
),

an
d

To
rc

h
(C

ol
-

lo
be

rt
et

al
.,

20
11

).
E

ac
h

of
th

es
e

ha
s

its
ow

n
na

tiv
e

fo
rm

at
fo

r
re

pr
es

en
tin

g
a

C
N

N
ar

ch
ite

c-
tu

re
.

T
ha

t
sa

id
,

m
os

t
of

th
es

e
lib

ra
ri

es
us

e
th

e
sa

m
e

un
de

rl
yi

ng
co

m
pu

ta
tio

na
l

ba
ck

-e
nd

s
su

ch
as

cu
D

N
N

(C
he

tlu
r

et
al

.,
20

14
)

an
d

M
K

L
-D

N
N

(D
as

et
al

.,
20

16
).

T
he

re
se

ar
ch

co
m

m
un

ity
ha

s

5

Figure 2.7: SqueezeNet [6] Architecture.

VGG-16 has a strong generalization ability, and the ImageNet pre-trained model is widely used in
image classification, detection and segmentation tasks.

GoogleNet (Inception-V1) [51] (2014) is very parameter-efficient. It has 7 million parameters
across 57 convolutional layers and only one fully connected layer. GoogleNet has nine inception
modules. Each inception module consists of four branches with 1×1, 3×3, 5×5 convolutions and
down-sampling. Two auxiliary loss layers inject loss from the intermediate layers and prevent gradient
vanishing. At inference time, the auxiliary layers can be removed. The GoogleNet Caffe model
achieved a top-1 accuracy of 68.9% and a top-5 accuracy of 89.0% on ImageNet. We also used the
Inception-V3 model in our deep compression experiments. Compared with Inception-V1, the 5×5
convolutions are replaced with two 3×3 convolutions, separable kernels came into place, and batch
normalization is added in Inception-V3. The pre-trained Inception-V3 PyTorch model achieved a
top-1 accuracy of 77.45% and a top-5 accuracy of 93.6% on ImageNet.

ResNet [5] (2015) proposed the residual block with bypass layer, which allows the gradient to flow
more easily, even with deeper layers. ResNet-50 has 25.5 million parameters across 49 convolution
layers and one fully-connected layer. Each residual block element-wise adds the current feature map

CHAPTER 2. BACKGROUND 12

but effective extension that additionally conditions the gen-
erative process on the content of an input image. More for-
mally, during training our Multimodal RNN takes the image
pixels I and a sequence of input vectors (x1, . . . , xT). It
then computes a sequence of hidden states (h1, . . . , ht) and
a sequence of outputs (y1, . . . , yt) by iterating the following
recurrence relation for t = 1 to T :

bv = Whi[CNN✓c(I)] (13)
ht = f(Whxxt +Whhht�1 + bh + (t = 1)� bv) (14)
yt = softmax(Wohht + bo). (15)

In the equations above, Whi,Whx,Whh,Woh, xi and bh, bo
are learnable parameters, and CNN✓c(I) is the last layer of
a CNN. The output vector yt holds the (unnormalized) log
probabilities of words in the dictionary and one additional
dimension for a special END token. Note that we provide
the image context vector bv to the RNN only at the first
iteration, which we found to work better than at each time
step. In practice we also found that it can help to also pass
both bv, (Whxxt) through the activation function. A typical
size of the hidden layer of the RNN is 512 neurons.

RNN training. The RNN is trained to combine a word (xt),
the previous context (ht�1) to predict the next word (yt).
We condition the RNN’s predictions on the image informa-
tion (bv) via bias interactions on the first step. The training
proceeds as follows (refer to Figure 4): We set h0 = ~0, x1 to
a special START vector, and the desired label y1 as the first
word in the sequence. Analogously, we set x2 to the word
vector of the first word and expect the network to predict
the second word, etc. Finally, on the last step when xT rep-
resents the last word, the target label is set to a special END
token. The cost function is to maximize the log probability
assigned to the target labels (i.e. Softmax classifier).

RNN at test time. To predict a sentence, we compute the
image representation bv , set h0 = 0, x1 to the START vec-
tor and compute the distribution over the first word y1. We
sample a word from the distribution (or pick the argmax),
set its embedding vector as x2, and repeat this process until
the END token is generated. In practice we found that beam
search (e.g. beam size 7) can improve results.

3.3. Optimization
We use SGD with mini-batches of 100 image-sentence pairs
and momentum of 0.9 to optimize the alignment model. We
cross-validate the learning rate and the weight decay. We
also use dropout regularization in all layers except in the
recurrent layers [59] and clip gradients elementwise at 5
(important). The generative RNN is more difficult to op-
timize, party due to the word frequency disparity between
rare words and common words (e.g. ”a” or the END token).
We achieved the best results using RMSprop [52], which is
an adaptive step size method that scales the update of each
weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network
generative model. The RNN takes a word, the context from previ-
ous time steps and defines a distribution over the next word in the
sentence. The RNN is conditioned on the image information at the
first time step. START and END are special tokens.

4. Experiments
Datasets. We use the Flickr8K [21], Flickr30K [58] and
MSCOCO [37] datasets in our experiments. These datasets
contain 8,000, 31,000 and 123,000 images respectively
and each is annotated with 5 sentences using Amazon
Mechanical Turk. For Flickr8K and Flickr30K, we use
1,000 images for validation, 1,000 for testing and the rest
for training (consistent with [21, 24]). For MSCOCO we
use 5,000 images for both validation and testing.

Data Preprocessing. We convert all sentences to lower-
case, discard non-alphanumeric characters. We filter words
to those that occur at least 5 times in the training set,
which results in 2538, 7414, and 8791 words for Flickr8k,
Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation
We first investigate the quality of the inferred text and image
alignments with ranking experiments. We consider a with-
held set of images and sentences and retrieve items in one
modality given a query from the other by sorting based on
the image-sentence score Skl (Section 3.1.3). We report the
median rank of the closest ground truth result in the list and
Recall@K, which measures the fraction of times a correct
item was found among the top K results. The result of these
experiments can be found in Table 1, and example retrievals
in Figure 5. We now highlight some of the takeaways.

Our full model outperforms previous work. First, our
full model (“Our model: BRNN”) outperforms Socher et
al. [49] who trained with a similar loss but used a single
image representation and a Recursive Neural Network over
the sentence. A similar loss was adopted by Kiros et al.
[25], who use an LSTM [20] to encode sentences. We list
their performance with a CNN that is equivalent in power
(AlexNet [28]) to the one used in this work, though simi-
lar to [54] they outperform our model with a more powerful
CNN (VGGNet [47], GoogLeNet [51]). “DeFrag” are the
results reported by Karpathy et al. [24]. Since we use dif-
ferent word vectors, dropout for regularization and different
cross-validation ranges and larger embedding sizes, we re-
implemented their loss for a fair comparison (“Our imple-

Figure 2.8: NeuralTalk [7] Architecture.
7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

h(f), and a set with backward recurrence h(b):

h
(f)
t = g(W (4)h

(3)
t +W (f)

r h
(f)
t�1 + b(4))

h
(b)
t = g(W (4)h

(3)
t +W (b)

r h
(b)
t+1 + b(4))

Note that h(f) must be computed sequentially from t = 1 to t = T (i) for the i’th utterance, while
the units h(b) must be computed sequentially in reverse from t = T (i) to t = 1.

The fifth (non-recurrent) layer takes both the forward and backward units as inputs h
(5)
t =

g(W (5)h
(4)
t + b(5)) where h

(4)
t = h

(f)
t + h

(b)
t . The output layer is a standard softmax function

that yields the predicted character probabilities for each time slice t and character k in the alphabet:

h
(6)
t,k = ŷt,k ⌘ P(ct = k|x) = exp(W

(6)
k h

(5)
t + b

(6)
k)

P
j exp(W

(6)
j h

(5)
t + b

(6)
j)

.

Here W
(6)
k and b

(6)
k denote the k’th column of the weight matrix and k’th bias, respectively.

Once we have computed a prediction for P(ct|x), we compute the CTC loss [13] L(ŷ, y) to measure
the error in prediction. During training, we can evaluate the gradient rŷL(ŷ, y) with respect to
the network outputs given the ground-truth character sequence y. From this point, computing the
gradient with respect to all of the model parameters may be done via back-propagation through the
rest of the network. We use Nesterov’s Accelerated gradient method for training [41].3

Figure 1: Structure of our RNN model and notation.

The complete RNN model is illustrated in Figure 1. Note that its structure is considerably simpler
than related models from the literature [14]—we have limited ourselves to a single recurrent layer
(which is the hardest to parallelize) and we do not use Long-Short-Term-Memory (LSTM) circuits.
One disadvantage of LSTM cells is that they require computing and storing multiple gating neu-
ron responses at each step. Since the forward and backward recurrences are sequential, this small
additional cost can become a computational bottleneck. By using a homogeneous model we have
made the computation of the recurrent activations as efficient as possible: computing the ReLu out-
puts involves only a few highly optimized BLAS operations on the GPU and a single point-wise
nonlinearity.

3We use momentum of 0.99 and anneal the learning rate by a constant factor, chosen to yield the fastest
convergence, after each epoch through the data.

3

CTC

Spectrogram

Recurrent
or

GRU
(Bidirectional)

1D or 2D
Invariant

Convolution

Fully
Connected

Batch
Normalization

Figure 1: Architecture of the DS2 system used to train on both English and Mandarin speech. We explore
variants of this architecture by varying the number of convolutional layers from 1 to 3 and the number of
recurrent or GRU layers from 1 to 7.

The two sets of activations are summed to form the output activations for the layer hl =
�!
h l +

 �
h l.

The function g(·) can be the standard recurrent operation

�!
h l

t = f(W lhl�1
t +

�!
U l�!h l

t�1 + bl) (3)

where W l is the input-hidden weight matrix,
�!
U l is the recurrent weight matrix and bl is a bias term.

In this case the input-hidden weights are shared for both directions of the recurrence. The function
g(·) can also represent more complex recurrence operations such as the Long Short-Term Memory
(LSTM) units [30] and the gated recurrent units (GRU) [11].

After the bidirectional recurrent layers we apply one or more fully connected layers with

hl
t = f(W lhl�1

t + bl) (4)

The output layer L is a softmax computing a probability distribution over characters given by

p(`t = k|x) = exp(wL
k · hL�1

t)P
j exp(w

L
j · hL�1

t)
(5)

The model is trained using the CTC loss function [22]. Given an input-output pair (x, y) and the
current parameters of the network ✓, we compute the loss function L(x, y; ✓) and its derivative with
respect to the parameters of the network r✓L(x, y; ✓). This derivative is then used to update the
network parameters through the backpropagation through time algorithm.

In the following subsections we describe the architectural and algorithmic improvements made rel-
ative to DS1 [26]. Unless otherwise stated these improvements are language agnostic. We report
results on an English speaker held out development set which is an internal dataset containing 2048
utterances of primarily read speech. All models are trained on datasets described in Section 5.
We report Word Error Rate (WER) for the English system and Character Error Rate (CER) for the
Mandarin system. In both cases we integrate a language model in a beam search decoding step as
described in Section 3.8.

5

�1

Figure 2.9: DeepSpeech1 [8] (Left) and DeepSpeech2 [9] (Right) Architecture.

with the feature map from the previous residual block. There is also a bottleneck layer with 1×1
convolution that shields a large number of channels for the more expensive 3×3 layer. The pre-trained
ResNet-50 PyTorch model achieved a top-1 accuracy of 76.1% and a top-5 accuracy of 92.9% on
ImageNet. ResNet-50 is the most popular version of the ResNet family balancing computational
complexity and prediction accuracy.

SqueezeNet [6] (2016) targets extremely compact model sizes for mobile applications. It has only
1.2 million parameters but achieved an accuracy similar to AlexNet. SqueezeNet has 26 convolutional
layers and no fully connected layer. The last feature map goes through a global pooling and forms
a 1000-dimension vector to feed the softmax layer. SqueezeNet has eight "Fire" modules. Each
fire module contains a squeeze layer with 1×1 convolution and a pair of 1×1 and 3×3 convolutions.
The SqueezeNet caffemodel achieved a top-1 accuracy of 57.4% and a top-5 accuracy of 80.5% on
ImageNet. SqueezeNet is widely used in mobile applications in which model size is a large constraint.
Our model compression technique can further decrease the SqueezeNet model size by 10× without
losing accuracy.

CHAPTER 2. BACKGROUND 13

NeuralTalk [7] (2014) is a Long Short Term Memory (LSTM) for generating image captions. It
uses the feature generated by VGG-16 to feed an LSTM to generate the captions. It first embeds
the image into a 4096 dimension vector by a convolutional neural network (VGG-16). The image
embedding feeds the LSTM as input. At each time-step, the LSTM outputs one word of the caption
sentence. The baseline NeuralTalk model we used for experiment is downloaded from NeuralTalk
Model Zoo. It has 6.8 million parameters with the following dimensions: We : 4096× 512,Wlstm :

1025× 2048,Wd : 512× 2538andWs : 2538× 512. The baseline BLEU1-4 score is [57.2, 38.6, 25.4
16.8].

DeepSpeech [8] (2014) is a bidirectional recurrent neural network for speech recognition. It is
a five-layer network with one bi-directional recurrent layer. It has 8 million parameters in total.
DeepSpeech 2 [9] (2015) improved on DeepSpeech 1 and the model size is much larger. It has seven
bi-directional recurrent layers with approximately 67 million parameters, around eight times larger
than the DeepSpeech 1 model. The DeepSpeech family replaced the previous hybrid NN-HMM model
and adopted end-to-end training for automatic speech recognition task.

We extensively experimented our model compression and regularization techniques on the above
network architectures that have covered MLP, CNN, RNN, and LSTM.

2.2 Datasets

We used different datasets for a variety of machine learning tasks to test the performance of model
compression and regularization techniques. The datasets we used in the experiments include MNIST,
Cifar-10, and ImageNet for image classification; Flickr 8K for image caption; and TIMIT and WSJ
for speech recognition.

MNIST is a dataset for handwritten digits [52] with 60,000 training images and 10,000 test images.
There are ten classes with ten digits, and the image size is 28×28. Each image is grayscale. This
dataset is relatively easy and small, taking the model only a few minutes to train. We used MNIST
only for prototyping, and larger datasets to further verify each idea.

Cifar-10 is a dataset of color images [53]. It has 50,000 training images and 10,000 test images.
There are ten classes, and the image size is 32×32. The dataset is slightly more difficult than MNIST
but the model still only required a few hours to train. We used Cifar-10 for ablation studies when we
needed to repeat a group of similar experiments many times.

ImageNet is a large-scale dataset for ILSVRC challenge [54]. The training dataset contains 1000
categories and 1.2 million images. The validation dataset contains 50,000 images, 50 per class. The
classification performance is reported using Top-1 and Top-5 accuracy. Top-1 accuracy measures
the proportion of correctly-labeled images. If one of the five labels with the largest probability is a
correct label, then this image is considered to have a correct label for Top-5 accuracy. We used the
ImageNet dataset to measure the performance of model compression and regularization.

http://cs.stanford.edu/people/karpathy/neuraltalk/
http://cs.stanford.edu/people/karpathy/neuraltalk/

CHAPTER 2. BACKGROUND 14

Flickr-8k is a dataset that includes 8K images obtained from the Flickr website [55]. Each image
comes with five natural language descriptions. We used Flickr-8k to measure the performance of the
pruning technique and the DSD training technique on image captioning tasks. The BLEU [56] score
is used to measure the correlation between the generated caption against ground truth caption. We
also used visualization to measure the image caption performance qualitatively.

TIMIT is an acoustic-phonetic continuous speech corpus [57]. It contains broadband recordings of
630 speakers of eight major dialects of American English, each reading ten phonetically rich sentences.
We used TIMIT to test the performance of the pruning technique on LSTM and speech recognition.

WSJ is a speech recognition data set from the Wall Street Journal published by the Linguistic
Data Consortium. It contains 81 hours of speech, and the validation set includes 1 hour of speech.
The test sets are WSJ’92 and WSJ’93, which contains 1 hour of speech combined. We used the
WSJ data set to test the performance of DSD training on DeepSpeech and DeepSpeech2 for speech
recognition.

2.3 Deep Learning Frameworks

Directly programming a multi-core CPU or a GPU can be difficult, but luckily the neural network
computation can be abstracted into a few basic operations such as convolution, matrix multiplication,
etc. Using these operations that are already highly optimized for high-performance hardware, users
only need to focus on high-level neural network architectures rather than low-level implementations.
Deep learning frameworks provide these abstractions of neural networks computation, so programmers
only need to write a description of the computation, and the deep learning frameworks then efficiently
map the computation to high-performance hardware.

We used the Caffe [58] and PyTorch [59] framework for our experiments. Caffe was an early deep
learning framework made by the Berkeley Vision and Learning Center. Users only need to write
highly abstracted network architecture descriptions and specify the hyper-parameters. Caffe also
offers a comprehensive "model zoo" that contains popular pre-trained models. PyTorch is a recent
and more flexible framework for deep learning which supports dynamic graph. We used PyTorch for
the latest experiments on compressing Inception-V3 and ResNet-50. Both Caffe and PyTorch use the
cuDNN library [60] for GPU acceleration.

We used a NVIDIA-DIGITS development box [61] as training hardware. It contains four NVIDIA
Maxwell TitanX GPUs with 12GB of memory per GPU. It has 64GB DDR4 memory and Core
i7-5930K 6-core 3.5GHz desktop processor. Thanks to the 3TB hard drive configured in RAID5 and
the 512GB PCI-E M.2 SSD cache for RAID, we can achieve high disk I/O bandwidth to load the
training data.

CHAPTER 2. BACKGROUND 15

2.4 Related Work

Given the importance of deep neural networks, there has been enormous research trying to optimize
their performance. This section will briefly review the previous work that our research is built on. We
first look at prior attempts at network compression, then improved accuracy through regularization,
and finally tries to speed up inference using hardware acceleration.

2.4.1 Compressing Neural Networks

Neural networks are typically over-parameterized, and there is significant redundancy for deep
learning models [62]. This results in a waste of both computation and memory. There are two
directions to make the network smaller: having fewer weights and having lower precision (fewer bits
per weight).

There have been proposals to reduce the number of parameters. An early approach was Optimal
Brain Damage [63] and Optimal Brain Surgeon [64], which reduced the number of connections
based on the Hessian of the loss function. Denton et al. [65] exploited the linear structure of
the neural network by finding an appropriate low-rank approximation to reduce the number of
parameters. Singular Value Decomposition (SVD) and Tucker Decomposition can also decrease the
number of weights [66]. There have been architectural innovations to reduce the number of neural
network parameters, such as replacing fully-connected layers with convolutional layers or replacing
the fully-connected layer with global average pooling. The Network in Network architecture [67] and
GoogleNet [51] achieve state-of-the-art results by adopting this idea.

There also have been proposals to reduce the precision and bit width. Vanhoucke et al. [68]
explored a fixed-point implementation with 8-bit integer (vs 32-bit floating point) activations. Abwer
et al. [69] quantized the neural network using L2 error minimization. Hwang et al. [70] proposed an
optimization method for neural network with ternary weights and 3-bit activations. Gong et al. [71]
compressed deep neural networks using vector quantization. HashedNets [72] reduced the parameters’
bit width by using a hash function to randomly group connection weights into hash tables. With
above techniques, the precision of the weight can be reduced, and each weight can be represented
with fewer bits.

Our work in Chapter 3, like optimal brain damage, works by pruning network connections, but it
carefully chooses the connections to drop enabling it to work on much larger neural networks with
no accuracy degradation. Chapter 4 describes how to we minimize the space used for weights, by
combining ideas of reduced precision and binning the weights. Again by adaptively choosing the
bins, this compression has minimal effect on accuracy. Finally, we combined the ideas of reducing the
number of connections and reducing the bit width per connection, which born the Deep Compression
algorithm that can significantly compress neural networks without accuracy loss.

Recent Progress of Model Compression. Our work has spawned a lot of efforts in pruning

CHAPTER 2. BACKGROUND 16

and model compression. New heuristics have been proposed to select the important connections and
recover the accuracy. Loss-approximating Taylor expansion [73] proposed gradient-based importance
metrics used for pruning. Anwar et al. [74] select pruning candidate by hundreds of random evaluations.
Yang et al. [75] select pruning candidate weighted by energy consumption. He et al. [76] explored
LASSO regression based channel selection and achieved 2x theoretical speed-up on ResNet and
Xception with 1.4%, 1.0% accuracy loss, respectively. Early pruning [77] and dynamic pruning [78]
explored how to integrate pruning with re-training better, and save the retraining time. Recent work
also discussed structured pruning at different granularities, for example, pruning at the granularity
of rows and columns after lowering [79], pruning at the granularity of channels instead of individual
weights [73, 80–82]. Anwar et al. [83] explored the structured sparsity at various scales, including
channel-wise, kernel-wise and intra-kernel strided sparsity. Mao et al. [84] provided a detailed design
space exploration and trade-off analysis for different pruning granularities: element-wise, row-wise,
kernel-wise and channel-wise.

As for quantization, more aggressive compression pushed the bit width even narrower, with 2-bit
weight [85], ternary weight [86], or binary weight [87]. There are also efforts to quantize both the
weight and the activation to a lower precision [88–90]. When both the weight and activation is
binarized, multiplication and reduction can be replaced with XNOR and pop count. Alternatively,
Miyashita et al. [91] experimented with logarithmically quantized weights, where multiplications can
be replaced with shifts, which is cheap.

In industry, Facebook adopted "Deep Compression" for deploying DNNs in mobile phones,
powering a mobile AR application debuted in Facebook Developer Conference 2017 [92]. Intel labs
used iterative quantization method to shrink to bit width [93]. Baidu adopted Deep Compression to
compress deep learning models in the mobile Apps (credit card recognition, face recognition) before
shipping the Apps to Apple Store.

2.4.2 Regularizing Neural Networks

The large parameter space of modern DNN requires regularization to prevent overfitting, and help
convergence. The most commonly used one is weight decay, which is achieved by adding the L1 or
L2 norm of the weight to the loss function. This additional loss term helps the system find solutions
with small weight values, but are often not sufficient to find optimal solutions.

To help with the regularization, researchers have tried different approaches to reduce the parameter
space. Dropout [94] and Dropconnect [95] select a random set of activations or connections during
training time, and they use full network for forward path. In each training iteration, a different set
of weights and activations got trained, preventing complex co-adaptations on training data.

Batch normalization [96] is a modern technique for regularizing neural networks, where the
activations are normalized with a mean of zero and a standard deviation of one in a mini-batch.
Batch normalization constraints the dynamic range that the activations can take. Since each

CHAPTER 2. BACKGROUND 17

mini-batch is shuffled, a training example is seen in conjunction with random examples in the
mini-batch, and SGD no longer produces deterministic values for a given training example. This
helps the generalization of the network and prevents capturing the noise in the training data. Batch
normalization reduces the need for Dropout to prevent over-fitting.

Chapter 5 describes DSD, our regularization approach to improve the model’s generalization
ability. Like the Dropout and DropConnect, it removes network connections to reduce the solution
space, but chooses weights which can be deleted with minimal effect in a deterministic manner.
Besides, after retraining this smaller model, DSD restores the model to its full size and further tune
the model with a lower learning rate. This procedure works well on top of the standard regularization
method, which already uses dropout and batch normalization.

Concurrently with our publication of DSD, a similar approach using iterative hard thresholding [97]
to regularize neural networks was also published. It performs hard thresholding to drop connections
with small activations and fine-tune the other significant filters, then re-activate the frozen connections
and train the entire network. It also demonstrates better accuracy on Cifar and ImageNet.

2.4.3 Specialized Hardware for Neural Networks

While hardware DNN accelerators are relatively a new area, there has already been three waves of
designs. The first accelerators only looked at the data flow, ignoring the memory energy. The second
wave tried to address memory energy. Both the first and the second wave treat the application as a
black box. The third wave (our work), looks at joint hardware/software optimization.

The first wave of accelerators include CNP [16], Neuflow [17], DC-CNN [24] and Convolution
Engine [18]. This line of work proposed customized logic to efficiently map convolution to hardware
with more parallelism and flexibility. The second wave of accelerators focused on optimizing memory
transfer and data movement. As modern neural networks get larger, researchers realized that memory
access and moving data is more critical than arithmetic. Among these accelerators, DianNao [19]
implements an array of multiply-add units to map large DNNs onto its core architecture. It has
customized on-chip buffer to minimize DRAM traffic. DaDianNao [20] and ShiDianNao [21] eliminate
the DRAM access by having all weights on-chip (eDRAM or SRAM). In both architectures, the
weights are uncompressed and stored in the dense format. Eyeriss [22] proposed a row-stationary
data flow to maximize data reuse and minimize the memory reference. TPU [49] used 8-bit fixed
point quantization that can save the memory bandwidth. Prime [98] and ISAAC [99] proposed to
replace DRAM or eDRAM memory and run neural network in memristors. RedEye [100] alleviates
the readout circuitry and data traffic by moving the neural network computation to analog domain.

Both waves of DNN accelerators didn’t touch the application and treated the workload as a black
box. We found that by opening the box and applying model compression, the memory access can
be greatly reduced. However, previous accelerators focused on accelerating dense, uncompressed
models, which limits their utility to execute compressed models. Without model compression, it

CHAPTER 2. BACKGROUND 18

is only possible to fit very small neural networks, such as Lenet-5, in on-chip SRAM [21]. These
accelerators cannot exploit either form of sparsity and must expand the network to dense form before
operation [19,20], and neither can exploit weight sharing.

There are many research efforts on optimizing sparse matrix-vector multiplication (SPMV) with
specialized accelerators. Zhuo et al. [30] proposed a FPGA-based design on Virtex-II Pro for SPMV.
Their design outperforms general-purpose processors, but the performance is limited by memory
bandwidth. Fowers et al. [31] proposed a novel sparse matrix encoding and a FPGA-optimized
architecture for SPMV. With lower bandwidth, it achieves 2.6× and 2.3× higher power efficiency
over CPU and GPU, respectively, while having lower performance due to lower memory bandwidth.
Dorrance et al. [32] proposed a scalable SMVM kernel on Virtex-5 FPGA. It outperforms GPU
counterparts with 38-50× improvement in energy efficiency. However, a compressed network is not
efficient on these sparse linear algebra accelerators either. Previous SPMV accelerators can only
exploit the static weight sparsity but are unable to exploit dynamic activation sparsity nor weight
sharing. Cnvlutin [101] and Minerva [102] can only take and can exploit the activation sparsity, but
not weight sparsity nor weight sharing.

Given the constraints of the first and second wave of DNN accelerators, we propose the third
wave that performs algorithm and hardware co-design. Chapter 6 describes "Efficient Inference
Engine" (EIE), our sparse neural network accelerator. Like the prior work, it exploits the structured
data flow of DNN applications and uses customized buffers and memory hierarchy wisely to reduce
memory energy. Unlike previous approaches, it uses the sparsity of the application (exploited by
Deep Compression) to substantially reduce the required memory and computation. Customizing the
hardware for the sparse, compressed neural network dramatically improves its performance over prior
approaches.

Recent Trend of DNN Accelerators. After we published our sparse neural network accelerator
EIE in ISCA’2016, sparse neural network accelerators become very popular in both academia and
industry. In academia, many neural network accelerators appeared that also takes advantage of
sparsity. Cambricon-X [103] exploits the weight sparsity by finding the activations that correspond
only to non-zero weights. SCNN [104] exploits both weight and activation sparsity by doing the outer
product of the two, and also support sparse convolution layers. Cnvlutin2 [105] improved on top of
Cnvlutin [101] and supports both weight and activation sparsity to skip the ineffectual computation.
ESE [29] used EIE as the basic building block to support sparse RNNs and LSTMs. Li et al. [106]
took advantage of sparsity on a coarse granularity and accelerated sparse CNN on FPGA.

In industry, hardware support for sparse neural networks has been rapidly adopted. NVIDIA’s
recently announced deep learning accelerator (XAVIER DLA) supports sparse weight decompression
[107]. NEC developed middleware that incorporates sparse matrix structures to simplify the use of
machine learning [108]. Intel labs accelerate CNNs using low-precision and sparsity [85]. In Google’s
TPU, "sparsity will have high priority in future designs" [49].

Chapter 3

Pruning Deep Neural Networks

3.1 Introduction

Modern deep neural networks have many parameters to provide enough model capacity, making
them both computationally and memory intensive. In addition, conventional neural networks fix
the architecture before training starts; thus, training cannot improve the architecture. Moreover,
the large number of parameters may lead to overfitting. Identifying the right model capacity and
removing redundancies are crucial for computational efficiency and accuracy.

To address these problems, we developed a pruning method to remove redundant and keep useful
neural network connections, which can decrease the computational and storage requirements for
performing inference. The key challenge is how to preserve the original prediction accuracy after
pruning the model.

Our pruning method removes redundant connections and learns only important connections
(Figure 3.1). In this example, there are three layers. Before pruning, layer i and layer i + 1 are
densely connected. After pruning, layer i and layer i + 1 are sparsely connected. When all the
synapses associated with a neuron are pruned, the neuron is also pruned. Pruning turns a dense
neural network into a sparse neural network, reducing the number of parameters and computations
while fully preserving prediction accuracy. Pruning improves inference speed and also reduces the
energy required to run such large networks, permitting use on battery-constrained mobile devices.
Pruning also facilitates the storage and transmission of mobile applications which incorporate deep
neural networks.

After an initial training phase, we prune the DNN model by removing all connections whose weight
is lower than a threshold. This pruning converts a dense layer to a sparse layer. This first phase learns
the topology of the networks, noting important connections while removing unimportant connections.
We then retrain the sparse network so that the remaining connections can compensate for the removed
connections. We then retrain the sparse network so the remaining connections can compensate for

19

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

pruning
neurons

pruning
synapses

after pruningbefore pruning

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 21

Train Connectivity

Prune Connections

Retrain Weights

Iterative
Pruning

Figure 3.2: The pipeline for iteratively pruning deep neural networks.

The process begins by learning the connectivity via normal network training, as shown in the
Train Connectivity block in Algorithm 1. Unlike conventional training, however, the purpose
of this step is not learning the final values of the weights, but rather learning which connections
are important. We use a simple heuristic for determining the importance of a weight, which is the
absolute value: if the absolute value is small, then we consider this weight unimportant.

The second step is to prune the connections with low-absolute values, as shown in the Prune
Connectivity block in Algorithm 1. All connections with weights below a threshold are removed
from the network, converting a dense network into a sparse network (Figure 3.1).The threshold is a
hyper-parameter that depends on where one wants to fall on the trade-off curve between compression
ratio and prediction accuracy, which is discussed in Section 3.4. We use a mask to implement model
pruning; weights below the threshold have a mask of zero, while those above have a mask of one. By
taking the dot product between the original weight tensor and the mask tensor, the unimportant
connections are set to zero, meaning that they are pruned.

The final step retrains the network to learn the final weights for the remaining sparse connections,
as shown in the Retrain Weights block in Algorithm 1. This step is critical: if the pruned network
is used without retraining, the accuracy is significantly impacted. Steps 2 and 3 can be repeated
iteratively to provide a better compression ratio.

Learning the correct connections is an iterative process. Pruning followed by retraining is one
iteration; after many such iterations, the minimum number of connections can be found. Figure 3.3
compares direct and iterative pruning: though both prune the network to 70% sparsity, iterative
pruning eliminates a smaller proportion of weights each time and is compensated for having multiple
such iterations. In Figure 3.3’s example, iteration1 prunes the network to 30% sparsity, iteration2
prunes the network to 50% sparsity, and iteration3 prunes the network to 70% sparsity. The last
code block in Algorithm 1 explains how to implement iterative pruning. Every time we increase the
threshold by δ[iter] to prune more parameters. δ[iter] is set to meet the required pruning ratio of
this iteration.

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 22

Algorithm 1: Pruning Deep Neural Networks
Initialization: W (0) with W (0) ∼ N(0,Σ), iter = 0.
Hyper-parameter: threshold, δ.
Output :W (t).
———————————————– Train Connectivity ——————————————–
while not converged do

W (t) = W (t−1) − η(t)∇f(W (t−1);x(t−1));
t = t+ 1;

end
———————————————– Prune Connections ——————————————–
// initialize the mask by thresholding the weights.
Mask = 1(|W | > threshold);
W = W ·Mask;
———————————————– Retrain Weights ——————————————–
while not converged do

W (t) = W (t−1) − η(t)∇f(W (t−1);x(t−1));
W (t) = W (t) ·Mask;
t = t+ 1;

end
———————————————– Iterative Pruning ——————————————————–
threshold = threshold+ δ[iter + +];
goto Pruning Connections;

Iterative pruning can achieve a better compression ratio than direct pruning. Without loss of
accuracy, the iterative pruning method can boost the pruning rate from 5× to 9× on AlexNet
compared with single-step direct pruning. Each iteration is a greedy search in that we find the best
connections. We also experimented with probabilistically pruning parameters based on their absolute
value, but this gave worse results with respect to accuracy.

After pruning connections, neurons with zero input or output connections may be safely pruned.
This pruning is then furthered by removing all connections to or from pruned neurons. The retraining
phase automatically arrives at the result where dead neurons will have both zero input and output
connections. Dead neurons occur due to gradient descent and regularization. A neuron that has zero
input or output connections will not contribute to the final loss, making the gradient zero for its
output or input connections. Only the regularization term will push the weights to zero. Thus, the
dead neurons will be automatically removed after connections are removed.

The training hyper-parameters need to be adjusted at retraining time. Starting with the learning
rate adjustment, let LR1 be the learning rate at the beginning of the Train Connectivity phase and
LR2 be the learning rate at the end of the Train Connectivity phase. Note that usually, LR1 > LR2.
Let LR be the learning rate at the retraining phase. A practical recipe for adjusting the learning

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 23

0%

25%

50%

75%

100%

0 15 30 45

Sp
ar

si
ty

 (Z
er

os
%

)

Retraining Epochs

Direct Pruning

0%

25%

50%

75%

100%

0 15 30 45

Sp
ar

si
ty

 (Z
er

os
%

)

Retraining Epochs

Iterative Pruning

Iter-1

Iter-2

Iter-3

Figure 3.3: Pruning and Iterative Pruning.

rate at the Retrain Weights step is to use a learning rate according to Equation 3.1.

LR1 > LRretrain > LR2. (3.1)

Since the weights are already settled to a good local minimum after the initial Train Connectivity
phase, the learning rate of the final retraining step needs to be smaller than training from scratch.
Because pruning moved the weights away from the original local minimum, the learning rate should
be larger than at the end of the Train Connectivity phase. Thus, we pick a learning rate in between.
In practice, reducing LR1 by one or two orders of magnitude generally works well. This equation is a
practical guide for the learning rate hyper-parameter search.

Dropout [94] is widely used to prevent overfitting. In dropout, each neuron is probabilistically
dropped during training but comes back during inference. In pruning, parameters are deterministically
dropped forever after pruning and have no chance to come back during both training and inference.
When retraining a pruned model, the dropout ratio must be adjusted to account for the change in
model capacity. For a pruned model, as the parameters become sparser, the classifier will select the
most informative predictors and thus have much less prediction variance, which reduces over-fitting.
Because pruning already reduced model capacity, the retraining dropout ratio should be smaller.

Quantitatively, let Ci be the number of connections in layer i, Cio for the original network, Cir

for the network after retraining, and let Ni be the number of neurons in layer i. Since dropout works
on neurons and Ci varies quadratically with Ni, according to Equation 3.2, the dropout ratio after
pruning the parameters should follow Equation 3.3, where Do represents the original dropout rate,
Dr represents the dropout rate during retraining. For dropout that works on the convolutional layer,
such as GoogleNet and SqueezeNet, we didn’t change the dropout ratio.

Ci = NiNi−1 (3.2)

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 24

1 2 3 4 5 6 7 8

Load-Imbalanced

w0,0 w0,1 0 w0,3

0 0 w1,2 0
0 w2,1 0 w2,3

0 0 0 0
0 0 w4,2 w4,3

w5,0 0 0 0
w6,0 0 0 w6,3

0 w7,1 0 0

5 cycles
2 cycles
4 cycles
1 cycle

Sparse: 5 cycles (w/o load balance)
Dense: 8 cycles

Load-Balanced

3 cycles
3 cycles
3 cycles
3 cycles

PE0

PE1

PE2

PE3

PE0
PE1
PE2
PE3
PE0
PE1
PE2
PE3

PE0
PE1
PE2
PE3

PE0
PE1
PE2
PE3

w0,0 0 0 w0,3

0 0 w4,2 0

0 0 w3,2 0
0 w7,1 0 w7,3

0 0 w1,2 0
w5,0 0 0 w5,3

0 w2,1 0 w2,3

w6,0 0 0 0

Sort the entire matrix
Prune the smallest 5/8 overall

Sort each sub-matrix
Prune the smallest 5/8 each~a

�
0 a1 0 a3

�

⇥ ~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0 a1 0 a3
�

⇥ ~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0 a1 0 a3
�

⇥ ~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0 a1 0 a3
�

⇥ ~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0 a1 0 a3
�

⇥ ~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0 a1 0 a3
�

⇥ ~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0a10a3
�

⇥~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,10w0,3

00w1,20

0w2,10w2,3

0000

00w4,2w4,3

w5,0000

000w6,3

0w7,100

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0a10a3
�

⇥~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,10w0,3

00w1,20

0w2,10w2,3

0000

00w4,2w4,3

w5,0000

000w6,3

0w7,100

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0a10a3
�

⇥~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,10w0,3

00w1,20

0w2,10w2,3

0000

00w4,2w4,3

w5,0000

000w6,3

0w7,100

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

~a
�

0a10a3
�

⇥~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBB@

w0,0w0,10w0,3

00w1,20

0w2,10w2,3

0000

00w4,2w4,3

w5,0000

000w6,3

0w7,100

1
CCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

1
CCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

1
CCCCCCCCCCCCCA

1

Sparse: 3 cycles (w/ load balance)
Dense: 8 cycles

1 2 3 4 5 6 7 8

Figure 3.4: Load-balance-aware pruning saves processing cycles for sparse neural network.

Dr = Do

√
Cir

Cio
(3.3)

During retraining, it is better to retain the weights that are initialized from the Train Connectivity
phase for the connections that survived pruning, rather than from zero initialization or random
initialization. This is because neural networks contain fragile co-adapted features [111]: gradient
descent is able to find a good solution when the network is initially trained but not after re-initializing
some layers and then retraining them. Thus, keeping the surviving parameters attains better accuracy
when retraining pruned layers.

So far we have discussed the basic techniques to prune deep neural networks and to retrain the
sparse model to recover accuracy. Next, we describe advanced pruning techniques from the hardware
efficiency perspective.

3.3 Hardware Efficiency Considerations

Pruning makes a dense weight tensor sparse. While this reduces model size and computation, it also
reduces the regularity of the remaining computation, which makes it more difficult to parallelize in
hardware, as we will see in Chapter 6. It is beneficial to regularize the way we exploit sparsity. The
section describes two issues that can be addressed by considering them during pruning.

Load-Balance-Aware Pruning. Modern hardware architecture has many parallel processors.

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 25

Irregular Regular

Fine-grained  
Sparsity (0-D)

Vector-level  
Sparsity (1-D)

Kernel-grained  
Sparsity (2-D)

Filter-level  
Sparsity (3-D)

(a) (b) (c) (d)

Figure 3.5: Pruning at different granularities: from un-structured pruning to structured pruning.

In hardware accelerators, processors are also called processing elements (PEs). Each PE handles part
of the workload in parallel, which makes the computation faster than executing the workload in series.
Pruning leads to the potential problem of unbalanced non-zero weight distributions when parallelizing
the computation on multiple PEs, leading to a situation in which the number of multiply-accumulation
operations performed by every PE is different. Consequently, PEs with fewer computation tasks
must wait until the PE with the most computation tasks finishes. The workload imbalance over
different PEs may cause a gap between the real performance and the peak performance of hardware.

Load-balance-aware pruning is designed to solve this problem and obtain a hardware-friendly
sparse network. Load-balance-aware pruning is implemented by adding a constraint to pruning so
that the sub-matrices that are allocated to each PE yield the same sparsity ratio. Thus, we ensure
an even distribution of non-zero weights among PEs. In the end, all PEs have the same amount of
workload, which leads to less idle cycles.

Load-balance-aware pruning is illustrated in Figure 3.4. There are four PEs and the matrix is
divided into four sub-matrices for parallel processing. Elements with the same color belongs to the
same sub-matrix. The target sparsity level is 5/8 (3/8 non-zeros) in the example. With conventional
pruning, the elements in the whole matrix are sorted and the smallest 5/8 are pruned. As a
result, PE0 has five non-zero weights while PE3 has only one. The total processing time is restricted
to the longest one, which is five cycles.

With load-balance-aware pruning, however, the elements in each sub-matrix are sorted, and
the smallest 5/8 for each individual sub-matrix are pruned. As a result, all the PEs have 3/8 non-zero
weights (three elements in this example); thus, only three cycles are necessary to carry out the
operation. Compared with conventional pruning, load-balance-aware pruning produces the same
number of non-zero weights, but load-balance-aware pruning needs fewer computation cycles.

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 26

Pruning with Structure. While load-balance-aware pruning keeps all processors equally busy,
they all need to fetch the non-zero weights in the sparse network (Figure 3.5(a)). We could make
this access more regular by pruning by rows, kernels, or filters instead of individual elements.

Pruning at the granularity of rows is shown in Figure 3.5(b). Figure 3.5(c) shows pruning at the
granularity of two-dimension kernels; every time a 2D kernel is pruned and it saves the entire 2D
convolution on the corresponding feature map. Figure 3.5(d) shows pruning at the granularity of
three-dimension filters. Pruning one 3D filter means reducing one output channel, and the remaining
model is still a dense tensor.

There is a trade-off for different grain sizes. An advantage of coarse-grained pruning is index
saving. We need an index to represent the location of non-zero entries. For fine-grained sparsity,
we need one index for each non-zero weight. While for kernel-level sparsity, we need one index for
every nine non-zero weights (assume 3× 3 kernel). This is a 9× storage savings on indices.

The downside of coarse-grained pruning is that we can prune less connections with the same
accuracy. For example, without any structure, we can prune GoogleNet to only 29% non-zero
connections; if enforcing 1-D structure, we need 37% non-zero connections; if pruning 2D kernels,
this number rises to 44%. Still, we can save 56% of the 2D convolutions, and the advantage is that
the remaining 2D convolutions are still dense, which makes the computation pattern more regular.
Structured pruning therefore buys us computational regularity at the cost of the pruning rate.

The storage ratio might either go up or go down with structured pruning, since we have more
non-zero parameters but less index overhead for coarse-grained sparsity. For GoogleNet, 1D pruning
leads to the best compression ratio compared with 2D pruning and fine-grained pruning.

3.4 Experiments

We implemented network pruning in Caffe [112]. Caffe was modified to add a mask that disregards
pruned parameters during network operation for each weight tensor. We carried out the experiments
on Nvidia TitanX and GTX980 GPUs.

We pruned six representative networks: Lenet-300-100 and Lenet-5 on MNIST, together with
AlexNet, VGG-16, Inception-V1, SqueezeNet, ResNet-18 and ResNet-50 on ImageNet. The network
parameters and accuracy1 before and after pruning are shown in Table 3.1.

3.4.1 Pruning for MNIST

We first experimented on the MNIST dataset with the LeNet-300-100 and LeNet-5 networks [1]. After
pruning, the network is retrained with 1/10 of the original network’s initial learning rate. Table 3.2
and Table 3.3 show that pruning reduces the number of connections by 12× on these networks. For
each layer of the network, the table shows (left to right) the original number of weights, the number

1The reference model is from Caffe model zoo; accuracy is measured without data augmentation

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 27

Table 3.1: Summary of pruning deep neural networks.

Network Top-1 Error Top-5 Error Parameters Pruning
Rate

LeNet-300-100 1.64% - 267K
LeNet-300-100 Pruned 1.59% - 22K 12×
LeNet-5 0.80% - 431K
LeNet-5 Pruned 0.77% - 36K 12×
AlexNet 42.78% 19.73% 61M
AlexNet Pruned 42.77% 19.67% 6.7M 9×
VGG-16 31.50% 11.32% 138M
VGG-16 Pruned 31.34% 10.88% 10.3M 13×
GoogleNet 31.14% 10.96% 7.0M
GoogleNet Pruned 31.04% 10.88% 2.0M 3.5×
SqueezeNet 42.56% 19.52% 1.2M
SqueezeNet Pruned 42.26% 19.34% 0.38M 3.2×
ResNet-50 23.85% 7.13% 25.5M
ResNet-50 Pruned 23.65% 6.85% 7.47M 3.4×

Table 3.2: Pruning Lenet-300-100 reduces the number of weights by 12× and computation by 12×.

Layer Weights FLOP Activation% Weight% FLOP%
fc1 235K 470K 38% 8% 8%
fc2 30K 60K 65% 9% 4%
fc3 1K 2K 100% 26% 17%
total 266K 532K 46% 8% 8%

of floating point operations to compute that layer’s activations, the average percentage of activations
that are non-zero, the percentage of non-zero weights after pruning, and the percentage of actually
required floating point operations. One multiplication operation plus one add operation count as two
floating point operations.

An interesting byproduct is that network pruning detects visual attention regions. Figure 3.6
shows the sparsity pattern of the first fully connected layer of LeNet-300-100; the matrix size is
784× 300. The sparsity pattern of the matrix has 28 bands, each band’s width is 28, corresponding
to the 28 × 28 input pixels. The colored regions of the figure (indicating non-zero parameters)
correspond to the center of the image. Because digits are written in the center of the image, these
center parameters are important. The graph is sparse on the left and right, corresponding to the less
important regions on the top and bottom of the image. After pruning, the neural network finds the
center of the image more important, and thus the connections to the peripheral regions are more
heavily pruned.

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 28

Table 3.3: Pruning Lenet-5 reduces the number of weights by 12× and computation by 6×.

Layer Weights FLOP Activation% Weight% FLOP%
conv1 0.5K 576K 82% 66% 66%
conv2 25K 3200K 72% 12% 10%
fc1 400K 800K 55% 8% 6%
fc2 5K 10K 100% 19% 10%
total 431K 4586K 77% 8% 16%

Figure 3.6: Visualization of the sparsity pattern.

3.4.2 Pruning for ImageNet

Beyond the small MNIST dataset, we further examined the performance of pruning on the ImageNet
ILSVRC-2012 dataset, which is much larger and hence the result more convincing.

AlexNet. We first pruned AlexNet [2]. We used AlexNet Caffe model as the reference model,
which achieved a top-1 accuracy of 57.2% and a top-5 accuracy of 80.3%. After pruning, the whole
network is retrained with 1/100 of the original network’s initial learning rate. Table 3.4 shows that
AlexNet can be pruned to 1/9 of its original size without impacting accuracy, and the amount of
computation can be reduced by 3×. The layer-wise pruning statistics are shown in Table 3.4

VGG-16. Given the promising results on AlexNet, we also looked at a larger and more accurate
network, VGG-16 [113], on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional
layers but still only three fully-connected layers. Following a similar methodology, we aggressively
pruned both convolutional and fully-connected layers to realize a significant reduction in the number
of weights (Table 3.5). The convolutional layers are pruned to about 30% non-zeros.

The VGG-16 network as a whole has been reduced to 7.5% of its original size (13× smaller). In
particular, note that the two largest fully-connected layers can each be pruned to less than 4% of
their original size. This reduction is critical for real-time image processing, where there is little reuse
of fully connected layers across images (unlike batch processing during training).

Both AlexNet and VGG-16 have three bulky fully connected layers, which occupy more than 90%
of the total weights. Those fully connected layers have a great deal of redundancy and can be pruned

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 29

Table 3.4: Pruning AlexNet reduces the number of weights by 9× and computation by 3×.

Layer Weights FLOP Activation% Weight% FLOP%
conv1 35K 211M 88% 84% 84%
conv2 307K 448M 52% 38% 33%
conv3 885K 299M 37% 35% 18%
conv4 663K 224M 40% 37% 14%
conv5 442K 150M 34% 37% 14%
fc1 38M 75M 36% 9% 3%
fc2 17M 34M 40% 9% 3%
fc3 4M 8M 100% 25% 10%
total 61M 1.5B 54% 11% 30%

Table 3.5: Pruning VGG-16 reduces the number of weights by 12× and computation by 5×.

Layer Weights FLOP Activation% Weight% FLOP%
conv1_1 2K 0.2B 53% 58% 58%
conv1_2 37K 3.7B 89% 22% 12%
conv2_1 74K 1.8B 80% 34% 30%
conv2_2 148K 3.7B 81% 36% 29%
conv3_1 295K 1.8B 68% 53% 43%
conv3_2 590K 3.7B 70% 24% 16%
conv3_3 590K 3.7B 64% 42% 29%
conv4_1 1M 1.8B 51% 32% 21%
conv4_2 2M 3.7B 45% 27% 14%
conv4_3 2M 3.7B 34% 34% 15%
conv5_1 2M 925M 32% 35% 12%
conv5_2 2M 925M 29% 29% 9%
conv5_3 2M 925M 19% 36% 11%
fc6 103M 206M 38% 4% 1%
fc7 17M 34M 42% 4% 2%
fc8 4M 8M 100% 23% 9%
total 138M 30.9B 64% 7.5% 21%

by an order of magnitude. We also wanted to examine fully-convolutional neural networks. We
picked GoogleNet (Inception-V1), SqueezeNet, and ResNet-50 as representative, fully-convolutional
neural networks on which to experiment.

GoogleNet. We experimented with GoogleNet Inception-v1 model, which has five inception
modules (each with four branches) and only one fully connected layer. Table 3.6 shows the layer-wise
statistics. Pruning GoogleNet reduces the number of weights by 3.4× and computation by 4.5×. It
is unsurprising that the pruning ratio of GoogleNet is smaller than AlexNet and VGG-16 because
convolutional layers dominate GoogleNet, and convolutional layers are much more efficient than fully
connected layers. Nevertheless, most convolutional layers in GoogleNet can be pruned away 70%,
with only 30% being non-zero. The first few convolutional layers generating lower-level features have
less room to be pruned.

Table 3.6: Pruning GoogleNet reduces the number of weights by 3.5× and computation by 5×.

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 30

Layer Weights FLOP Activation% Weight% FLOP%
conv1/7x7_s2 9K 236M 45% 50% 50%
conv2/3x3_reduce 4K 26M 62% 50% 23%
conv2/3x3 111K 694M 27% 40% 25%
inception_3a/1x1 12K 19M 67% 38% 10%
inception_3a/3x3_reduce 18K 29M 72% 30% 20%
inception_3a/3x3 111K 173M 51% 30% 22%
inception_3a/5x5_reduce 3K 5M 79% 30% 15%
inception_3a/5x5 13K 20M 51% 30% 24%
inception_3a/pool_proj 6K 10M 56% 40% 20%
inception_3b/1x1 33K 51M 32% 40% 22%
inception_3b/3x3_reduce 33K 51M 57% 30% 10%
inception_3b/3x3 221K 347M 21% 30% 17%
inception_3b/5x5_reduce 8K 13M 68% 30% 6%
inception_3b/5x5 77K 120M 18% 30% 20%
inception_3b/pool_proj 16K 26M 22% 40% 7%
inception_4a/1x1 92K 36M 34% 30% 7%
inception_4a/3x3_reduce 46K 18M 68% 30% 10%
inception_4a/3x3 180K 70M 18% 30% 20%
inception_4a/5x5_reduce 8K 3M 80% 30% 5%
inception_4a/5x5 19K 8M 28% 30% 24%
inception_4a/pool_proj 31K 12M 22% 30% 8%
inception_4b/1x1 82K 32M 69% 30% 7%
inception_4b/3x3_reduce 57K 22M 74% 30% 21%
inception_4b/3x3 226K 89M 50% 30% 22%
inception_4b/5x5_reduce 12K 5M 81% 30% 15%
inception_4b/5x5 38K 15M 41% 30% 24%
inception_4b/pool_proj 33K 13M 42% 30% 12%
inception_4c/1x1 66K 26M 60% 30% 13%
inception_4c/3x3_reduce 66K 26M 60% 30% 18%
inception_4c/3x3 295K 116M 40% 30% 18%
inception_4c/5x5_reduce 12K 5M 58% 30% 12%
inception_4c/5x5 38K 15M 37% 30% 17%
inception_4c/pool_proj 33K 13M 35% 30% 11%
inception_4d/1x1 57K 22M 33% 30% 10%
inception_4d/3x3_reduce 74K 29M 44% 30% 10%
inception_4d/3x3 373K 146M 23% 30% 13%
inception_4d/5x5_reduce 16K 6M 64% 30% 7%
inception_4d/5x5 51K 20M 23% 30% 19%
inception_4d/pool_proj 33K 13M 19% 30% 7%
inception_4e/1x1 135K 53M 26% 30% 6%
inception_4e/3x3_reduce 84K 33M 67% 30% 8%
inception_4e/3x3 461K 181M 26% 30% 20%
inception_4e/5x5_reduce 17K 7M 83% 30% 8%
inception_4e/5x5 102K 40M 17% 30% 25%
inception_4e/pool_proj 68K 26M 21% 30% 5%
inception_5a/1x1 213K 21M 38% 30% 6%
inception_5a/3x3_reduce 133K 13M 56% 30% 11%
inception_5a/3x3 461K 45M 27% 30% 17%

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 31

inception_5a/5x5_reduce 27K 3M 68% 30% 8%
inception_5a/5x5 102K 10M 26% 30% 20%
inception_5a/pool_proj 106K 10M 22% 30% 8%
inception_5b/1x1 319K 31M 16% 30% 7%
inception_5b/3x3_reduce 160K 16M 27% 30% 5%
inception_5b/3x3 664K 65M 18% 30% 8%
inception_5b/5x5_reduce 40K 4M 35% 30% 5%
inception_5b/5x5 154K 15M 21% 30% 10%
inception_5b/pool_proj 106K 10M 12% 30% 6%
loss3/classifier 1,024K 2M 100% 20% 2%
total 7M 3.2B 40% 29% 20%

SqueezeNet. SqueezeNet [6] is another fully-convolutional neural network for which we exam-
ined the effect of pruning. We experimented with SqueezeNet-v1.0, which has eight fire modules.
SqueezeNet has no fully connected layers; instead, it uses a global average pooling layer after the last
convolutional layer to provide a 1000-dimension vector. SqueezeNet is a very efficient model even
before pruning: with only 1.2 million parameters, it is 50× smaller than AlexNet but achieves the
same accuracy. After pruning, only 0.4 million parameters are needed, 150× less than AlexNet.

Similar to GoogleNet, SqueezeNet is dominated by convolutional layers, which can be pruned
about 3×. Some 1x1 convolutions have less potential to be pruned, but they contribute very little to
either the number of parameters or the number of arithmetic operations.

Table 3.7: Pruning SqueezeNet reduces the number of weights by 3.2× and computation by 3.5×.

Layer Weights FLOP Activation% Weight% FLOP%
conv1 14K 348M 51% 80% 80%
fire2/conv1x1_1 2K 9M 89% 75% 39%
fire2/conv1x1_2 1K 6M 63% 70% 62%
fire2/conv3x3_2 9K 56M 50% 30% 19%
fire3/conv1x1_1 2K 12M 93% 70% 35%
fire3/conv1x1_2 1K 6M 74% 70% 65%
fire3/conv3x3_2 9K 56M 43% 30% 22%
fire4/conv1x1_1 4K 25M 75% 70% 30%
fire4/conv1x1_2 4K 25M 52% 70% 52%
fire4/conv3x3_2 37K 223M 33% 30% 16%
fire5/conv1x1_1 8K 12M 83% 70% 23%
fire5/conv1x1_2 4K 6M 58% 70% 58%
fire5/conv3x3_2 37K 54M 42% 30% 17%
fire6/conv1x1_1 12K 18M 79% 70% 29%
fire6/conv1x1_2 9K 13M 43% 50% 40%
fire6/conv3x3_2 83K 121M 24% 30% 13%
fire7/conv1x1_1 18K 27M 73% 50% 12%
fire7/conv1x1_2 9K 13M 52% 70% 51%
fire7/conv3x3_2 83K 121M 36% 30% 15%
fire8/conv1x1_1 25K 36M 69% 70% 25%

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 32

fire8/conv1x1_2 16K 24M 28% 50% 34%
fire8/conv3x3_2 147K 215M 12% 30% 8%
fire9/conv1x1_1 33K 11M 76% 50% 6%
fire9/conv1x1_2 16K 6M 18% 70% 54%
fire9/conv3x3_2 147K 50M 11% 30% 5%
conv_final 512K 230M 100% 20% 2%
total 1.2M 1.7B 47% 31% 28%

ResNet-50. We pruned the state-of-the-art convolutional neural network architecture ResNet.
ResNet consists of many residual blocks, each with a bypass layer that provides a shortcut for gradient
propagation. Pruning reduces ResNet-50’s weights by 3.4× and computation by 6.25× (Table 3.8).
Again we used the iterative pruning strategy, with 3 pruning iterations in total. The retraining step
took 90 epochs, which is the same as the initial training time.

Different from other architectures, ResNet-50 has bypass layers, which introduce the element-wise
add operation after each residual block. This bypass changes the activation sparsity: in Table 3.8, the
activation density for the last convolutional layer of each residual block shows the density after the
element-wise add operation, which directly feeds to the next convolutional layer. Another special case
is the activation after layer4.1.conv3, which is completely dense. This is because the last convolutional
layer is followed by a global average pooling. Averaging over several sparse elements results in a
dense value, which destroys the activation sparsity.

GoogleNet, SqueezeNet and ResNet are all fully-convolutional neural networks, but they still
can be pruned without losing accuracy; their pruning ratios are all similar, with about 30% of the
parameters non-zero (GoogleNet: 29%, SqueezeNet: 31%, ResNet: 29%)

Table 3.8: Pruning ResNet-50 reduces the number of weights by 3.4× and computation by 6.25×.

Layer Weights FLOP Activation% Weight% FLOP%
conv1 9K 236B 90% 50% 50%
layer1.0.conv1 4K 26B 58% 40% 36%
layer1.0.conv2 37K 231B 64% 30% 18%
layer1.0.conv3 16K 103B 59% 30% 19%
layer1.0.shortcut 16K 103B 59% 40% 36%
layer1.1.conv1 16K 103B 48% 30% 18%
layer1.1.conv2 37K 231B 51% 30% 14%
layer1.1.conv3 16K 103B 75% 30% 15%
layer1.2.conv1 16K 103B 49% 30% 22%
layer1.2.conv2 37K 231B 44% 30% 15%
layer1.2.conv3 16K 103B 80% 30% 13%
layer2.0.conv1 33K 206B 41% 40% 32%
layer2.0.conv2 147K 231B 58% 33% 14%
layer2.0.conv3 66K 103B 50% 30% 17%
layer2.0.shortcut 131K 206B 50% 30% 24%
layer2.1.conv1 66K 103B 61% 30% 15%

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 33

layer2.1.conv2 147K 231B 56% 30% 18%
layer2.1.conv3 66K 103B 66% 30% 17%
layer2.2.conv1 66K 103B 54% 30% 20%
layer2.2.conv2 147K 231B 55% 30% 16%
layer2.2.conv3 66K 103B 58% 30% 16%
layer2.3.conv1 66K 103B 49% 30% 17%
layer2.3.conv2 147K 231B 41% 30% 15%
layer2.3.conv3 66K 103B 59% 30% 12%
layer3.0.conv1 131K 206B 32% 40% 23%
layer3.0.conv2 590K 231B 62% 30% 10%
layer3.0.conv3 262K 103B 47% 30% 18%
layer3.0.shortcut 524K 206B 47% 30% 18%
layer3.1.conv1 262K 103B 48% 30% 14%
layer3.1.conv2 590K 231B 43% 30% 14%
layer3.1.conv3 262K 103B 52% 30% 13%
layer3.2.conv1 262K 103B 41% 30% 15%
layer3.2.conv2 590K 231B 40% 30% 12%
layer3.2.conv3 262K 103B 50% 30% 12%
layer3.3.conv1 262K 103B 36% 30% 15%
layer3.3.conv2 590K 231B 39% 30% 11%
layer3.3.conv3 262K 103B 48% 30% 12%
layer3.4.conv1 262K 103B 34% 30% 14%
layer3.4.conv2 590K 231B 35% 30% 10%
layer3.4.conv3 262K 103B 40% 30% 11%
layer3.5.conv1 262K 103B 31% 30% 12%
layer3.5.conv2 590K 231B 36% 30% 9%
layer3.5.conv3 262K 103B 32% 30% 11%
layer4.0.conv1 524K 206B 23% 30% 10%
layer4.0.conv2 2M 231B 38% 30% 7%
layer4.0.conv3 1M 103B 41% 30% 12%
layer4.0.shortcut 2M 206B 41% 30% 10%
layer4.1.conv1 1M 103B 27% 30% 12%
layer4.1.conv2 2M 231B 32% 30% 8%
layer4.1.conv3 1M 103B 56% 30% 10%
layer4.1.conv1 1M 103B 21% 30% 17%
layer4.1.conv2 2M 231B 37% 30% 6%
layer4.1.conv3 1M 103B 100% 30% 11%
fc 2M 4K 100% 20% 20%
total 25.5M 8G 56% 29% 16%

3.4.3 Pruning RNNs and LSTMs

Having demonstrated that the pruning technique works well on CNNs, we also evaluated our pruning
techniques on RNNs and LSTMs. We applied our model pruning to NeuralTalk [7], an LSTM for
generating image descriptions. It uses a CNN as an image feature extractor and a LSTM to generate

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 34

50 60 70 80 90 95
10

20

30

40

50

60

70

Pruned Weights (%))

B
LE

U
 1

50 60 70 80 90 95
10

15

20

25

30

35

40

45

Pruned Weights (%)

B
LE

U
 2

50 60 70 80 90 95
5

10

15

20

25

Pruned Weights (%)

B
LE

U
 3

50 60 70 80 90 95

5

10

15

Pruned Weights (%))

B
LE

U
 4

no retrain
pretrained
retrain

no retrain
pretrained
retrain

no retrain
pretrained
retrain

no retrain
pretrained
retrain

Figure 3.7: Pruning the NeuralTalk LSTM reduces the number of weights by 10×.

captions. To show that LSTMs can be pruned, we fixed the CNN weights and pruned only the LSTM
weights. The baseline NeuralTalk model we used is downloaded from the NeuralTalk Model Zoo.

In the pruning step, we pruned all layers except Ws, the word embedding lookup table, to only
10% non-zeros. We retrained the remaining sparse network using the same weight decay and batch
size as the original paper. We measured the BLEU score before and after retraining. The BLEU
score measures the similarity of the generated caption to the ground truth caption.

Figure 3.7 shows the trade-off curve of the BLEU score and the ratio of pruned weights. The
dashed red line shows the baseline dense model’s BLUE score; the blue curve shows the BLEU score
without retraining; the green curve shows the BLEU score after retraining. Comparing the blue
curve and the green curve, we find that retraining plays a very important role in recovering accuracy.
Seeing the green line itself, we find that not until pruning away 90% of the parameters does the
BLEU score begins to drop sharply.

The BLEU score is not the only quality metric of an image captioning system. We visualize the
captions generated by the pruned model (to 10% density) in Figure 3.8 and compare the quality. The
first line is the caption generated by the baseline dense model, and the second is generated by the

http://cs.stanford.edu/people/karpathy/neuraltalk/

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 35

Baseline: a basketball
player in a white uniform is
playing with a ball.

Pruned: a basketball player
in a white uniform is
playing with a basketball.

Baseline: a brown dog is
running through a grassy
field.

Pruned: a brown dog is
running through a grassy
area.

Baseline: a man is
riding a surfboard on a
wave.

Pruned: a man in a
wetsuit is riding a wave
on a beach.

Baseline: a white bird is
flying over water.

Pruned: a white bird is
flying over water.

�1

Figure 3.8: Pruning the NeuralTalk LSTM does not hurt image caption quality.

sparse model. The pruned model sometimes produces the same caption (the first image), sometimes
produces a different word to describe the same thing (the second and third image), or comes up with
completely new captions (the last image).

3.5 Speedup and Energy Efficiency

After pruning, the storage requirements of DNNs are smaller, which reduces the off-chip DRAM
access, or even completely avoids off-chip DRAM access if all weights can be stored on chip. On-chip
memory takes orders of magnitude less energy and a fewer number of cycles to access, which makes
it possible for faster and more energy efficient inference.

Performance of DNNs, especially the fully-connected layers, depends on whether multiple images
can be run through the DNN at the same time (batch processing) or run one at a time. Batching
images allows for the weights to be reused, which often improves the performance, but also increases
the latency to get the result from the first image.

We are considering latency-focused applications running on mobile devices, such as pedestrian
detection on an embedded processor inside an autonomous vehicle. These applications demand
real-time inference and minimal latency and would be significantly hindered by waiting for batch
assembly. Thus, when benchmarking the performance and energy efficiency, we emphasize the case
when the batch size equals to 1.

We benchmarked the fully connected layers of AlexNet and VGG-16 to see the effect of pruning
on performance and energy. In the non-batching case, the activation matrix is a vector, so the
computation boils down to dense/sparse matrix-vector multiplication for the original/pruned model,
respectively.

We compared three different kinds of off-the-shelf hardware: the NVIDIA GeForce GTX Titan

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 36

1x 1x 1x 1x 1x 1x 1x
2x

5x

1x

9x 10x

1x
3x

14x
25x

14x
24x 22x

10x 15x

56x
94x

21x

210x
135x

16x

48x

0…
1.1x

0.5x
1.0x 1.0x

0…
0.6x

3x
5x

1x

8x 9x

1x
3x

0.1x

1x

10x

100x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 Geo Mean

Sp
ee

du
p

CPU Dense (Baseline) CPU Sparse GPU Dense GPU Sparse mGPU Dense mGPU Sparse

Figure 3.9: Speedup of sparse neural networks on CPU, GPU and mobile GPU with batch size of 1.

1x 1x 1x 1x 1x 1x 1x

5x
9x

3x

17x 20x

2x

6x7x
12x

7x
10x 10x

5x
7x

26x
37x

10x

78x 61x

8x

23x

10x
15x

7x
13x 14x

5x
9x

37x
59x

18x

101x 102x

14x

36x

1x

10x

100x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 Geo Mean

En
er

gy
 E

ff
ic

ie
nc

y
Im

pr
ov

em
en

t

CPU Dense (Baseline) CPU Sparse GPU Dense GPU Sparse mGPU Dense mGPU Sparse

Figure 3.10: Energy efficiency improvement of sparse neural networks on CPU, GPU and mobile
GPU with batch size of 1.

X and the Intel Core i7 5930K as desktop processors (same package as NVIDIA Digits Dev Box)
and NVIDIA Tegra K1 as a mobile processor. To run the benchmark on a GPU, we used cuBLAS
GEMV for the original dense layer. For the pruned sparse layer, we stored the sparse matrix in the
CSR format and used the cuSPARSE CSRMV kernel, which is optimized for sparse matrix-vector
multiplication on GPU. To run the benchmark on CPU, we used MKL CBLAS GEMV for the
original dense model and MKL SPBLAS CSRMV for the pruned sparse model. To avoid variance
when measuring the latency, we measured the time spent on each layer for 4096 input samples, and
averaged the time regarding each input sample. For GPU, the time consumed by cudaMalloc and
cudaMemcpy was not counted.

To compare power consumption between different systems, it is important to measure power
in a consistent manner [114]. For our analysis, we are comparing the pre-regulation power of the
entire application processor (AP) / SOC and DRAM combined. On CPU, the benchmark is running
on a single socket with a single Haswell-E class Core i7-5930K processor. The CPU socket and
DRAM power are as reported by the pcm-power utility provided by Intel. For GPU, we used
the nvidia-smi utility to report the power of Titan X. For mobile GPU, we use a Jetson TK1
development board and measured the total power consumption with a power-meter. We assume
15% AC to DC conversion loss, 85% regulator efficiency, and 15% power consumed by peripheral
components [115] to report the AP+DRAM power for Tegra K1.

Figure 3.9 shows the speedup of pruning on different hardwares. There are 6 columns for each

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 37

19.0%

20.5%

22.0%

23.5%

25.0%

26.5%

28.0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ph
on

e
Er

ro
r R

at
e

Parameters Pruned Away

with load balance without load balance

sweet
spot

Figure 3.11: Accuracy comparison of load-balance-aware pruning and original pruning.

0x

1x

2x

3x

4x

5x

6x

7x

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Sp
ee

du
p

Parameters Pruned Away

with load balance without load balance

6.2x	speedup
over	dense

5.5x	speedup
over	dense

Figure 3.12: Speedup comparison of load-balance-aware pruning and original pruning.

benchmark, showing the computation time of CPU / GPU / TK1 on dense / pruned networks.
The time is normalized to CPU. When batch size is equal to 1, the pruned network layer obtained
3× to 4× speedup over the dense network on average because it has a smaller memory footprint
and alleviates the data transferring overhead, especially for large matrices that are unable to fit
into the caches. For example, VGG16’s FC6 layer, the largest layer in our experiment, contains
25088× 4096× 4 Bytes ≈ 400MB data, which is much larger than the capacity of a typical L3 cache
(usually 16MB).

In latency-tolerating applications such as off-line image processing, batching improves memory
locality when weights could be reused in matrix-matrix multiplication. In this scenario, the pruned
network no longer has an advantage and resulted in a slowdown of 2× to 4× for the batch = 64 case.

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 38

This is because the expensive memory fetch is amortized by more computation, and the irregularity
hurts more than the memory could save for the sparse case.

Figure 3.10 illustrates the energy efficiency of pruning on different hardware. We multiply power
consumption with computation time to get energy consumption, then normalize to CPU to get energy
efficiency. When batch size equals to 1, the pruned network layer consumes 3× to 7× less energy
over the dense network on average. Reported by nvidia-smi, GPU utilization is 99% for both
dense and sparse cases.

Load-balance-aware pruning can preserve the prediction accuracy and achieve better speedup. To
show that load-balance-aware pruning still preserves the prediction accuracy similarly to standard
pruning, we experimented with the speech recognition LSTM on the TIMIT dataset [57]. As
demonstrated in Figure 3.11, the accuracy margin between two pruning methods is within the
variance of the pruning process itself. As we prune away more parameters, the error rate goes up.
Both pruning methods can prune away 90% of the parameters before the error rate increases.

Load-balance-aware pruning can improve hardware utilization and achieve higher speedup than
the basic pruning method. Figure 3.12 compares speedup with and without load-balance-aware
pruning as measured on FPGA [29]. In both cases, speedup increases as more parameters are pruned
away. Comparing the red and green lines, we find that load-balance-aware pruning achieved better
speedup at all sparsity levels. With load-balance-aware pruning, the sparse model pruned to 10%
non-zeros achieved 6.2× speedup over the dense baseline, while without load-balance-aware pruning
only 5.5× speedup is achieved. The advantage of load-balance-aware pruning is that it can improve
the hardware efficiency from the workload perspective without changing the hardware architecture.

3.6 Discussion

The trade-off between pruning ratio and prediction accuracy is shown in Figure 3.13. The more
parameters are pruned away, the lower the prediction accuracy becomes. We experimented with
L1 and L2 regularization (with and without retraining) together with iterative pruning to give five
trade-off lines. Comparing the solid and the dashed lines, the importance of retraining is clear:
without retraining, accuracy begins dropping much sooner — with 1/2 of the original connections,
rather than with 1/10 of the original connections. It is interesting to see that we have the “free
lunch” of reducing 2× the connections without losing accuracy even without retraining, while with
retraining we can reduce connections by 9×.

L1 or L2 Regularization. Choosing the correct regularization affects the performance of pruning
and retraining. L1 regularization penalizes non-zero parameters, resulting in more parameters near
zero. L1 regularization gives better accuracy than L2 after pruning (dotted blue and purple lines)
since it pushes more parameters closer to zero. However, a comparison of the yellow and green lines
shows that L2 outperforms L1 after retraining since there is no benefit to further pushing values

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 39

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

40% 50% 60% 70% 80% 90% 100%

A
cc

ur
ac

y
Lo

ss

Parametes Pruned Away

L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
L2 regularization w/ iterative prune and retrain

Figure 3.13: Trade-off curve for parameter reduction and loss in top-5 accuracy.

-20%

-15%

-10%

-5%

0%

0% 25% 50% 75% 100%

A
cc

ur
ac

y
L

os
s

#Parameters

conv1 conv2 conv3 conv4 conv5

-20%

-15%

-10%

-5%

0%

0% 25% 50% 75% 100% 125%

A
cc

ur
ac

y
L

os
s

#Parameters

fc1 fc2 fc3

Figure 3.14: Pruning sensitivity for CONV layer (left) and FC layer (right) of AlexNet.

towards zero. One extension is to use L1 regularization for pruning and then L2 for retraining, but
this did not perform better than simply using L2 for both phases. Parameters from one mode do not
adapt well to the other.

The greatest gain comes from iterative pruning (solid red line with solid circles). Here we take
the pruned and retrained network (solid green line with circles), then prune and retrain the network
again. The leftmost dot on this curve corresponds to the point on the green line at 80% (5× pruning)
pruned to 8×. There is no accuracy loss at 9×, and not until 10× does the accuracy begin to drop
sharply. There are two green points that achieve slightly better accuracy than the original model.
This accuracy improvement is due to pruning finding the right capacity of the network and reducing
overfitting.

Sensitivity Analysis. Both convolutional and fully-connected layers can be pruned but with

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 40

different sensitivity. Figure 3.14 shows the sensitivity of each layer to network pruning. The
convolutional layers (on the left) are more sensitive to pruning than the fully connected layers (on
the right). The first convolutional layer, which interacts with the input image directly, is most
sensitive to pruning. We suspect this sensitivity is because the input layer has only three channels
and extracts low-level features, thus having less redundancy than the other convolutional layers. In
general, convolutional layers can be pruned around 3× and fully connected layers can be pruned
more than 10×.

Since our pruning technique was published in NIPS’2015, neural network pruning has been the
subject of multiple academic papers and industry R&D. These related works are described in Chapter
2.

3.7 Conclusion

We have presented a pruning method to reduce the number of connections of deep neural networks
without affecting accuracy. Our pruning method, motivated in part by how learning works in
the human brain, operates by learning which connections are important, pruning the unimportant
connections, and then retraining the remaining sparse network. We highlight the power of our pruning
method through experiments with AlexNet, VGG-16, GoogleNet, SqueezeNet, and ResNet-50 on
ImageNet, which revealed that both fully connected layers and convolutional layers can be pruned:
the number of connections of convolutional layers was reduced by 3×, and fully connected layers
by 10× without loss of accuracy. With the NeuralTalk experiment on Flickr-8K, we find LSTMs
can also be pruned by 10×. Pruning reduces the amount of computation required by deep neural
networks. However, this gain is hard to exploit with modern CPU/GPU. We will design customized
hardware to exploit sparsity in Chapter 6.

Chapter 4

Trained Quantization and Deep

Compression

4.1 Introduction

This chapter introduces a trained quantization technique for compressing deep neural networks,
which when combined with the pruning technique introduced in the previous chapter, creates "Deep
Compression" [26], a model compression pipeline for deep neural networks. Deep Compression
consists of pruning, trained quantization, and variable-length coding, and it can compress deep neural
networks by an order of magnitude without losing the prediction accuracy. This large compression
enables machine learning applications to run on mobile devices.

"Deep Compression" is a three-stage pipeline (Figure 4.1) to reduce the model size of deep neural
networks in a manner that preserves the original accuracy. First, we prune the network by removing
the redundant connections, keeping only the most informative connections (described in Chapter 3).
Next, the weights are quantized and multiple connections share the same weight. Thus, only the
codebook (effective weights) and the indices need to be stored; each parameter can be represented
with much fewer bits. Finally, we apply variable-length coding (Huffman coding) to take advantage
of the non-uniform distribution of effective weights and use variable length encoding to represent the
weights in a lossless manner.

Our most important insight is that pruning and trained quantization can compress the network
without interfering with each other, thus leading to a surprisingly high compression rate. Deep
Compression makes the required storage so small (a few megabytes) that all weights can be cached on-
chip instead of going to off-chip DRAM, which is slow and energy consuming. The deep compression
technique is the foundation of the efficient inference engine (EIE) to be discussed in Chapter 6,
which achieved significant speedup and energy efficiency improvement by taking advantage of the

41

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 42

Train Connectivity

Prune Connections

Retrain Weights

Cluster the Weights

Generate Code Book

Quantize the Weights
with Code Book

Retrain Code Book

Pruning: fewer weights
Quantization: fewer bits per weight

original
model

Encode Weights

Encode Index

Variable-Length Coding:
variable bits per weight

compressed
model

Figure 4.1: Deep Compression pipeline: pruning, quantization and variable-length coding.

compressed model.

4.2 Trained Quantization and Weight Sharing

Trained quantization and weight sharing compress the pruned network by reducing the number of
bits required to represent each weight. We limit the number of effective weights we need to store by
having multiple connections share the same weight and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 4.2. Suppose we have a layer that has four input neurons
and four output neurons, and the weight matrix is 4× 4. On the top left of the figure is the 4× 4

weight matrix, and on the bottom left is the 4× 4 gradient matrix. The weights are quantized to 4
bins (denoted with four colors); all the weights in the same bin share the same value. Thus for each
weight, we need to store only a small index into a table of shared weights. During the SGD update,
all the gradients are grouped by the color and summed together, multiplied by the learning rate
and subtracted from the shared centroids from the previous iteration. For pruned AlexNet, we can
quantize to 8-bits (256 shared weights) for each convolutional layers and 5-bits (32 shared weights)
for each fully-connected layer without any loss of accuracy. With 4-bits for convolutional layers and
2-bits for fully-connected layers, we observed only 2% loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index.
In general, for a network with n connections and each connection represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
. (4.1)

For example, Figure 4.2 shows the weights of a single layer neural network with four input units
and four output units. There are 4× 4 = 16 weights originally, but there are only 4 shared weights:

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 43

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

3 0 1 1

1 1 0 3

0 3 1 0

3 1 2 2

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

 weights
(32 bit float) centroids

gradients

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
 (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Figure 4.2: Trained quantization by weight sharing (top) and centroids fine-tuning (bottom).

similar weights are grouped to share the same value. Originally we need to store 16 weights, each
with 32 bits, now we need to store only four effective weights (blue, green, red and orange), each
with 32 bits, together with 16 2-bit indices giving a compression rate of 16 ∗ 32/(4 ∗ 32 + 2 ∗ 16) = 3.2

We use k-means clustering to identify the shared weights for each layer of a trained network, so
that all the weights that fall into the same cluster will share the same weight. Weights are not shared
across layers. We partition n original weights W = {w1, w2, ..., wn} into k clusters C = {c1, c2, ..., ck},
n� k, as to minimize the within-cluster sum of squares (WCSS):

arg min
C

k∑

i=1

∑

w∈ci
|w − ci|2 . (4.2)

Different from HashNet [72] where weight sharing is determined by a hash function before the
networks see any training data, our method determines weight sharing after a network is fully trained
so that the shared weights approximate the original network.

Centroid initialization impacts the quality of clustering and thus affects the network’s prediction
accuracy. We examine three initialization methods: Forgy(random), density-based, and linear
initialization. In Figure 4.4 we plotted the original weights’ distribution of conv3 layer in AlexNet
(CDF in blue, PDF in red). The weights form a bimodal distribution after network pruning. On the
bottom of the figure plots the effective weights (centroids) with three different initialization methods

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 44

0.10 0.05 0.00 0.05 0.10
weight value

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

CDF

PDF

density initialization

linear initialization

random initialization

Figure 4.3: Different methods of centroid initialization: density-based, linear, and random.

(shown in blue, red and yellow). In this example, there are 13 clusters.
Forgy (random) initialization randomly chooses k observations from the data set and uses these

as the initial centroids. The initialized centroids are shown in yellow. Since there are two peaks in
the bimodal distribution, the Forgy method tends to concentrate around those two peaks.

Density-based initialization linearly spaces the CDF of the weights in the y-axis, then finds the
horizontal intersection with the CDF, and finally finds the vertical intersection on the x-axis, which
becomes a centroid (blue dots). This method makes the centroids denser around the two peaks, but
more scattered than the Forgy method.

Linear initialization linearly spaces the centroids between the [min, max] of the original weights.
This initialization method is invariant to the distribution of the weights and is the most scattered
compared with the former two methods.

Large weights play a more important role than small weights [25], but there are fewer of these
large weights. Thus, for both Forgy initialization and density-based initialization, very few centroids
have large absolute values, which results in a poor representation of these few large weights. Linear
initialization does not suffer from this problem. The experiment section compares the accuracy of
different initialization methods after clustering and fine-tuning, showing that linear initialization
works best.

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 45

Figure 4.4: Distribution of weights and codebook before (green) and after fine-tuning (red).

During the feed forward phase and back-propagation phase of trained quantization, the weight is
fetched from the lookup table. Thus, there is one level of indirection. An index of the shared weight
table is stored for each connection. During back-propagation, the gradient for each shared weight is
calculated and used to update the shared weight. This procedure is shown in Figure 4.2.

We denote the loss by L, the weight in the ith column and jth row by Wij , the centroid index of
element Wij by Iij , the kth centroid of the layer by Ck. By using the indicator function 1(.), the
gradient of the centroids is calculated as:

∂L
∂Ck

=
∑

i,j

∂L
∂Wij

∂Wij

∂Ck
=

∑

i,j

∂L
∂Wij

1(Iij = k) (4.3)

4.3 Storing the Meta Data

Both pruning and trained quantization produce meta data. Pruning makes the weight matrix sparse,
and thus extra space is needed to store the indices of non-zero weights. Quantization needs extra
storage for a codebook. Each layer has its code book. Here we quantitatively analyze the overhead
of these meta data.

We store the sparse structure that results from pruning with weight itself and an index. We
minimize the number of bits used to represent the index by storing the relative index (the difference)

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 46

idx 0 1 2 3 4 5 6 7 8 … 18 19 20 21 22 23 24 25 26 27 28
diff 1 4 16 3 3

value 3.4 0.9 0 1.7 0.5

Filler Zero

Span Exceed 16=2^4

idx 0 1 2 3 4 5 6 7 8 … 18 19 20 21 22 23 24 25 26 27 28
diff 1 4 16 3 3

value 3.4 0.9 1.7 0.5

Special Overflow Code

Span Exceed 15=2^4-1
16 is reserved for overflow

�1

Figure 4.5: Pad a filler zero to handle overflow when representing a sparse vector with relative index.

idx 0 1 2 3 4 5 6 7 8 … 18 19 20 21 22 23 24 25 26 27 28
diff 1 4 16 3 3

value 3.4 0.9 0 1.7 0.5

Filler Zero

Span Exceed 16=2^4

idx 0 1 2 3 4 5 6 7 8 … 18 19 20 21 22 23 24 25 26 27 28
diff 1 4 16 3 3

value 3.4 0.9 1.7 0.5

Special Overflow Code

Span Exceed 15=2^4-1
16 is reserved for overflow

�1

Figure 4.6: Reserve a special code to indicate overflow when representing a sparse vector with relative
index.

instead of the absolute index, so that we can encode this difference in fewer bits. In practice, four
bits are sufficient, which can represent a maximum index difference of 16. Considering a common
sparsity of 10%, on average every ten weights has a non-zero weight, so 16 is a good upper bound.
When we need an index difference larger than the bound, there are two methods to handle overflow:

1. The zero padding solution (Figure 4.5): when the index difference exceeds 16, the largest 4-bit
(as an example) unsigned number, we add a filler zero. The advantage of this solution is that
there is no waste of the relative index, and no special hardware logic is needed to handle the
special ticker code. The disadvantage is that filler zero will result in wasted computation cycles.

2. The special code solution (Figure 4.6): we reserve the last code (16 in this case) as a ticker to
represent overflow. The next relative index will be based on this ticker. In this scenario, the
maximum relative index is only 15, which is the disadvantage of this method: one special code
is wasted, and special logic is needed to deal with the special code, making the computation
harder to parallelize. The advantage of this method is the opposite as the first method: there
are no wasted computation cycles.

Both methods have pros and cons. In practice, we found the overflow is rare (given 10% sparsity,
on average every ten entries has a non-zero, and 16 is a good upper bound for relative index), so the
wasted cycles are negligible. We adopted solution 1 in our compression algorithm.

The codebook is the meta data required by trained quantization. We quantized each layer
separately, so each layer needs its codebook. However, this extra storage is very small. When using

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 47VGG

Weight Index Codebook

total 0.328628725366823 0.304843922356832 0.000765

0.1%

51.4% 48.6%

Weight Index Codebook

Alexnet

Weight Index Codebook

total 0.376860055762082 0.398475 0.000608

1.5%

47.5% 51.0%

Lenet-5

Weight Index Codebook

total 0.342760336094903 0.449469584599793 0.043743

0.1%

45.4% 54.5%

Lenet-300-10

Weight Index Codebook

total 0.410079520779645 0.381279699473102 0.01198

0.2%

49.3% 50.5%

AlexNetLenet-300-100 ResNet-50Inception-V3

0.1%

48.1% 51.8%

VGG-16

Resnet50

Weight Index Codebook

total 54.5% 45.4% 0.1%

Inception -V3

Weight Index Codebook

total 0.50485998 0.493367548 0.001772472

�1

Figure 4.7: Storage ratio of weight, index, and codebook.

4-bit quantization, the codebook has only 16 entries. Say we have 50 layers in total, we need to store
only 800 entries; each entry is 4 Bytes with a total of 3KB.

Figure 4.7 shows the breakdown of the three different components when compressing LeNet-300-
100, AlexNet, VGG-16, Inception-V3 and ResNet-50. The green part is the useful data (weights),
and the blue and yellow are meta-data (index and codebook). The total proportion of the meta-data
is roughly half.

4.4 Variable-Length Coding

So far we have visited the first two stages of Deep Compression: pruning for fewer weights, trained
quantization for fewer bits per weight. Up to this stage, all the weights are represented with a
fixed number of bit width. However, the weight distribution is non-uniform (Figure 4.8). We can
use variable-length coding to further compress the model. The idea is: we can use fewer bits
to represent those more frequently appearing weights, and use more bits to represent those less
frequently appearing weights.

Huffman coding [116], Lempel–Ziv coding [117] and arithmetic coding [118] are all variable-length
coding strategies. Without loss of generality, we pick Huffman coding for Deep Compression.

A Huffman code is an optimal prefix code commonly used for lossless data compression. It
uses variable-length codewords to encode source symbols. The table is derived from the occurrence
probability for each symbol. More common symbols are represented with fewer bits. Variable-length
coding is lossless, so we don’t have to worry about retraining or loss of accuracy.

Figure 4.8 shows the probability distribution of quantized weights and the sparse matrix index of
the last fully-connected layer in AlexNet. Both distributions are not uniformly distributed: most of
the quantized weights are distributed around the two peaks; the sparse matrix index has a single
peak near zero. Experiments show that Huffman coding these non-uniformly distributed values can
save 20%-50% of model storage. For example, before Huffman coding, the compression ratio for
ResNet-50 is 13×, after Huffman coding, the compression ratio is 17×.

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 48

Table 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Untitled 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Untitled 2 0 16 128 544 1916 6367 16588 36145 64096 90691 92109 59521 23793 5322 8421 32211

C
ou

nt

0

25000

50000

75000

100000

Weight Index (32 Effective Weights)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Table 2-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Untitled 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

index 212457 162998 124383 95492 73407 56353 43685 33649 26052 20252 15849 12412 9747 7478 5892 4647

C
ou

nt

0

55000

110000

165000

220000

Sparse Matrix Location Index (Max Diff is 32)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

�1

Table 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Untitled 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Untitled 2 0 16 128 544 1916 6367 16588 36145 64096 90691 92109 59521 23793 5322 8421 32211

C
ou

nt

0

25000

50000

75000

100000

Weight Index (32 Effective Weights)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Table 2-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Untitled 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

index 212457 162998 124383 95492 73407 56353 43685 33649 26052 20252 15849 12412 9747 7478 5892 4647

C
ou

nt

0

55000

110000

165000

220000

Sparse Matrix Location Index (Max Diff is 32)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

�1

Figure 4.8: The non-uniform distribution for weight (Top) and index (Bottom) gives opportunity for
variable-length coding.

4.5 Experiments

We pruned, quantized, and Huffman encoded five networks: LeNet-300-100, LeNet-5, AlexNet,
VGG-16, Inception-V3 and ResNet-50. The network parameters and accuracy before and after
pruning are shown in Table 4.1. The compression pipeline saves network storage by 17× to 49×
across different networks without loss of accuracy. The total size of ResNet-50 decreased from 100MB
to 5.8MB, which is small enough to be put into on-chip SRAM, eliminating the need to store the
model in energy-consuming DRAM memory.

Deep Compression is implemented with both the Caffe framework [112] and the Pytorch frame-
work [59]. Trained quantization and weight sharing are implemented by maintaining a codebook
structure that stores the shared weight, and group-by-index after calculating the gradient of each
layer. Each shared weight is updated with all the gradients that fall into that bucket. Huffman
coding does not require training and is implemented off-line after all the fine-tuning is finished.

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 49

Table 4.1: Deep Compression saves 17× to 49× parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error Model Size Compress
Rate

LeNet-300-100 1.64% - 1070 KB
LeNet-300-100 Compressed 1.58% - 27 KB 40×
LeNet-5 0.80% - 1720 KB
LeNet-5 Compressed 0.74% - 44 KB 39×
AlexNet 42.78% 19.73% 240 MB
AlexNet Compressed 42.78% 19.70% 6.9 MB 35×
VGG-16 31.50% 11.32% 552 MB
VGG-16 Compressed 31.17% 10.91% 11.3 MB 49×
Inception-V3 22.55% 6.44% 91 MB
Inception-V3 Compressed 22.34% 6.33% 4.2 MB 22×
ResNet-50 23.85% 7.13% 97 MB
ResNet-50 Compressed 23.85% 6.96% 5.8 MB 17×

Table 4.2: Compression statistics for LeNet-300-100. P: pruning, Q: quantization, H: Huffman coding.

Layer Weight
Weight
Density
(P)

Weight
Bits

(P+Q)

Weight
Bits

(P+Q+H)

Index
Bits

(P+Q)

Index
Bits

(P+Q+H)

Compress
Rate
(P+Q)

Compress
Rate

(P+Q+H)
ip1 235K 8% 6 4.4 5 3.7 3.1% 2.32%
ip2 30K 9% 6 4.4 5 4.3 3.8% 3.04%
ip3 1K 26% 6 4.3 5 3.2 15.7% 12.70%

Total 266K 8% 6 5.1 5 3.7 3.1%
(32×)

2.49%
(40×)

Table 4.3: Compression statistics for LeNet-5. P: pruning, Q: quantization, H: Huffman coding.

Layer Weight
Weight
Density
(P)

Weight
Bits

(P+Q)

Weight
Bits

(P+Q+H)

Index
Bits

(P+Q)

Index
Bits

(P+Q+H)

Compress
Rate
(P+Q)

Compress
Rate

(P+Q+H)
conv1 0.5K 66% 8 7.2 5 1.5 78.5% 67.45%
conv2 25K 12% 8 7.2 5 3.9 6.0% 5.28%
ip1 400K 8% 5 4.5 5 4.5 2.7% 2.45%
ip2 5K 19% 5 5.2 5 3.7 6.9% 6.13%

Total 431K 8% 5.3 4.1 5 4.4 3.1%
(32×)

2.55%
(39×)

LeNet. We first experimented on the MNIST dataset with LeNet-300-100 and LeNet-5 networks
[1]. LeNet-300-100 is a fully-connected network with two hidden layers, with 300 and 100 neurons
each, which achieves a 1.6% error rate on MNIST. LeNet-5 is a convolutional network that has two
convolutional layers and two fully-connected layers, which achieves 0.8% error rate on the MNIST
dataset.

Table 4.2 and Table 4.3 show the statistics of the compression pipeline on LeNet. The compression
rate includes the overhead of the codebook and sparse indexes. Weights can be pruned to 8% non-zero,

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 50

Table 4.4: Accuracy of AlexNet with different quantization bits.

#CONV bits / #FC bits Top-1 Error Top-5 Error Top-1 Error
Increase

Top-5 Error
Increase

32bits / 32bits 42.78% 19.73% - -
8 bits / 5 bits 42.78% 19.70% 0.00% -0.03%
8 bits / 4 bits 42.79% 19.73% 0.01% 0.00%
4 bits / 2 bits 44.77% 22.33% 1.99% 2.60%

Table 4.5: Compression statistics for AlexNet. P: pruning, Q: quantization, H: Huffman coding.

Layer Weight
Weight
Density
(P)

Weight
Bits

(P+Q)

Weight
Bits

(P+Q+H)

Index
Bits

(P+Q)

Index
Bits

(P+Q+H)

Compress
Rate
(P+Q)

Compress
Rate

(P+Q+H)
conv1 35K 84% 8 6.3 4 1.2 32.6% 20.53%
conv2 307K 38% 8 5.5 4 2.3 14.5% 9.43%
conv3 885K 35% 8 5.1 4 2.6 13.1% 8.44%
conv4 663K 37% 8 5.2 4 2.5 14.1% 9.11%
conv5 442K 37% 8 5.6 4 2.5 14.0% 9.43%
fc6 38M 9% 5 3.9 4 3.2 3.0% 2.39%
fc7 17M 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 4 4 3.2 7.3% 5.85%

Total 61M 11% 5.4 4 4 3.2 3.7%
(27×)

2.88%
(35×)

and quantized to 5-8 bits. Most of the saving comes from pruning and quantization (compressed
32×), while Huffman coding gives a marginal gain (compressed an additional 1.25×).

AlexNet. We then applied Deep Compression on the ImageNet ILSVRC-2012 dataset. We use
the AlexNet [2] Caffe model as the reference model, which has 61 million parameters and achieved
a top-1 accuracy of 57.2% and a top-5 accuracy of 80.3%. Table 4.5 shows that AlexNet can be
compressed to 2.88% of its original size without impacting accuracy. Pruning reduced the number of
parameters to 11%. After trained quantization, there are 256 shared weights in each convolutional
layer, which are encoded with 8 bits, and 32 shared weights in each fully-connected layer, which
are encoded with only 5 bits. The relative sparse index is encoded with 4 bits. Huffman coding
compressed additional 22%, resulting in 35× compression in total.

We experimented with the trade-off between compression ratio and prediction accuracy (Table 4.4).
For convolution and fully-connected layer, 8/5 bit quantization has no loss of accuracy; 8/4 bit
quantization, which is more hardware friendly to encode in byte aligned fashion, has a negligible loss
of accuracy of 0.01%; to achieve more aggressive compression, 4/2 bit quantization resulted in 1.99%
and 2.60% loss of Top-1 and Top-5 accuracy.

VGG-16. With promising results on AlexNet, we also looked at a larger, more recent network,
VGG-16 [3], on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional layers but still
only three fully-connected layers. Following a similar methodology, we aggressively compressed both
convolutional and fully-connected layers to realize a significant reduction in the number of effective

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 51

Table 4.6: Compression statistics for VGG-16. P: pruning, Q: quantization, H: Huffman coding.

Layer Weight
Weight
Density
(P)

Weight
Bits

(P+Q)

Weight
Bits

(P+Q+H)

Index
Bits

(P+Q)

Index
Bits

(P+Q+H)

Compress
Rate
(P+Q)

Compress
Rate

(P+Q+H)
conv1_1 2K 58% 8 6.8 5 1.7 40.0% 29.97%
conv1_2 37K 22% 8 6.5 5 2.6 9.8% 6.99%
conv2_1 74K 34% 8 5.6 5 2.4 14.3% 8.91%
conv2_2 148K 36% 8 5.9 5 2.3 14.7% 9.31%
conv3_1 295K 53% 8 4.8 5 1.8 21.7% 11.15%
conv3_2 590K 24% 8 4.6 5 2.9 9.7% 5.67%
conv3_3 590K 42% 8 4.6 5 2.2 17.0% 8.96%
conv4_1 1M 32% 8 4.6 5 2.6 13.1% 7.29%
conv4_2 2M 27% 8 4.2 5 2.9 10.9% 5.93%
conv4_3 2M 34% 8 4.4 5 2.5 14.0% 7.47%
conv5_1 2M 35% 8 4.7 5 2.5 14.3% 8.00%
conv5_2 2M 29% 8 4.6 5 2.7 11.7% 6.52%
conv5_3 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fc6 103M 4% 5 3.6 5 3.5 1.6% 1.10%
fc7 17M 4% 5 4 5 4.3 1.5% 1.25%
fc8 4M 23% 5 4 5 3.4 7.1% 5.24%

Total 138M 7.5% 6.4 4.1 5 3.1 3.2%
(31×)

2.05%
(49×)

weights, shown in Table4.6.
The VGG-16 network as a whole has been compressed by 49×. Pruning reduced the number of

parameters to 7.5%. After trained quantization, weights in the convolutional layers are represented
with 8 bits, and fully-connected layers use 5 bits, which does not affect accuracy. The two largest
fully-connected layers can each be pruned to less than 1.6% of their original size. This reduction is
critical for real time image processing, where the batch size is one and unlike batch processing, there
is fewer weight reuse. The reduced layers will fit in an on-chip SRAM and have modest bandwidth
requirements. Without the reduction, the memory bandwidth requirements are prohibitive.

We next applied Deep Compression on fully-convolutional neural networks, which is much more
parameter-efficient. We picked two representative fully-convolutional neural networks: Inception-V3
and ResNet-50.

Inception-V3. The compression result of Inception-V3 [119] is shown in Table 4.7. Inception-V3
has been compressed to 4.6% of its original size, from 91MB to 4.2MB, which can very easily fit in
SRAM cache. The 7x7, 7x1 and 1x7 kernels can be pruned to 10%-20% non-zero, the 3x3, 3x1 and
1x3 kernels can be pruned to 20%-30% non-zero, and the 1x1 kernels can be pruned to 20%-60%
non-zero. All the layers are quantized to only 4 bits, except for the first few layers that extract
low-level features and the first layer of each inception block. Huffman coding further decreased the
representation of weight from 4 bits to 3.8 bits, and that of the index from 4 bits to 3.1 bits, pushing
the compression ratio from 18× to 22×.

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 52

Table 4.7: Compression statistics for Inception-V3. P: pruning, Q: quantization, H: Huffman coding.

Layer Weight
Weight
Density
(P)

Weight
Bits

(P+Q)

Weight
Bits

(P+Q+H)

Index
Bits

(P+Q)

Index
Bits

(P+Q+H)

Compress
Rate
(P+Q)

Compress
Rate

(P+Q+H)
Conv2d_1a_3x3 864 40% 6 5.7 4 2.2 21.5% 19.3%
Conv2d_2a_3x3 9K 59% 6 5.4 4 1.6 19.5% 13.8%
Conv2d_2b_3x3 18K 50% 6 5.5 4 1.9 16.0% 11.9%
Conv2d_3b_1x1 5K 60% 6 5.4 4 1.7 20.2% 14.8%
Conv2d_4a_3x3 138K 50% 6 5.3 4 2.0 15.6% 11.4%
5b.branch1x1 12K 60% 6 5.4 4 1.7 19.3% 14.0%
5b.branch5x5_1 9K 29% 4 3.4 4 3.0 7.6% 6.1%
5b.branch5x5_2 77K 19% 4 3.1 4 3.2 5.3% 4.0%
5b.branch3x3dbl_1 12K 30% 4 3.4 4 2.9 7.6% 6.1%
5b.branch3x3dbl_2 55K 29% 4 3.4 4 2.9 7.5% 5.9%
5b.branch3x3dbl_3 83K 20% 4 3.4 4 3.3 5.3% 4.3%
5b.branch_pool 6K 40% 6 5.4 4 2.5 13.7% 11.1%
5c.branch1x1 16K 50% 6 5.4 4 2.0 16.0% 12.0%
5c.branch5x5_1 12K 10% 4 3.5 4 3.6 3.3% 2.7%
5c.branch5x5_2 77K 19% 4 3.4 4 3.3 5.2% 4.3%
5c.branch3x3dbl_1 16K 20% 4 3.6 4 3.4 5.4% 4.6%
5c.branch3x3dbl_2 55K 20% 4 3.5 4 3.4 5.3% 4.5%
5c.branch3x3dbl_3 83K 20% 4 3.6 4 3.4 5.2% 4.5%
5c.branch_pool 16K 29% 4 3.4 4 2.9 7.6% 6.0%
5d.branch1x1 18K 40% 6 5.4 4 2.5 12.9% 10.3%
5d.branch5x5_1 14K 20% 4 3.6 4 3.3 5.5% 4.7%
5d.branch5x5_2 77K 20% 4 3.6 4 3.3 5.3% 4.4%
5d.branch3x3dbl_1 18K 10% 4 3.4 4 3.5 3.3% 2.6%
5d.branch3x3dbl_2 55K 29% 4 3.4 4 2.9 7.5% 5.8%
5d.branch3x3dbl_3 83K 20% 4 3.6 4 3.3 5.3% 4.5%
5d.branch_pool 18K 29% 4 3.4 4 2.9 7.6% 6.0%
6a.branch3x3 995K 20% 4 3.6 4 3.2 5.3% 4.3%
6a.branch3x3dbl_1 18K 10% 4 3.6 4 3.6 3.3% 2.7%
6a.branch3x3dbl_2 55K 20% 4 3.6 4 3.4 5.2% 4.5%
6a.branch3x3dbl_3 83K 10% 4 3.7 4 3.2 3.4% 2.6%
6b.branch1x1 147K 49% 6 5.3 4 2.0 15.5% 11.3%
6b.branch7x7_1 98K 20% 4 3.5 4 3.5 5.2% 4.5%
6b.branch7x7_2 115K 10% 4 3.5 4 3.5 3.2% 2.5%
6b.branch7x7_3 172K 20% 4 3.6 4 3.4 5.2% 4.4%
6b.branch7x7dbl_1 98K 20% 4 3.4 4 3.5 5.1% 4.3%
6b.branch7x7dbl_2 115K 10% 4 3.5 4 3.5 3.2% 2.6%
6b.branch7x7dbl_3 115K 19% 4 3.5 4 3.2 5.3% 4.3%
6b.branch7x7dbl_4 115K 10% 4 3.6 4 3.4 3.2% 2.5%
6b.branch7x7dbl_5 172K 10% 4 3.5 4 3.5 3.2% 2.5%
6b.branch_pool 147K 40% 6 5.5 4 2.5 12.5% 9.9%
6c.branch1x1 147K 20% 4 3.5 4 3.4 5.2% 4.4%
6c.branch7x7_1 123K 10% 4 3.4 4 3.7 3.1% 2.6%

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 53

6c.branch7x7_2 179K 10% 4 3.5 4 3.5 3.2% 2.5%
6c.branch7x7_3 215K 10% 4 3.6 4 3.5 3.2% 2.6%
6c.branch7x7dbl_1 123K 10% 4 3.3 4 3.7 3.1% 2.5%
6c.branch7x7dbl_2 179K 10% 4 3.6 4 3.5 3.2% 2.5%
6c.branch7x7dbl_3 179K 10% 4 3.6 4 3.4 3.2% 2.5%
6c.branch7x7dbl_4 179K 10% 4 3.5 4 3.4 3.2% 2.5%
6c.branch7x7dbl_5 215K 10% 4 3.5 4 3.4 3.2% 2.5%
6c.branch_pool 147K 30% 4 3.6 4 3.0 7.4% 6.1%
6d.branch1x1 147K 29% 4 3.3 4 3.0 7.4% 5.8%
6d.branch7x7_1 123K 20% 4 3.5 4 3.5 5.2% 4.4%
6d.branch7x7_2 179K 10% 4 3.6 4 3.5 3.2% 2.5%
6d.branch7x7_3 215K 10% 4 3.6 4 3.6 3.2% 2.6%
6d.branch7x7dbl_1 123K 20% 4 3.4 4 3.5 5.2% 4.4%
6d.branch7x7dbl_2 179K 10% 4 3.5 4 3.6 3.2% 2.5%
6d.branch7x7dbl_3 179K 20% 4 3.5 4 3.4 5.2% 4.4%
6d.branch7x7dbl_4 179K 20% 4 3.4 4 3.4 5.2% 4.3%
6d.branch7x7dbl_5 215K 20% 4 3.5 4 3.4 5.2% 4.4%
6d.branch_pool 147K 29% 4 3.5 4 3.0 7.5% 6.0%
6e.branch1x1 147K 20% 4 3.4 4 3.5 5.2% 4.4%
6e.branch7x7_1 147K 20% 4 3.5 4 3.5 5.2% 4.5%
6e.branch7x7_2 258K 10% 4 3.5 4 3.4 3.2% 2.5%
6e.branch7x7_3 258K 20% 4 3.4 4 3.3 5.2% 4.3%
6e.branch7x7dbl_1 147K 20% 4 3.4 4 3.5 5.1% 4.4%
6e.branch7x7dbl_2 258K 20% 4 3.7 4 3.4 5.2% 4.5%
6e.branch7x7dbl_3 258K 20% 4 3.6 4 3.3 5.3% 4.4%
6e.branch7x7dbl_4 258K 20% 4 3.7 4 3.4 5.2% 4.5%
6e.branch7x7dbl_5 258K 30% 4 3.6 4 2.8 7.6% 6.0%
6e.branch_pool 147K 30% 4 3.5 4 3.0 7.5% 6.0%
7a.branch3x3_1 147K 20% 4 3.6 4 3.5 5.2% 4.5%
7a.branch3x3_2 553K 19% 4 3.7 4 3.3 5.3% 4.4%
7a.branch7x7x3_1 147K 20% 4 3.5 4 3.5 5.1% 4.4%
7a.branch7x7x3_2 258K 10% 4 3.6 4 3.5 3.2% 2.5%
7a.branch7x7x3_3 258K 10% 4 3.6 4 3.4 3.2% 2.5%
7a.branch7x7x3_4 332K 10% 4 3.4 4 3.4 3.2% 2.5%
7b.branch1x1 410K 20% 4 3.5 4 3.5 5.1% 4.4%
7b.branch3x3_1 492K 29% 4 3.6 4 3.0 7.4% 6.1%
7b.branch3x3_2a 442K 20% 4 3.7 4 3.2 5.3% 4.4%
7b.branch3x3_2b 442K 20% 4 3.7 4 3.4 5.2% 4.5%
7b.branch3x3dbl_1 573K 29% 4 3.6 4 3.0 7.4% 6.1%
7b.branch3x3dbl_2 1548K 29% 4 3.7 4 2.7 7.5% 5.9%
7b.branch3x3dbl_3a 442K 30% 4 3.4 4 2.6 7.5% 5.6%
7b.branch3x3dbl_3b 442K 30% 4 3.6 4 2.9 7.4% 6.0%
7b.branch_pool 246K 20% 4 3.5 4 3.5 5.2% 4.4%
7c.branch1x1 655K 10% 4 3.6 4 3.7 3.0% 2.5%
7c.branch3x3_1 786K 30% 4 3.6 4 3.0 7.4% 6.1%
7c.branch3x3_2a 442K 10% 4 3.7 4 2.8 3.4% 2.4%

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 54

7c.branch3x3_2b 442K 10% 4 3.7 4 2.9 3.4% 2.4%
7c.branch3x3dbl_1 918K 29% 4 3.5 4 3.0 7.4% 5.9%
7c.branch3x3dbl_2 1548K 20% 4 3.4 4 2.8 5.5% 4.1%
7c.branch3x3dbl_3a 442K 20% 4 3.7 4 2.9 5.4% 4.2%
7c.branch3x3dbl_3b 442K 20% 4 3.7 4 3.0 5.3% 4.4%
7c.branch_pool 393K 10% 4 3.7 4 3.7 3.1% 2.6%
fc 2048K 20% 4 3.8 4 3.4 5.2% 4.6%

Total 24M 20% 4.1 3.7 4 3.1 5.7%
(18×)

4.6%
(22×)

ResNet-50. ResNet-50 [5] is a modern architecture that has residual blocks and only one thin
fully-connected layer. The ResNet-50 network as a whole has been compressed to 5.95% of its original
size, from 100MB to 5.8MB. The layer-wise breakdown is shown in Table 4.8. Weights in both the
convolutional layers and the fully-connected layers can be pruned to 30% non-zero, and quantized to
only 4 bits, except for the first few layers that extract low-level features. We have also experimented
quantizing all the layers of the pruned ResNet-50 to 4-bits. We achieved [Top1, Top5] accuracy of
[75.91%, 92.84%]. This is only [0.24%, 0.03%] different from the baseline accuracy, which is [76.15%,
92.87%]. In practice all layers Huffman coding further decreased the representation of weight from 4
bits to 3.5 bits, and that of the index from 4 bits to 2.8 bits, pushing the compression ratio from
13× to 17×.

Table 4.8: Compression statistics for ResNet-50. P: pruning, Q: quantization, H: Huffman coding.

Layer Weight
Weight
Density
(P)

Weight
Bits

(P+Q)

Weight
Bits

(P+Q+H)

Index
Bits

(P+Q)

Index
Bits

(P+Q+H)

Compress
Rate
(P+Q)

Compress
Rate

(P+Q+H)
conv1 9K 50% 6 5.5 4 1.7 15.7% 11.24%
layer1.0.conv1 4K 40% 6 5.4 4 2.3 12.6% 9.65%
layer1.0.conv2 37K 30% 4 3.2 4 2.6 7.5% 5.47%
layer1.0.conv3 16K 30% 4 3.3 4 2.6 7.6% 5.63%
layer1.0.shortcut 16K 40% 6 5.2 4 2.3 12.6% 9.36%
layer1.1.conv1 16K 30% 4 3.5 4 2.9 7.5% 5.94%
layer1.1.conv2 37K 30% 4 3.3 4 2.8 7.5% 5.73%
layer1.1.conv3 16K 30% 4 3.4 4 2.5 7.7% 5.67%
layer1.2.conv1 16K 30% 4 3.6 4 2.9 7.5% 6.04%
layer1.2.conv2 37K 30% 4 3.5 4 2.9 7.5% 5.94%
layer1.2.conv3 16K 30% 4 3.5 4 2.3 7.7% 5.54%
layer2.0.conv1 33K 40% 6 5.4 4 2.4 12.5% 9.82%
layer2.0.conv2 147K 33% 6 5.4 4 2.6 10.5% 8.43%
layer2.0.conv3 66K 30% 4 3.3 4 2.5 7.6% 5.59%
layer2.0.shortcut 131K 30% 4 3.1 4 2.8 7.5% 5.53%
layer2.1.conv1 66K 30% 4 3.3 4 2.9 7.4% 5.80%
layer2.1.conv2 147K 30% 4 3.3 4 2.7 7.5% 5.60%
layer2.1.conv3 66K 30% 4 3.4 4 2.5 7.5% 5.52%
layer2.2.conv1 66K 30% 4 3.4 4 2.9 7.4% 5.93%

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 55

layer2.2.conv2 147K 30% 4 3.4 4 2.8 7.5% 5.86%
layer2.2.conv3 66K 30% 4 3.4 4 2.9 7.5% 5.87%
layer2.3.conv1 66K 30% 4 3.5 4 2.9 7.4% 5.98%
layer2.3.conv2 147K 30% 4 3.5 4 2.9 7.5% 5.99%
layer2.3.conv3 66K 30% 4 3.5 4 2.7 7.6% 5.83%
layer3.0.conv1 131K 40% 6 5.3 4 2.4 12.5% 9.70%
layer3.0.conv2 590K 30% 4 3.4 4 2.7 7.5% 5.73%
layer3.0.conv3 262K 30% 4 3.4 4 2.8 7.5% 5.88%
layer3.0.shortcut 524K 30% 4 3.3 4 2.9 7.5% 5.72%
layer3.1.conv1 262K 30% 4 3.3 4 3.0 7.4% 5.82%
layer3.1.conv2 590K 30% 4 3.4 4 2.8 7.5% 5.81%
layer3.1.conv3 262K 30% 4 3.3 4 2.9 7.5% 5.81%
layer3.2.conv1 262K 30% 4 3.4 4 3.0 7.4% 5.89%
layer3.2.conv2 590K 30% 4 3.4 4 2.9 7.5% 5.90%
layer3.2.conv3 262K 30% 4 3.4 4 2.9 7.5% 5.86%
layer3.3.conv1 262K 30% 4 3.4 4 3.0 7.4% 5.88%
layer3.3.conv2 590K 30% 4 3.5 4 2.9 7.5% 5.92%
layer3.3.conv3 262K 30% 4 3.4 4 2.9 7.5% 5.83%
layer3.4.conv1 262K 30% 4 3.4 4 2.9 7.4% 5.86%
layer3.4.conv2 590K 30% 4 3.5 4 2.9 7.5% 5.97%
layer3.4.conv3 262K 30% 4 3.4 4 2.9 7.5% 5.84%
layer3.5.conv1 262K 30% 4 3.3 4 2.9 7.4% 5.84%
layer3.5.conv2 590K 30% 4 3.5 4 2.8 7.5% 5.89%
layer3.5.conv3 262K 30% 4 3.4 4 2.9 7.5% 5.87%
layer4.0.conv1 524K 30% 4 3.5 4 2.9 7.5% 6.00%
layer4.0.conv2 2M 30% 4 3.4 4 2.6 7.6% 5.65%
layer4.0.conv3 1M 30% 4 3.5 4 2.9 7.5% 6.00%
layer4.0.shortcut 2M 30% 4 3.3 4 2.9 7.4% 5.83%
layer4.1.conv1 1M 30% 4 3.4 4 2.9 7.5% 5.95%
layer4.1.conv2 2M 30% 4 3.5 4 2.7 7.6% 5.80%
layer4.1.conv3 1M 30% 4 3.5 4 2.9 7.5% 6.01%
layer4.2.conv1 1M 30% 4 3.5 4 2.9 7.5% 5.99%
layer4.2.conv2 2M 30% 4 3.6 4 2.2 7.7% 5.60%
layer4.2.conv3 1M 30% 4 3.5 4 2.9 7.5% 6.00%
fc 2M 20% 4 3.3 4 3.5 5.1% 4.31%

Total 25.5M 29% 4.0 3.5 4 2.8 7.6%
(13×)

5.95%
(17×)

4.6 Discussion

Figure 4.9 compares the accuracy at different compression rates for pruning and quantization working
together or individually. When working individually (purple and yellow lines), the accuracy of a
pruned network begins to drop significantly when compressed below 8% of its original size; the
accuracy of the quantized network also begins to drop significantly when compressed below 8% of its

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 56

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

2% 5% 8% 11% 14% 17% 20%

A
cc

ur
ac

y
Lo

ss

Model Size Ratio after Compression

Pruning + Quantization Pruning Only Quantization Only SVD

Figure 4.9: Accuracy vs. compression rates under different compression methods. Pruning and
quantization works best when combined.

original size. This means pruning and quantization can independently reduce the model size, but the
compression ratio is not significant. However, when combining pruning and quantization, (red line),
the network can be compressed to 3% of its original size with no loss of accuracy, a very significant
compression ratio when combining these techniques. Quantization works well on top of a pruned
network because the unpruned model has 100% weights to be quantized, while the pruned model
has only 10% to 30% of the weights that need to be quantized (others are all zero). Given the same
number of centroids, the latter has less quantization error. On the far right side of Figure 4.9, we
compared the compression result of SVD, which is inexpensive but has a poor compression rate.

Retraining is important for trained quantization. The solid lines and dashed lines in Figure 4.10
compares the top-1 accuracy of quantized ResNet-50 with and without retraining. For both uniform
and non-uniform case, retraining can greatly improve the accuracy after quantization. For example,
at 4-bits, trained quantization gives 68.30% top-1 accuracy without retraining. After retraining, this
number increased to 76.17%, which caught up with the full-precision baseline accuracy. Even with
2-bits, retraining can give 69.36% top-1 accuracy for ResNet-50. This number is almost zero if not
retrained.

Figure 4.10 and Table 4.9 compares the performance of uniform quantization and non-uniform
quantization. Uniform quantization refers to the case when the distance between adjacent code is a
constant. Trained quantization is a form of non-uniform quantization because the distance between
each code is different. Uniform quantization can be handled by fixed-point arithmetic [120]. However,
uniform quantization performs worse than non-uniform quantization in accuracy (Figure 4.10). For

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 57

Table 4.9: Comparison of uniform quantization and non-uniform quantization (this work) with
different update methods. -c: updating centroid only; -c+l: update both centroid and label. Baseline
ResNet-50 accuracy: 76.15%, 92.87%. All results are after retraining.

Quantization Method 1bit 2bit 4bit 6bit 8bit
Uniform (Top-1) - 59.33% 74.52% 75.49% 76.15%
Uniform (Top-5) - 82.39% 91.97% 92.60% 92.91%
Non-uniform -c (Top-1) 24.08% 68.41% 76.16% 76.13% 76.20%
Non-uniform -c (Top-5) 48.57% 88.49% 92.85% 92.91% 92.88%
Non-uniform -c+l (Top-1) 24.71% 69.36% 76.17% 76.21% 76.19%
Non-uniform -c+l (Top-5) 49.84% 89.03% 92.87% 92.89% 92.90%

73%

74%

75%

76%

77%

2bits 4bits 6bits 8bits

To
p-

1
A

cc
ur

ac
y

Number of bits per weight for ResNet-50
after fine-tuning

Non-uniform quantization Uniform quantization

full-precision top-1

accuracy: 76.15%

Figure 4.10: Non-uniform quantization performs better than uniform quantization.

non-uniform quantization (this work), all the layers of the baseline ResNet-50 can be compressed
to 4-bits without losing accuracy. For uniform quantization, however, all the layers of the baseline
ResNet-50 can be compressed to 8 bits without losing accuracy (at 4 bits, there are about 1.6% top-1
accuracy loss when using uniform quantization). The advantage of non-uniform quantization is that
it can better capture the non-uniform distribution of the weights. When the probability distribution
is higher, the distance between each centroid would be closer. However, uniform quantization can
not achieve this.

Table 4.9 compares the performance two non-uniform quantization strategies. During fine-tuning,
one strategy is to only update the centroid; the other strategy is to update both the centroid and the
label (the label means which centroid does the weight belong to). Intuitively, the latter case has more
degree of freedom in the learning process and should give better performance. However, experiments
show that the improvement is not significant, as shown in the third row and the fourth row in Table

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 58

20%

35%

50%

65%

80%

1bits 2bits 4bits 6bits 8bits

To
p-

1
A

cc
ur

ac
y

Number of bits per weight for ResNet-50 under
non-uniform quantization

Before fine-tuning After fine-tuning
full-precision top-1

accuracy: 76.15%

Figure 4.11: Fine-tuning is important for trained quantization. It can fully recover the accuracy
when quantizing ResNet-50 to 4 bits.

4.9. So we looked into how many weights changed their label during the retraining process and found
that most of the weights stayed within the group they belong to during the first Kmeans clustering
process. The gradient was not large enough to nudge them to neighboring centroids. This is especially
the case for fewer bits since the distance between adjacent centroid is larger than that when we have
more bits. We tried increasing the learning rate by an order of magnitude, then weights began to
change labels. By increasing the learning rate by two orders of magnitude, even more weights began
to change labels. However, a quantized model that already have > 50% top-1 accuracy can not
tolerate such large learning rate, and the optimization process fails to convergence. We later solved
this problem in Trained Ternary Quantization [86] by introducing separate scaling factors for different
centroid, which enables different learning for different centroids. During each SGD operation, we
collect two gradients: the gradient of the latent weight adjusts the labels, and the gradient of the
scaling factor adjusts the centroid. By separately learning the label and the centroid we can quantize
ResNet-18 to ternary (positive, negative and zero) while losing 3% of Top-1 accuracy.

Figure 4.12 compares the accuracy of the three different initialization methods with respect to the
top-1 accuracy (Left) and top-5 accuracy (Right). The network is quantized to 2 ∼ 8 bits as shown
on the x-axis. Linear initialization outperforms the density initialization and random initialization in
all cases except at 3 bits.

The centroids of linear initialization spread equally across the x-axis, from the min value to the
max value. This initialization helps to maintain the large weights. The large weights play a more
important role than smaller ones, which is also shown in network pruning by Han et al. [25]. Neither
random nor density-based initialization retains large centroids. With these initialization methods,

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 59

50%

52%

54%

56%

58%

2bits 3bits 4bits 5bits 6bits 7bits 8bits

To
p-

1
A

cc
ur

ac
y

Number of bits per effective weight of AlexNet

uniform init density init random init

71%

74%

76%

79%

81%

2bits 3bits 4bits 5bits 6bits 7bits 8bits

To
p-

5
A

cc
ur

ac
y

Number of bits per effective weight of AlexNet

uniform init density init random init

Figure 4.12: Accuracy of different initialization methods. Left: top-1 accuracy. Right: top-5 accuracy.
Linear initialization gives the best result.

large weights are clustered to the small centroids because there are fewer large weights than small
weights. In contrast, linear initialization gives large weights a better chance to form a large centroid,
and lead to a better prediction accuracy.

Comparison with Previous Work. Previous work attempted to remove the redundancy and
to compress deep neural network models. Table 4.10 compares the compression rate and the error
rate. Deep Compression achieved an order of magnitude better compression ratio compared with
previous work at no loss of accuracy.

Data-free pruning [121] saved 1.5× parameters with much loss of accuracy. Deep Fried Con-
vnets [122] worked on the fully-connected layers and reduced the parameters by 2− 3.7×. Collins
et al. [123] reduced the parameters of AlexNet by 4×. Naively cutting the layer size and training s
smaller model saves parameters but suffers from 4% loss of accuracy. SVD saves parameters but
suffers from large accuracy loss, as much as 2% Top-1 accuracy loss on Imagenet. On other networks
similar to AlexNet, Denton et al. [65] exploited the linear structure of convolutional neural networks
and compressed the network by 2.4× to 13.4× layer wise, with 0.9% accuracy loss on compressing a
single layer. Gong et al. [71] experimented with vector quantization and compressed the network by
16× to 24×, incurring 1% accuracy loss.

After Deep Compression was published in ICLR’2016, DNN model compression has been the
topic of multiple academic papers and Deep Compression has been applied to industry. These related
works are described in Chapter 2.

Future Work. While the pruned network has been benchmarked on commodity hardware
platforms, the quantized network with weight sharing has not, because off-the-shelf cuSPARSE or
MKL SPBLAS libraries do not support indirect matrix entry lookup, nor is the relative index in CSC
or CSR format supported without being byte aligned. So the full advantage of Deep Compression,
which makes a deep neural network fit in the cache, is not fully unveiled. A software solution

CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 60

Table 4.10: Comparison with other compression methods on AlexNet.

Method Top-1 Error Top-5 Error Model Size Compress
Rate

Baseline Caffemodel [124] 42.78% 19.73% 240MB 1×
Data-free pruning [121] 44.40% - 158MB 1.5×
Fastfood-32-AD [122] 41.93% - 131MB 2×
Fastfood-16-AD [122] 42.90% - 64MB 3.7×
Collins & Kohli [123] 44.40% - 61MB 4×
Naive Cut 47.18% 23.23% 55MB 4.4×
SVD [65] 44.02% 20.56% 48MB 5×
Deep Compression [26] 42.78% 19.70% 6.9MB 35×

is to write customized GPU kernels that support this. A hardware solution is to build custom
ASIC architecture specialized to traverse the sparse and quantized network structure, which will be
discussed in Chapter 6.

4.7 Conclusion

This chapter has presented “Deep Compression” which compresses deep neural network models by an
order of magnitude without affecting the prediction accuracy. This method operates by pruning the
unimportant connections, quantizing the network using weight sharing, and then applying variable-
length coding. Deep Compression leads to a smaller storage requirement of deep neural networks and
makes it easier to implement deep neural networks on mobile applications. With Deep Compression,
the size of these networks fit into on-chip SRAM cache (5pJ/access) rather than requiring off-chip
DRAM memory (640pJ/access). This potentially makes deep neural networks more energy efficient
for running on mobile platforms.

Chapter 5

DSD: Dense-Sparse-Dense Training

5.1 Introduction

Modern high-performance hardware makes it easier to train complex DNN models with large model
capacities. The upside of complex models is that they are very expressive and can capture highly
non-linear relationships between features and outputs. The downside of such large models is that
they are prone to capture the noise, rather than the intended pattern, in the training dataset. This
noise does not generalize to test datasets, leading to overfitting and high variance.

However, simply reducing the model capacity would lead to the other extreme: a machine
learning system that misses the relevant relationships between features and target outputs, leading
to underfitting and a high bias. Thus, bias and variance are hard to optimize at the same time. To
solve this problem, we propose a dense-sparse-dense training flow, DSD, for regularizing deep neural
networks, preventing overfitting and achieving better accuracy.

Unlike conventional training, where all the parameters are trained at the same time, DSD training
regularizes the network by periodically pruning and restoring the connections. The number of effective
connections at training time is dynamically changing. Pruning the connections allows performing the
optimization in a low-dimensional space and capture the robust features; restoring the connections
allows increasing the model capacity. Unlike conventional training where all the weights are initialized
only once at the beginning of training, DSD allows the connections to have more than one opportunity
of being initialized through iterative pruning and restoring.

An advantage of DSD training is that the final neural network model still has the same architecture
and dimensions as the original dense model, so DSD training does not incur any inference overhead.
No specialized hardware or specialized deep learning framework is required to perform inference
on DSD models. Experiments show that DSD training improves the performance of a wide range
of CNNs, RNNs, and LSTMs on the tasks of image classification, caption generation, and speech
recognition. On ImageNet, DSD improved the Top1 accuracy of GoogleNet by 1.1%, VGG-16 by 4.3%,

61

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 62

Dense

Pruning
Connections

Sparsity
Constraint

Sparse

Increase Model
 Capacity

Dense

Restoring
Connections

Iterate

Figure 5.1: Dense-Sparse-Dense training consists of iteratively pruning and restoring the weights.

ResNet-18 by 1.2% and ResNet-50 by 1.1%, respectively. On the WSJ’93 dataset, DSD improved the
DeepSpeech and the DeepSpeech2’s word error rate(WER) by 2.0% and 1.1%, respectively. On the
Flickr-8K dataset, DSD improved the NeuralTalk BLEU score by over 1.7.

DSD is easy to implement in practice: at training time, DSD incurs only one extra hyper-
parameter: the sparsity ratio in the sparse training step. At testing time, DSD does not change the
network architecture or incur any inference overhead. The consistent and significant performance gain
of DSD experiments highlights the inadequacy of the current training methods for finding the global
optimum. DSD training, in contrast to conventional training, effectively achieves higher accuracy.
DSD models are available to download at https://songhan.github.io/DSD.

5.2 DSD Training

The DSD training employs a three-step process: dense, sparse, re-dense. Each step is illustrated in
Figure 5.1 and Algorithm 2. The progression of weight distribution is plotted in Figure 5.2.

Initial Dense Training The initial dense training step learns the connection weights and their
importance. In our approach, we use a simple heuristic to quantify the importance of the weights
using their absolute value. Weights with large absolute value are considered important.

Optimizing a deep neural networks is a highly non-convex problem, and today it is generally solved
using stochastic gradient descent (SGD), a convex optimization method. As a result, redundancy
is needed to help with convergence. During optimization, redundant parameters provide multiple
paths that allow easier convergence to a good local minima. If we don’t have the dense training step
or prune too early, the network fails to converge. The details of this experiment are discussed in
Section 5.5.

Sparse Training Once the initial dense training finds a good local minima, it is safe to remove

https://songhan.github.io/DSD

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 63

Algorithm 2: DSD training
Initialization: W (0) with W (0) ∼ N(0,Σ)
Output :W (t).
————————————————— Initial Dense Phase ————————————————
while not converged do

W (t) = W (t−1) − η(t)∇f(W (t−1);x(t−1));
t = t+ 1;

end
————————————————— Sparse Phase ——————————————————
// initialize the mask by sorting and keeping the Top-k weights.
S = sort(|W (t−1)|);
λ = Ski ;
Mask = 1(|W (t−1)| > λ);
while not converged do

W (t) = W (t−1) − η(t)∇f(W (t−1);x(t−1));
W (t) = W (t) ·Mask;
t = t+ 1;

end
————————————————— Final Dense Phase ————————————————
while not converged do

W (t) = W (t−1) − 0.1η(t)∇f(W (t−1);x(t−1));
t = t+ 1;

end
goto Sparse Phase for iterative DSD;

the redundant connections and perform the optimization in a low-dimensional space. The sparse
training step prunes the low-weight connections and trains a sparse network. We applied the same
sparsity to all the layers. Thus there is a single hyper parameter: the sparsity, which is the percentage
of weights that are pruned to 0. For each layer W with N parameters, we sort the parameters, pick
the k-th largest one λ = Sk as the threshold where k = N ∗ (1− sparsity), and generate a binary
mask to remove all the weights smaller than λ. This process is shown in Algorithm 2.

DSD removes small weights because of the Taylor expansion. The loss function and its Taylor
expansion are shown in Equation (5.1)(5.2). Because we want to minimize the increase in Loss when
conducting a hard thresholding on the weights, we need to minimize the first and second terms in
Equation 5.2. Since we are zeroing out parameters, ∆Wi is actually Wi − 0 = Wi. At the local
minimum where ∂Loss/∂Wi ≈ 0 and ∂2Loss

∂W 2
i

> 0, only the second order term matters. Since the
second order gradient, ∂2Loss/∂W 2

i is expensive to calculate and Wi has a power of two, we use
|Wi| as the metric of pruning. Smaller |Wi| means a smaller increase in the loss function.

Loss = f(x,W1,W2,W3...) (5.1)

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 64

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Dense (D)

(a)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Pruning the Network

(b)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Sparse (S)

(c)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Recover Zero Weights

(d)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Dense (D)

(e)

Figure 5.2: Weight distribution for the original GoogleNet (a), pruned (b), after retraining with the
sparsity constraint (c), recovering the zero weights (d), and after retraining the dense network (e).

∆Loss =
∂Loss

∂Wi
∆Wi +

1

2

∂2Loss

∂W 2
i

∆Wi
2 + ... (5.2)

Retraining while enforcing the binary mask in each SGD iteration, DSD converts a dense network
into a sparse network that has a known sparsity support. As the prior chapters have shown, the
sparse network can fully recover or even increase the accuracy of the initial dense model.

Both model compression [25,26] and DSD training use network pruning. The difference is that
the focus of DSD training is improving the accuracy, not reducing the model size. As a result DSD
training doesn’t require aggressive pruning. We have found a modestly pruned network (30%-50%
sparse) works well. However, model compression requires aggressively pruning the network to achieve
high compression rates.

Restoring the Pruned Connections The final D step restores and re-initializes the pruned
connections, making the network dense again. In this step, the previously-pruned connections are
initialized from zero, and the entire network is retrained with 1/10 the original learning rate (since
the sparse network is already at a good local minima, a smaller learning rate is required). Hyper
parameters such as dropout and weight decay remain unchanged. By restoring the pruned connections,
the final dense training increases the model capacity of the network and makes it possible to arrive
at a better local minima compared with the sparse model. This restoring process also gives those
pruned connections a second opportunity to initialize.

To visualize the DSD training flow, Figure 5.2 plot the progression of the weight distribution. The
figure shows data from GoogleNet’s inception_5b3x3 layer, and we find this progression of weight
distribution very representative for VGGNet and ResNet as well. The original weight distribution is
centered on zero with tails dropping off quickly. Pruning is based on the absolute values, so, after
pruning, the large central region is truncated. The un-pruned network parameters adjust themselves
during retraining, so in (c), the boundary becomes soft and forms a bimodal distribution. In (d), at
the beginning of the re-dense training step, all the pruned weights are restored and reinitialized from
zero. Finally, in (e), the restored weights are retrained together with those un-pruned weights. In

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 65

Table 5.1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network Domain Dataset Type Baseline DSD Abs. Imp. Rel. Imp.
GoogleNet Vision ImageNet CNN 31.1%1 30.0% 1.1% 3.6%
VGG-16 Vision ImageNet CNN 31.5%1 27.2% 4.3% 13.7%
ResNet-18 Vision ImageNet CNN 30.4%1 29.2% 1.2% 4.1%
ResNet-50 Vision ImageNet CNN 24.0%1 22.9% 1.1% 4.6%
NeuralTalk Caption Flickr-8K LSTM 16.82 18.5 1.7 10.1%
DeepSpeech Speech WSJ’93 RNN 33.6%3 31.6% 2.0% 5.8%
DeepSpeech-2 Speech WSJ’93 RNN 14.5% 3 13.4% 1.1% 7.4%

1 Top-1 error. VGG/GoogleNet baselines from the Caffe Model Zoo, ResNet from Facebook.
2 BLEU score baseline from Neural Talk model zoo.
3 Word error rate: DeepSpeech2 is trained with a portion of Baidu internal dataset with only
max decoding to show the effect of DNN improvement.

this step, we keep the same learning rate for restored weights and un-pruned weights. As (d) and
(e) show, the un-pruned weights’ distribution remains the same, while the restored weights became
distributed further around zero. The overall mean absolute value of the weight distribution is much
smaller.

5.3 Experiments

We applied DSD training to different kinds of neural networks in different domains. We found that
DSD training improved the accuracy for all these networks compared to the baseline networks that
were not trained with DSD. The neural networks were chosen from CNNs, RNNs, and LSTMs;
the datasets covered image classification, speech recognition, and caption generation. For networks
trained for ImageNet, we focused on GoogleNet, VGG, and ResNet, which are widely used in research
and production.

An overview of the networks, datasets and accuracy results is shown in Table 5.1. For the
convolutional networks, the first layer is not pruned during the sparse phase, since it has only three
channels and extracts low-level features. The sparsity is the same for all the other layers, including
convolutional and fully connected layers. The initial learning rate at each stage is decayed the same
as conventional training. The number of epochs is determined by loss converges. When the loss no
longer decreases, we stop the training.

5.3.1 DSD for CNN

GoogleNet. We experimented with the BVLC GoogleNet [4] model obtained from the Caffe Model
Zoo [124]. It has 13 million parameters and 57 convolutional layers. We pruned each layer (except
the first) to 30% sparsity (70% non-zeros). Retraining the sparse network gave some improvement in
accuracy due to regularization (Table 5.2). After the final dense training step, GoogleNet’s error

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 66

Table 5.2: DSD results on GoogleNet

GoogleNet Top-1 Err Top-5 Err Sparsity Epochs LR
Baseline 31.14% 10.96% 0% 250 1e-2
Sparse 30.58% 10.58% 30% 11 1e-3
DSD 30.02% 10.34% 0% 22 1e-4
LLR 30.20% 10.41% 0% 33 1e-5

Improve (abs) 1.12% 0.62% - - -
Improve (rel) 3.6% 5.7% - - -

Table 5.3: DSD results on VGG-16

VGG-16 Top-1 Err Top-5 Err Sparsity Epochs LR
Baseline 31.50% 11.32% 0% 74 1e-2
Sparse 28.19% 9.23% 30% 1.25 1e-4
DSD 27.19% 8.67% 0% 18 1e-5
LLR 29.33% 10.00% 0% 20 1e-7

Improve (abs) 4.31% 2.65% - - -
Improve (rel) 13.7% 23.4% - - -

rates were reduced by 1.12% (Top-1) and 0.62% (Top-5) over the baseline.
We compared DSD training with conventional training under the same number of training epochs.

On top of a pre-trained model, we lowered the learning rate upon convergence and continued to learn.
The result is shown in row LLR (lower the learning rate). The training epochs for LLR is equal to
that of DSD as a fair comparison. LLR cannot achieve the same accuracy as DSD training.

Table 5.4: DSD results on ResNet-18 and ResNet-50

ResNet-18 ResNet-50
Top-1 Err Top-5 Err Top-1 Err Top-5 Err Sparsity Epochs LR

Baseline 30.43% 10.76% 24.01% 7.02% 0% 90 1e-1
Sparse 30.15% 10.56% 23.55% 6.88% 30% 45 1e-2
DSD 29.17% 10.13% 22.89% 6.47% 0% 45 1e-3
LLR 30.04% 10.49% 23.58% 6.84% 0% 90 1e-5

Improve (abs) 1.26% 0.63% 1.12% 0.55% - - -
Improve (rel) 4.14% 5.86% 4.66% 7.83% - - -

VGG-16. We explored DSD training on VGG-16 [3], which is widely used in classification,
detection, and segmentation tasks. The baseline model is obtained from the Caffe Model Zoo [124].
Similar to GoogleNet, each layer of VGG-16 is pruned to 30% sparsity (70% non-zeros). DSD training
greatly reduced the error by 4.31% (Top-1) and 2.65% (Top-5), detailed in Table 5.3. DSD also
shows a large margin of improved accuracy over the LLR result.

ResNet. We applied DSD training to ResNet-18 and ResNet-50 [5]. The baseline ResNet-18
and ResNet-50 models are provided by Facebook [125]. We used 30% sparsity during DSD training.
A single DSD training pass for these networks reduced the top-1 error by 1.26% (ResNet-18) and

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 67

Baseline: a man and
a woman are sitting
on a bench.

Sparse: a man is
sitting on a bench
with his hands in the
air.
DSD: a man is sitting
on a bench with his
arms folded.

Baseline: two
dogs are playing
together in a field.

Sparse: two dogs
are playing in a
field.

DSD: two dogs are
p l a y i n g i n t h e
grass.

Baseline: a boy
in a red shirt is
climbing a rock
wall.
Sparse: a young
girl is jumping off
a tree.

DSD: a young girl
in a pink shirt is
s w i n g i n g o n a
swing.

Baseline: a
basketball player in
a red uniform is
playing with a ball.
Sparse: a basketball
player in a blue
uniform is jumping
over the goal.
DSD: a basketball
player in a white
uniform is trying to
make a shot.

Baseline: a person in
a red jacket is riding a
b i k e t h r o u g h t h e
woods.
Sparse: a car drives
through a mud puddle.

DSD: a car drives
through a forest.

�1

Figure 5.3: Visualization of DSD training improving the performance of image captioning.

Table 5.5: DSD results on NeuralTalk

NeuralTalk BLEU-1 BLEU-2 BLEU-3 BLEU-4 Sparsity Epochs LR
Baseline 57.2 38.6 25.4 16.8 0 19 1e-2
Sparse 58.4 39.7 26.3 17.5 80% 10 1e-3
DSD 59.2 40.7 27.4 18.5 0 6 1e-4

Improve(abs) 2.0 2.1 2.0 1.7 - - -
Improve(rel) 3.5% 5.4% 7.9% 10.1% - - -

1.12% (ResNet-50), shown in Table 5.4. As a fair comparison, we continue training the original model
by lowering the learning rate by another decade but cannot reach the same accuracy as DSD, as
shown in the LLR row. Under the same training time, just lowering the learning rate of conventional
training can not achieve the same accuracy as DSD training.

5.3.2 DSD for RNN

NeuralTalk. We evaluated DSD training on RNN and LSTM beyond CNN. We applied DSD to
NeuralTalk [7], an LSTM for generating image descriptions. It uses a CNN as an image feature
extractor and an LSTM to generate captions. To verify DSD training works on LSTMs, we fix the
CNN weights and only train the LSTM weights. The baseline NeuralTalk model is downloaded from
the NeuralTalk Model Zoo.

In the pruning step, we pruned all layers except Ws, the word embedding lookup table, to 80%
sparse. We retrained the remaining sparse network using the same weight decay and batch size as the
original paper. The learning rate is tuned based on the validation set, shown in Table 5.5. Retraining
the sparse network improved the BLUE score by [1.2, 1.1, 0.9, 0.7]. After eliminating the sparsity

http://cs.stanford.edu/people/karpathy/neuraltalk/

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 68

constraint and restoring the pruned weights, the final results of DSD further improved the BLEU
score by [2.0, 2.1, 2.0, 1.7] over baseline.

The BLEU score is not the sole quality metric of an image captioning system. We visualized the
captions generated by DSD training in Figure 5.3. In the first image, the baseline model mistakes
the girl for a boy and the girl’s hair with a rock wall; the sparse model can tell that the image is
a girl, and the DSD model can further identify the swing. In the second image, DSD training can
accurately determine that the player in a white uniform is trying to make a shot, rather than the
baseline model that says the player is in a red uniform and just playing with a ball. It is interesting
to notice that the sparse model sometimes works better than the DSD model: in the last image, the
sparse model correctly captured the mud puddle, while the DSD model only captured the forest from
the background. The performance of DSD training generalizes beyond these examples; more image
caption results generated by DSD training are provided in the Appendix at the end of this chapter.

DeepSpeech. We explore DSD training on speech recognition tasks using both Deep Speech
1 (DS1) and Deep Speech 2 (DS2) networks [8,9]. DSD training improves the relative accuracy of
both DS1 and DS2 models on the Wall Street Journal (WSJ) test sets by 2.1%∼7.4%.

The DS1 model is a five-layer network with one Bidirectional Recurrent layer, as described in
Table 5.6. This model was trained using the Wall Street Journal (WSJ) data set that contains 81
hours of speech. The validation set consists of 1 hour of speech. The test sets are from WSJ’92 and
WSJ’93 and contain 1 hour of speech combined. The Word Error Rate (WER) reported on the test
sets for the baseline models is different from [9] due to two factors: first, in DeepSpeech2, the models
were trained using a much larger data sets containing approximately 12,000 hours of multi-speaker
speech data. Second, WER was evaluated with beam search and a language model in DeepSpeech2;
here the network output is obtained using only max decoding to show improvement in the neural
network accuracy and filtering out the other parts.

The first dense phase was trained for 50 epochs. In the sparse phase, weights are pruned only
in the fully connected layers and the bidirectional recurrent layer, which are the majority of the
weights. Each layer is pruned to achieve the same 50% sparsity and trained for 50 epochs. In the
final dense phase, the pruned weights are initialized to zero and trained for another 50 epochs. We
keep the hyper parameters unchanged except for the learning rate. The learning rate is picked using
our validation set that is separate from the test set.

The DSD training requires 150 epochs, 50 epochs for each D-S-D training step. We want to
compare the DSD results with a baseline model trained for the same number of epochs. The first
three rows of Table 5.7 shows the WER when the DSD model is trained for 50+50+50=150 epochs,
and the 6th line shows the baseline model trained by 150 epochs (the same #epochs as DSD). DSD
training improves WER by 0.13 (WSJ’92) and 1.35 (WSJ’93) given the same number of epochs as
the conventional training.

Given a second DSD iteration (DSDSD), accuracy can be further improved. In the second DSD

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 69

Table 5.6: Deep Speech 1 Architecture

Layer ID Type #Params
layer 0 Convolution 1814528
layer 1 FullyConnected 1049600
layer 2 FullyConnected 1049600
layer 3 Bidirectional Recurrent 3146752
layer 4 FullyConnected 1049600
layer 5 CTCCost 29725

Table 5.7: DSD results on Deep Speech 1

DeepSpeech 1 WSJ ’92 WSJ ’93 Sparsity Epochs LR
Dense Iter 0 29.82 34.57 0% 50 8e-4
Sparse Iter 1 27.90 32.99 50% 50 5e-4
Dense Iter 1 27.90 32.20 0% 50 3e-4
Sparse Iter 2 27.45 32.99 25% 50 1e-4
Dense Iter 2 27.45 31.59 0% 50 3e-5
Baseline 28.03 33.55 0% 150 8e-4

Improve(abs) 0.58 1.96 - - -
Improve(rel) 2.07% 5.84% - - -

iteration, we assume that the network is closer stable and pruned less parameters: each layer is
pruned to 25% sparse. Similar to the first iteration, the sparse model and subsequent dense model
are further retrained for 50 epochs. The learning rate is scaled down for each retraining step. The
results are shown in Table 5.7. We can do more DSD iterations (DSDSD) to further improve the
performance. The second DSD iteration improves WER by 0.58 (WSJ’92) and 1.96 (WSJ’93), a
relative improvement of 2.07% (WSJ’92) and 5.84% (WSJ’93).

DeepSpeech 2. To show how DSD works on deeper networks, we evaluated DSD on the Deep
Speech 2 (DS2) network, described in Table 5.8. This network has seven bidirectional recurrent layers
with approximately 67 million parameters, around eight times larger than the DS1 model. A subset
of the internal English training set is used. The training set consists of 2,100 hours of speech. The
validation set consist of 3.46 hours of speech. The test sets are from WSJ’92 and WSJ’93, which
contain 1 hour of speech combined. The DS2 model is trained using Nesterov SGD for 20 epochs for
each training step. Similar to DS1 experiments, the learning rate is reduced by an order of magnitude
with each retraining. The other hyper parameters remain unchanged.

Table 5.9 shows the results of the two iterations of DSD training. For the first sparse re-training,
similar to DS1, 50% of the parameters from the bidirectional recurrent layers and fully connected
layers are pruned to zero. The Baseline model is trained for 60 epochs to provide a fair comparison
with DSD training. The baseline model shows no improvement after 40 epochs. With one iteration
of DSD training, WER improves by 0.44 (WSJ’92) and 0.56 (WSJ’93) compared to the fully trained
baseline.

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 70

Table 5.8: Deep Speech 2 Architecture

Layer ID Type #Params
layer 0 2D Convolution 19616
layer 1 2D Convolution 239168
layer 2 Bidirectional Recurrent 8507840
layer 3 Bidirectional Recurrent 9296320
layer 4 Bidirectional Recurrent 9296320
layer 5 Bidirectional Recurrent 9296320
layer 6 Bidirectional Recurrent 9296320
layer 7 Bidirectional Recurrent 9296320
layer 8 Bidirectional Recurrent 9296320
layer 9 FullyConnected 3101120
layer 10 CTCCost 95054

Table 5.9: DSD results on Deep Speech 2

DeepSpeech 2 WSJ ’92 WSJ ’93 Sparsity Epochs LR
Dense Iter 0 11.83 17.42 0% 20 3e-4
Sparse Iter 1 10.65 14.84 50% 20 3e-4
Dense Iter 1 9.11 13.96 0% 20 3e-5
Sparse Iter 2 8.94 14.02 25% 20 3e-5
Dense Iter 2 9.02 13.44 0% 20 6e-6
Baseline 9.55 14.52 0% 60 3e-4

Improve(abs) 0.53 1.08 - - -
Improve(rel) 5.55% 7.44% - - -

Here we show again that DSD can be applied multiple times or iteratively for further performance
gain. The second iteration of DSD training achieves better accuracy (Table 5.9). For the second
sparse iteration, 25% of parameters in the fully connected layers and bidirectional recurrent layers
are pruned. Overall, DSD training achieves relative improvement of 5.55% (WSJ’92) and 7.44%
(WSJ’93) on the DS2 architecture. These results are in line with DSD experiments on the smaller
DS1 network. We can conclude that DSD re-training continues to show improvement in accuracy
with larger layers and deeper networks.

5.4 Significance of DSD Improvements

DSD training improves the baseline model performance by consecutively pruning and restoring the
network weights. We conducted more intensive experiments to validate that the improvements are
significant and not due to any randomness in the optimization process. To evaluate the significance,
we repeated the baseline training, DSD training and conventional fine-tuning 16 times. The statistical
significance of DSD improvements is quantified on the Cifar-10 dataset using ResNet-20.

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 71

Table 5.10: DSD results for ResNet-20 on Cifar-10. The experiment is repeated 16 times to get rid of
noise.

ResNet-20 AVG Top-1 Err STD Top-1 Err Sparsity Epochs LR
Baseline 8.26% - 0% 164 1e-1

Direct Finetune (First half) 8.16% 0.08% 0% 45 1e-3
Direct Finetune (Second half) 7.97% 0.04% 0% 45 1e-4

DSD (Fist half, Sparse) 8.12% 0.05% 50% 45 1e-3
DSD (Second half, Dense) 7.89% 0.03% 0% 45 1e-4
Improve from baseline(abs) 0.37% - - - -
Improve from baseline(rel) 4.5% - - - -

Training on Cifar-10 is fast enough that it is feasible to conduct intensive experiments within a
reasonable time to evaluate DSD performance. The baseline models were trained with the standard
164 epochs and initial LR of 0.1 as recommended in the code released by Facebook [125]. After 164
epochs, we obtained a model with an 8.26% top-1 testing error that is consistent with the Facebook
result. Initialized from this baseline model, we repeated DSD training 16 times. We also repeated the
conventional fine-tuning 16 times. DSD training used a sparsity of 50% and 90 epochs (45 for sparse
training and 45 for re-dense training). To provide a fair comparison, the conventional fine-tuning is
also based on the same baseline model with the same hyper-parameters and settings.

Detailed results are listed below. On Cifar-10 using the ResNet-20 architecture, DSD training
achieved on average a Top-1 error of 7.89%, which is a 0.37% absolute improvement (4.5% relative
improvement) over the baseline model and relatively 1.1% better than the conventional fine-tuning.
The experiment also shows that DSD training can reduce the variance of learning: the trained models
after the sparse training and the final DSD training both have a lower standard deviation of errors
compared with their counterparts using conventional fine-tuning. We did a T-test to compare the
error rate from DSD and conventional training. The T-test result demonstrates that DSD training
achieves significant improvements compared with the baseline model (with p<0.001) and conventional
fine tuning (with p<0.001).

5.5 Reducing Training Time

DSD training involves pruning a fully pre-trained model. It is more timing-consuming than the
common training method. Therefore, we want to see if the first dense training step can be eliminated,
i.e., pruning the model early. We experimented with AlexNet and DeepSpeech and found that we can
do early pruning before the model fully converges, but we can not eliminate the first dense training
step.

The most aggressive approach is to eliminate the initial dense training step and train a sparse
network from scratch. However, our experiment find that this method does not converge well: we

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 72

Figure 5.4: Learning curve of early pruning: Random-Cut (Left) and Keepmax-Cut (Right).

prune half of the parameters of the BVLC AlexNet without any training using the same sparsity
pattern as the magnitude based pruning. In our two repeated experiments on training such a sparse
network, one model diverged after 80k training iterations, and the other converged at a top-1 accuracy
of only 33.0% and a top-5 accuracy of 41.6%. So the observation is that sparse training from scratch
leads to lower accuracy.

A less aggressive approach is to train the network for a short period and then prune it. In this
way, the network will go through a warm up training period to learn which connections are important.
In the experiment, we pruned AlexNet after training for 100k and 200k iterations before it converged
at 400k. (Figure 5.4), both methods converged at a better accuracy compared with the baseline,
which indicates that we can reduce the training epochs by fusing the first dense and sparse training
steps, i.e. early pruning doesn’t hurt the accuracy but can save DSD training time.

The DeepSpeech experiments provide the same support for reducing the DSD training time. In
the experiments, weights are pruned early after training the initial model prematurely for only 50
epochs (in contrast, a fully trained model requires 75 epochs). This still achieves better performance
than the fully trained model and shows that we can reduce the number of training epochs by fusing
the dense training with the sparse training step. Similar findings are observed in DeepSpeech-2.

Next, we compared two pruning heuristics: magnitude-based pruning (Keepmax-Cut), which we
used throughout this paper, and random pruning (Random-Cut). The results are plotted in Figure 5.4.
Keepmax-Cut@200K obtained 0.36% better top-5 accuracy. Random-Cut, in contrast, greatly lowered
the accuracy and caused the model to converge with lower accuracy. Random-Cut@100k deteriorated
the final accuracy by 1.06% and Random-Cut@200k by 1.51%. Thus, magnitude-based pruning is
better than random pruning.

In sum, we have three observations: early pruning by fusing the first D and S step together can
make DSD training converge faster and more accurately; magnitude-based pruning learns the correct
sparsity pattern better than random pruning; sparsity from scratch leads to poor convergence.

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 73

5.6 Discussion

Dense-Sparse-Dense training changes the optimization process and improves accuracy by significant
margins. During training, DSD re-structures the network by pruning and restoring the connections.
We hypothesize that the following aspects contribute to the efficacy of DSD training.

Escape Saddle Point: Based on previous studies, one of the most profound difficulties of
optimizing deep networks is the proliferation of saddle points [126]. The proposed DSD method helps
to escape the saddle points by pruning and restoring the connections. Pruning the converged model
perturbs the learning dynamics and allows the network to jump away from saddle points, which
gives the network a chance to converge at a better local minimum. This idea is similar to simulated
annealing [127]. Both simulated annealing and DSD training can escape sub-optimal solutions,
and both can be applied iteratively to achieve further performance gains. The difference between
simulated annealing and DSD training is that simulated annealing randomly jumps with decreasing
probability on the search graph, DSD deterministically deviates from the converged solution achieved
in the first dense training phase by removing the small weights and enforcing a sparsity support.

Significantly Better Minima: After escaping saddle points, DSD can achieve a better local
minima. We measured both the training loss and validation loss, DSD training decreased the loss and
error on both the training and the validation sets on ImageNet, indicating that it found a better local
minima. We have also validated the significance of the improvements compared with conventional
fine-tuning use a T-test (Section 5.4).

Regularization with Sparse Training: The sparsity regularization in the sparse training step
moves the optimization to a lower-dimensional space where the loss surface is smoother and tends to
be more robust to noise. Numerical experiments verified that sparse training reduced the variance of
training error (Section 5.4).

Robust Re-initialization: Weight initialization plays a significant role in deep learning [128].
Conventional training gives each connection only one chance of initialization. DSD gives the
connections additional opportunities to re-initialize during the restoration step, where those restored
weights gets re-initialized from zero.

Break Symmetry: The permutation symmetry of the hidden units makes the weights symmet-
rical, which is prone to co-adaptation. In DSD, by pruning and restoring the weights, the training
process breaks the symmetry of the hidden units associated with the weights, and the weights are no
longer symmetrical in the final dense training phase.

There is rich prior work on regularization techniques to prevent over-fitting, such as weight decay,
dropout, and batch normalization. Our DSD experiments work on top of these techniques and give
better accuracy. For example on VGG-16, DSD training was used together with weight decay and
dropout while the baseline only used weight decay and dropout; on ResNet-50, DSD training was
used together with weight decay and batch normalization while the baseline only used weight decay
and batch normalization.

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 74

5.7 Conclusion

This chapter introduced a dense-sparse-dense training method (DSD) that regularizes neural networks
by pruning and then restoring the connections. Our method learns which connections are important
during initial dense training. DSD then regularizes the network by pruning the unimportant
connections and retraining to a sparser and more robust solution with the same or better accuracy.
Finally, the pruned connections are restored, and the entire network is retrained again. This increases
the dimensionality of parameters and the model capacity.

DSD training achieves higher prediction accuracy. Our experiments using GoogleNet, VGGNet,
and ResNet on ImageNet; NeuralTalk on Flickr-8K; DeepSpeech and DeepSpeech-2 on the WSJ
dataset show that the accuracy of CNNs, RNNs, and LSTMs can significantly benefit from DSD
training. We also did a T-test to verify that the DSD training improvements are statistically
significant. The experimental results demonstrate the effectiveness of DSD training in improving the
accuracy.

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 75

Appendix: Examples of DSD Improves Image Captioning

Baseline: a man in a red shirt and
jeans is riding a bicycle down a street.
Sparse: a man in a red shirt and a
woman in a wheelchair.
DSD: a man and a woman are riding on
a street.

Baseline: two girls in bathing suits are
playing in the water.
Sparse: two children are playing in the
sand.
DSD: two children are playing in the
sand.

Baseline: a group of people are
standing in front of a building.
Sparse: a group of people are standing
in front of a building.
DSD: a group of people are walking in a
park.

Baseline: a dog runs through the grass.
Sparse: a dog runs through the grass.
DSD: a white and brown dog is running
through the grass.

Baseline: a group of football players in
red uniforms.
Sparse: a group of football players in a
field.
DSD: a group of football players in red
and white uniforms.

Baseline: a group of people sit on a
bench in front of a building.
Sparse: a group of people are
standing in front of a building.
DSD: a group of people are standing
in a fountain.

Baseline: a man in a black jacket and a
black jacket is smiling.
Sparse: a man and a woman are standing
in front of a mountain.
DSD: a man in a black jacket is standing
next to a man in a black shirt.

Baseline:a young girl in a red dress is
holding a camera.
Sparse: a little girl in a pink dress is
standing in front of a tree.
DSD: a little girl in a red dress is
holding a red and white flowers.

Baseline: a man in a red jacket is
standing in front of a white building.
Sparse: a man in a black jacket is
standing in front of a brick wall.
DSD: a man in a black jacket is
standing in front of a white building.

Baseline: a man in a red shirt is
standing on a rock.
Sparse: a man in a red jacket is
standing on a mountaintop.
DSD: a man is standing on a rock
overlooking the mountains.

Baseline: a group of people are sitting in
a subway station.
Sparse: a man and a woman are sitting
on a couch.
DSD: a group of people are sitting at a
table in a room.

Baseline: a soccer player in a red and
white uniform is running on the field.
Sparse: a soccer player in a red uniform
is tackling another player in a white
uniform.
DSD: a soccer player in a red uniform
kicks a soccer ball.

Baseline: a young girl in a swimming
pool.
Sparse: a young boy in a swimming
pool.
DSD: a girl in a pink bathing suit
jumps into a pool.

Baseline: a soccer player in a red
and white uniform is playing with a
soccer ball.
Sparse: two boys playing soccer.
DSD: two boys playing soccer.

Baseline: a girl in a white dress is
standing on a sidewalk.
Sparse: a girl in a pink shirt is
standing in front of a white building.
DSD: a girl in a pink dress is walking
on a sidewalk.

Baseline: a boy is swimming in a pool.
Sparse: a small black dog is jumping
into a pool.
DSD: a black and white dog is swimming
in a pool.

A. Supplementary Material: More Examples of DSD Training Improves the Performance of
NeuralTalk Auto-Caption System

�1

CHAPTER 5. DSD: DENSE-SPARSE-DENSE TRAINING 76

Baseline: a snowboarder flies through
the air.
Sparse: a person is snowboarding
down a snowy hill.
DSD: a person on a snowboard is
jumping over a snowy hill.

Baseline: two young girls are posing
for a picture.
Sparse: a young girl with a blue shirt
is blowing bubbles.
DSD: a young boy and a woman smile
for the camera.

Baseline: a man in a red shirt is
sitting in a subway station.
Sparse: a woman in a blue shirt is
standing in front of a store.
DSD: a man in a black shirt is
standing in front of a restaurant.

Baseline: a surfer is riding a wave.
Sparse: a man in a black wetsuit is
surfing on a wave.
DSD: a man in a black wetsuit is surfing
a wave.

Baseline: a man in a red shirt is
standing on top of a rock.
Sparse: a man in a red shirt is
standing on a cliff overlooking the
mountains.
DSD: a man is standing on a rock
overlooking the mountains.

Baseline: a group of people sit on a
bench.
Sparse: a group of people are sitting
on a bench.
DSD: a group of children are sitting
on a bench.

Baseline: a little boy is playing with
a toy.
Sparse: a little boy in a blue shirt is
playing with bubbles.
DSD: a baby in a blue shirt is playing
with a toy.

Baseline: a brown dog is running
through the grassy.
Sparse: a brown dog is playing with
a ball.
DSD: a brown dog is playing with a
ball.

Baseline: a boy in a red shirt is
jumping on a trampoline.
Sparse: a boy in a red shirt is
jumping in the air.
DSD: a boy in a red shirt is jumping
off a swing.

Baseline: a man is standing on the
edge of a cliff.
Sparse: a man is standing on the
shore of a lake.
DSD: a man is standing on the shore
of the ocean.

Baseline: two people are riding a
boat on the beach.
Sparse: two people are riding a wave
on a beach.
DSD: a man in a yellow kayak is
riding a wave.

Baseline: a black and white dog is
running on the beach.
Sparse: a black and white dog
running on the beach.
DSD: a black dog is running on the
beach.

Baseline: a man and a dog are
playing with a ball.
Sparse: a man and a woman are
playing tug of war.
DSD: a man and a woman are
playing with a dog.

Baseline: a group of people are
standing in a room.
Sparse: a group of people gather
together.
DSD: a group of people are posing
for a picture.

Baseline: a man in a red jacket is
riding a bike through the woods.
Sparse: a man in a red jacket is
doing a jump on a snowboard.
DSD: a person on a dirt bike jumps
over a hill.

Baseline: a man in a red jacket and
a helmet is standing in the snow.
Sparse: a man in a red jacket and a
helmet is standing in the snow.
DSD: a man in a red jacket is
standing in front of a snowy
mountain.

�2

Chapter 6

EIE: Efficient Inference Engine for

Sparse Neural Network

6.1 Introduction

Having described the efficient methods for deep learning in Chapters 3, 4 and 5, this chapter focuses
on hardware to efficiently implement these methods, the "Efficient Inference Engine" (EIE) [28].
This machine can perform inference directly on the sparse, compressed model, which saves memory
bandwidth and results in significant speedup and energy savings.

Deep Compression via pruning and trained quantization [25] [26] described in previous chapters
significantly reduces the model size and memory bandwidth required for fetching parameters in
deep neural networks. However, taking advantage of the compressed DNN model in hardware is a
challenging task. Though compression reduces the total number of operations, the irregular pattern
caused by compression hinders the effective acceleration. For example, the weight sparsity brought by
pruning makes the parallelization more difficult and makes it impossible to use well-optimized dense
linear algebra libraries. Moreover, the activation sparsity depends on the computed output of the
prior layer, which is only known during the algorithm execution. Furthermore, trained quantization
and weight sharing lead to another level of indirection to fetch the weight values. To solve these
problems and efficiently operate on the sparse, compressed DNN models, we developed EIE, a
specialized hardware accelerator that performs customized sparse matrix vector multiplication with
weight sharing, which reduces the memory footprint and results in significant speedup and energy
savings when performing inference.

EIE is a scalable array of processing elements (PEs). It distributes the sparse matrix and
parallelizes the computation by interleaving matrix rows over the PEs. Every PE stores a partition
of the network in SRAM and performs the computations associated with that sub-network. EIE

77

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK78

4-bit	  
Relative	Index

4-bit	  
Virtual	weight

16-bit		
Real	weight

16-bit	  
Absolute	Index

Encoded	Weight	
Relative	Index	
Sparse	Format	

ALU

Mem

Compressed	
DNN	Model Weight		

Look-up

Index		
Accum

Prediction

Input	
Image

Result

Figure 6.1: Efficient inference engine that works on the compressed deep neural network model for
machine learning applications.

takes advantage of static weight sparsity, dynamic activation vector sparsity, relative indexing, weight
sharing and extremely narrow weights (4-bits).

An overview of the EIE architecture is shown in Figure 6.1. EIE stores the encoded sparse
weight matrix W in compressed sparse column (CSC) format with only the non-zero weights. EIE
performs multiplications only when both the weight and the activation are non-zero. EIE stores
the location index of each weight in run-length encoded format. After the trained quantization and
weight sharing, each weight takes only 4-bits, which is decoded to 16-bits by accessing a lookup table
that is implemented with 16 registers.

To evaluate the performance of EIE, we created a full behavior and RTL model of EIE. The RTL
model was then synthesized and place-and-routed to extract accurate energy and clock frequency.
Evaluated on nine DNN benchmarks, EIE is 189× and 13× faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE has a processing power of 102 GOPS/s
working directly on a sparse network, corresponding to 3 TOPS/s on a dense network with the same
accuracy, dissipating a power consumption of only 600mW. EIE is 24,000× and 3,400× more energy
efficient than a CPU and GPU, respectively. The contributions of EIE include:

1. Sparse Weight: EIE is the first accelerator for sparse and compressed deep neural networks.
Operating directly on the sparse, compressed model enables the weights of neural networks to
fit in on-chip SRAM, which results in 120× better energy savings compared to accessing from
external DRAM. By skipping the zero weights, EIE saves 10× the computation cycles.

2. Sparse Activation: EIE exploits the dynamic sparsity of activations to save computation and
memory reference. EIE saves 65.16% energy by avoiding computation on the 70% of activations
that are zero in typical deep learning applications.

3. Coded Weights: EIE is the first accelerator to exploit the non-uniformly quantized, extremely
narrow weights (4-bits per weight) to perform inference with lookup tables. This saves 8×
memory footprint to fetch the weights compared with 32 bit floating-point and 2× compared
with int-8.

4. Parallelization: EIE introduces methods to distribute the storage and the computation across

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK79

multiple PEs to parallelize a sparsified layer. EIE also introduces architecture changes to
achieve load balance and good scalability.

6.2 Parallelization on Sparse Neural Network

One simple way to parallelize the computation of sparse neural network is to recover the sparse
matrix into dense format, and to use the dense linear algebra parallelization techniques to accelerate
the computation. We can perform gating to save the computation energy by skipping zero operands.
However, this method only saves energy but does not save the computation cycles. So instead of
converting a sparse model to a dense model, we propose to perform the computation directly on the
sparse model, which saves both computation cycles and energy.

6.2.1 Computation

One layer of a deep neural network performs the computation b = f(Wa+ v), where a is the input
activation vector, b is the output activation vector, v is the bias, W is the weight matrix, and f is
the non-linear function, typically the Rectified Linear Unit(ReLU) [129] in CNN and some RNN. The
bias term v is combined with W by appending an additional one to vector a. Therefore, we neglect
the bias term in the following equations. The output activations are computed as

bi = ReLU




n−1∑

j=0

Wijaj


 . (6.1)

Deep Compression [26] describes a method to compress DNNs without loss of accuracy through
a combination of pruning and weight sharing. Pruning makes matrix W sparse with density D

ranging from 4% to 25% for our benchmark layers. Weight sharing replaces each weight Wij with a
four-bit index Iij into a shared table S of 16 possible weight values. With deep compression, the
per-activation computation of Equation (2) becomes

bi = ReLU


 ∑

j∈Xi∩Y
S[Iij]aj


 . (6.2)

where Xi is the set of columns j for which Wij 6= 0, Y is the set of indices j for which aj 6= 0, Iij
is the index to the shared weight that replaces Wij , and S is the table of shared weights. Here Xi

represents the static sparsity of W , and Y represents the dynamic sparsity of a. The set Xi is fixed
for a given model. The set Y varies from input to input.

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK80

Comparing Equation 6.1 and Equation 6.2, we highlight two differences. The Wij term is replaced
with S[Iij], which is the result from trained quantization and weight sharing. It is a lookup operation
because weight sharing added a level of indirection. The other difference is that the "j = 0 to n− 1"
in the summation is replaced with "j ∈ Xi ∩ Y ", which is the result of sparsity. We perform the
multiply-add only for those columns for which bothWij and aj are non-zero, so that both the sparsity
of the matrix and the vector are exploited. The sparsity pattern of W is fixed during execution
(static), while the sparsity pattern of a depends on the input (dynamic). Performing the indexing
itself involves bit manipulations to extract four-bit Iij and an extra lookup with a table of 16 entries.

6.2.2 Representation

To exploit the sparsity of activations, we store our sparse weight matrixW in a variation of compressed
sparse column (CSC) format [130]. For each columnWj of matrixW we store a vector v that contains
the non-zero weights, and a second, equal-length vector z that encodes the number of zeros before
the corresponding entry in v. Each entry of v and z is represented by a four-bit value. If more than
15 zeros appear before a non-zero entry, we add a zero in vector v. For example, we encode the
following column

[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 3]

as v = [1, 2,0, 3], z = [2, 0,15, 2]. v and z of all columns are stored in one large pair of arrays with a
pointer vector p pointing to the beginning of the vector for each column. A final entry in p points
one beyond the last vector element so that the number of non-zeros in column j (including padded
zeros) is given by pj+1 − pj .

Storing the sparse matrix by columns in CSC format makes it easy to exploit activation sparsity.
We simply multiply each non-zero activation by all of the non-zero elements in its corresponding
column.

6.2.3 Parallelization

We distribute the matrix and parallelize our matrix-vector computation by interleaving the rows of
the matrix W over multiple processing elements (PEs). With N PEs, PEk holds all rows Wi, output
activations bi, and input activations ai for which i (mod N) = k. The portion of column Wj in PEk

is stored in the CSC format described in Section 6.2.2 but with the zero counts referring only to
zeros in the subset of the column in this PE. Each PE has its own v, x, and p arrays that encode its
fraction of the sparse matrix.

Figure 6.2 shows an example of multiplying an input activation vector a (of length 8) by a 16× 8

weight matrix W , yielding an output activation vector b (of length 16) on N = 4 PEs. The elements
of a, b, and W are color coded with their PE assignments. Each PE owns 4 rows of W , 2 elements of

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK81

~a
�

0 0 a2 0 a4 a5 0 a7
�

⇥ ~b

PE0

PE1

PE2

PE3

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

w0,0 0 w0,2 0 w0,4 w0,5 w0,6 0

0 w1,1 0 w1,3 0 0 w1,6 0

0 0 w2,2 0 w2,4 0 0 w2,7

0 w3,1 0 0 0 w0,5 0 0

0 w4,1 0 0 w4,4 0 0 0

0 0 0 w5,4 0 0 0 w5,7

0 0 0 0 w6,4 0 w6,6 0

w7,0 0 0 w7,4 0 0 w7,7 0

w8,0 0 0 0 0 0 0 w8,7

w9,0 0 0 0 0 0 w9,6 w9,7

0 0 0 0 w10,4 0 0 0

0 0 w11,2 0 0 0 0 w11,7

w12,0 0 w12,2 0 0 w12,5 0 w12,7

w13,0w13,2 0 0 0 0 w13,6 0

0 0 w14,2w14,3w14,4w14,5 0 0

0 0 w15,2w15,3 0 w15,5 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

�b2

b3

�b4

b5

b6

�b7

�b8

�b9

b10

�b11

�b12

b13

b14

�b15

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ReLU)

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

0

b3

0

b5

b6

0

0

0

b10

0

0

b13

b14

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1

T

Figure 6.2: Matrix W and vectors a and b are interleaved over 4 PEs. Elements of the same color
are stored in the same PE.

Virtual	
Weight

W0,0 W8,0 W12,0 W4,1 W0,2 W12,2 W0,4 W4,4 W0,5 W12,5 W0,6 W8,7 W12,7

Relative	  
Row	Index

0 1 0 1 0 2 0 0 0 2 0 2 0

Column	
Pointer

0 3 4 6 6 8 10 11 13
	 	 	

Figure 6.3: Memory layout for the relative indexed, indirect weighted and interleaved CSC format,
corresponding to PE0 in Figure 6.2.

a, and 4 elements of b.
We perform the sparse matrix × sparse vector operation by scanning vector a to find its next

non-zero value aj and broadcasting aj along with its index j to all PEs. Each PE then multiplies aj by
the non-zero elements in its portion of column Wj — accumulating the partial sums in accumulators,
one for each element of the output activation vector b. In the CSC representation, these non-zeros
weights are stored contiguously, so each PE simply walks through its v array from location pj to
pj+1 − 1 to load the weights. To address the output accumulators, the row number i corresponding
to each weight Wij is generated by keeping a running sum of the entries of the x array.

In the example in Figure 6.2, the first non-zero is a2 on PE2. The value a2 and its column
index 2 is broadcast to all PEs. Each PE then multiplies a2 by every non-zero in its portion of
column 2. PE0 multiplies a2 by W0,2 and W12,2; PE1 has all zeros in column 2, and so it performs
no multiplications; PE2 multiplies a2 by W2,2 and W14,2 and so on. The result of each product is

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK82

Pointer Read Act R/W

Act Queue

Sparse Matrix Access

Sparse
Matrix
SRAM

 Arithmetic Unit

Regs

Col
Start/
End

Addr

Act Index

Weight
Decoder

Address
Accum

Dest
Act

Regs

Act
SRAM

Act Value

Encoded
Weight

Relative
Index

Src
Act

Regs
Absolute Address

Bypass

Leading
NZero
Detect

Even Ptr SRAM Bank

Odd Ptr SRAM Bank ReLU

(a) (b)

From NE

From SE

From SW

Leading
Nzero
Detect

Act0

Act1

Act3

Act Value

s0

s1

s3

From NW Act2 s2

Nzero Index

Act0,1,2,3

Figure 6.4: The architecture of the processing element of EIE.

summed into the corresponding row accumulator. For example, PE0 computes b0 = b0 +W0,2a2 and
b12 = b12 +W12,2a2. The accumulators are initialized to zero before each layer computation.

The interleaved CSC representation facilitates exploitation of both the dynamic sparsity of
activation vector a and the static sparsity of the weight matrix W . We exploit activation sparsity
by broadcasting only non-zero elements of input activation a. Columns corresponding to zeros in
a are completely skipped. The interleaved CSC representation allows each PE to quickly find the
non-zeros in each column to be multiplied by aj . This organization also keeps all the computation
local to a PE except for broadcasting the input activations. The interleaved CSC representation of
the matrix in Figure 6.2 is shown in Figure 6.3.

Note that this process may suffer load imbalance because each PE may have a different number
of non-zeros in a particular column. We have partially solved the load-balancing problem from the
algorithm perspective in Chapter 3 by load-balance-aware pruning, which produces globally balanced
workload for the matrix. For each column of the matrix, we will see in Section 6.3 how the effect of
this load imbalance can be reduced using hardware queues.

6.3 Hardware Implementation

We present the architecture of EIE in Figure 6.4. Almost all the computation in EIE is local to the
PEs except for the collection of non-zero input activations that are broadcast to all PEs. However,
the computation of the activation collection and broadcast is not on the critical path because most
PEs take many cycles to consume each input activation. The flow of data through the EIE, and the
blocks that process this flow are described below.

Activation Queue and Load Balancing. A non-zero activation enters the PE and starts its
operations on one column. The sparsity of the column data can cause load imbalance when the
number of multiply accumulation operations performed by every PE is different: those PEs with
more non-zero elements have to wait until the PE with the most computation tasks finishes.

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK83

… … …

…

PE 1

PE 2

PE 3

PE N

PE 1

PE 2

PE 3

PE N

Column 1, 2…M

Total Computation Time

Column 2 Column M

Total Computation Time

Column 1

�1

Figure 6.5: Without the activation queue, synchronization is needed after each column. There is
load-balance problem within each column, leading to longer computation time.

… … …

…

PE 1

PE 2

PE 3

PE N

PE 1

PE 2

PE 3

PE N

Column 1, 2…M

Total Computation Time

Column 2 Column M

Total Computation Time

Column 1

�1

Figure 6.6: With the activation queue, no synchronization is needed after each column, leading to
shorter computation time.

There are two kinds of load-imbalance: global and local. Global load imbalance refers to the
situation when the non-zero element partition in the whole matrix is imbalanced. Local load imbalance
refers to the situation when the non-zero element partition in one single column of the matrix is
imbalanced. Global load-imbalance can be solved by load-balance-aware pruning, as discussed in
Chapter 3. Local load-imbalance is generally solved using a queue to buffer up pending work and
decouple the parallel execution units, and EIE uses this technique. Thus each PE uses an activation
queue to build up a backlog of work to even out load imbalance that may arise because the number
of non-zeros in a given column j may vary from PE to PE.

With an activation queue in each PE, the central control unit can broadcast a new activation as
long as no activation queue is full, and each PE processes the activation at the head of its queue
unless its queue is empty.

The benefit of the activation queue is illustrated in Figure 6.5 and Figure 6.6. Without the
activation queue, all the PEs need to synchronize after finishing a column. Thus, fast PE has to
wait for slow PE, leading to bubbles in the pipeline (shown in blue). With the activation queue, the
PEs can directly consume the workload from the queue and won’t be blocked by slow PEs. As a

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK84

result, bubble cycles can only occur when the FIFO is either full or empty. Longer the activation
queues reduce bubbles but require mode resources. In Section 6.5 we quantitatively measure this
relationship between the performance and the depth of the activation queue.

Pointer Read Unit. Once an activation is read from the queue, the index j of the entry is used
to look up the start and end pointers pj and pj+1 for the v and x arrays for column j. To allow both
pointers to be read in one cycle using single-ported SRAM arrays, we store pointers in two SRAM
banks, one for even j, and one for odd j and use the LSB of the address to select between banks. pj
and pj+1 will always be in different banks. EIE pointers are 16-bits in length.

Sparse Matrix Read Unit. The sparse-matrix read unit uses pointers pj and pj+1 to read the
non-zero elements (if any) of this PE’s slice of column Ij from the sparse-matrix SRAM. Each entry
in the SRAM is 8-bits in length and contains one 4-bit element of v and one 4-bit element of x. For
efficiency (see Section 6.5) the PE’s slice of encoded sparse matrix I is stored in a 64-bit-wide SRAM.
Thus eight entries are fetched on each SRAM read. The high 13 bits of the current pointer p selects
a SRAM row, and the low 3-bits select one of the eight entries in that row. A single (v, x) entry is
provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x) entry from the sparse matrix read unit
and performs the multiply-accumulate operation bx = bx + v × aj . Index x is used to index an
accumulator array (the destination activation registers), while v is multiplied by the activation value
at the head of the activation queue. Because v is stored in 4-bit encoded form, it is first expanded to
a 16-bit fixed-point number via a table lookup. A bypass path is provided to route the output of the
adder to its input if the same accumulator is selected on two adjacent cycles.

Activation Read/Write Unit. Once the computation of bx is complete, it is passed to the
Activation Read/Write Unit. This unit is double buffered — it contains two register files — so the
unit can read from the results of the last layer, while it stores the current results. Like all double
buffer systems, the source and destination register files exchange their role for next layer. Thus, no
additional data transfer is needed to support multi-layer feed-forward computation.

The finite size of the register file limits the max size of the vector that can be produced: each
activation register file holds 64 activations, which is sufficient to accommodate 4K activations across
64 PEs. When the activation vector has a length greater than 4K, the M×V is completed in batches
of length 4K. Each PE has 2KB of SRAM sitting behind the register file as a second level buffer.

Distributed Leading Non-Zero Detection. To reduce data movement, the output activation
are left distributed across the PEs, so when they become the input activation to the next layer, they
are still distributed across the PEs. To take advantage of the input vector sparsity, we use leading
non-zero detection logic to select the first non-zero result, and because the inputs are physically
distributed, this detector must be distributed as well. Each group of 4 PEs does a local leading
non-zero detection on their input activation. The result is then sent to a Leading Non-zero Detection
Node (LNZD Node). Each LNZD node finds the next non-zero activation across its four children

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK85

and sends this result up to the quadtree. The quadtree is arranged so that wire lengths only grows
logarithmically as we add more PEs. At the root LNZD Node, the selected non-zero activation is
broadcast back to all the PEs via a separate wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU) is the root LNZD Node. It commu-
nicates with the master, for example a CPU, and monitors the state of every PE by setting the
control registers. There are two modes in the Central Unit: I/O and Computing. In I/O mode, all of
the PEs are idle during which the activations and weights in every PE can be accessed by a DMA
connected with the Central Unit. This is a one-time cost. In Compute mode, the CCU repeatedly
collects a non-zero value from the LNZD quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the input length and starting address of
pointer array, EIE is instructed to execute different layers.

6.4 Evaluation Methodology

Simulator, RTL and Layout. We implemented a custom cycle-accurate C++ simulator for the
accelerator. Each hardware module is abstracted as an object that implements two abstract methods:
propagate and update, corresponding to combinational logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as the golden model for RTL verification.

To measure the area, power, and critical path delay, we implemented the RTL of EIE in Verilog.
The RTL is verified against the cycle-accurate simulator. Then we synthesized EIE using the Synopsys
Design Compiler (DC) under the 45nm GP standard VT library at the worst case PVT corner. We
placed and routed the PE using the Synopsys IC compiler (ICC). We used Cacti [131] to get SRAM
area and energy numbers. We annotated the toggle rate from the RTL simulation to the gate-level
netlist, which was dumped to switching activity interchange format (SAIF), and estimated the power
using Prime-Time PX.

Comparison Baseline. We compared EIE with three different off-the-shelf computing units:
CPU, GPU, and mobile GPU.

1) CPU. We used Intel Core i-7 5930k CPU, a Haswell-E class processor, that has been used in
NVIDIA Digits Deep Learning Dev Box as a CPU baseline. To run the benchmark on CPU, we used
MKL CBLAS GEMV to implement the original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power are as reported by the pcm-power utility
provided by Intel.

2) GPU. We used NVIDIA Maxwell Titan X GPU as our baseline using nvidia-smi utility
to report the power. To run the benchmark, we used cuBLAS GEMV to implement the original
dense layer. For the compressed sparse layer, we stored the sparse matrix in CSR format and used
cuSPARSE CSRMV kernel, which is optimized for sparse matrix-vector multiplication on GPUs.

3) Mobile GPU. We used NVIDIA Tegra K1 that has 192 CUDA cores as our mobile GPU

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK86

Table 6.1: Benchmark from state-of-the-art DNN models

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [2] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

baseline. We used cuBLAS GEMV for the original dense model and cuSPARSE CSRMV for the
compressed sparse model. Tegra K1 does not have software interface to report power consumption,
so we measured the total power consumption with a power-meter, then assumed 15% AC to DC
conversion loss, 85% regulator efficiency and 15% power consumed by peripheral components [114,115]
to report the AP+DRAM power for Tegra K1.

Benchmarks. We compared the performance of EIE on two sets of models: the uncompressed
DNN model and compressed DNN model. The uncompressed DNN model was obtained from Caffe
model zoo [58] and NeuralTalk model zoo [7]; The compressed DNN model is produced as described
in [25,26]. The benchmark networks have nine layers in total and they are obtained from AlexNet,
VGGNet, and NeuralTalk. We use the Image-Net dataset [54] and the Caffe [58] deep learning
framework as the golden model to verify the correctness of the hardware design.

6.5 Experimental Results

Figure 6.7 shows the layout (after place-and-route) of an EIE processing element. The power/area
breakdown is shown in Table 6.2. We brought the critical path delay down to 1.15ns by introducing
four pipeline stages to update one activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiplication (in parallel), shift/add, and
output activation write. Activation read and write access a local register and activation bypassing
is employed to avoid a pipeline hazard. Using 64 PEs running at 800MHz yields a performance of

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK87

SpMat

SpMat

Ptr_Even Ptr_OddArithm

Act_0 Act_1

Figure 6.7: Layout of the processing element of EIE.

Table 6.2: The implementation results of one PE in EIE and the breakdown by component type and
by module. The critical path of EIE is 1.15 ns.

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act_queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

102 GOP/s. Considering 10× weight sparsity and 3× activation sparsity, this requires a dense DNN
accelerator at 3TOP/s to have equivalent application throughput.

The total SRAM capacity (Spmat+Ptr+Act) of each EIE PE is 162KB. The activation SRAM is
2KB. The Spmat SRAM is 128KB and stores the compressed weights and indices. Each weight is
4bits, and each index is 4bits. Weights and indices are grouped to 8bits and addressed together. The
Spmat access width is optimized at 64 bits (discussed in Section 6.5.3). The Ptr SRAM is 32KB
storing the pointers in the CSC format. In the steady state, both Spmat SRAM and Ptr SRAM
are accessed every 64/8 = 8 cycles. The area and power are dominated by SRAM; the ratio is 93%
and 59% , respectively. Each PE is 0.638mm2 consuming 9.157mW . Each group of 4 PEs needs an
LNZD unit for nonzero detection. A total of 21 LNZD units are needed for 64 PEs (16 + 4 + 1 = 21).
The synthesized result shows that one LNZD unit takes only 0.023mW and an area of 189um2, less

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK88

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
2x

5x

1x

9x 10x

1x

2x 3x
2x

3x

14x
25x

14x
24x 22x

10x 9x
15x

9x
15x

56x
94x

21x

210x
135x

16x
34x 33x 25x

48x

0.6x
1.1x

0.5x
1.0x 1.0x

0.3x 0.5x 0.5x 0.5x 0.6x

3x
5x

1x

8x 9x

1x
3x 2x

1x
3x

248x
507x

115x

1018x
618x

92x 63x 98x
60x

189x

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee

du
p

CPU Dense (Baseline) CPU Sparse GPU Dense GPU Sparse mGPU Dense mGPU Sparse EIE

Figure 6.8: Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed
DNN model. There is no batching in all cases.

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x

5x
9x

3x

17x 20x

2x
6x 6x 4x 6x7x 12x

7x 10x 10x
5x 6x 6x 5x 7x

26x 37x

10x

78x 61x

8x
25x

14x 15x 23x
10x 15x

7x
13x 14x

5x 8x 7x 7x 9x

37x 59x
18x

101x 102x

14x
39x 25x 20x

36x

34,522x
61,533x

14,826x

119,797x 76,784x

11,828x 9,485x 10,904x 8,053x
24,207x

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

En
er

gy
 E

ff
ic

ie
nc

y

CPU Dense (Baseline) CPU Sparse GPU Dense GPU Sparse mGPU Dense mGPU Sparse EIE

Figure 6.9: Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncom-
pressed DNN model. There is no batching in all cases.

than 0.3% of a PE.

6.5.1 Performance

We compared EIE against CPU, desktop GPU, and the mobile GPU on nine benchmarks selected
from AlexNet, VGG-16, and Neural Talk. The overall results are shown in Figure 6.8. There are
seven columns for each benchmark, comparing the computation time of EIE on the compressed
network over CPU / GPU / TK1 on the uncompressed / compressed network. Time is normalized to
CPU. EIE significantly outperforms the general purpose hardware and is, on average, 189×, 13×,
307× faster than CPU, GPU, and mobile GPU, respectively.

EIE’s theoretical computation time is calculated by dividing workload GOPs by peak throughput.
The actual computation time is around 10% more than the theoretical computation time due to load
imbalance. In Fig. 6.8, the comparison with CPU / GPU / TK1 is reported using actual computation
time. The wall clock times of CPU / GPU / TK1/ EIE for all benchmarks are shown in Table 6.3.

EIE is targeting extremely latency-focused applications, which require real-time inference. Since
assembling a batch adds significant amounts of latency, we consider the case when batch size = 1
when benchmarking the performance and energy efficiency with CPU and GPU (Figure 6.8). As a

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK89

Table 6.3: Wall clock time comparison between CPU, GPU, mobile GPU and EIE. The batch
processing time has been divided by the batch size. Unit: µs

Platform Batch Matrix AlexNet VGG16 NT-LSTM
Size Type FC6 FC7 FC8 FC6 FC7 FC8 We Wd LSTM

CPU 1 dense 7516.2 6187.1 1134.9 35022.8 5372.8 774.2 605.0 1361.4 470.5

(Core-i7 sparse 3066.5 1282.1 890.5 3774.3 545.1 777.3 261.2 437.4 260.0

5930k) 64 dense 318.4 188.9 45.8 1056.0 188.3 45.7 28.7 69.0 28.8
sparse 1417.6 682.1 407.7 1780.3 274.9 363.1 117.7 176.4 107.4

GPU 1 dense 541.5 243.0 80.5 1467.8 243.0 80.5 65 90.1 51.9

(Titan X)
sparse 134.8 65.8 54.6 167.0 39.8 48.0 17.7 41.1 18.5

64 dense 19.8 8.9 5.9 53.6 8.9 5.9 3.2 2.3 2.5
sparse 94.6 51.5 23.2 121.5 24.4 22.0 10.9 11.0 9.0

mGPU 1 dense 12437.2 5765.0 2252.1 35427.0 5544.3 2243.1 1316 2565.5 956.9

(Tegra- sparse 2879.3 1256.5 837.0 4377.2 626.3 745.1 240.6 570.6 315

K1) 64 dense 1663.6 2056.8 298.0 2001.4 2050.7 483.9 87.8 956.3 95.2
sparse 4003.9 1372.8 576.7 8024.8 660.2 544.1 236.3 187.7 186.5

EIE Theor. Time 28.1 11.7 8.9 28.1 7.9 7.3 5.2 13.0 6.5
Actual Time 30.3 12.2 9.9 34.4 8.7 8.4 8.0 13.9 7.5

comparison, we also provided the result for batch size = 64 in Table 6.3. EIE can not handle batch
size larger than one; it can handle one input at a time. We relaxed this constraint on the follow-up
design, ESE [29], by supporting batching.

The GOP/s required for EIE to achieve the same application throughput (Frames/s) is much
lower than competing approaches because EIE exploits sparsity to eliminate 97% of the GOP/s
performed by dense approaches. 3 TOP/s on an uncompressed network requires only 100 GOP/s on
a compressed network. EIE’s throughput is scalable to over 256 PEs. Without EIE’s dedicated logic,
however, model compression by itself applied on a CPU/GPU yields only 3× speed up.

6.5.2 Energy

In Figure 6.9, we report the energy efficiency on different benchmarks. There are 7 columns for each
benchmark, comparing the energy efficiency of EIE on a compressed network over CPU / GPU / TK1
on a uncompressed / compressed network. Energy is obtained by multiplying computation time and
total measured power as described in section 6.4.

EIE consumes, on average, 24, 000×, 3, 400× and 2, 700× less energy compared to CPU, GPU
and the mobile GPU respectively. This three order of magnitude energy savings derives from three
factors: first, the required energy per memory read is saved (SRAM over DRAM): using a compressed
network model enables state-of-the-art neural networks to fit in on-chip SRAM, reducing energy
consumption by 120× compared to fetching a dense uncompressed model from DRAM (Figure 6.9).
Second, the number of required memory reads is reduced. The compressed DNN model has 10% of
the weights where each weight is quantized to only 4 bits. Last, taking advantage of the activation
sparsity saved 65.14% of redundant computation cycles. Multiplying those factors 120× 10× 8× 3

gives a 28, 800× theoretical energy savings. Our actual savings are about 10× less than this number
because of index overhead and because EIE is implemented in 45nm technology compared to the

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK90

0%
20%
40%
60%
80%

100%

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Lo
ad

 B
al

an
ce

FIFO=1 FIFO=2 FIFO=4 FIFO=8 FIFO=16 FIFO=32 FIFO=64 FIFO=128 FIFO=256

Figure 6.10: Load efficiency improves as FIFO size increases. When FIFO deepth>8, the marginal
gain quickly diminishes. So we choose FIFO depth=8.

0.0

1.0

2.0

3.0

4.0

0%

23%

45%

68%

90%

32b Float 32b Fixed 16b Fixed 8b Fixed

M
ul

 E
ne

rg
y

(p
J)

A
cc

ur
ac

y

ALU Type and Width

Energy per Multiply (pJ) Prediction Accuracy

Figure 6.11: Prediction accuracy and multiplier energy with different arithmetic precision.

28nm technology used by the Titan-X GPU and the Tegra K1 mobile GPU.

6.5.3 Design Space Exploration

Queue Depth. The activation queue deals with load imbalance between the PEs. A deeper FIFO
queue can better decouple the producer and the consumer, but with diminishing returns (Figure 6.10).
We varied the FIFO queue depth from 1 to 256 in powers of 2 across nine benchmarks using 64 PEs
and measured the load balance efficiency. This efficiency is defined as the number of bubble cycles
(due to starvation) divided by total computation cycles. At FIFO size = 1, around half of the total
cycles are idle, and the accelerator suffers from severe load imbalance. Load imbalance is reduced as
FIFO depth is increased but with diminishing returns beyond a depth of 8. Thus, we choose eight as
the optimal queue depth.

Notice the NT-We benchmark has poorer load balance efficiency compared with others. This
is because it has only 600 rows. Divided by 64 PEs and considering the 11% sparsity, each PE
on average gets a single entry, which is highly susceptible to variation among PEs, leading to load
imbalance. Such small matrices are more efficiently executed on 32 or fewer PEs.

Arithmetic Precision. We use 16-bit fixed-point arithmetic, which consumes much less energy
than 32-bit fixed-point 32-bit floating-point. At the same time, using 16-bit fixed-point arithmetic

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK91

45

90

135

180

225

K

125K

250K

375K

500K

32 bit 64 bit 128 bit 256 bit 512 bit

R
ea

d
En

er
gy

 (p
J)

R

ea
d

SRAM Width

Energy per Read (pJ) # Read

Figure 6.12: SRAM read energy and number of reads benchmarked on AlexNet.

0

2100

4200

6300

8400

32bit 64bit 128bit 256bit 512bit

En
er

gy
 (n

J)

SRAM Width

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7
VGG-8 NT-We NT-Wd NT-LSTM

Figure 6.13: Total energy consumed by SRAM read at different bit width.

results in less than 0.5% loss of prediction accuracy: 79.8% compared with 80.3% using 32-bit floating
point arithmetic. With 8-bit fixed-point, however, the accuracy dropped to only 53%. The accuracy
is measured on ImageNet dataset [54] with AlexNet [2], and the energy is obtained from synthesized
RTL under the 45nm process. The trade-off between energy and accuracy is shown in Figure6.11.

SRAM Width. We choose a SRAM with a 64-bit interface to store the sparse matrix (Spmat)
since it minimized the total energy. Wider SRAM interfaces reduce the number of total SRAM
accesses but increase the energy cost per SRAM read. The experimental trade-off is shown in
Figure 6.12 and Figure 6.13. SRAM energy is modeled using Cacti [131] under the 45nm process.
SRAM access times are measured by the cycle-accurate simulator on the AlexNet benchmark. As
the total energy is shown in Figure 6.13, the minimum total access energy is achieved when SRAM
width is 64 bits. Why is this the case? For SRAM width larger than 64 bits, some read data will
be wasted: the typical number of activation elements of the FC layer is 4K [2,3]; thus, assuming 64
PEs and 10% density [25], each column in a PE will have 6.4 elements on average. This matches a

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK92

64-bit SRAM interface that provides 8 elements. If more elements are fetched and the next column
corresponds to zero activation, those elements are wasted.

6.6 Discussion

In this section we discuss the alternative design choices of EIE’s workload partitioning, and how
we use EIE to handle larger problems (scalability) and a diverse categories of problems (flexibility).
Fianlly, we compare EIE with other hardware platforms.

6.6.1 Partitioning

Sparse matrix-vector multiplication (SPMV) is they key component of EIE. We compare three
different approaches to partition the workload for sparse matrix-vector multiplication and discuss
their pros and cons.

Column Partition. The first approach is to distribute matrix columns to PEs. Each PE is
responsible for a subset of columns and handles the multiplication between its columns of W and the
corresponding element of a to get a partial sum of the output vector b.

The benefit of this solution is that each element of a is only associated with one PE — giving full
locality for vector a. The drawback is that a reduction operation between PEs is required to obtain
the final result, resulting in inter-PE communications. Moving data is expensive and we want to
minimize such inter-PE communication. This approach also suffers from load imbalance problem
given that vector a is also sparse. Each PE is responsible for a column. PEj will be completely idle if
their corresponding element in the input vector aj is zero, resulting in idle cycles and a discrepancy
between the peak performance and the real performance.

Row Partition. The second approach (ours in EIE) is to distribute matrix rows to PEs, i.e.
each PE is responsible for a subset of rows. A central unit broadcasts one vector element aj to all
PEs. Each PE computes a number of output activations bi by performing inner products of the
corresponding row of W , Wj that is stored in the PE with vector a. The benefit of this solutions is
that each element of the output b is only associated with one PE — giving full locality for vector
b. The drawback is that vector a needs to be broadcast to all PEs. However, the broadcast is not
on the critical path and can be decoupled and overlapped with the computation by introducing the
activation queue. The consumer of the activation queue takes much longer to process one entry than
the producer, which is the broadcast operation.

Mixed Partition. The third approach combines the previous two approaches by distributing
blocks of W to the PEs in a 2D fashion. This solution is more scalable for distributed systems where
communication latency cost is significant [132]. In this approach both of the collective communication
operations "Broadcast" and "Reduction" are exploited but on a smaller scale and hence this solution

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK93

1

10

100

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Sp
ee

du
p

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs 128PEs 256PEs

Figure 6.14: System scalability. It measures the speedups with different numbers of PEs. The
speedup is near-linear.

0%
20%
40%
60%
80%

100%

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

R
ea

l W
or

k
/

To
ta

l W
or

k

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs 128PEs 256PEs

Figure 6.15: As the number of PEs goes up, the number of padding zeros decreases, leading to less
padding zeros and less redundant work, thus better compute efficiency.

is more scalable. However, the hybrid solution will suffer from inherent complexity, and still possible
load imbalance since multiple PEs sharing the same column might remain idle.

We build our solution based on the second distribution scheme because it can take advantage
of the activation sparsity, which is is dynamic. Partitioning by rows allows one activation to be
simultaneously processed by different PEs in different rows of the same column. To be specific, EIE
performs computations by in-order look-up of non-zeros in a. Each PE gets all the non-zero elements
of a in order and performs the inner products by looking-up the matching element that needs to be
multiplied by aj , Wj . This requires the matrix W being stored in CSC format (not CSR format) so
the PE can multiply all the elements in the j-th column of W by aj .

6.6.2 Scalability

As the matrix gets larger, the system can be scaled up by adding more PEs. Each PE has local
SRAM storing distinct rows of the matrix without duplication, so the SRAM is efficiently utilized.

Wire delay increases with the square root of the number of PEs. However, this is not a problem in
our architecture because EIE only requires one broadcast over the computation of the entire column,
which takes many cycles. Consequently, the broadcast is not on the critical path and can be pipelined
because the activation queue decouples the producer and the consumer.

Figure 6.14 shows EIE achieves good scalability all the way up to 256 PEs on all benchmarks
except NT-We. NT-We is very small (4096× 600). Dividing the columns of size 600 and sparsity
10% (average of 60 non-zeros per column) to 64 or more PEs causes serious load imbalance.

Figure 6.15 shows the number of padding zeros with different number PEs. A padding zero occurs

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK94

0%
20%
40%
60%
80%

100%

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM

Lo
ad

 B
al

an
ce

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs 128PEs 256PEs

Figure 6.16: Load efficiency is measured by the ratio of stalled cycles over total cycles in ALU. More
PEs lead to worse load balance, but less padding zeros and more useful computation.

when the distance between two consecutive non-zero elements in the sparse matrix is larger than
16, the largest number that 4 bits can encode. Padding zeros are considered non-zero and lead to
wasted computation. Using more PEs reduces padding zeros because the distance between non-zero
elements gets smaller due to matrix partitioning, and 4-bits encoding a max distance of 16 will more
likely be enough.

Figure 6.16 shows the load balance with a different number of PEs, measured with FIFO depth
equal to 8. With more PEs, load balance becomes worse, but padding zero overhead decreases, which
yields constant efficiency for most benchmarks. The scalability result is plotted in Figure 6.14.

6.6.3 Flexibility

EIE is the basic building block for accelerating MLP, CNN, RNN and LSTM. EIE can directly
accelerate MLP, since each layer of MLP is a fully-connected layer. EIE has the potential to support
1x1 convolution and 3x3 Winograd convolution by turning the channel-wise reductions into M × V
operations. Winograd convolution saves 2.25× multiplications than direct convolution [133], and for
each Winograd patch, the 16 M × V can be scheduled on an EIE. EIE can also accelerate sparse
RNNs and LSTMs, which are widely used in sequence modeling tasks such as speech recognition
and natural language processing. We used EIE as the basic building block and designed the efficient
speech recognition engine (ESE) [29]. ESE addressed a more general problem of accelerating not only
feedforward neural networks but also recurrent neural networks. Implemented on Xilinx XCKU060
FPGA, ESE running on the sparse LSTM achieved 6.2x speedup over the original dense model.

6.6.4 Comparison

Table 6.4 shows the comparison of performance, power, and area on different hardware platforms.
The performance is evaluated on the FC7 layer of AlexNet. 1. We compared six platforms for
neural networks: Core-i7 (CPU), Titan X (GPU), Tegra K1 (mobile GPU), A-Eye (FPGA), Da-
DianNao (ASIC), TrueNorth (ASIC). All other four platforms suffer from low-efficiency during

1The FC7 result is not provided for TrueNorth, so we use the TIMIT LSTM result for comparison instead (they
differ less than 2×)

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK95

Table 6.4: Comparison with existing hardware platforms for DNNs.

Platform Core-
i7
5930K

Max-
well
Titan
X

Tegra
K1

Angel
Eye
[23]

Da-
Dian
Nao
[20]

True-
North
[134]

EIE
ours,
64PE
[28]

EIE
ours,
256PE
[28]

Year 2014 2015 2014 2015 2014 2014 2016 2016
Platform Type CPU GPU mGPU FPGA ASIC ASIC ASIC ASIC
Technology 22nm 28nm 28nm 28nm 28nm 28nm 45nm 28nm
Clock(MHz) 3500 1075 852 150 606 async 800 1200
Memory type DRAM DRAM DRAM DRAM eDRAMSRAM SRAM SRAM
Max model size(#Params) <16G <3G <500M <500M 18M 256M 84M 336M
Quantization Stategy 32-

bit
float

32-
bit
float

32-
bit
float

16-
bit
fixed

16-
bit
fixed

1-bit
fixed

4-bit
fixed

4-bit
fixed

Area(mm2) 356 601 - - 67.7 430 40.8 63.8
Power(W) 73 159 5.1 9.63 15.97 0.18 0.59 2.36
M×V Throughput(Frames/s) 162 4,115 173 33 147,938 1,989 81,967 426,230
Area Efficiency(Frames/s/mm2) 0.46 6.85 - - 2,185 4.63 2,009 6,681
Energy Efficiency(Frames/J) 2.22 25.9 33.9 3.43 9,263 10,839 138,927 180,606

matrix-vector multiplication. A-Eye is optimized for CONV layers and all of the parameters are
fetched from the external DDR3 memory, making it sensitive to the bandwidth problem. DaDianNao
distributes weights on 16 tiles, each tile with 4 eDRAM banks, thus has a peak memory bandwidth
of 16 × 4 × (1024bit/8) × 606MHz = 4964GB/s. Its performance on M × V is estimated based
on the peak memory bandwidth because M × V is completely memory bound. In contrast, EIE
maintains a high throughput for M × V because, after compression, all weights fit in on-chip SRAM,
even for very large networks. With 256 PEs, EIE has 3.25× more throughput than 64 PEs and can
hold 336 million parameters, even larger than VGGnet. The right column projected EIE to the
same technology (28nm) as the other platforms, with 256 PEs, EIE has 2.9× throughput, 3× area
efficiency and 19× power efficiency than DaDianNao.

In previous neural network accelerators, the weights are uncompressed and stored in dense format,
making the accelerator constrained by memory size. For example, ShiDianNao [21], which contains
128KB on-chip RAM, can only handle very small DNN models up to 64K parameters, which is
three orders of magnitude smaller than the 60 million parameters AlexNet. Such large networks are
impossible to fit on chip on ShiDianNao without compression. DaDianNao stores the uncompressed
model in eDRAM taking 6.12W memory power and 15.97W total power. EIE stores the compressed
model in SRAM taking only 0.35W memory power and only 0.59W total power; DaDianNao cannot
exploit the sparsity from weights and activations and they must expand the network to dense form
before any operation. It cannot exploit weight sharing either. Using just the compression (and

CHAPTER 6. EIE: EFFICIENT INFERENCE ENGINE FOR SPARSE NEURAL NETWORK96

decompressing the data before computation) would reduce DaDianNao total power to around 10W
in 28nm, compared to EIE’s power of 0.58W in 45nm. For compressed deep networks, previously
proposed SPMV accelerators can only exploit the static weight sparsity. They are unable to exploit
dynamic activation sparsity (3×), and they are unable to exploit weight sharing (8×); altogether, a
24× energy saving is lost.

Since EIE was published in ISCA’2016, sparse neural network accelerator has been the topic of
multiple academic papers and EIE has impacted the industry. These related works are discussed in
Chapter 2.

6.7 Conclusion

This chapter has presented EIE, an energy-efficient engine optimized to operate on sparse, compressed
deep neural networks. By leveraging sparsity in both the activations and the weights, and taking
advantage of weight sharing with extremely narrow weights, EIE reduces the energy needed to
compute a typical FC layer by 3,400× compared with GPU. This energy saving comes from four
main factors: first, the number of parameters is pruned by 10×; second, weight-sharing reduces the
weights to only 4 bits; third, the smaller model can be fetched from SRAM and not DRAM, giving a
120× energy advantage; fourth, since the activation vector is also sparse, only 30% of the matrix
columns need to be fetched for a final 3× savings. These savings enable an EIE PE to do 1.6 GOPS
in an area of 0.64mm2 and dissipate only 9mW. 64 PEs can process FC layers of AlexNet at 1.88×104

frames/sec. The architecture is scalable from one PE to over 256 PEs with nearly linear scaling of
energy and performance. On 9 fully-connected layer benchmarks, EIE outperforms CPU, GPU and
mobile GPU by factors of 189×, 13× and 307×, and consumes 24, 000×, 3, 400× and 2, 700× less
energy than CPU, GPU and mobile GPU, respectively.

Chapter 7

Conclusion

Deep neural networks have revolutionized a wide range of AI applications and are changing our
lives. However, deep neural networks are both computationally and memory intensive. Thus they
are difficult to deploy on embedded systems with limited computation resources and power budgets.
To address this problem, we presented methods and hardware for improving the efficiency of deep
learning.

This dissertation focuses on improving the efficiency of deep learning from three aspects: smaller
model size by Deep Compression, higher prediction accuracy by DSD regularization, and fast and
energy efficient inference hardware by EIE acceleration (Figure 7.1). All these aspects share a
common principle: utilizing the sparsity in neural networks for compression, regularization, and
acceleration.

Compression. To achieve smaller models, we proposed Deep Compression, which can significantly
reduce the storage and energy required to run inference on large neural networks. With proper
retraining techniques, model compression doesn’t hurt prediction accuracy. Deep Compression is
a three-stage pipeline. Chapter 3 details the first step of Deep Compression, pruning the model
to remove redundant connections. We also described the retraining method to fully recover the
accuracy with the remaining connections. Model pruning can remove >90% of parameters in fully-
connected layers and 70% of parameters in convolutional layers without loss of accuracy on ImageNet.
This technique was verified on modern neural networks including AlexNet, VGG-16, GoogleNet,
SqueezeNet, ResNet-50, and NeuralTalk. The pruning process learns not only the weights but also
the network connectivity, much as in the development of the human brain [109] [110].

We presented quantization and weight sharing technique to further compresses the DNN model
in Chapter 4. Trained quantization reduces the bit width per parameter. The number of effective
weights is limited by having multiple connections share the same weight, and then fine-tune those
shared weights. As a result, neural network weights can be represented with only 2 ∼ 4 bits, saving
8× ∼ 16× storage compared to a 32-bit floating point, 2× ∼ 4× compared to a 8-bit integer. Finally,

97

CHAPTER 7. CONCLUSION 98

Algorithm

Hardware

Inference Training

Compression
Chapter 3, 4

Acceleration
Chapter 6

Regularization
Chapter 5

Future Work

Sparsity

Figure 7.1: Summary of the thesis.

we applied variable-length coding to further compress the model. Combining the above steps, Deep
Compression reduces the model sizes by 35×, 49×, 22× and 17× for AlexNet, VGG16, Inception-V3
and ResNet-50, respectively, without loss of accuracy on ImageNet.

The insight of Deep Compression is that neural networks are highly tolerant to approximation.
The noisy nature of training data blurs away the need for high precision computation. In fact,
redundant parameters and redundant bits are prone to capturing the noise rather than the intended
pattern. Hardware designers should be aware of this particular characteristic of deep learning
workloads to avoid wasting computation cycles and memory bandwidth. Deep Compression laid the
algorithm foundation for the EIE hardware we designed later.

Regularization. Since the compressed model can achieve the same accuracy as the uncompressed
model, the original sized model should have the capacity to achieve higher accuracy if optimized
properly. In Chapter 5 we proposed the dense-sparse-dense (DSD) training, a new training strategy
that can regularize DNN training and improve the accuracy.

DSD starts by training a dense model, then regularizes this model with sparsity-constrained
optimization, finally increases the model capacity by restoring and retraining the weights. The
final neural network model produced by DSD still has the same architecture and dimensions as the
original dense model, and DSD training doesn’t incur any inference overhead. DSD training changes
the optimization dynamics and improves the accuracy with significant margins. We tested DSD
training to seven mainstream CNNs/RNNs/LSTMs and found consistent performance improvements
for image classification, image captioning and speech recognition tasks.

Acceleration. Deep Compression significantly reduced the memory bandwidth required for
fetching parameters in deep neural networks. However, taking advantage of the compressed DNN
model is a non-trivial task. The compressed model brings an irregular computation pattern that
entails a variety of challenges such as: (i) how to parallelize the computation and do runtime
decompression, rather than having to decompress the model before performing inference; (ii) how

CHAPTER 7. CONCLUSION 99

to deal with sparsity and avoid pointer-chasing; (iii) how to achieve good load-balance given that
different processors have different amounts of non-zero workloads.

In Chapter 6, we systematically addressed these challenges by designing a hardware accelerator
called "Efficient Inference Engine" (EIE) to directly execute the compressed DNN. EIE distributes the
sparse matrix and parallelizes the computation by interleaving matrix rows over multiple processing
elements (PEs). EIE stores the encoded sparse weight matrix W densely in compressed sparse column
(CSC) format and uses a leading non-zero detection circuit to perform only non-zero multiplications.
The codebook from weight sharing is implemented as a lookup table with registers. A FIFO queue
allows each PE to build up a backlog of work, thus evening out load imbalance. EIE fully exploits
the sparse, compressed model and yields significant speedup and energy savings, being 13x faster
and 3,400x more energy-efficient than a GPU for non-batched work.

Future Work. Deep Compression and EIE Accelerator offer useful insights into the special
computational characteristics of deep learning inference, such as strong tolerance for low precision
and the need to support sparse computation. It remains future work to investigate the limit of model
compression: what is the minimum model capacity we need given a task and data set, what is the
minimum amount of computation to achieve targeted accuracy. For a target model size, the product
of the number of parameters and bit-width per parameter is constant, so it will be interesting to
work out the trade-off between the number of parameters and bit-width per parameter that optimizes
accuracy. Similar to the success of SqueezeNet + Deep Compression that produced a network 500×
smaller than AlexNet but with the same accuracy [6], figuring out how to systematically design
efficient neural network architectures before model compression remains a key challenge.

There is also opportunity to generalize these insights of compression beyond inference to training,
and to build efficient hardware for training. The computation requirement for training neural
networks is becoming more demanding with the explosion of big-data. Deep learning researchers take
days or even weeks to train large-scale neural network models, which bottlenecks their productivity.
There are opportunities to improve the training efficiency. For example, generalizing the sparsity
and model compression technique from inference to training, which has the potential to reduce the
communication bandwidth when exchanging the gradients during distributed training. In the future,
we envision that compact and sparse neural networks will be automatically produced at training
time. Sparsity support will exist in both training and inference hardware.

Once we have efficient hardware primitives, we hope to support not only inference but also
training on edge devices. Future AI applications will be customized to each end user. For example,
different users will have a different tone for speech recognition, different sets of friends to do face
clustering, etc. Learning on edge devices will meet such customization demand and grantee privacy
at the same time. However, mobile devices may not be able to hold large training dataset, nor able
to train large models. How to partition the computation between the edge device and the cloud in
an efficient way remains an interesting question.

CHAPTER 7. CONCLUSION 100

Since Moore’s law is slowing down, we are in the post-Moore’s Law world where programmers no
longer get more computation at a constant dollar and power cost every few years. Yet at the same
time, the last ImageNet challenge has ended; we are now in the post-ImageNet era when researchers
in computer vision and artificial intelligence are now solving more complicated AI problems which
require more computation. The clash in supply and demand for computation highlights the need
for algorithm and hardware co-design. Only by tuning the hardware to the application, and mapping
the application to efficient hardware operations will the application performance continue to scale.
More efficient hardware will make AI cheaper and more accessible, not only in the labs but also in
everyone’s lives. We hope the efficient methods and hardware we described in this thesis will open
more space and help democratize AI in the future. Further, we hope our examples of algorithm and
hardware co-design will be useful not only for deep learning but also for other applications.

Bibliography

[1] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1–9, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

[6] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 1MB model
size. arXiv:1602.07360, 2016.

[7] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. arXiv:1412.2306, 2014.

[8] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Ng. Deep speech:
Scaling up end-to-end speech recognition. arXiv, preprint arXiv:1412.5567, 2014.

[9] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,
Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

101

BIBLIOGRAPHY 102

[10] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[12] Build more intelligent apps with machine learning, https://developer.apple.com/machine-
learning.

[13] Guidance: A revolutionary visual sensing system for aerial platforms,
https://www.dji.com/guidance.

[14] Giving cars the power to see, think, and learn, http://www.nvidia.com/object/drive-automotive-
technology.html.

[15] Mark Horowitz. Energy table for 45nm process, Stanford VLSI wiki.

[16] Clément Farabet, Cyril Poulet, Jefferson Y Han, and Yann LeCun. CNP: An fpga-based
processor for convolutional networks. In FPL, 2009.

[17] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, and Yann
LeCun. Neuflow: A runtime reconfigurable dataflow processor for vision. In Computer Vision
and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on,
pages 109–116. IEEE, 2011.

[18] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos Kozyrakis,
and Mark A Horowitz. Convolution engine: balancing efficiency & flexibility in specialized
computing. In ACM SIGARCH Computer Architecture News, volume 41, pages 24–35. ACM,
2013.

[19] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-
learning. In Proceedings of the 19th international conference on Architectural support for
programming languages and operating systems, pages 269–284. ACM, 2014.

[20] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,
Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning supercomputer.
In ACM/IEEE International Symposium on Microarchitecture (MICRO), December 2014.

[21] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng,
Yunji Chen, and Olivier Temam. Shidiannao: shifting vision processing closer to the sensor. In
ISCA, pages 92–104. ACM, 2015.

BIBLIOGRAPHY 103

[22] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State
Circuits, 2016.

[23] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi
Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang. Going deeper with embedded fpga
platform for convolutional neural network. In FPGA, 2016.

[24] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. A dynami-
cally configurable coprocessor for convolutional neural networks. In ACM SIGARCH Computer
Architecture News, volume 38, pages 247–257. ACM, 2010.

[25] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in Neural Information Processing Systems, pages
1135–1143, 2015.

[26] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. International Conference on
Learning Representations, 2016.

[27] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter
Vajda, Manohar Paluri, John Tran, et al. DSD: Dense-sparse-dense training for deep neural
networks. International Conference on Learning Representations, 2017.

[28] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. EIE: Efficient inference engine on compressed deep neural network. In Proceedings of the
43rd International Symposium on Computer Architecture, pages 243–254. IEEE Press, 2016.

[29] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo,
Song Yao, Yu Wang, et al. ESE: Efficient speech recognition engine with sparse LSTM on FPGA.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 75–84. ACM, 2017.

[30] Ling Zhuo and Viktor K. Prasanna. Sparse Matrix-Vector Multiplication on FPGAs. In FPGA,
2005.

[31] J. Fowers and K. Ovtcharov and K. Strauss and E.S. Chung and G. Stitt. A high memory
bandwidth fpga accelerator for sparse matrix-vector multiplication. In FCCM, 2014.

[32] Richard Dorrance and Fengbo Ren and Dejan Marković. A Scalable Sparse Matrix-vector
Multiplication Kernel for Energy-efficient Sparse-blas on FPGAs. In FPGA, 2014.

BIBLIOGRAPHY 104

[33] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456, 2015.

[34] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affor-
dance for direct perception in autonomous driving. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2722–2730, 2015.

[35] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning–based sequence model. Nature methods, 12(10):931, 2015.

[36] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Noscope:
Optimizing neural network queries over video at scale. Proceedings of the VLDB Endowment,
10(11), 2017.

[37] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using
generative models. arXiv preprint arXiv:1703.03208, 2017.

[38] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejan-
dro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative adversarial network. arXiv preprint
arXiv:1609.04802, 2016.

[39] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576, 2015.

[40] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual
manipulation on the natural image manifold. In European Conference on Computer Vision,
pages 597–613. Springer, 2016.

[41] Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement
networks. arXiv preprint arXiv:1707.09405, 2017.

[42] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[43] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. JMLR, 12:2493–2537, 2011.

[44] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.

BIBLIOGRAPHY 105

Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[45] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali
Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning. In
Robotics and Automation (ICRA), 2017 IEEE International Conference on, pages 3357–3364.
IEEE, 2017.

[46] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimiza-
tion with reinforcement learning. arXiv preprint arXiv:1706.04972, 2017.

[47] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[48] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data collection.
The International Journal of Robotics Research, page 0278364917710318, 2016.

[49] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance
analysis of a tensor processing unit. arXiv preprint arXiv:1704.04760, 2017.

[50] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
arXiv preprint arXiv:1409.4842, 2014.

[52] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. AT&T Labs. Available:
http://yann.lecun.com/exdb/mnist, 2010.

[53] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[54] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition. 2009.

[55] Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking
task: Data, models and evaluation metrics. Journal of Artificial Intelligence Research, 47:853–
899, 2013.

[56] wikipedia. Bleu score, https://en.wikipedia.org/wiki/bleu.

BIBLIOGRAPHY 106

[57] John S Garofolo, Lori F Lamel, William M Fisher, Jonathon G Fiscus, and David S Pallett.
Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1. NASA
STI/Recon technical report n, 93, 1993.

[58] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[59] Tensors and dynamic neural networks in python with strong gpu acceleration,
http://www.pytorch.org.

[60] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[61] NVIDIA DIGITS DevBox, https://developer.nvidia.com/devbox.

[62] Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in
deep learning. In Advances in Neural Information Processing Systems, pages 2148–2156, 2013.

[63] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in
Neural Information Processing Systems, pages 598–605. Morgan Kaufmann, 1990.

[64] Babak Hassibi, David G Stork, et al. Second order derivatives for network pruning: Optimal
brain surgeon. Advances in neural information processing systems, pages 164–164, 1993.

[65] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient evaluation. In NIPS, pages 1269–1277,
2014.

[66] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing
neural networks. In Advances in Neural Information Processing Systems, pages 442–450, 2015.

[67] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

[68] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural networks
on cpus. In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop, 2011.

[69] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point optimization of deep convo-
lutional neural networks for object recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, pages 1131–1135. IEEE, 2015.

BIBLIOGRAPHY 107

[70] Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design
using weights+ 1, 0, and- 1. In Signal Processing Systems (SiPS), 2014 IEEE Workshop on,
pages 1–6. IEEE, 2014.

[71] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[72] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen.
Compressing neural networks with the hashing trick. arXiv preprint arXiv:1504.04788, 2015.

[73] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient transfer learning. International Conference on Learning
Representations, 2017.

[74] Sajid Anwar and Wonyong Sung. Compact deep convolutional neural networks with coarse
pruning. arXiv preprint arXiv:1610.09639, 2016.

[75] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. arXiv preprint arXiv:1611.05128, 2016.

[76] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. arXiv preprint arXiv:1707.06168, 2017.

[77] Sharan Narang, Gregory Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in
recurrent neural networks. arXiv preprint arXiv:1704.05119, 2017.

[78] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient DNNs. In
Advances In Neural Information Processing Systems, pages 1379–1387, 2016.

[79] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. In Advances in Neural Information Processing Systems, pages
2074–2082, 2016.

[80] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[81] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. Learning efficient convolutional networks through network slimming. arXiv preprint
arXiv:1708.06519, 2017.

[82] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. arXiv preprint arXiv:1707.06342, 2017.

[83] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional
neural networks. J. Emerg. Technol. Comput. Syst., 13(3):32:1–32:18, February 2017.

BIBLIOGRAPHY 108

[84] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally.
Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

[85] Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. Accelerating deep convolutional
networks using low-precision and sparsity. In Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on, pages 2861–2865. IEEE, 2017.

[86] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization.
arXiv preprint arXiv:1612.01064, 2016.

[87] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, pages 3105–3113, 2015.

[88] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. arXiv preprint arXiv:1603.05279,
2016.

[89] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[90] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized neural networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[91] Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural networks using
logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016.

[92] Facebook Developer Conference 2017. Delivering Real-Time AI In the Palm of Your
Hand. https://developers.facebook.com/videos/f8-2017/delivering-real-time-ai-in-the-palm-of-
your-hand at 11’30”.

[93] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network
quantization: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044,
2017.

[94] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15:1929–1958,
2014.

[95] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In ICML, pages 1058–1066, 2013.

BIBLIOGRAPHY 109

[96] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[97] Xiaojie Jin, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Training skinny deep neural
networks with iterative hard thresholding methods. arXiv preprint arXiv:1607.05423, 2016.

[98] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan
Xie. Prime: A novel processing-in-memory architecture for neural network computation in
reram-based main memory. In Proceedings of the 43rd International Symposium on Computer
Architecture, pages 27–39. IEEE Press, 2016.

[99] Ali Shafiee and et al. ISAAC: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ISCA, 2016.

[100] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin Zhong. Redeye: analog
convnet image sensor architecture for continuous mobile vision. In Proceedings of the 43rd
International Symposium on Computer Architecture, pages 255–266. IEEE Press, 2016.

[101] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and
Andreas Moshovos. Cnvlutin: ineffectual-neuron-free deep neural network computing. In
Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on,
pages 1–13. IEEE, 2016.

[102] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu
Lee, Jose Migueĺ Hernández-Lobato, Gu-Yeon Wei, and David Brooks. Minerva: Enabling
low-power, highly-accurate deep neural network accelerators. ISCA, 2016.

[103] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen,
and Yunji Chen. Cambricon-x: An accelerator for sparse neural networks. In Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1–12. IEEE,
2016.

[104] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkate-
san, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally. Scnn: An
accelerator for compressed-sparse convolutional neural networks. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, pages 27–40. ACM, 2017.

[105] Patrick Judd, Alberto Delmas, Sayeh Sharify, and Andreas Moshovos. Cnvlutin2: Ineffectual-
activation-and-weight-free deep neural network computing. arXiv preprint arXiv:1705.00125,
2017.

[106] Sicheng Li, Wei Wen, Yu Wang, Song Han, Yiran Chen, and Hai Li. An fpga design framework
for cnn sparsification and acceleration. In Field-Programmable Custom Computing Machines
(FCCM), 2017 IEEE 25th Annual International Symposium on, pages 28–28. IEEE, 2017.

BIBLIOGRAPHY 110

[107] NVIDIA. NVIDIA GPU Technology Conference (GTC) 2017 Keynote,
https://youtu.be/hpxtsvu1huq at 2:00:40.

[108] NEC. NEC accelerates machine learning for vector computers,
http://www.nec.com/en/press/201707/images/0302-01-01.pdf.

[109] JP Rauschecker. Neuronal mechanisms of developmental plasticity in the cat’s visual system.
Human neurobiology, 3(2):109–114, 1983.

[110] Christopher A Walsh. Peter huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.

[111] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Advances in Neural Information Processing Systems, pages 3320–3328,
2014.

[112] Yangqing Jia, et al. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[113] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[114] NVIDIA. Whitepaper: GPU-based deep learning inference: A performance and power analysis.

[115] NVIDIA. Technical brief: NVIDIA jetson TK1 development kit bringing GPU-accelerated
computing to embedded systems.

[116] Jan Van Leeuwen. On the construction of huffman trees. In ICALP, pages 382–410, 1976.

[117] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on information theory, 23(3):337–343, 1977.

[118] Glen G. Langdon. Arithmetic coding. IBM J. Res. Develop, 23:149–162, 1979.

[119] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[120] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi
Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform for convolutional
neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 26–35. ACM, 2016.

[121] Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural networks.
arXiv preprint arXiv:1507.06149, 2015.

BIBLIOGRAPHY 111

[122] Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alex Smola, Le Song, and
Ziyu Wang. Deep fried convnets. arXiv preprint arXiv:1412.7149, 2014.

[123] Maxwell D Collins and Pushmeet Kohli. Memory bounded deep convolutional networks. arXiv
preprint arXiv:1412.1442, 2014.

[124] Yangqing Jia. BVLC caffe model zoo. http://caffe.berkeleyvision.org/model_zoo.

[125] Facebook. Facebook.ResNet.Torch. https://github.com/facebook/fb.resnet.torch, 2016.

[126] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Advances in neural information processing systems, pages 2933–2941,
2014.

[127] Chii-Ruey Hwang. Simulated annealing: theory and applications. Acta Applicandae Mathemat-
icae, 12(1):108–111, 1988.

[128] Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint arXiv:1511.06422,
2015.

[129] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.

[130] Richard Wilson Vuduc. Automatic performance tuning of sparse matrix kernels. PhD thesis,
UC Berkeley, 2003.

[131] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0: A tool to
model large caches. HP Laboratories, pages 22–31, 2009.

[132] Victor Eijkhout. LAPACK working note 50: Distributed sparse data structures for linear
algebra operations. 1992.

[133] Andrew Lavin. Fast algorithms for convolutional neural networks. arXiv:1509.09308, 2015.

[134] Steven K Esser and et al. Convolutional networks for fast, energy-efficient neuromorphic
computing. arXiv:1603.08270, 2016.

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Contribution and Thesis Outline

	Background
	Neural Network Architectures
	Datasets
	Deep Learning Frameworks
	Related Work
	Compressing Neural Networks
	Regularizing Neural Networks
	Specialized Hardware for Neural Networks

	Pruning Deep Neural Networks
	Introduction
	Pruning Methodology
	Hardware Efficiency Considerations
	Experiments
	Pruning for MNIST
	Pruning for ImageNet
	Pruning RNNs and LSTMs

	Speedup and Energy Efficiency
	Discussion
	Conclusion

	Trained Quantization and Deep Compression
	Introduction
	Trained Quantization and Weight Sharing
	Storing the Meta Data
	Variable-Length Coding
	Experiments
	Discussion
	Conclusion

	DSD: Dense-Sparse-Dense Training
	Introduction
	DSD Training
	Experiments
	DSD for CNN
	DSD for RNN

	Significance of DSD Improvements
	Reducing Training Time
	Discussion
	Conclusion

	EIE: Efficient Inference Engine for Sparse Neural Network
	Introduction
	Parallelization on Sparse Neural Network
	Computation
	Representation
	Parallelization

	Hardware Implementation
	Evaluation Methodology
	Experimental Results
	Performance
	Energy
	Design Space Exploration

	Discussion
	Partitioning
	Scalability
	Flexibility
	Comparison

	Conclusion

	Conclusion
	Bibliography

