Efficient one and multiple time-step Monte Carlo simulation of the SABR model

Alvaro Leitao, Lech A. Grzelak and Cornelis W. Oosterlee

Paris - February 7, 2019

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

Paris - February 7, 2019 1/33

- Generate samples from (sampling) stochastic processes.
- The standard approach to sample from a given distribution, Z:

$$F_Z(Z) \stackrel{\mathrm{d}}{=} U$$
 thus $z_n = F_Z^{-1}(u_n)$,

- F_Z is the cumulative distribution function (CDF).
- $\stackrel{d}{=}$ means equality in the distribution sense.
- $U \sim \mathcal{U}([0,1])$ and u_n is a sample from $\mathcal{U}([0,1])$.
- The computational cost depends on inversion F_Z^{-1} .

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

SABR model

- 2 Distribution of the SABR's integrated variance
- One-step SABR simulation
- 4 Multiple time-step SABR simulation

(B)

SABR model

• The formal definition of the SABR model [6] reads

$$dS(t) = \sigma(t)S^{\beta}(t)dW_{S}(t), \quad S(0) = S_{0} \exp(rT),$$

$$d\sigma(t) = \alpha\sigma(t)dW_{\sigma}(t), \qquad \sigma(0) = \sigma_{0}.$$

- $S(t) = \overline{S}(t) \exp(r(T t))$ is the forward price of the underlying $\overline{S}(t)$, with r an interest rate, S_0 the spot price and T the maturity.
- σ(t) is the stochastic volatility.
- $W_f(t)$ and $W_{\sigma}(t)$ are two correlated Brownian motions.
- SABR parameters:
 - The volatility of the volatility, $\alpha > 0$.
 - The CEV elasticity, $0 \le \beta \le 1$.
 - The correlation coefficient, ρ ($W_f W_\sigma = \rho t$).

くロッ くぼう くほう くほう 二日

"Exact" simulation of SABR model

Based on [7], the conditional cumulative distribution function (CDF) of S(t) in a generic interval [s, t], 0 ≤ s ≤ t ≤ T:

$$Pr\left(S(t) \leq \mathcal{K}|S(s) > 0, \sigma(s), \sigma(t), \int_{s}^{t} \sigma^{2}(z) \mathrm{d}z\right) = 1 - \chi^{2}(s; b, c),$$

where

$$\begin{aligned} \mathbf{a} &= \frac{1}{\nu(t)} \left(\frac{S(s)^{1-\beta}}{(1-\beta)} + \frac{\rho}{\alpha} \left(\sigma(t) - \sigma(s) \right) \right)^2 \\ \mathbf{c} &= \frac{K^{2(1-\beta)}}{(1-\beta)^2 \nu(t)}, \\ \mathbf{b} &= 2 - \frac{1-2\beta - \rho^2 (1-\beta)}{(1-\beta)(1-\rho^2)}, \\ \nu(t) &= (1-\rho^2) \int_s^t \sigma^2(z) \mathrm{d}z, \end{aligned}$$

and $\chi^2(x; \delta, \lambda)$ is the non-central chi-square CDF. • Exact in the case of $\rho = 0$, an *approximation* otherwise, A = 0.

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

Simulation of SABR model

• Simulation of the volatility process, $\sigma(t)|\sigma(s)$:

$$\sigma(t) \sim \sigma(s) \exp\left(lpha \hat{W}_{\sigma}(t-s) - rac{1}{2}lpha^2(t-s)
ight),$$

where $\hat{W}_{\sigma}(t)$ is a independent Brownian motion.

- Simulation of the integrated variance process, $\int_{s}^{t} \sigma^{2}(z) dz | \sigma(t), \sigma(s)$.
- Simulation of the forward process, $S(t)|S(s), \int_s^t \sigma^2(z) dz, \sigma(t), \sigma(s)$ by inverting the CDF.
- The conditional integrated variance is a challenging part.
- We propose:
 - Approximate the conditional distribution by using Fourier techniques and copulas.
 - Marginal distribution based on COS method [4].
 - Conditional distribution based on copulas.
 - Improvements in performance and efficiency.

Distribution of the integrated variance

- Not available.
- For notational convenience, we will use $Y(s,t) := \int_{s}^{t} \sigma^{2}(z) dz$.
- Discrete equivalent, M monitoring dates:

$$Y(s,t) := \int_s^t \sigma^2(z) dz \approx \sum_{j=1}^M \Delta t \sigma^2(t_j) =: \hat{Y}(s,t)$$

where $t_j = s + j\Delta t$, $j = 1, \ldots, M$ and $\Delta t = \frac{t-s}{M}$.

• In the logarithmic domain, we aim to find an approximation of $F_{\log \hat{Y} \mid \log \sigma(s)}$:

$$F_{\log \hat{Y}|\log \sigma(s)}(x) = \int_{-\infty}^{x} f_{\log \hat{Y}|\log \sigma(s)}(y) \mathrm{d}y,$$

where $f_{\log \hat{Y} \mid \log \sigma(s)}$ is the probability density function (PDF) of $\log \hat{Y}(s, t) \mid \log \sigma(s)$.

PDF of the integrated variance

- Equivalent: Characteristic function and inversion (Fourier pair).
- Recursive procedure to derive an approximated $\phi_{\log \hat{Y} \mid \log \sigma(s)}$.
- We start by defining the logarithmic increment of $\sigma^2(t)$:

$$R_j = \log\left(\frac{\sigma^2(t_j)}{\sigma^2(t_{j-1})}\right), j = 1, \dots, M.$$

• $\sigma^2(t_j)$ can be written:

$$\sigma^2(t_j) = \sigma^2(t_0) \exp(R_1 + R_2 + \cdots + R_j).$$

• We introduce the iterative process

$$Y_1 = R_M,$$

 $Y_j = R_{M+1-j} + Z_{j-1}, \quad j = 2, ..., M,$

with
$$Z_j = \log(1 + \exp(Y_j))$$
.

A. Leitao & Lech Grzelak & Kees Oosterlee

PDF of the integrated variance (cont.)

•
$$\hat{Y}(s, t)$$
 can be expressed:

$$\hat{Y}(s,t) = \sum_{i=1}^{M} \sigma^2(t_i) \Delta t = \Delta t \sigma^2(s) \exp(Y_M).$$

• And, we compute $\phi_{\log \hat{Y} \mid \log \sigma(s)}(u)$, as follows:

$$\phi_{\log \hat{Y}|\log \sigma(s)}(u) = \exp\left(iu\log(\Delta t\sigma^2(s))\right)\phi_{Y_M}(u)$$

• By applying COS method [4] in the support $[\hat{a}, \hat{b}]$:

$$f_{\log \hat{Y}|\log \sigma(s)}(x) \approx \frac{2}{\hat{b}-\hat{a}} \sum_{k=0}^{N-1'} C_k \cos\left((x-\hat{a}) \frac{k\pi}{\hat{b}-\hat{a}}\right),$$

with

$$C_{k} = \Re\left(\phi_{\log \hat{Y}|\log \sigma(s)}\left(\frac{k\pi}{\hat{b}-\hat{a}}\right)\exp\left(-i\frac{\hat{a}k\pi}{\hat{b}-\hat{a}}\right)\right).$$

A. Leitao & Lech Grzelak & Kees Oosterlee

CDF of the integrated variance

• The CDF of log $\hat{Y}(s, t) | \log \sigma(s)$:

$$\begin{aligned} F_{\log \hat{Y}|\log \sigma(s)}(x) &= \int_{-\infty}^{x} f_{\log \hat{Y}|\log \sigma(s)}(y) \mathrm{d}y \\ &\approx \int_{\hat{a}}^{x} \frac{2}{\hat{b} - \hat{a}} \sum_{k=0}^{N-1'} C_k \cos\left((y - \hat{a}) \frac{k\pi}{\hat{b} - \hat{a}}\right) \mathrm{d}y. \end{aligned}$$

- The efficient computation of $\phi_{\log \hat{Y} \mid \log \sigma(s)}$ is crucial for the performance of the whole procedure (specially, one-step case).
- The inversion of $F_{\log \hat{Y} \mid \log \sigma(s)}$ is relatively expensive (unafforable in the multi-step case).

Copula-based simulation of $\int_{s}^{t} \sigma^{2}(z) dz | \sigma(t), \sigma(s)$

- In order to apply copulas, we need (logarithmic domain):
 - $\models F_{\log \hat{Y} \mid \log \sigma(s)}.$
 - $\blacktriangleright F_{\log \sigma(t)|\log \sigma(s)}.$
 - Correlation between log Y(s, t) and log $\sigma(t)$.
- The distribution of $\log \sigma(t) | \log \sigma(s)$ is known ($\sigma(t)$ follows a log-normal distribution).
- Approximated Pearson's correlation coefficient:

$$\mathcal{P}_{\log Y, \log \sigma(t)} \approx rac{t^2 - s^2}{2\sqrt{\left(rac{1}{3}t^4 + rac{2}{3}ts^3 - t^2s^2
ight)}}.$$

• For some copulas, like Archimedean, Kendall's au is required:

$$\mathcal{P} = \sin\left(\frac{\pi}{2}\tau\right).$$

A. Leitao & Lech Grzelak & Kees Oosterlee

・ロト ・ 同ト ・ ヨト ・ ヨト

Sampling $\int_{s}^{t} \sigma^{2}(z) dz | \sigma(t), \sigma(s)$: Steps

- Determine $F_{\log \sigma(t) \mid \log \sigma(s)}$ and $F_{\log \hat{Y} \mid \log \sigma(s)}$.
- 2 Determine the correlation between log Y(s, t) and log $\sigma(t)$.
- Generate correlated uniform samples, $U_{\log \sigma(t) | \log \sigma(s)}$ and $U_{\log \hat{\gamma} | \log \sigma(s)}$ by means of copula.
- From $U_{\log \sigma(t) | \log \sigma(s)}$ and $U_{\log \hat{Y} | \log \sigma(s)}$ invert original marginal distributions.
- **5** The samples of $\sigma(t)|\sigma(s)$ and $Y(s,t) = \int_{s}^{t} \sigma^{2}(z) dz |\sigma(t), \sigma(s)$ are obtained by taking exponentials.

One time-step simulation of the SABR model

- s = 0 and t = T, with T the maturity time.
- The use is restricted to price European options up to T = 2.
- $\log \sigma(s)$ becomes constant.
- $F_{\log \sigma(t) \mid \log \sigma(s)}$ and $F_{\log \hat{Y} \mid \log \sigma(s)}$ turn into $F_{\log \sigma(T)}$ and $F_{\log \hat{Y}(T)}$.
- The computation of $\phi_{\log \hat{Y}(T)}$ is much simpler and very fast.
- The approximated Pearson's coefficient results in a constant value:

$$\mathcal{P}_{\log Y(T),\log\sigma(T)} \approx \frac{T^2}{2\sqrt{\frac{1}{3}T^4}} = \frac{\sqrt{3}}{2}.$$

A. Leitao & Lech Grzelak & Kees Oosterlee

イロト イポト イヨト イヨト 二日

Approximated correlation

Figure: Pearson's coefficient: Empirical (surface) vs. approximation (red grid)

Copula analysis

- Based on the one-step simulation, a copula analysis is carried out.
- Gaussian, Student t and Archimedean (Clayton, Frank and Gumbel).
- A goodness-of-fit (GOF) for copulas needs to be evaluated.
- Archimedean: graphic GOF based on Kendall's processes.
- Generic GOF based on the so-called Deheuvels or empirical copula.

	S ₀	σ_0	α	β	ρ	Т
Set I	1.0	0.5	0.4	0.7	0.0	2
Set II	0.05	0.1	0.4	0.0	-0.8	0.5
Set III	0.04	0.4	0.8	1.0	-0.5	2

Table: Data sets.

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

Paris - February 7, 2019 15 / 33

・ロト ・ 同ト ・ ヨト ・ ヨト

GOF - Archimedean

Figure: Archimedean GOF test: $\hat{\lambda}(u)$ vs. empirical $\lambda(u)$.

	Clayton	Clayton Frank	
Set I	$1.3469 imes10^{-3}$	2.9909×10^{-4}	$5.1723 imes10^{-5}$
Set II	$1.0885 imes10^{-3}$	2.1249×10^{-4}	$8.4834 imes10^{-5}$
Set III	$2.1151 imes10^{-3}$	7.5271×10^{-4}	2.6664×10^{-4}

Table: MSE of $\hat{\lambda}(u) - \lambda(u)$.

A. Leitao & Lech Grzelak & Kees Oosterlee

< E

э

	Gaussian	Student t ($\nu = 5$)	Gumbel
Set I	$5.0323 imes10^{-3}$	$5.0242 imes 10^{-3}$	$3.8063 imes 10^{-3}$
Set II	$3.1049 imes 10^{-3}$	$3.0659 imes10^{-3}$	$4.5703 imes10^{-3}$
Set III	$5.9439 imes10^{-3}$	$6.0041 imes10^{-3}$	4.3210×10^{-3}

Table: Generic GOF: D_2 .

- The three copulas perform very similarly.
- For longer maturities: Gumbel performs better.
- The Student t copula is discarded: very similar to the Gaussian copula and the calibration of the ν parameter adds extra complexity.
- As a general strategy, the Gumbel copula is the most robust choice.
- With short maturities, the Gaussian copula may be a satisfactory alternative.

・ロト ・ 同ト ・ ヨト ・ ヨト

Pricing European options

• The strike values K_i are chosen following the expression:

$$egin{aligned} &\mathcal{K}_i(\mathcal{T}) = \mathcal{S}(0) \exp(0.1 imes \mathcal{T} imes \delta_i), \ &\delta_i = -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5. \end{aligned}$$

- Forward asset, S(t): enhanced inversion by Chen et al. [3].
- Martingale correction:

$$egin{aligned} S(t) &= S(t) - rac{1}{n} \sum_{i=1}^n S_i(t) + \mathbb{E}[S(t)]_i \ &= S(t) - rac{1}{n} \sum_{i=1}^n S_i(t) + S_0, \end{aligned}$$

A. Leitao & Lech Grzelak & Kees Oosterlee

< □ > < □ > < □ > < □ > < □ > < □ >

Pricing European options - Convergence and time

	n = 1000	n = 10000	n = 100000	n = 1000000
		Gaussia	n (Set I, <i>K</i> 1)	
Error	519.58	132.39	37.42	16.23
Time	0.3386	0.3440	0.3857	0.5733
		Gumbe	I (Set I, <i>K</i> ₁)	
Error	151.44	-123.76	34.14	11.59
Time	0.3492	0.3561	0.3874	0.6663

Table: Convergence in number of samples, *n*: error (basis points) and execution time (*sec*.).

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

Pricing European options - Implied volatilities

Strikes	K_1	K_2	K_3	K_4	K_5	K_6	K_7
			Set I (Re	ference: Ant	tonov [1])		
Hagan	55.07	52.34	50.08	N/A	47.04	46.26	45.97
MC	23.50	21.41	19.38	N/A	16.59	15.58	14.63
Gaussian	16.23	20.79	24.95	N/A	33.40	37.03	40.72
Gumbel	11.59	15.57	19.12	N/A	25.41	28.66	31.79
			Set II (F	Reference: k	(orn [8])		
Hagan	-558.82	-492.37	-432.11	-377.47	-327.92	-282.98	-242.22
MC	5.30	6.50	7.85	9.32	10.82	12.25	13.66
Gaussian	9.93	9.98	10.02	10.20	10.57	10.73	11.04
Gumbel	-9.93	-9.38	-8.94	-8.35	-7.69	-6.83	-5.79
			Set III (Re	eference: M	C Milstein)		
Hagan	287.05	252.91	220.39	190.36	163.87	141.88	126.39
Gaussian	16.10	16.76	16.62	15.22	13.85	12.29	10.67
Gumbel	6.99	3.79	0.67	-2.27	-5.57	-9.79	-14.06

Table: Implied volatility: errors in basis points.

- One-step SABR simulation is a fast alternative to Hagan formula.
- Overcomes the known issues, like low strikes and high volatilities.
- For longer maturities and more complex options: multiple time-step

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

Multiple time-step simulation of the SABR model

- We denote it *mSABR* simulation method (scheme).
- In intermediate steps, $\phi_{\log \hat{Y} \mid \log \sigma(s)}$ becomes "stochastic".
- $f_{\log \hat{Y} \mid \log \sigma(s)}$ needs to be computed for each sample of $\log \sigma(s)$.
- Consequently, the inversion of $F_{\log \hat{Y} \mid \log \sigma(s)}$ is unaffordable $(n \uparrow\uparrow)$.
- Solution: Stochastic Collocation Monte Carlo (SCMC) sampler [5].

$$y_n|v_n \approx g_{L_{\hat{Y}},L_{\sigma}}(x_n) = \sum_{i=1}^{L_{\hat{Y}}} \sum_{j=1}^{L_{\sigma}} F_{\log \hat{Y}|\log \sigma(s)=v_j}^{-1}(F_X(x_i))\ell_i(x_n)\ell_j(v_n),$$

where x_n are the samples from the *cheap variable*, X, and v_n the given samples of $\log \sigma(s)$. x_i and v_j are the *collocation points* of X and $\log \sigma(s)$, respectively. ℓ_i and ℓ_j are the Lagrange polynomials defined by

$$\ell_i(x_n) = \prod_{k=1, k \neq i}^{L_{\hat{Y}}} \frac{x_n - x_k}{x_i - x_k}, \quad \ell_j(v_n) = \prod_{k=1, k \neq j}^{L_{\sigma}} \frac{v_n - v_k}{v_i - v_k}.$$

A. Leitao & Lech Grzelak & Kees Oosterlee

Paris - February 7, 2019

Application of 2D SCMC to $F_{\log \hat{Y} \mid \log \sigma(s)}$

Samples	Without SCMC	With SCMC				
		$L_{\hat{Y}} = L_{\sigma} = 3$	$L_{\hat{Y}} = L_{\sigma} = 7$	$L_{\hat{Y}} = L_{\sigma} = 11$		
100	1.0695	0.0449	0.0466	0.0660		
10000	16.3483	0.0518	0.0588	0.0798		
1000000	1624.3019	0.2648	0.5882	1.0940		

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

Paris - February 7, 2019

mSABR method - Experiments

- The strike values K_i are chosen following the expression: $K_i(T) = S(0) \exp(0.1 \times T \times \delta_i),$ $\delta_i = -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5.$
- Forward asset, S(t): enhanced inversion by Chen et al. [3].
 Martingale correction:

$$S(t) = S(t) - \frac{1}{n} \sum_{i=1}^{n} S_i(t) + S_0,$$

New data sets:

	S_0	σ_0	α	β	ρ	Т
Set I [5]	0.5	0.5	0.4	0.5	0.0	4
Set II [3]	0.04	0.2	0.3	1.0	-0.5	5
Set III [1]	1.0	0.25	0.3	0.6	-0.5	20
Set IV [2]	0.0056	0.011	1.080	0.167	0.999	1

Table: Data sets.

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

mSABR method - Convergence test I

• Convergence in number of time-steps, m: Antonov vs. mSABR. Set I.

Strikes	K_1	K_2	K ₃	K_4	K_5	K_6	<i>K</i> ₇
Antonov	73.34%	71.73%	70.17%	N/A	67.23%	65.87%	64.59%
m = T/4	73.13%	71.75%	70.41%	69.11%	67.85%	66.64%	65.48%
Error(bp)	-21.51	2.54	24.38	N/A	61.71	76.66	89.26
m = T/2	73.30%	71.78%	70.29%	68.86%	67.49%	66.17%	64.93%
Error(bp)	-4.12	4.94	12.71	N/A	25.48	30.40	34.73
m = T	73.25%	71.67%	70.14%	68.66%	67.24%	65.89%	64.62%
Error(bp)	-9.56	-5.93	-2.79	N/A	0.92	2.21	3.17
m = 2T	73.32%	71.71%	70.16%	68.65%	67.22%	65.85%	64.55%
Error(bp)	-2.08	-1.56	-1.20	N/A	-1.65	-2.35	-3.36
m = 4T	73.34%	71.73%	70.18%	68.67%	67.24%	65.87%	64.58%
Error(bp)	0.15	0.58	0.78	N/A	0.43	0.04	-0.48

mSABR method - Convergence test II

• Convergence in number of samples, n: Antonov vs. mSABR. Set I.

Strikes	<i>K</i> 1	K ₂	K2	K,	Kr	Ke	K-7
Antonov	73.34%	71.73%	70.17%	N/A	67.23%	65.87%	64.59%
$n = 10^2$	67.29%	65.55%	63.84%	62.20%	60.63%	59.01%	57.65%
RE	$8.24 imes 10^{-2}$	8.61×10^{-2}	$9.01 imes 10^{-2}$	N/A	$9.82 imes 10^{-2}$	$1.04 imes 10^{-1}$	1.07×10^{-1}
$n = 10^4$	73.41%	71.87%	70.36%	68.91%	67.51%	66.19%	64.94%
RE	$9.65 imes 10^{-4}$	$1.94 imes 10^{-3}$	$2.75 imes 10^{-3}$	N/A	$4.08 imes 10^{-3}$	$4.93 imes 10^{-3}$	$5.48 imes 10^{-3}$
$n = 10^{6}$	73.34%	71.73%	70.18%	68.67%	67.24%	65.87%	64.58%
RE	$2.04 imes 10^{-5}$	8.08×10^{-5}	$1.11 imes 10^{-4}$	N/A	$6.39 imes 10^{-5}$	$6.07 imes 10^{-6}$	$7.43 imes 10^{-5}$

mSABR method - Stability in ρ

• Implied volatility, varying ρ : Monte Carlo (MC) vs. mSABR. Set II.

Strikes	K_1	K ₂	K ₃	K_4	K_5	K_6	<i>K</i> ₇
				$\rho = -0.5$			
MC	22.17%	21.25%	20.38%	19.57%	18.88%	18.33%	17.95%
mSABR	22.21%	21.28%	20.39%	19.58%	18.88%	18.32%	17.94%
Error(bp)	3.59	2.86	1.78	0.95	-0.19	-0.96	-1.10
				$\rho = 0.0$			
MC	21.35%	20.96%	20.71%	20.63%	20.71%	20.96%	21.34%
mSABR	21.35%	20.95%	20.69%	20.60%	20.68%	20.93%	21.32%
Error(bp)	0.04	-1.04	-2.51	-3.02	-3.33	-3.19	-2.56
				ho = 0.5			
MC	19.66%	20.04%	20.61%	21.34%	22.20%	23.14%	24.16%
mSABR	19.59%	19.96%	20.54%	21.28%	22.15%	23.11%	24.11%
Error(bp)	-6.93	-7.36	-6.77	-5.53	-4.35	-3.76	-4.05

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

mSABR method - Performance

• But, is it worth to use the mSABR method?

Error	$< 100 {\rm \ bp}$	< 50 bp	< 25 bp	< 10 bp
MC Euler	6.85(200)	10.71(300)	27.42(800)	42.90(1200)
Y-Euler	2.18(4)	6.55(16)	11.85(32)	45.12(128)
Y-trpz	2.17(3)	4.24(8)	7.25(16)	14.47(32)
mSABR	3.46(1)	2.98(2)	3.72(3)	4.89(4)

Table: Execution times and time-steps, *m* (parentheses).

Error	$< 100 {\rm \ bp}$	< 50 bp	< 25 bp	$< 10 {\rm \ bp}$
MC Euler	1.98	3.59	7.37	8.77
Y-Euler	0.63	2.19	3.18	9.22
Y-trpz	0.62	1.42	1.94	2.95

Table: Speedups provided by the mSABR method.

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

◆ □ → ◆ ■ → ◆ ■ → ■ - つ Q ○
Paris - February 7, 2019 27 / 33

mSABR method - Pricing barrier options

- The up-and-out call option is considered here
- The price, with the barrier level, B, $B > S_0$, $B > K_i$, reads:

$$\mathcal{V}_i(\mathcal{K}_i, \mathcal{B}, \mathcal{T}) = \exp\left(-r\mathcal{T}\right) \mathbb{E}\left[(S(\mathcal{T}) - \mathcal{K}_i) \mathbb{1}(\max_{0 < t_k \leq \mathcal{T}} S(t_k) > \mathcal{B}) \right],$$

where t_k are the times where the barrier condition is checked.

- Setting: $n = 10^6$ and m = 4T.
- We define the mean squared error (MSE) as

$$MSE = \frac{1}{7} \sum_{i=1}^{7} \left(V_i^{MC}(K_i, B, T) - V_i^{mSABR}(K_i, B, T) \right)^2$$

where $V_i^{MC}(K_i, B, T)$ and $V_i^{mSABR}(K_i, B, T)$ are the barrier option prices provided by standard Monte Carlo method and by the mSABR method, respectively.

A. Leitao & Lech Grzelak & Kees Oosterlee

Paris - February 7, 2019 28 / 33

mSABR method - Pricing barrier options

• Pricing barrier options with mSABR: $V_i(K_i, B, T) \times 100$. Set II:

Strikes	К1	K ₂	K ₃	K ₄	K ₅	K ₆	K ₇			
-	B = 0.08									
MC	1.1702	0.9465	0.7268	0.5215	0.3423	0.1996	0.0987			
mSABR	1.1724	0.9486	0.7285	0.5226	0.3428	0.1997	0.0986			
MSE	$1.8910 imes 10^{-10}$									
-	B = 0.1									
MC	1.3099	1.0766	0.8462	0.6290	0.4367	0.2794	0.1626			
mSABR	1.3092	1.0761	0.8456	0.6282	0.4355	0.2782	0.1618			
MSE	$7.5542 imes 10^{-11}$									
	B = 0.12									
MC	1.3521	1.1168	0.8841	0.6644	0.4695	0.3093	0.1891			
mSABR	1.3518	1.1166	0.8838	0.6639	0.4686	0.3080	0.1880			
MSE	6.3648×10^{-11}									

• Pricing barrier options with mSABR: $V_i(K_i, B, T) \times 100$. Set III:

Strikes	κ_1	K_2	K3	K4	K5	K ₆	K ₇		
				B = 2.0					
MC	29.1174	23.4804	17.2273	10.7825	5.0203	1.1750	0.0036		
mSABR	29.2346	23.5828	17.3086	10.8327	5.0385	1.1805	0.0036		
MSE	4.8146×10^{-7}								
	B = 2.5								
MC	41.3833	34.5497	26.8311	18.6089	10.7281	4.4893	0.9434		
mSABR	41.3394	34.5097	26.7948	18.5747	10.6943	4.4546	0.9320		
MSE	1.2131×10^{-7}								
	B = 3.0								
MC	48.5254	41.1652	32.7980	23.7807	14.9344	7.5364	2.6692		
mSABR	48.5008	41.1515	32.7888	23.7655	14.9097	7.5117	2.6549		
MSE	3.6201 × 10 ⁻⁸ < □ ▶ < ∃ ▶ < ≧ ▶ < ≧ ▶								
1 1 0 12 2	S	E .(C)					7 0010		

A. Leitao & Lech Grzelak & Kees Oosterlee

Paris - February 7, 2019

mSABR method - Negative interest rates

• The mSABR method in combination with the shifted SABR model: $dS(t) = \sigma(t)(S(t) + \theta)^{\beta} dW_{S}(t),$ $S(0) = (S_{0} + \theta) \exp(rT),$

where $\theta > 0$ is a displacement, or shift, in the underlying.

• Setting: $n = 10^6$, m = 4T and $\theta = 0.02$.

Conclusions

- We propose an efficient SABR simulation based on Fourier and copula techniques.
- The one-step SABR is a fast alternative to Hagan formula for short maturities.
- Overcomes the known issues of Hagan's expression.
- When longer maturities and/or more involved options are considered, multi-step version.
- High accuracy with very few number of time-steps, even in the context of negative interest rates.
- Good balance between accuracy and computational cost.

Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee. On a one time-step Monte Carlo simulation approach of the SABR model: application to European options.

Applied Mathematics and Computation, 293:461–479, 2017.

Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee. On an efficient multiple time step Monte Carlo simulation of the SABR model. *Quantitative Finance*, 17(10):1549–1565, 2017.

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

References

Alexandre Antonov, Michael Konikov, and Michael Spector.

SABR spreads its wings. Risk Magazine, pages 58–63, August 2013.

Alexandre Antonov, Michael Konikov, and Michael Spector. The free boundary SABR: natural extension to negative rates. *Risk Magazine*, pages 58–63, August 2015.

Bin Chen, Cornelis W. Oosterlee, and Hans van der Weide. A low-bias simulation scheme for the SABR stochastic volatility model. International Journal of Theoretical and Applied Finance. 15(2):1250016–1 – 1250016–37. 2012.

Fang Fang and Cornelis W. Oosterlee.

A novel pricing method for European options based on Fourier-cosine series expansions. *SIAM Journal on Scientific Computing*, 31:826–848, 2008.

The stochastic collocation Monte Carlo sampler: highly efficient sampling from "expensive" distributions. *Quantitative Finance*, 19(2):339–356, 2019.

Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski, and Diana E. Woodward.

Managing smile risk.

Wilmott Magazine, pages 84-108, 2002.

Othmane Islah.

Solving SABR in exact form and unifying it with LIBOR market model, 2009. Available at SSRN: http://ssrn.com/abstract=1489428.

Ralf Korn and Songyin Tang.

Exact analytical solution for the normal SABR model. *Wilmott Magazine*, 2013(66):64–69, 2013.

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

Acknowledgments

More: leitao@ub.edu and alvaroleitao.github.io

Thank you for your attention

A. Leitao & Lech Grzelak & Kees Oosterlee

Efficient SABR scheme

Paris - February 7, 2019