Efficient one and multiple time-step Monte Carlo simulation of the SABR model

Álvaro Leitao, Lech A. Grzelak and Cornelis W. Oosterlee

Paris - February 7, 2019

"Our" definition of simulation

- Generate samples from (sampling) stochastic processes.
- The standard approach to sample from a given distribution, Z :

$$
F_{Z}(Z) \stackrel{\mathrm{d}}{=} U \text { thus } z_{n}=F_{Z}^{-1}\left(u_{n}\right)
$$

- F_{Z} is the cumulative distribution function (CDF).
- $\stackrel{\mathrm{d}}{=}$ means equality in the distribution sense.
- $U \sim \mathcal{U}([0,1])$ and u_{n} is a sample from $\mathcal{U}([0,1])$.
- The computational cost depends on inversion F_{Z}^{-1}.

Outline

(1) SABR model
(2) Distribution of the SABR's integrated variance
(3) One-step SABR simulation
(4) Multiple time-step SABR simulation
(5) Conclusions

SABR model

- The formal definition of the SABR model [6] reads

$$
\begin{array}{ll}
\mathrm{d} S(t)=\sigma(t) S^{\beta}(t) \mathrm{d} W_{S}(t), & S(0)=S_{0} \exp (r T) \\
\mathrm{d} \sigma(t)=\alpha \sigma(t) \mathrm{d} W_{\sigma}(t), & \sigma(0)=\sigma_{0}
\end{array}
$$

- $S(t)=\bar{S}(t) \exp (r(T-t))$ is the forward price of the underlying $\bar{S}(t)$, with r an interest rate, S_{0} the spot price and T the maturity.
- $\sigma(t)$ is the stochastic volatility.
- $W_{f}(t)$ and $W_{\sigma}(t)$ are two correlated Brownian motions.
- SABR parameters:
- The volatility of the volatility, $\alpha>0$.
- The CEV elasticity, $0 \leq \beta \leq 1$.
- The correlation coefficient, $\rho\left(W_{f} W_{\sigma}=\rho t\right)$.

"Exact" simulation of SABR model

- Based on [7], the conditional cumulative distribution function (CDF) of $S(t)$ in a generic interval $[s, t], 0 \leq s \leq t \leq T$:

$$
\operatorname{Pr}\left(S(t) \leq K \mid S(s)>0, \sigma(s), \sigma(t), \int_{s}^{t} \sigma^{2}(z) \mathrm{d} z\right)=1-\chi^{2}(a ; b, c)
$$

where

$$
\begin{aligned}
& a=\frac{1}{\nu(t)}\left(\frac{S(s)^{1-\beta}}{(1-\beta)}+\frac{\rho}{\alpha}(\sigma(t)-\sigma(s))\right)^{2} \\
& c=\frac{K^{2(1-\beta)}}{(1-\beta)^{2} \nu(t)}, \\
& b=2-\frac{1-2 \beta-\rho^{2}(1-\beta)}{(1-\beta)\left(1-\rho^{2}\right)}, \\
& \nu(t)=\left(1-\rho^{2}\right) \int_{s}^{t} \sigma^{2}(z) \mathrm{d} z
\end{aligned}
$$

and $\chi^{2}(x ; \delta, \lambda)$ is the non-central chi-square CDF.

- Exact in the case of $\rho=0$, an approximation otherwise.

Simulation of SABR model

- Simulation of the volatility process, $\sigma(t) \mid \sigma(s)$:

$$
\sigma(t) \sim \sigma(s) \exp \left(\alpha \hat{W}_{\sigma}(t-s)-\frac{1}{2} \alpha^{2}(t-s)\right)
$$

where $\hat{W}_{\sigma}(t)$ is a independent Brownian motion.

- Simulation of the integrated variance process, $\int_{s}^{t} \sigma^{2}(z) \mathrm{d} z \mid \sigma(t), \sigma(s)$.
- Simulation of the forward process, $S(t) \mid S(s), \int_{s}^{t} \sigma^{2}(z) \mathrm{d} z, \sigma(t), \sigma(s)$ by inverting the CDF.
- The conditional integrated variance is a challenging part.
- We propose:
- Approximate the conditional distribution by using Fourier techniques and copulas.
- Marginal distribution based on COS method [4].
- Conditional distribution based on copulas.
- Improvements in performance and efficiency.

Distribution of the integrated variance

- Not available.
- For notational convenience, we will use $Y(s, t):=\int_{s}^{t} \sigma^{2}(z) \mathrm{d} z$.
- Discrete equivalent, M monitoring dates:

$$
Y(s, t):=\int_{s}^{t} \sigma^{2}(z) \mathrm{d} z \approx \sum_{j=1}^{M} \Delta t \sigma^{2}\left(t_{j}\right)=: \hat{Y}(s, t)
$$

where $t_{j}=s+j \Delta t, j=1, \ldots, M$ and $\Delta t=\frac{t-s}{M}$.

- In the logarithmic domain, we aim to find an approximation of $F_{\log \hat{Y} \mid \log \sigma(s)}$:

$$
F_{\log \hat{Y} \mid \log \sigma(s)}(x)=\int_{-\infty}^{x} f_{\log \hat{Y} \mid \log \sigma(s)}(y) \mathrm{d} y
$$

where $f_{\log \hat{Y} \mid \log \sigma(s)}$ is the probability density function (PDF) of $\log \hat{Y}(s, t) \mid \log \sigma(s)$.

PDF of the integrated variance

- Equivalent: Characteristic function and inversion (Fourier pair).
- Recursive procedure to derive an approximated $\phi_{\log } \hat{Y} \mid \log \sigma(s)$.
- We start by defining the logarithmic increment of $\sigma^{2}(t)$:

$$
R_{j}=\log \left(\frac{\sigma^{2}\left(t_{j}\right)}{\sigma^{2}\left(t_{j-1}\right)}\right), j=1, \ldots, M
$$

- $\sigma^{2}\left(t_{j}\right)$ can be written:

$$
\sigma^{2}\left(t_{j}\right)=\sigma^{2}\left(t_{0}\right) \exp \left(R_{1}+R_{2}+\cdots+R_{j}\right)
$$

- We introduce the iterative process

$$
\begin{aligned}
& Y_{1}=R_{M} \\
& Y_{j}=R_{M+1-j}+Z_{j-1}, \quad j=2, \ldots, M
\end{aligned}
$$

with $Z_{j}=\log \left(1+\exp \left(Y_{j}\right)\right)$.

PDF of the integrated variance (cont.)

- $\hat{Y}(s, t)$ can be expressed:

$$
\hat{Y}(s, t)=\sum_{i=1}^{M} \sigma^{2}\left(t_{i}\right) \Delta t=\Delta t \sigma^{2}(s) \exp \left(Y_{M}\right)
$$

- And, we compute $\phi_{\log \hat{Y} \mid \log \sigma(s)}(u)$, as follows:

$$
\phi_{\log \hat{Y} \mid \log \sigma(s)}(u)=\exp \left(i u \log \left(\Delta t \sigma^{2}(s)\right)\right) \phi_{Y_{M}}(u)
$$

- By applying COS method [4] in the support [â, $\hat{b}]$:

$$
f_{\log \hat{Y} \mid \log \sigma(s)}(x) \approx \frac{2}{\hat{b}-\hat{a}} \sum_{k=0}^{N-1^{\prime}} C_{k} \cos \left((x-\hat{a}) \frac{k \pi}{\hat{b}-\hat{a}}\right),
$$

with

$$
C_{k}=\Re\left(\phi_{\log \hat{Y} \mid \log \sigma(s)}\left(\frac{k \pi}{\hat{b}-\hat{a}}\right) \exp \left(-i \frac{\hat{a} k \pi}{\hat{b}-\hat{a}}\right)\right)
$$

CDF of the integrated variance

- The CDF of $\log \hat{Y}(s, t) \mid \log \sigma(s)$:

$$
\begin{aligned}
F_{\log \hat{Y} \mid \log \sigma(s)}(x) & =\int_{-\infty}^{x} f_{\log \hat{Y} \mid \log \sigma(s)}(y) \mathrm{d} y \\
& \approx \int_{\hat{a}}^{x} \frac{2}{\hat{b}-\hat{a}} \sum_{k=0}^{N-1^{\prime}} C_{k} \cos \left((y-\hat{a}) \frac{k \pi}{\hat{b}-\hat{a}}\right) \mathrm{d} y
\end{aligned}
$$

- The efficient computation of $\phi_{\log \hat{Y} \mid \log \sigma(s)}$ is crucial for the performance of the whole procedure (specially, one-step case).
- The inversion of $F_{\log \hat{Y} \mid \log \sigma(s)}$ is relatively expensive (unafforable in the multi-step case).

Copula-based simulation of $\int_{s}^{t} \sigma^{2}(z) \mathrm{d} z \mid \sigma(t), \sigma(s)$

- In order to apply copulas, we need (logarithmic domain):
- $F_{\log \hat{Y} \mid \log \sigma(s)}$.
- $F_{\log \sigma(t) \mid \log \sigma(s)}$.
- Correlation between $\log Y(s, t)$ and $\log \sigma(t)$.
- The distribution of $\log \sigma(t) \mid \log \sigma(s)$ is known $(\sigma(t)$ follows a log-normal distribution).
- Approximated Pearson's correlation coefficient:

$$
\mathcal{P}_{\log Y, \log \sigma(t)} \approx \frac{t^{2}-s^{2}}{2 \sqrt{\left(\frac{1}{3} t^{4}+\frac{2}{3} t s^{3}-t^{2} s^{2}\right)}}
$$

- For some copulas, like Archimedean, Kendall's τ is required:

$$
\mathcal{P}=\sin \left(\frac{\pi}{2} \tau\right)
$$

Sampling $\int_{s}^{t} \sigma^{2}(z) \mathrm{d} z \mid \sigma(t), \sigma(s)$: Steps

(1) Determine $F_{\log \sigma(t) \mid \log \sigma(s)}$ and $F_{\log \hat{Y} \mid \log \sigma(s)}$.
(2) Determine the correlation between $\log Y(s, t)$ and $\log \sigma(t)$.
(3) Generate correlated uniform samples, $U_{\log \sigma(t) \mid \log \sigma(s)}$ and $U_{\log \hat{Y} \mid \log \sigma(s)}$ by means of copula.
(9) From $U_{\log \sigma(t) \mid \log \sigma(s)}$ and $U_{\log \hat{Y} \mid \log \sigma(s)}$ invert original marginal distributions.
(5) The samples of $\sigma(t) \mid \sigma(s)$ and $Y(s, t)=\int_{s}^{t} \sigma^{2}(z) \mathrm{d} z \mid \sigma(t), \sigma(s)$ are obtained by taking exponentials.

One time-step simulation of the SABR model

- $s=0$ and $t=T$, with T the maturity time.
- The use is restricted to price European options up to $T=2$.
- $\log \sigma(s)$ becomes constant.
- $F_{\log \sigma(t) \mid \log \sigma(s)}$ and $F_{\log \hat{Y} \mid \log \sigma(s)}$ turn into $F_{\log \sigma(T)}$ and $F_{\log \hat{Y}(T)}$.
- The computation of $\phi_{\log \hat{Y}(T)}$ is much simpler and very fast.
- The approximated Pearson's coefficient results in a constant value:

$$
\mathcal{P}_{\log Y(T), \log \sigma(T)} \approx \frac{T^{2}}{2 \sqrt{\frac{1}{3} T^{4}}}=\frac{\sqrt{3}}{2}
$$

Approximated correlation

Figure: Pearson's coefficient: Empirical (surface) vs. approximation (red gनेid)

Copula analysis

- Based on the one-step simulation, a copula analysis is carried out.
- Gaussian, Student t and Archimedean (Clayton, Frank and Gumbel).
- A goodness-of-fit (GOF) for copulas needs to be evaluated.
- Archimedean: graphic GOF based on Kendall's processes.
- Generic GOF based on the so-called Deheuvels or empirical copula.

	S_{0}	σ_{0}	α	β	ρ	T
Set I	1.0	0.5	0.4	0.7	0.0	2
Set II	0.05	0.1	0.4	0.0	-0.8	0.5
Set III	0.04	0.4	0.8	1.0	-0.5	2
Table: Data sets.						

GOF - Archimedean

Figure: Archimedean GOF test: $\hat{\lambda}(u)$ vs. empirical $\lambda(u)$.

	Clayton	Frank	Gumbel
Set I	1.3469×10^{-3}	2.9909×10^{-4}	5.1723×10^{-5}
Set II	1.0885×10^{-3}	2.1249×10^{-4}	8.4834×10^{-5}
Set III	2.1151×10^{-3}	7.5271×10^{-4}	2.6664×10^{-4}

Table: MSE of $\hat{\lambda}(u)-\lambda(u)$.

Generic GOF

	Gaussian	Student t $(\nu=5)$	Gumbel
Set I	5.0323×10^{-3}	5.0242×10^{-3}	3.8063×10^{-3}
Set II	3.1049×10^{-3}	3.0659×10^{-3}	4.5703×10^{-3}
Set III	5.9439×10^{-3}	6.0041×10^{-3}	4.3210×10^{-3}

Table: Generic GOF: D_{2}.

- The three copulas perform very similarly.
- For longer maturities: Gumbel performs better.
- The Student \mathbf{t} copula is discarded: very similar to the Gaussian copula and the calibration of the ν parameter adds extra complexity.
- As a general strategy, the Gumbel copula is the most robust choice.
- With short maturities, the Gaussian copula may be a satisfactory alternative.

Pricing European options

- The strike values K_{i} are chosen following the expression:

$$
\begin{aligned}
K_{i}(T) & =S(0) \exp \left(0.1 \times T \times \delta_{i}\right) \\
\delta_{i} & =-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5
\end{aligned}
$$

- Forward asset, $S(t)$: enhanced inversion by Chen et al. [3].
- Martingale correction:

$$
\begin{aligned}
S(t) & =S(t)-\frac{1}{n} \sum_{i=1}^{n} S_{i}(t)+\mathbb{E}[S(t)] \\
& =S(t)-\frac{1}{n} \sum_{i=1}^{n} S_{i}(t)+S_{0}
\end{aligned}
$$

Pricing European options - Convergence and time

	$n=1000$	$n=10000$	$n=100000$	$n=1000000$
	Gaussian (Set I, K $\left.K_{1}\right)$			
Error	519.58	132.39	37.42	16.23
Time	0.3386	0.3440	0.3857	0.5733
	Gumbel $\left(\right.$ Set $\left.\mathrm{I}, K_{1}\right)$			
Error	151.44	-123.76	34.14	11.59
Time	0.3492	0.3561	0.3874	0.6663

Table: Convergence in number of samples, n : error (basis points) and execution time (sec.).

Pricing European options - Implied volatilities

Strikes	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{7}	
		Set I (Reference: Antonov [1])						
Hagan	55.07	52.34	50.08	N/A	47.04	46.26	45.97	
MC	23.50	21.41	19.38	N/A	16.59	15.58	14.63	
Gaussian	16.23	20.79	24.95	N/A	33.40	37.03	40.72	
Gumbel	11.59	15.57	19.12	N/A	25.41	28.66	31.79	
		Set II (Reference: Korn [8])						
Hagan	-558.82	-492.37	-432.11	-377.47	-327.92	-282.98	-242.22	
MC	5.30	6.50	7.85	9.32	10.82	12.25	13.66	
Gaussian	9.93	9.98	10.02	10.20	10.57	10.73	11.04	
Gumbel	-9.93	-9.38	-8.94	-8.35	-7.69	-6.83	-5.79	
		Set III (Reference: MC Milstein)						
Hagan	287.05	252.91	220.39	190.36	163.87	141.88	126.39	
Gaussian	16.10	16.76	16.62	15.22	13.85	12.29	10.67	
Gumbel	6.99	3.79	0.67	-2.27	-5.57	-9.79	-14.06	

Table: Implied volatility: errors in basis points.

- One-step SABR simulation is a fast alternative to Hagan formula.
- Overcomes the known issues, like low strikes and high volatilities.
- For longer maturities and more complex options: multiple time-step

Multiple time-step simulation of the SABR model

- We denote it mSABR simulation method (scheme).
- In intermediate steps, $\phi_{\log \hat{Y} \mid \log \sigma(s)}$ becomes "stochastic".
- $f_{\log \hat{Y} \mid \log \sigma(s)}$ needs to be computed for each sample of $\log \sigma(s)$.
- Consequently, the inversion of $F_{\log \hat{Y} \mid \log \sigma(s)}$ is unaffordable $(n \uparrow \uparrow)$.
- Solution: Stochastic Collocation Monte Carlo (SCMC) sampler [5].

$$
y_{n} \mid v_{n} \approx g_{L_{\hat{\gamma}}, L_{\sigma}}\left(x_{n}\right)=\sum_{i=1}^{L_{\hat{\gamma}}} \sum_{j=1}^{L_{\sigma}} F_{\log \hat{\gamma} \mid \log \sigma(s)=v_{j}}^{-1}\left(F_{X}\left(x_{i}\right)\right) \ell_{i}\left(x_{n}\right) \ell_{j}\left(v_{n}\right),
$$

where x_{n} are the samples from the cheap variable, X, and v_{n} the given samples of $\log \sigma(s) . x_{i}$ and v_{j} are the collocation points of X and $\log \sigma(s)$, respectively. ℓ_{i} and ℓ_{j} are the Lagrange polynomials defined by

$$
\ell_{i}\left(x_{n}\right)=\prod_{k=1, k \neq i}^{L_{\hat{\gamma}}} \frac{x_{n}-x_{k}}{x_{i}-x_{k}}, \quad \ell_{j}\left(v_{n}\right)=\prod_{k=1, k \neq j}^{L_{\sigma}} \frac{v_{n}-v_{k}}{v_{i}-v_{k}}
$$

Application of 2D SCMC to $F_{\log \hat{\gamma} \mid \log \sigma(s)}$

Samples	Without SCMC	With SCMC		
		$L_{\hat{\gamma}}=L_{\sigma}=3$	$L_{\hat{\gamma}}=L_{\sigma}=7$	$L_{\hat{\gamma}}=L_{\sigma}=11$
100	1.0695	0.0449	0.0466	0.0660
10000	16.3483	0.0518	0.0588	0.0798
1000000	1624.3019	0.2648	0.5882	1.0940

mSABR method - Experiments

- The strike values K_{i} are chosen following the expression:

$$
\begin{aligned}
K_{i}(T) & =S(0) \exp \left(0.1 \times T \times \delta_{i}\right) \\
\delta_{i} & =-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5
\end{aligned}
$$

- Forward asset, $S(t)$: enhanced inversion by Chen et al. [3].
- Martingale correction:

$$
S(t)=S(t)-\frac{1}{n} \sum_{i=1}^{n} S_{i}(t)+S_{0}
$$

- New data sets:

	S_{0}	σ_{0}	α	β	ρ	T
Set I [5]	0.5	0.5	0.4	0.5	0.0	4
Set II [3]	0.04	0.2	0.3	1.0	-0.5	5
Set III [1]	1.0	0.25	0.3	0.6	-0.5	20
Set IV [2]	0.0056	0.011	1.080	0.167	0.999	1

Table: Data sets.

mSABR method - Convergence test I

- Convergence in number of time-steps, m : Antonov vs. mSABR. Set I.

Strikes	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{7}
Antonov	73.34%	71.73%	70.17%	$\mathrm{~N} / \mathrm{A}$	67.23%	65.87%	64.59%
$m=T / 4$	73.13%	71.75%	70.41%	69.11%	67.85%	66.64%	65.48%
Error(bp)	-21.51	2.54	24.38	$\mathrm{~N} / \mathrm{A}$	61.71	76.66	89.26
$m=T / 2$	73.30%	71.78%	70.29%	68.86%	67.49%	66.17%	64.93%
Error(bp)	-4.12	4.94	12.71	$\mathrm{~N} / \mathrm{A}$	25.48	30.40	34.73
$m=T$	73.25%	71.67%	70.14%	68.66%	67.24%	65.89%	64.62%
Error(bp)	-9.56	-5.93	-2.79	$\mathrm{~N} / \mathrm{A}$	0.92	2.21	3.17
$m=2 T$	73.32%	71.71%	70.16%	68.65%	67.22%	65.85%	64.55%
Error(bp)	-2.08	-1.56	-1.20	$\mathrm{~N} / \mathrm{A}$	-1.65	-2.35	-3.36
$m=4 T$	73.34%	71.73%	70.18%	68.67%	67.24%	65.87%	64.58%
Error(bp)	0.15	0.58	0.78	$\mathrm{~N} / \mathrm{A}$	0.43	0.04	-0.48

mSABR method - Convergence test II

- Convergence in number of samples, n : Antonov vs. mSABR. Set I.

Strikes	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{7}
Antonov	73.34%	71.73%	70.17%	$\mathrm{~N} / \mathrm{A}$	67.23%	65.87%	64.59%
$n=10^{2}$	67.29%	65.55%	63.84%	62.20%	60.63%	59.01%	57.65%
RE	8.24×10^{-2}	8.61×10^{-2}	9.01×10^{-2}	$\mathrm{~N} / \mathrm{A}$	9.82×10^{-2}	1.04×10^{-1}	1.07×10^{-1}
$n=10^{4}$	73.41%	71.87%	70.36%	68.91%	67.51%	66.19%	64.94%
RE	9.65×10^{-4}	1.94×10^{-3}	2.75×10^{-3}	$\mathrm{~N} / \mathrm{A}$	4.08×10^{-3}	4.93×10^{-3}	5.48×10^{-3}
$n=10^{6}$	73.34%	71.73%	70.18%	68.67%	67.24%	65.87%	64.58%
RE	2.04×10^{-5}	8.08×10^{-5}	1.11×10^{-4}	$\mathrm{~N} / \mathrm{A}$	6.39×10^{-5}	6.07×10^{-6}	7.43×10^{-5}

mSABR method - Stability in ρ

- Implied volatility, varying ρ : Monte Carlo (MC) vs. mSABR. Set II.

Strikes	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{7}
			$\rho=-0.5$				
MC	22.17%	21.25%	20.38%	19.57%	18.88%	18.33%	17.95%
mSABR	22.21%	21.28%	20.39%	19.58%	18.88%	18.32%	17.94%
Error(bp)	3.59	2.86	1.78	0.95	-0.19	-0.96	-1.10
				$\rho=0.0$			
MC	21.35%	20.96%	20.71%	20.63%	20.71%	20.96%	21.34%
mSABR	21.35%	20.95%	20.69%	20.60%	20.68%	20.93%	21.32%
Error(bp)	0.04	-1.04	-2.51	-3.02	-3.33	-3.19	-2.56
				$\rho=0.5$			
MC	19.66%	20.04%	20.61%	21.34%	22.20%	23.14%	24.16%
mSABR	19.59%	19.96%	20.54%	21.28%	22.15%	23.11%	24.11%
Error(bp)	-6.93	-7.36	-6.77	-5.53	-4.35	-3.76	-4.05

mSABR method - Performance

- But, is it worth to use the mSABR method?

Error	$<100 \mathrm{bp}$	$<50 \mathrm{bp}$	$<25 \mathrm{bp}$	$<10 \mathrm{bp}$
MC Euler	$6.85(200)$	$10.71(300)$	$27.42(800)$	$42.90(1200)$
Y-Euler	$2.18(4)$	$6.55(16)$	$11.85(32)$	$45.12(128)$
Y-trpz	$2.17(3)$	$4.24(8)$	$7.25(16)$	$14.47(32)$
mSABR	$3.46(1)$	$2.98(2)$	$3.72(3)$	$4.89(4)$

Table: Execution times and time-steps, m (parentheses).

Error	$<100 \mathrm{bp}$	$<50 \mathrm{bp}$	$<25 \mathrm{bp}$	$<10 \mathrm{bp}$
MC Euler	1.98	3.59	7.37	8.77
Y-Euler	0.63	2.19	3.18	9.22
Y-trpz	0.62	1.42	1.94	2.95

Table: Speedups provided by the mSABR method.

mSABR method - Pricing barrier options

- The up-and-out call option is considered here
- The price, with the barrier level, $B, B>S_{0}, B>K_{i}$, reads:

$$
V_{i}\left(K_{i}, B, T\right)=\exp (-r T) \mathbb{E}\left[\left(S(T)-K_{i}\right) \mathbb{1}\left(\max _{0<t_{k} \leq T} S\left(t_{k}\right)>B\right)\right]
$$

where t_{k} are the times where the barrier condition is checked.

- Setting: $n=10^{6}$ and $m=4 T$.
- We define the mean squared error (MSE) as

$$
\mathrm{MSE}=\frac{1}{7} \sum_{i=1}^{7}\left(V_{i}^{M C}\left(K_{i}, B, T\right)-V_{i}^{m S A B R}\left(K_{i}, B, T\right)\right)^{2}
$$

where $V_{i}^{M C}\left(K_{i}, B, T\right)$ and $V_{i}^{m S A B R}\left(K_{i}, B, T\right)$ are the barrier option prices provided by standard Monte Carlo method and by the mSABR method, respectively.

mSABR method - Pricing barrier options

- Pricing barrier options with mSABR: $V_{i}\left(K_{i}, B, T\right) \times 100$. Set II:

Strikes	K_{1}	K_{2}	K_{3}	K	K_{5}	K_{6}	K_{7}
$B=0.08$							
MC	1.1702	0.9465	0.7268	0.5215	0.3423	0.1996	0.0987
mSABR	1.1724	0.9486	0.7285	0.5226	0.3428	0.1997	0.0986
MSE	1.8910	10^{-10}					
$B=0.1$							
MC	1.3099	1.0766	0.8462	0.6290	0.4367	0.2794	0.1626
mSABR	1.3092	1.0761	0.8456	0.6282	0.4355	0.2782	0.1618
MSE	7.5542	10^{-11}					
$B=0.12$							
MC	1.3521	1.1168	0.8841	0.6644	0.4695	0.3093	0.1891
mSABR	1.3518	1.1166	0.8838	0.6639	0.4686	0.3080	0.1880
MSE	6.3648	10^{-11}					

- Pricing barrier options with mSABR: $V_{i}\left(K_{i}, B, T\right) \times 100$. Set III:

Strikes	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{7}
$B=2.0$							
MC	29.1174	23.4804	17.2273	10.7825	5.0203	1.1750	0.0036
mSABR	29.2346	23.5828	17.3086	10.8327	5.0385	1.1805	0.0036
MSE	4.8146	0^{-7}					
$B=2.5$							
MC	41.3833	34.5497	26.8311	18.6089	10.7281	4.4893	0.9434
mSABR	41.3394	34.5097	26.7948	18.5747	10.6943	4.4546	0.9320
MSE	1.2131	0^{-7}					
$B=3.0$							
MC	48.5254	41.1652	32.7980	23.7807	14.9344	7.5364	2.6692
mSABR	48.5008	41.1515	32.7888	23.7655	14.9097	7.5117	2.6549
MSE	3.6201	0^{-8}			4 ロ ${ }^{\text {P }}$	- ${ }^{\text {F }}$	4 三

mSABR method - Negative interest rates

- The mSABR method in combination with the shifted SABR model:

$$
\begin{aligned}
\mathrm{d} S(t) & =\sigma(t)(S(t)+\theta)^{\beta} \mathrm{d} W_{S}(t) \\
S(0) & =\left(S_{0}+\theta\right) \exp (r T)
\end{aligned}
$$

where $\theta>0$ is a displacement, or shift, in the underlying.

- Setting: $n=10^{6}, m=4 T$ and $\theta=0.02$.

(e) Set IV

(f) Set IV; $S_{0} \equiv 0$

Conclusions

- We propose an efficient SABR simulation based on Fourier and copula techniques.
- The one-step SABR is a fast alternative to Hagan formula for short maturities.
- Overcomes the known issues of Hagan's expression.
- When longer maturities and/or more involved options are considered, multi-step version.
- High accuracy with very few number of time-steps, even in the context of negative interest rates.
- Good balance between accuracy and computational cost.

圊 Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee.
On a one time-step Monte Carlo simulation approach of the SABR model: application to European options.
Applied Mathematics and Computation, 293:461-479, 2017.
囯
Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee.
On an efficient multiple time step Monte Carlo simulation of the SABR model.
Quantitative Finance, 17(10):1549-1565, 2017.

References

Alexandre Antonov, Michael Konikov, and Michael Spector.
SABR spreads its wings.
Risk Magazine, pages 58-63, August 2013.
Alexandre Antonov, Michael Konikov, and Michael Spector.
The free boundary SABR: natural extension to negative rates.
Risk Magazine, pages 58-63, August 2015.
Bin Chen, Cornelis W. Oosterlee, and Hans van der Weide.
A low-bias simulation scheme for the SABR stochastic volatility model.
International Journal of Theoretical and Applied Finance, 15(2):1250016-1 - 1250016-37, 2012.
Fang Fang and Cornelis W. Oosterlee.
A novel pricing method for European options based on Fourier-cosine series expansions.
SIAM Journal on Scientific Computing, 31:826-848, 2008.
Lech A. Grzelak, Jeroen A. S. Witteveen, M. Suárez-Taboada, and Cornelis W. Oosterlee.
The stochastic collocation Monte Carlo sampler: highly efficient sampling from "expensive" distributions.
Quantitative Finance, 19(2):339-356, 2019.
Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski, and Diana E. Woodward.
Managing smile risk.
Wilmott Magazine, pages 84-108, 2002.
Othmane Islah.
Solving SABR in exact form and unifying it with LIBOR market model, 2009.
Available at SSRN: http://ssrn.com/abstract=1489428.
Ralf Korn and Songyin Tang.
Exact analytical solution for the normal SABR model.
Wilmott Magazine, 2013(66):64-69, 2013.

Acknowledgments

More: leitao@ub.edu and alvaroleitao.github.io

Thank you for your attention

