

1

Paper #2362-2018

Efficient Use of Disk Space in SAS® Application Programs
Thomas E. Billings, MUFG Union Bank, N.A., San Francisco, California

This work by Thomas E. Billings is licensed (2018) under a
Creative Commons Attribution 4.0 International License.

ABSTRACT

A tutorial on managing disk space for SAS

®
 data sets and files created by or for the SAS system. Basic

housekeeping is covered: keep files that are in-use and backup or discard files that are not in use.
Backup methods are discussed, including the important question whether the operating system that your
SAS site runs on might change in the future, necessitating use of the special transport format for backup
files. SAS procedures that are commonly used for disk file management are described: PROC DELETE,
DATASETS, and CATALOG. SQL DELETE and SAS DATA step functions for file management are also
discussed. File compression is a very important tool for saving disk space, and the SAS features for this
are described. Logical deletion of rows in a data set can waste disk space; prototype SAS code to detect
files with this condition is supplied in an appendix. Multiple SAS programming techniques that promote
efficient use of disk space are described, as well as suggestions for managing the SAS WORK library.

INTRODUCTION: WHY DISK SPACE STILL MATTERS

The cost of computer hardware is being driven downward by technological advances, and consequently
disk drives are getting cheaper and faster. The use of commodity hardware is changing the economics of
computer systems, allowing larger systems at lower cost. Most of the programmers who read this paper
presumably have computers at home, and may use installed or external disk drives that are 1 terabyte
(TB) or more. Disk space for PCs is very low cost; a quick search on amazon.com shows low prices for
internal/external 1+ TB disk systems.

Unfortunately, disk space is still expensive for large servers that are critical to enterprises. Enterprise disk
systems are usually redundant, with the additional requirement to purchase similar disk space for a
disaster recovery server. These servers must be housed in protected buildings with backup electric
power. An enterprise server also needs admins and other support staff, all of which have associated
costs. This infrastructure/overhead significantly increases the total cost of providing disk space in
enterprise servers.

The bottom line is that disk space in an enterprise server is still an important commodity, to be used in a
prudent and efficient manner. In the sections that follow, we present an overview of the tools and
techniques available to SAS

®
 programmers to make efficient and effective use of disk space.

BASIC HOUSEKEEPING: FILE CLEANUP

Does a file or program need to be saved? It may be necessary or appropriate to save a copy of a file,
program, or other computer-generated artifact because of:

 Regulatory, legal, or audit requirements;

 Plan or expectation to reuse the items in the future.

http://creativecommons.org/licenses/by/4.0/deed.en_US

2

Files to be saved can usually be divided into 2 categories:

 in active use now or in the recent past, or likely to be actively used in the near future, and

 files that probably won’t be used in the near future, but a copy should be saved.

The first category of files should remain in-place, and the second can be moved to archival or backup
storage.

Versioning. Many production systems – sets of SAS programs – run on a schedule that may be daily,
weekly, monthly, or other period, and can produce data sets, logs, html output, graph files, spreadsheets,
and so on. How many versions of a production run should be kept online?

If a system produces or updates files that are used for historical reporting, then the data set history files
must be retained indefinitely or for a prescribed period. If the question is applied to the other types of
output (e.g., logs), then the answer will depend on a number of factors:

 Space required for each production run output – e.g.:
 Are the log files huge?
 Are large amounts of space required for graphic files?

 Amount of space available on the system

 Reliability of the system – how often it fails

 If the system fails, number of earlier runs needed to diagnose errors.

Review of the above factors, combined with experimentation, can provide an answer to the versioning
question: how many versions to save, with earlier versions moved off the server.

Limiting data saved online to a specified period. To save space, relational databases are often
managed to keep online only data for a specified period, with older data rolled off to backup. This is
similar to the versioning described above, and can be applied to SAS data sets that store history.

Files to discard. Some files can reasonably be discarded: multiple, obsolete versions of a file or
program; files with known errors that have been replaced with correct versions; outdated 1-time files or
programs; and so on. Finally, for some files or programs, it may be unclear whether the item should be
saved or discarded. For those, the prudent action is to save the file in backup.

BACKUP FILES & PROGRAMS

Most enterprises have official IT-supported backup systems & processes for production servers. The
systems and methods used will vary depending on what your IT department selected as the official
method/system. Backup for production servers is standard and a best practice; development & test
servers often do not support the backup processes used for production.

Given that you have files to be stored as backup or archived, depending on the server the files reside on,
you have options:

 Use the official IT-managed backup process – this should be used for all production files, and
also for files being saved for regulatory, legal, or audit reasons

 Other backup options may include:
 enterprise-internal servers (usually Windows; see remarks below re: CEDA),
 offline systems like highly compressed tape cartridges (often used by IT and may not be

available to non-IT users),
 your own workstation.

3

Backup to your workstation is not recommended for long term storage as your workstation disks may be
wiped when you leave the enterprise, and/or your workstation files might not be backed up elsewhere. If
you are backing up files from your own PC running SAS University Edition, then you can use USB
memory devices for backup if you wish. For all other applications, USB-backup is not recommended and
is in fact prohibited (for security reasons) in many enterprises.

File formats. The SAS system supports a number of file types. The primary focus here is on data sets as
they are usually the major consumers of disk space (although systems that produce large numbers of
graphs will need to manage those). When archiving SAS-related files and programs, a number of options
are available, as follows.

 SAS data sets (.sas7bdat files):
 SAS native file format with optional file compression (binary, character; details below)
 SAS transport format – via PROC CPORT, SAS data engine XPORT
 Zip, tar

 Compiled objects - macros, DATA steps, views, etc. – the most portable way to archive these is to
archive the source code/programs that produce the objects.

 Formats (compiled) – formats can be converted to/from data sets using the CNTLOUT= and
CNTLIN= options of PROC FORMAT or may be migrated as catalogs using PROC CPORT,
CIMPORT. Another alternative available in some instances is to archive the source code used to
create the format libraries.

 Programs (source code; text files):
 Zip, tar
 Git repository (highly compressed, can save multiple versions and history). Useful for source

code in text file format. Git is a popular open source, source code management system; it is
available for Linux, Unix, Windows; also z/OS running under IBM Unix Systems Services.

 Note: do not use Git to archive SAS Enterprise Guide project .egp files as they are zipped.
However, a version of Git is embedded in SAS Enterprise Guide (version 7.1 and later) and
can be used inside a project to manage user-written source code.

 Reproducible research files; generally these files can be zipped:
 SAS: StatTag (creates Microsoft Word files), SASweave, StatRep
 R: RStudio compiled notebooks (html files); R packages
 Jupyter notebook files (relevant to R, Python, R, Julia, SAS, and other languages)

 Graphics files: zip, tar. If you are using reproducible research methods, saving the code used to
produce the graphs (rather than the graphs themselves) may be a space-saving option.

 Miscellaneous files – pdf, rtf, epub, html – use zip or tar.

Think before you archive SAS files & programs. In the future, will your enterprise still be using the same
operating system? Is it safe to save SAS data sets in the native operating system (OS) format, or are
other measures appropriate?

SAS supports CEDA: cross-environment data access, which allows files on one OS to access/use files
written under a different operating system. CEDA applies to files on directory-based operating systems:
Windows, Unix, Linux, and Unix System Services (only) on z/OS. See the SAS documentation (URL in
references) for details.

 If your enterprise’s OS is unlikely to change, then archiving native SAS file formats is relatively
safe.

 If the OS is likely to change or if there is significant uncertainty, consider saving the files/catalogs
in the special (sequential) transport format using PROC CPORT.

 For cross-platform compatibility, the approach is, for 2 systems with different OS:
 Given SAS files written under OS #1, use PROC CPORT to create transport format copies of

the SAS files
 Transfer the transport format files to the other system or to backup

4

 Once the target file is on the system running OS #2, use PROC CIMPORT to create SAS files
in the native format for OS #2.

 The SAS data engine XPORT provides another method to create files in transport format.

 PROC CPORT is the only way (in SAS) to backup graphic catalogs; PROC COPY does not work
for such files.

 Source code can be included in catalogs as file type SOURCE, and can be backed up with PROC
CPORT. Git repositories and text-only files are often easier to work with than SOURCE files in a
catalog.

SAS TOOLS FOR MANAGING FILES/LIBRARIES

A SAS library is defined via a LIBNAME statement or function invocation. SAS data files and views are
stored in the locations/directories defined via a LIBNAME. Other file types may be stored in a LIBNAME
directory, including formats, informats (input formats), compiled macros, graphic files, etc. The non-data
file types are considered “catalog” files, and if a SAS LIBNAME contains no data files and only catalog
files, then it may be referred to as a catalog.

A LIBNAME usually lists only 1 directory but a LIBNAME can point to multiple, concatenated directories.
There is a similar CATNAME statement used to support concatenation of SAS catalogs. To avoid
confusion, it is recommended that LIBNAMEs point to only a single physical directory for cleanup work.

SAS provides tools to manage data files in libraries, and also to manage files/members of catalogs. Data
files usually take up the most space and they are our primary emphasis. Format libraries however can
become very large and may need active management.

Encryption and password-protection of files can complicate the management of disk space, as you may
need to supply an encryption key or password to delete a file with SAS tools. Use of operating system
commands for file management is a work-around for these files.

Managing SAS data sets in a directory

File deletion. PROC DELETE is the simplest way to delete a small number of SAS datasets. Syntax:

proc delete data=a.b1 a.b2;

run;

where b1, b2 are the names of the files to be deleted and a is the relevant libref. The PROC also works
for SAS generation data sets and also encrypted files (the encryption key is provided automatically for
metadata-bound libraries in a metadata environment; otherwise the key must be provided in the code or
manually if running interactively). A link to the relevant SAS documentation is in the references section.

General management of SAS data sets. PROC DATASETS is a powerful and versatile procedure. It
can list the files in a library, delete files, copy files, change attributes, and perform many other tasks.

To list the files in a directory/libname:

proc datasets lib=####;

quit;

where #### above is replaced by the relevant libref.

To delete physical files:

5

proc datasets lib=####;

delete filename1 filename2;

quit;

To delete physical files and views in a single invocation:

proc datasets lib=####;

delete filename1 filename2 … / mtype=data;

delete viewname1 viewname2 … / mtype=view;

quit;

You will need the appropriate access permissions to delete files. The PROC statement options NOLIST
and NOWARN are useful in some applications. The KILL option can delete all SAS files in a library, if
ALTER= passwords are provided where needed. This option is very powerful and should be used with
caution.

SAS catalogs. PROC CATALOG supports some of the same functionality – for SAS catalog files – that
PROC DATASETS does for SAS data files. Catalogs, with the exception of large format libraries, usually
require less space management than data set libraries.

SAS SQL file deletion. The DROP statement in PROC SQL & PROC FEDSQL can be used to delete
files. There are 3 forms of the statement:

 DROP TABLE – for physical files

 DROP VIEW

 DROP INDEX – for data set indexes.

The DROP statement will delete AES encrypted files (without asking for the key when running
interactively), unless they are also protected by an ALTER= password.

More advanced SAS tools for managing libraries: functions

SAS DATA step functions can be used for file management, if desired. These functions can be used to
obtain a list of files in a directory, without the need to use external shell commands. The code to
accomplish this can be found in Hamilton (2015) or the SAS macro language documentation (URL in
reference section).

If the goal is to list all files in a directory and in all nested subdirectories, the problem is more challenging;
Hamilton (2015) includes recursive code to accomplish this task. The functions described in the paper will
let you search a directory and get the associated file names.

Once you have a list of files in a directory and confirmed that it contains files of the target type (usually
.sas7bdat files), you can use the FDELETE function to delete a directory or a file in a directory. The
assumption here is that you have the required operating system and/or metadata permissions to be able
to delete files; the FOPTNAME function may be useful in some environments to check operating system
permissions associated with a file.

These functions can be used to automate the file deletion process, which can be useful if there is a large
number of files to be deleted. Alternately, a large number of files can be deleted using PROC DELETE or
DATASETS, driven by user-written SAS macros.

6

TECHNIQUES THAT PROMOTE EFFICIENT USE OF DISK SPACE:
FILE COMPRESSION AND USE OF FORMATS

The simple step of compressing a SAS data set can dramatically reduce the disk space required for a file.
The SAS system supports data set compression in a number of ways:

 As a system option: OPTIONS COMPRESS=YES|BINARY|CHAR|NO and compression is
applied to all files written in a program

 The same feature is available as a per-file data set option:
(COMPRESS=YES|BINARY|CHAR|NO)

OPTIONS COMPRESS=YES; may be your system default. To check if it is the default, run this code
before running any other code, right after login:

proc options;

run;

which gives a report with the value of all system options at run time.

System option: COMPRESS=YES|CHAR is most effective for data sets that are predominantly character
variables. Predominantly character means that, when the data are divided into 2 categories, character vs.
numeric variables, the space used per record (uncompressed) for character variables is significant. It
does not have to be >50%; try compressed and uncompressed and see whichever uses the least space.

System option: COMPRESS=BINARY is most effective for files that are predominantly numeric variables
(by space per record) AND have a large number of repeated values – like missing, 0,1,2, etc.

If the system option COMPRESS=YES is set on startup, you can make judicious use of the
(COMPRESS=*) data set options to change the default compression option when appropriate. You can
also reset the system option to COMPRESS=NO, but this should be done only when justified, e.g., the
program creates very small files that when compressed are larger than when uncompressed. The data
set options (COMPRESS=*) can also be used to override default settings on a by-dataset basis.

Data set option REUSE=YES. This option tells SAS to reuse any disk space freed by logical deletions,
in compressed files only. This option does not impact uncompressed files. This option is potentially useful
if your application is doing logical row deletions (additional discussion below).

PROC FORMAT: user-managed compression for select variables. If a large dataset has numerous
character variables that are long in length and these variables have a limited number of values, they can
be recoded to shorter strings via a custom format created with PROC FORMAT. For example, the format
would recode:

“Very long string …. #1” = “Short 1”
“Very long string …. #2” = “Short 2”

and similarly up to string #n, with the short-form of the variable stored in the resultant file. To restore the
variables back to their long-form, another format – the reverse of the above – is needed.

The advantages of this approach are as follows:

 if the short strings are meaningful, they can be a good substitute for the long strings;

 short strings are much easier to work with in code;

 can save a large amount of space in files with numerous long character variables.

7

The disadvantages:

 short strings may be cryptic for some long text variables;

 Need to know about the SAS format and apply it to get full text fields. This can be mitigated by
providing views with the full-text, but such views require the user to specify LIBNAMEs to the
source file, format library, and FMTSEARCH= OPTIONS.

 2 formats to create and maintain. Reruns/fixes are usually required when there are unexpected
changes in the long character variables,

Despite the limitations, in contexts where this approach is feasible, it can reduce disk space
requirements.

LOGICAL VS. PHYSICAL DELETION OF RECORDS:
LOGICAL ROW DELETION CAN PRODUCE HUGE FILES AND WASTE SPACE

SAS supports by-row logical deletion of records in SAS data sets:

 PROC SQL, PROC FEDSQL: DELETE statement

 DATA step: DELETE statement when used with MODIFY (but not SET, MERGE, UPDATE)

Over time, extensive logical deletion of rows in a table can produce a huge physical file with far more
deleted rows than active rows (i.e., fewer logical rows than physical rows). Such files waste disk space
and take much longer to read. Large reductions in file-read time and the release of large amounts of
unused disk space may be achieved by rewriting the file via a DATA step, PROC COPY, or other means.
Caution must be exercised when creating a new version of the file, as you need to preserve – if present:

 Sort order

 Indexes

 Integrity constraints, including referential integrity constraints.

One approach to regenerating data sets is to:

 Use PROC CONTENTS (or PROC DATASETS with CONTENTS statement) with OUT2= option
to get the integrity constraints (if any)

 Make a new copy of the file using the DATA step (the copy has a different name), ignoring
indexes, constraints

 Re-SORT the copy if needed

 Delete or rename old file

 Rename new file to target name

 Use PROC DATASETS to restore integrity constraints and/or indexes with constraint statements
previously obtained via PROC CONTENTS.

PROC SQL can be used instead of PROC CONTENTS/DATASETS to get the integrity constraints for a
SAS data set.

Identifying files that waste disk space. Appendix 2 contains prototype SAS code that uses the
dictionary tables to identify SAS data sets that have a mismatch, number of physical vs. logical records.
That code can be used to identify data sets that are wasting disk space, for eventual corrective action.
(Also see SAS Usage note 32042; URL in references section.)

8

SAS PROGRAMMING TECHNIQUES TO REDUCE USE OF DISK SPACE

SAS DATA step vs. SQL. Depending on the processing being done and context/circumstances:

 Multiple SQL steps may be replaced with a smaller number of DATA/SORT/APPEND steps

 Alternately, multiple DATA/SORT/APPEND steps might be replaced with fewer SQL steps.

PROC DS2 is an object-oriented language that shares some commonality with the SAS DATA step. There
are applications where DS2 is more efficient and might replace multiple DATA steps, and the opposite is
true: there are applications where the DATA step is optimal. Matching the tool used per the requirements
vs. application can promote efficient programming and reduce the use of disk space. If your site has the
relevant SAS software products, DS2 processing can be exported and done in external databases.
Exporting your processing to a relational database can reduce use of disk space and also reduce CPU
usage on your local SAS server.

Useful data set options and related statements. Certain data set options and similar DATA step
statements can be used to reduce I/O by limiting processing to only the variables/rows of interest. These
data set options are:

1. KEEP=
2. DROP=
3. RENAME=
4. WHERE=.

#1-3 above operate on columns/variables, while #4 operates on rows.

There are similar DATA step statements: DROP, KEEP, RENAME, WHERE. The data set options function
at the PDV: program data vector level, and the processing occurs when a data set is input or output.
They are usually more efficient in use of disk space and CPU/memory, compared to the similar DATA step
statements.

The above options can also be used with data sets in PROC SQL. You should be cautious about using
SELECT * in SQL for large tables, unless there is good reason for its use.

Programming style. It is not uncommon to see programs written in SAS that are a number of small DATA
steps, PROC SORT invocations, and maybe PROC SUMMARY or PROC MEANS. Review of the code
inside the DATA steps often reveals that very little actual processing is being done. One DATA step with
minimal processing is followed by another, similar DATA step with limited processing.

Code like this can usually be rewritten to accomplish the same functionality while using fewer DATA steps
– possibly by using VIEWs instead of DATA steps (in some instances), and/or the functionality can be
combined in a few PROC SQL invocations. This is something to look for in code reviews.

Program architecture: when possible, lengthy, complex programs should be divided into multiple
(smaller) logical layers with related processing. Such programs may produce a derivative file that is the
end product of, say n>1 steps, yielding (n-1)>0 intermediate files.

If these intermediate files occupy substantial disk space, PROC DATASETS and/or PROC DELETE can
be used inside the logical layers to delete – as the processing progresses – intermediate files that are no
longer needed. If the intermediate files may serve a debug function if a process fails, the deletion can be
done under macro control. (This is very useful when writing large files in the WORK library.)

Using VIEWs, macros, and stored processes to reduce disk space usage. Intermediate and
advanced SAS programmers should know how to use DATA step and SQL views. A VIEW is a compiled
DATA step (or SQL) program that creates an interim and temporary physical file when the view is
invoked/run. The motivation for using views is that they allow you to keep 1 copy of physical files, then

9

combine, extract, and filter to produce an interim derivative file as needed. Once the interim file has been
used, it is automatically deleted by the SAS system (reducing overall disk usage). The view contains the
instructions to create the target file, and usually occupies very little disk space.

Macros can be used in any SAS environment to run code and dynamically join files and/or filter the
results. Stored processes are programs that run in the client-server environment and can be interactive
(if desired). With suitable coding, in some contexts stored processes can be used to dynamically create
desired data sets and avoid redundant disk storage.

Consider a more normalized data structure. Instead of large, denormalized files with hundreds of
variables, consider a more normalized data structure that keeps only 1 copy of important parameters, and
views are used to dynamically combine the data for reporting and analytics. Similarly, for sparse data, a
variable that has – for example – 200 non-missing values in 600K rows – should be stored in a table of
only 200 rows rather than 600K rows.

Reduce the lengths of character and numeric variables? A review of (legacy) SAS User Group papers
finds multiple suggestions to reduce the length of stored numeric variables and character variables in
SAS data sets. Keeping character variables at minimum length means the length may have to be
increased later, or, if this task is forgotten, downstream reports and files may break later when the
variable is used to store new, too-long values. Reducing the length of numeric variables may cause loss
of precision.

File compression will usually release the blank space at the end of long character variables, so there is
little to gain from reducing the length of character variables. Reducing variable length to the absolute
minimum possible is not a good idea and is not recommended.

MANAGING SAS WORK LIBRARIES

If your program is processing small or medium-sized data files & data volumes via the SAS WORK library,
then you probably don’t need to be concerned with the disk space used by the WORK library. If your
programs use large amounts of WORK library space, be aware that:

 The disk space for WORK libraries is shared by all SAS processes on your server and is finite,

 The WORK library disk space used by a process is cleared when the process terminates
normally. If the process terminates abnormally or hangs, the disk space might not be cleared.

 Processes that use large amounts of disk space and hang can cause problems for other users,
by effectively reducing the size of the WORK library. If your project/job/program hangs when it is
running, the disk space is not cleared until a cleanup program runs – or – until you access the
operating system shell and kill the process, or ask your Admin to do the same.

All of the suggestions above for making efficient use of disk space can be used in/with the WORK library.

Most of the time programmers don’t need to know the physical location/address of their work library.
WORK libraries are assigned dynamically and each SAS session has a unique directory address for its
WORK library. If in fact you need to know the location (path) to the WORK library for your session, it can
be found via the code:

%let address = %sysfunc(pathname(WORK));

%put &address;

You might want to include the code above in your autoexec process so the information is available in the
log for each session.

You can redirect files that would be written in the default WORK library location, to an alternate location
instead via the USER= system option. This code:

10

libname test "pathname";

options user=test;

will redirect any/all files from the default WORK library to the location of the libref/LIBNAME test, until a
different USER= statement is entered or the program ends. This option is useful for programs that need
very large amounts of WORK space.

At the time this is written (May 2017), the USER= option is not supported by the in-memory Cloud Analytic
Services (CAS) component of SAS Viya. Billings & Alwani (2015) describes an alternate approach - a
macro-variable-based method that accomplishes the same functionality as USER= but with greater
flexibility, and it works in both Base SAS and CAS.

SUMMARY

 Basic housekeeping:
 Delete redundant files
 Move files that are no longer in active use but need to be saved, to archive/backup storage

 SAS procedures: DELETE, DATASETS, CATALOG can be used to delete files and manage
libraries

 Zip, tar, and Git repositories can be used for data files, programs stored in archives

 Select SAS DATA step functions can support file management (advanced users)

 SAS supports file compression - character-based and numeric based (CHAR, BINARY). Can be
set at system or at data set option level. This can save significant disk space and is suggested as
a standard practice.

 PROC FORMAT supports user-managed recoding of long strings to short strings (also the
reverse), and in some contexts this can save disk space.

 Logical deletion of rows can waste space in physical files; monitor the files and re-create the file
to free up disk space, as needed.

 Programming techniques can make a big difference in efficiency/disk space usage:
 SQL vs DATA/SORT/DS2 steps
 Combine multiple small steps into fewer DATA, SQL steps
 Advanced users: views, macros, stored processes

 Managing SAS WORK libraries:
 USER= system option
 More flexible macro-based alternative to USER=.

APPENDIX 1:
BSD 2-CLAUSE COPYRIGHT LICENSE (OPEN SOURCE)

* All program code in this paper is released under a Berkeley Systems

 Distribution BSD-2-Clause license, an open-source license that permits

 free reuse and republication under conditions;

/*

Copyright (c) 2017, MUFG Union Bank, N.A.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

11

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

*/

APPENDIX 2: PROTOTYPE CODE TO IDENTIFY SAS DATA SETS
WITH UNUSED DISK SPACE

The code below creates test data sets in the WORK library with artificial data and then deletes ½ of the
records using SQL to create the type of file we want to detect. Librefs for the target directories are in a
file accessed via an SQL subquery. If you are testing only 1 libref/directory then the subquery can be
replaced with simpler code. The code below can easily be modified and encapsulated in a macro if
desired.

Finally, the code identifies data sets with unused disk space but does not take any corrective action – that
is left to the user. It also pulls metadata from the dictionary tables that specify compression and possible
use of the REUSE= option. A comprehensive approach to disk space management would encourage file
compression and, where rows are logically deleted, specifying the option REUSE=YES.

options nocenter dtreset;

%let nrows=1000000;

data control;

 length extra $4.;

 do i=1 to &nrows.;

 rnum = i;

 y = rand('uniform');

 extra = 'abcd';

 output;

 end;

 drop i;

run;

proc contents data=control;

 title "Contents before logical deletion";

run;

data log_del;

 set control;

run;

12

proc sql;

 delete from log_del

 where rnum > (&nrows./2);

quit;

proc contents data=log_del;

 title "Contents after logical deletion";

run;

data libref;

 length libname $8.;

 libname = "WORK";

 output;

 stop;

run;

PROC SQL;

 CREATE TABLE WORK.check_base AS

 SELECT a.libname,

 a.memname,

 a.memtype,

 a.modate,

 a.nobs,

 a.obslen,

 a.nlobs,

 a.nvar,

 a.compress,

 a.reuse,

 a.pcompress

 FROM dictionary.tables a

 WHERE a.libname IN (select libname from work.libref) AND a.memtype =

'DATA'

 ORDER BY a.libname,

 a.memname;

QUIT;

data work.flagged_files;

 set work.check_base;

 by libname memname;

 length unused_space $1.;

 unused_space ="N";

 unused_space_pct = .;

 est_file_size = .;

 length defect $1.;

 defect = "N";

 if (missing(nobs)) or (nobs = 0) or (nvar = 0) then

 do;

 defect="Y";

 return;

 end;

 est_file_size = nobs*obslen;

 if (nobs = nlobs) then

 return;

 else

13

 do;

 unused_space="Y";

 unused_space_pct = ((nobs-nlobs)/nobs)*100.;

 end;

 drop memtype;

run;

REFERENCES

Note: all URLs quoted or cited herein were accessed in September 2016.

Billings, T; Alwani, A (2015). Tips for Managing SAS Work Libraries. SAS Global Forum 2015
Conference. URL: https://support.sas.com/resources/papers/.../3196-2015.pdf

Hamilton J. (2012). Obtaining A List of Files In A Directory Using SAS® Functions. Western Users of SAS
Software Conference Proceedings. URL: http://www.wuss.org/proceedings12/55.pdf

SAS Institute, Inc. (2016) online documentation:

 Cross-Environment Data Access (CEDA). Moving and Accessing SAS(R) 9.4 Files, Second
Edition. URL:
http://support.sas.com/documentation/cdl/en/movefile/67439/HTML/default/viewer.htm#p0c0l7xkp
rukh1n1ey1voicmgn6f.htm

 DATASETS Procedure. Base SAS(R) 9.4 Procedures Guide, Sixth Edition. URL:
http://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#p16vqq5oedl
mkin1373cqyalhpo6.htm

 DELETE Procedure. Base SAS(R) 9.4 Procedures Guide, Sixth Edition. URL:
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0u6bw4nz2
vrvtn1xvnqeyf7l7wn.htm

 Example 2: List All Files within a Directory Including Subdirectories. SAS(R) 9.4 Macro Language:
Reference, Fourth Edition. URL:
https://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n0js70lrk
xo6uvn1fl4a5aafnlgt.htm

 FDELETE Function. SAS® 9.4 Functions and CALL Routines: Reference, Fifth Edition. URL:
https://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/viewer.htm#p0h
945u5r0cv6yn1u6qs35hiqt9t.htm

 FOPTNAME Function. SAS® 9.4 Functions and CALL Routines: Reference, Fifth Edition. URL:
https://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/viewer.htm#n1o
cdzkn9uhsa7n1qv3wwp4d3dot.htm

 Usage Note 32042: Deleting observations and reclaiming disk space. URL:
http://support.sas.com/kb/32/042.html

https://support.sas.com/resources/papers/.../3196-2015.pdf
http://www.wuss.org/proceedings12/55.pdf
http://support.sas.com/documentation/cdl/en/movefile/67439/HTML/default/viewer.htm#p0c0l7xkprukh1n1ey1voicmgn6f.htm
http://support.sas.com/documentation/cdl/en/movefile/67439/HTML/default/viewer.htm#p0c0l7xkprukh1n1ey1voicmgn6f.htm
http://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#p16vqq5oedlmkin1373cqyalhpo6.htm
http://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#p16vqq5oedlmkin1373cqyalhpo6.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0u6bw4nz2vrvtn1xvnqeyf7l7wn.htm
https://support.sas.com/documentation/cdl/en/proc/68954/HTML/default/viewer.htm#n0u6bw4nz2vrvtn1xvnqeyf7l7wn.htm
https://urldefense.proofpoint.com/v2/url?u=https-3A__support.sas.com_documentation_cdl_en_mcrolref_67912_HTML_default_viewer.htm-23n0js70lrkxo6uvn1fl4a5aafnlgt.htm&d=DgMFaQ&c=kRG5nTkfHQDBBUG6z7u8nA&r=KVbNhTz5q_S5e68uFw9Yu9DCmtYlIkkjqBIov7Jvnik&m=dFqPjioXVsDFDbZVK46XNRKTJhe5WV6JRCui0KdVLnY&s=lZYIiQt79yJfgy0mFo9cs79mDIo-_qjKj-d3VZ9k4eg&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__support.sas.com_documentation_cdl_en_mcrolref_67912_HTML_default_viewer.htm-23n0js70lrkxo6uvn1fl4a5aafnlgt.htm&d=DgMFaQ&c=kRG5nTkfHQDBBUG6z7u8nA&r=KVbNhTz5q_S5e68uFw9Yu9DCmtYlIkkjqBIov7Jvnik&m=dFqPjioXVsDFDbZVK46XNRKTJhe5WV6JRCui0KdVLnY&s=lZYIiQt79yJfgy0mFo9cs79mDIo-_qjKj-d3VZ9k4eg&e=
https://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/viewer.htm#p0h945u5r0cv6yn1u6qs35hiqt9t.htm
https://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/viewer.htm#p0h945u5r0cv6yn1u6qs35hiqt9t.htm
https://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/viewer.htm#n1ocdzkn9uhsa7n1qv3wwp4d3dot.htm
https://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/viewer.htm#n1ocdzkn9uhsa7n1qv3wwp4d3dot.htm
http://support.sas.com/kb/32/042.html

14

CONTACT INFORMATION

A list of the author’s SAS-related papers, including URLs for free access, is available at the URL (hosted
by Google Drive): https://goo.gl/uCUHoa

Your enterprise web filter might prevent access to this URL from work, in which case you will need to
access via a personal device.

Thomas E. Billings
MUFG Union Bank, N.A.

Remote from:
Merritt Island, Florida 32952

Phone: 321-453-5694
Email: tebillings@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://urldefense.proofpoint.com/v2/url?u=https-3A__goo.gl_uCUHoa&d=DwMFaQ&c=kRG5nTkfHQDBBUG6z7u8nA&r=KVbNhTz5q_S5e68uFw9Yu9DCmtYlIkkjqBIov7Jvnik&m=MB_iMj0c3IYXBncVxZ7E4_qJH3Ma3-O7gmiICfgJ5bo&s=-8lc2OKpiPAUdyFFnqdCXY0CHbNfLw1rdjzyI6wjsa0&e=
mailto:tebillings@yahoo.com

