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Abstract 
 

Previous approaches for utilizing ATE vector repeat 

are based on identifying runs of repeated scan data and 

directly generating that data using ATE vector repeat. 

Each run requires a separate vector repeat instruction, so 

the amount of compression is limited by the amount of 

ATE instruction memory available and the length of the 

runs (which typically will be much shorter than the length 

of a scan vector).  In this paper a new and more efficient 

approach is proposed for utilizing ATE vector repeat.  

The scan vector sequence is partitioned and decomposed 

into a common sequence which is the same for an entire 

cluster of test cubes and a unique sequence that is 

different for each test cube.  The common sequence can 

be generated very efficiently using ATE vector repeat.  

Experimental results demonstrate that the proposed 

approach can achieve much greater compression while 

using many fewer vector repeat instructions compared 

with previous methods. 
 

1. Introduction 
 

Test vector compression involves storing a 

deterministic test set on the automated test equipment 

(ATE) in a compressed form. One instruction that is 

commonly found in most ATEs is vector repeat which 

allows the ATE to repeat a sequence n times.  Previous 

research has proposed ways to use this mechanism to 

reduce vector memory requirements for scan testing.  In 

this paper, a new and more efficient approach is proposed 

for utilizing ATE vector repeat. 

A test cube is a deterministic test vector in which the 

inputs that are not assigned during automated test pattern 

generation (ATPG) are left as don’t cares.  Typically only 

1-5% of the bits in a test cube are specified while the rest 

are don’t cares.  Normally, random fill is performed where 

the don’t cares are filled randomly with 1’s and 0’s to 

increase the chance of detecting additional faults.  In 

[Barnhart 01], a methodology for utilizing ATE vector 

repeat was described.  The idea is that instead of doing 

random fill of the test cubes, repeat fill is done where 

don’t cares are filled by repeating the last specified bit 

within the same scan chain.  This creates runs of repeated 

values in the scan chains.  A scan slice is defined as the n-

bits loaded in parallel from the tester into n scan chains 

each clock cycle.  If multiple consecutive scan slices are 

identical, then ATE vector repeat can be used to generate 

them.  Only one copy of the scan slice data needs to be 

stored in the ATE vector memory, and then a vector 

repeat instruction is stored in the ATE instruction 

memory.  There is a limit to how much ATE vector repeat 

can be used based on the amount of instruction memory 

that is available.  Consequently, ATE vector repeat is only 

used for the longest runs of repeated scan slices and not 

all runs. 

In [Liu 02], ATE vector repeat is used for repeating 

full scan vectors during a transition test.  For transition 

tests and other two-patterns tests, the same full scan vector 

may be repeated in the scan chain if it is used as the 

launch (V2) vector for one two-pattern test and then as the 

initialization (V1) vector for the next two-pattern test.  In 

[Liu 02], transition test chains where only the very first 

and last vectors in a sequence are not repeated are formed 

to maximally utilize ATE vector repeat to reduce ATE 

storage. 

In [Vranken 03], ATE vector repeat per pin-group is 

investigated.  In [Barnhart 01], a single ATE vector repeat 

instruction applies to all pins.  However, some testers 

provide the ability to specify pin-groups for which to 

apply the ATE vector repeat instruction.  It was shown in 

[Vranken 03] that by using ATE vector repeat on smaller 

pin-groups, the length of the runs increases which allows 

greater compression. 

In [Wang 05], ATE vector repeat is used in 

conjunction with a scan slice encoding scheme.  Each scan 

slice is encoded into a sequence of smaller codewords, 

and an on-chip decoder is used to expand the codewords 

into the original scan slices.  In this scheme, some 

codewords may be repeated, so ATE vector repeat is used 

for runs of repeated codewords. 

Previously proposed approaches for utilizing ATE 

vector repeat are all based on identifying runs of repeated 

scan data and directly generating that data using ATE 

vector repeat.  The amount of compression is limited by 
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the amount of ATE instruction memory available and the 

length of the runs.  This paper proposes a new and more 

efficient way of utilizing ATE vector repeat.  The idea is 

to exploit the fact that many test cubes have similar input 

assignments due to the fact that they are structurally 

related in the circuit.  The set of test cubes in a test set are 

partitioned into clusters that share many input 

assignments.  The scan sequence is then decomposed into 

two components: the sequence of specified bits that is 

common across all the test cubes in a cluster, and the 

sequence of specified bits that is unique to each test cube.  

Two separate on-chip decompressors are then used to 

generate these two sequences as illustrated in Fig. 1.  

Since the common sequence is the same for all the test 

cubes in a cluster, the input stream to its decompressor 

can be generated using ATE vector repeat.  Only one copy 

of this input stream needs to be stored in the ATE vector 

memory, and only one ATE vector repeat instruction 

needs to be stored in the ATE instruction memory for 

decompressing the entire test cube cluster.  For the unique 

sequence corresponding to each test cube, it is generated 

with its own decompressor.  The unique sequence will 

only contain very few specified bits because most of the 

specified bits will be generated by the common sequence 

decompressor.  If a linear decompressor based on dynamic 

LFSR reseeding such as those described in [Krishna 01], 

[Konemann 01], and [Rajski 02] is used, the amount of 

compression depends only on the number of specified bits 

in the sequence. Note that the design of these 

decompressors is independent of the test set, so they can 

be reused when testing multiple cores in a system-on-chip 

(SOC) design.  The diagram of the decompression 

hardware is shown in Fig. 1. 
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Figure 1.  Diagram of Proposed Scheme 

In comparing the proposed approach for using ATE 

vector repeat with the previous approaches, it has several 

advantages.  Previous approaches can only generate runs 

of repeated values which typically will be much shorter 

than the length of a scan vector, and each run requires a 

separate vector repeat instruction.  The proposed approach 

generates the common data component for a cluster of test 

cubes, and only one vector repeat instruction is needed for 

each test cube cluster.  Consequently, the proposed 

approach is much more efficient in utilizing the ATE 

vector repeat instructions.  For the limited ATE 

instruction memory available, the proposed approach will 

be able to achieve greater compression.  The cost of the 

proposed approach is the need for the on-chip 

decompressors.  However, the on-chip decompressors can 

efficiently exploit the large percentage of don’t care bits 

in the test cubes to achieve very high compression.  

Compared with conventional linear decompression alone, 

the proposed use of ATE vector repeat provides a 

significant improvement in the amount of compression. 

The concept of clustering test cubes to exploit similar 

input assignments has been previously investigated in the 

context of built-in self-test (BIST).  STAR-BIST [Tsai 00] 

generates a parent pattern and then children patterns are 

generated by randomly flipping bits in the parent pattern.  

In [Liang 01], a folding counter is used to generate the 

children patterns.  In [Li 05], frequently occurring 

sequences shorter than a full pattern are stored on-chip 

and used to embed deterministic patterns in a semi-

random sequence.  The underlying concept of these 

approaches is similar to what is proposed here, but there 

are a number of significant differences.  The proposed 

approach generates a specific precise deterministic test set 

whereas the previous methods embed a deterministic test 

set into a much larger set of test vectors.  The proposed 

approach decomposes the vectors into a common 

sequence and unique sequence, and these two sequences 

are combined in a fundamentally different manner than 

what is done in [Tsai 00], [Liang 01], and [Li 05]. 
 

2. Decomposing Scan Data 
 

In the proposed scheme, the set of test cubes in a test 

set are partitioned into clusters that share many input 

assignments.  The scan data is then decomposed into two 

components: the sequence of specified bits that is 

common across all the test cubes in a cluster, and the 

sequence of specified bits that is unique to each test cube.  

An example is shown in Fig. 2 to illustrate how the scan 

data is decomposed.  Assume that the eight test cubes 

shown in Fig. 2 are included in one cluster.  Each bit 

position in a test cube cluster can be classified as either 

being a don’t care if no test cube has a specified value in 

that bit position, having “common data” if all test cubes 

have compatible values in that bit position, or having 

“unique data” if two or more test cubes have conflicting 

specified values.  In the example in Fig. 2, the last bit 

position is a don’t care.  The 1
st 
and 3

rd
 bit positions have 

compatible value across all of the eight test cubes and thus 

are common data.  The common data can be generated by 

the common sequence decompressor that operates based 

on ATE vector repeat since it is the same for each test 

cube. The 2
nd
, 4

th
, 5

th
, 6

th
, and 7

th
 bit positions have 

conflicting values and thus are unique data.  They must be 

generated by the unique sequence generator.  The 

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00  © 2006



common data for the test cube cluster is shown in Fig. 2 

along with the unique data for each test cube. 

Because the scan data is decomposed into common 

data and unique data, a control signal is required to 

indicate if a bit position should be filled from the common 

data or the unique data.  This is illustrated in Fig. 3.  The 

control signal is a don’t care for any don’t care bit 

position in a cluster (in the example in Fig. 2, only the last 

bit position is a don’t care), and it has a specified value 

for all other bit positions.  A key property is that the same 

control sequence can be used when decompressing all test 

cubes in a cluster and thus it is a “common control”.  This 

means that the control signal can be generated by the 

common sequence generator using ATE vector repeat and 

thus the storage required for the common control is 

amortized across all the test cubes in the cluster.  The 

common control sequence for the example test cube 

cluster is shown in Fig. 2. 

 

x0000101Common control

x1011110Test cube 1

x1011100Test cube 2

x0011110Test cube 3

x1100110Test cube 4

x0011x00Test cube 5

x1110110Test cube 6

x110111xTest cube 7

x111111xTest cube 8

xxxxx1x0Common data

Encoded

x1111x1xUnique data 8

x1101x1xUnique data 7

x1110x1xUnique data 6

x0011x0xUnique data 5

x1100x1xUnique data 4

x0011x1xUnique data 3

x1011x0xUnique data 2

x1011x1xUnique data 1

Original

x0000101Common control

x1011110Test cube 1

x1011100Test cube 2

x0011110Test cube 3

x1100110Test cube 4

x0011x00Test cube 5

x1110110Test cube 6

x110111xTest cube 7

x111111xTest cube 8

xxxxx1x0Common data

Encoded

x1111x1xUnique data 8

x1101x1xUnique data 7

x1110x1xUnique data 6

x0011x0xUnique data 5

x1100x1xUnique data 4

x0011x1xUnique data 3

x1011x0xUnique data 2

x1011x1xUnique data 1

Original

 
Figure 2. Example of proposed encoding scheme 
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Figure 3. Example of proposed encoding scheme 

 

Typically a large number of specified bits can be 

included in the common data because many test cubes 

have similar input assignments due to the fact that they are 

structurally related in the circuit.  The clustering 

procedure described in Sec. 4 selects the clusters to 

maximize the amount of compression for the cluster.  

During decompression, the common sequence generator 

produces both the common data and common control. 

Only one copy of the input stream for the common 

sequence generator needs to be stored in the ATE vector 

memory since it can be applied using the ATE vector 

repeat instruction for all the test cubes in the cluster.  

Therefore, a large reduction in storage requirements can 

be achieved. 

In the example in Fig. 2, the number of specified bits 

in the original test cubes is 53, and the number of 

specified bits in the encoded test cubes is 49 (2 specified 

bits in the common data, 40 specified bits in the unique 

data, and 7 specified bits in the common control).  The 

reduction in the example shown in Fig. 2 is small, but in 

real cases, the number of test cubes in a cluster is much 

greater than the number of test cubes in this example, so 

the number of specified bits generated from the common 

data is much higher, thereby making the reduction in the 

total number of specified bits larger.   
 

3. Decompression Hardware 
 

The proposed scheme requires relatively simple 

decompression hardware (two sequential linear 

decompressors and one MUX per scan chain).  The 

proposed decompression hardware is shown in Fig. 4.  

There are two types of memory in the ATE, instruction 

memory and vector memory.  The instruction memory 

stores the ATE instructions including the vector repeat 

instructions, and the vector memory stores the data.  The 

data is transferred to the decompressors based on the ATE 

instructions. There are two sequential linear 

decompressors in Fig. 4.  One decompressor (the upper 

one in Fig. 4) operates with ATE vector repeat and the 

other decompressor operates without the ATE vector 

repeat.  The decompressor that operates with vector repeat 

generates the common data and common control signals 

for each scan chain.  Only one copy of the input stream for 

generating the common data and common control for all 

the test cubes in a cluster is stored in the ATE and applied 

repeatedly for each test cube in the cluster using an ATE 

vector repeat instruction.  The other decompressor (the 

lower one in Fig. 4) generates the unique data and 

operates without vector repeat.  This decompressor 

operates in the same way as the decompressor in 

conventional linear compression schemes.  A 2-to-1 

multiplexer is placed between the decompressors and each 

scan chain. 

One very nice property of sequential linear 

decompressors is that regardless of how many outputs 

signals they generate or how long of a sequence they 

generate, the number of input bits that are required for the 

decompressor depends only on the total number of 

specified bits that it needs to generate (the rest of the bits 

are essentially filled with random data).  Thus the 

architecture can be easily scaled to any number of scan 

chains limited only by the rate at which data from the 
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ATE can be transferred to the sequential linear 

decompressors relative to the number of specified bits that 

the decompressor needs to generate.  Note that the 

decompression hardware does not depend on the circuit or 

test set, which makes it possible to reuse it when testing 

multiple cores in a system-on-chip (SOC) design. 
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Figure 4. Decompression hardware 
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Figure 5. Example of sequential linear decompressor 
 

The sequential linear decompressors that are used for 

this scheme could be any of the ones described in 

[Krishna 01], [Konemann 01], or [Rajski 02].  An 

example of the sequential linear decompressor is shown in 

Fig. 5. 
 

4. Forming Test Cube Clusters 
 

In the proposed scheme, test cubes are grouped into 

clusters.  Each cluster requires the use of an ATE vector 

repeat instruction for generating the common sequence for 

the cluster.  Because the ATE instruction memory is 

limited, the number of clusters cannot exceed the amount 

of ATE instruction memory available.  For that reason, the 

clustering algorithm used here tries to maximize the 

correlation in each cluster (to reduce the number of 

specified bits, thereby minimizing the tester storage), 

while at the same time generating a small number of 

clusters (to minimize the number of ATE repeat 

instructions required). 

Test cube clustering has been previously studied and 

some nice algorithms can be found in [Alleyne 94].  For 

the proposed scheme, a special benefit function is needed 

to account for the both the control and data bits required 

to encode each cluster. 
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Store benefit value

Choose cluster that has 
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End
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> k • Previous benefit
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No
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(b) Sub-diagram of one cluster generation 

Figure 6. Flow diagram of clustering algorithm 

In order to maximize the compression achieved for 

each cluster, it is important that the test cubes in each 

cluster have many bit positions with compatible values.  

As more test cubes are added to a cluster, the number of 

clusters is reduced.  This has the benefit of minimizing the 

number of the ATE instructions required for the vector 

repeat, but there is a tradeoff as more bit positions are 

likely to have conflicts thus reducing the effectiveness of 

each repeat instruction.  A greedy clustering procedure 

that takes this tradeoff into consideration is described here. 

The flow diagram of the proposed clustering algorithm 

is shown in Fig. 6 and the benefit function that is used to 

assign a value to a cluster is shown in the below: 

specuniquetotalposspecposcompatible

spectotal
Benefit

____

_

++

=

where total_spec is the total number of specified bits in 

the cluster, compatible_pos is the number of bit positions 

that are compatible in the cluster, spec_pos is the number 

of bit positions that have specified bits, and 

total_unique_spec is the total number of specified bits not 

in compatible bit positions.  Essentially the numerator 

corresponds to the uncompressed storage requirements, 

and the denominator corresponds to the compressed 

storage requirements (the common data has a specified bit 

for each compatible bit position in the cluster, the 
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Table 1.  Results for proposed scheme on benchmark circuits 

Circuit Num. 

Test cubes 

Original 

Specified Bits 

Num. 

Clusters 

Num. Specified 

in Unique Seq. 

Num. Specified 

in Common Seq. 

Encoded 

Specified Bits 

Reduction 

18 5612 1881 7493 20.2% s13207 266 9389 

40 4551 3049 7600 19.1% 

15 6335 2103 8438 22.9% s15850 269 10944 

34 4650 3579 8229 24.8% 

19 12427 7207 19634 35.9% s38417 376 30669 

31 11044 8131 19175 37.5% 

18 17505 5849 23354 10.8% s38584 296 26185 

98 11293 10642 21935 16.2% 

 
 

common control has a specified bit for each bit position 

that has one or more specified bits in the cluster, and the 

unique data has one specified bit for each specified bit not 

in a compatible bit position in the cluster).  The larger the 

benefit value, the larger the amount of compression that is 

achieved when encoding the cluster.  Note that while a 

greedy clustering procedure is described here, any 

clustering procedure in the literature can be used to 

maximize the benefit function defined here. 

One issue with the benefit function is that it may 

generate too many clusters in some cases. Note that one 

ATE repeat instruction is required in the proposed scheme 

for each cluster. Thus, there is a limit on how many 

clusters can be used based on the amount of ATE 

instruction memory that is available.  To provide a 

mechanism for reducing the number of clusters generated 

by the clustering procedure, a tuning variable, k, is added 

to the algorithm as shown in Fig. 6-(b).  To increase the 

number of test cubes in each cluster, the condition for 

adding a test cube into a cluster can be loosened by 

making the value of k lower than 1.  By lowering the value 

of k, the number of clusters reduces with a reasonable 

sacrifice in the number of specified bits.  Note that if the 

value of k is reduced too much, at some point the number 

of specified bits in the encoded test cubes approaches the 

number of specified bits in original test cubes and hence 

no compression is achieved.  In Sec. 5, experimental 

results are shown for different values of k to illustrate the 

tradeoffs. 
 

5. Experimental Results 
 

Experiments were performed on the four largest 

ISCAS-89 benchmark circuits.  In Table 1, the number of 

test cubes and the original number of specified bits in the 

deterministic test sets are shown in the second and third 

columns.  The fourth column shows the number of clusters 

generated by the clustering algorithm described in Sec. 4.  

For each circuit, results are shown for two different 

numbers of clusters.  One was obtained with a value of 

k=1, and the other was obtained by adjusting the value of 

k.  The fifth and sixth columns show the number of 

specified bits in the unique sequence and the number of 

specified bits in common sequence.  The seventh column 

shows the total number of specified bits in the encoded 

test cubes.  The last column shows the reduction in the 

number of specified bits.  Note that the maximum number 

of clusters shown in Table 1 is 98, which means that the 

maximum number of ATE vector repeat instructions that 

have to be stored in the ATE instruction memory is only 

98 or less for these circuits.  In most circuits, the number 

of clusters is below 40.  Of course, the number of clusters 

can also be reduced if necessary by lowering k.  Since the 

number of specified bits with the proposed scheme is 

reduced, the number of free-variables that are needed to 

encode the data using the linear decompressors will also 

reduce correspondingly. 

Table 2.  Results for using linear decompressor in 

[Krishna 01] alone versus using it with proposed scheme 

[Krishna 01] Proposed Circuit 

Num. 

Spec. 

Vector 

Mem. 

Num. 

Spec. 

Vector 

Mem. 

Reduc. Comp. 

s13207 9389 9872 7493 7750 21.5% 95.3% 

s15850 10944 11322 8229 8694 23.2% 88.4% 

s38417 30669 31245 19175 20769 33.5% 86.8% 

s38584 26185 28312 21935 24268 14.3% 86.7% 

Table 3.  Results comparing with [Vranken 03] 

[Vranken 03] Proposed 

Reduction 

Circuit 

Num.  

Repeat  

Inst. 

Vector 

Mem. 

Num.  

Repeat  

Inst. 

Vector 

Mem. Inst. Mem. Vector Mem. 

s13207 976 8464 18 7750 98.1% 8.4% 

s15850 894 15974 34 8694 96.2% 45.6% 

s38417 2518 41506 31 20769 98.8% 50.0% 

s38584 3264 53952 98 24268 96.9% 55.1% 
 

To get results for the actual tester storage requirements 

using the proposed approach, we did experiments using 

the linear decompressor described in [Krishna 01] (other 

linear decompressors could also be used).  There results 

are shown in Table 2.  The same test sets are compressed 

using the linear decompressor in [Krishna 01] by itself, 

and using it in conjunction with the proposed scheme to 

utilize ATE vector repeat.  The results show that the 

amount of data that needs to be stored in the ATE vector 

memory is significantly reduced with the proposed scheme.  

The second to last column shows the vector memory 
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reduction compared with [Krishna 01], and the last column 

shows the percentage of compression achieved comparing 

the compressed test set with a highly compacted test set 

generated with COMPACTEST [Pomeranz 93]. 

In Table 3, the proposed scheme is compared with the 

scheme described in [Vranken 03] for utilizing ATE 

vector repeat.  In [Vranken 03], the best results were 

obtained when a sequencer controls two pins, so we also 

assumed that a sequencer controls two pins.  And as 

suggested in [Vranken 03], only the vectors that can be 

repeated at least 16 times are encoded by the ATE vector 

repeat to reduce the number of the repeat instructions.  

Using this criteria, we generated experimental results on 

our test sets in the manner described in [Vranken 03] 

(note that results published in [Vranken 03] were for test 

sets that are not publicly available).  The number of ATE 

repeat instructions is shown in the second and the fourth 

columns, and the amount of data stored in the vector 

memory is shown in the third and fifth columns.  As can 

be seen, much larger reductions in the vector memory can 

be obtained with the proposed approach using an order of 

magnitude fewer ATE repeat instructions compared with 

[Vranken 03].  Of course, it should be pointed out that the 

method in [Vranken 03] does not require any on-chip 

hardware, whereas the proposed method requires two on-

chip linear decompressors.  However, note that the linear 

decompressors used in the proposed scheme will require a 

very small amount of area with current chip densities, and 

they can be reused when testing multiple cores. 

Table 4.  Results comparing with [Wang 05] 

Circuit [Wang 05] Proposed 

Name Test  

Cubes 

Scan  

Cells 

Vector 

Memory 

Repeat 

Inst. 

Vector 

Memory 

Reduction

121 1518409 53.5% ckt-4 1529 43414 3264850 

404 1341943 58.9% 

283 2579402 57.6% ckt-5 4900 26970 6079410 

841 2268261 62.7% 

 

In Table 4, a comparison is made with the scheme 

described in [Wang 05] that also utilizes ATE vector 

repeat.  Here results are shown for the exact same test 

cube files for two of the industrial circuits that were used 

in [Wang 05] (the others were not publicly available).  

The circuit information is shown in the first, second and 

third columns.  The fourth column shows the best results 

in terms of vector memory requirements reported in 

[Wang 05].  For the proposed method, results are shown 

for two different numbers of ATE vector repeat 

instructions.  Note that the number of repeat instructions 

used in [Wang 05] is not reported in the paper and thus is 

not shown in Table 4.  The vector memory required is 

shown in the sixth column.  The last column shows the 

reduction in the vector memory required.  There is a 

substantial reduction.  A lot of the reduction comes from 

the fact that the proposed scheme is based on linear 

decompression.  A major advantage of the proposed 

scheme is that it is compatible with linear decompression 

which is known to be highly efficient. 
 

6. Conclusions 
 

The proposed scheme provides a way to utilize ATE 

vector repeat to achieve additional compression on top of 

the compression achieved using a linear decompressor.  

The design of the decompressor for the proposed scheme 

is independent of the test set or CUT and thus can be 

reused when testing multiple cores. 
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