
Efficiently Utilizing ATE Vector Repeat for Compression by Scan Vector

Decomposition

Jinkyu Lee and Nur A. Touba

Computer Engineering Research Center

University of Texas, Austin, TX 78712

{jlee2, touba}@ece.utexas.edu

Abstract

Previous approaches for utilizing ATE vector repeat

are based on identifying runs of repeated scan data and

directly generating that data using ATE vector repeat.

Each run requires a separate vector repeat instruction, so

the amount of compression is limited by the amount of

ATE instruction memory available and the length of the

runs (which typically will be much shorter than the length

of a scan vector). In this paper a new and more efficient

approach is proposed for utilizing ATE vector repeat.

The scan vector sequence is partitioned and decomposed

into a common sequence which is the same for an entire

cluster of test cubes and a unique sequence that is

different for each test cube. The common sequence can

be generated very efficiently using ATE vector repeat.

Experimental results demonstrate that the proposed

approach can achieve much greater compression while

using many fewer vector repeat instructions compared

with previous methods.

1. Introduction

Test vector compression involves storing a

deterministic test set on the automated test equipment

(ATE) in a compressed form. One instruction that is

commonly found in most ATEs is vector repeat which

allows the ATE to repeat a sequence n times. Previous

research has proposed ways to use this mechanism to

reduce vector memory requirements for scan testing. In

this paper, a new and more efficient approach is proposed

for utilizing ATE vector repeat.

A test cube is a deterministic test vector in which the

inputs that are not assigned during automated test pattern

generation (ATPG) are left as don’t cares. Typically only

1-5% of the bits in a test cube are specified while the rest

are don’t cares. Normally, random fill is performed where

the don’t cares are filled randomly with 1’s and 0’s to

increase the chance of detecting additional faults. In

[Barnhart 01], a methodology for utilizing ATE vector

repeat was described. The idea is that instead of doing

random fill of the test cubes, repeat fill is done where

don’t cares are filled by repeating the last specified bit

within the same scan chain. This creates runs of repeated

values in the scan chains. A scan slice is defined as the n-

bits loaded in parallel from the tester into n scan chains

each clock cycle. If multiple consecutive scan slices are

identical, then ATE vector repeat can be used to generate

them. Only one copy of the scan slice data needs to be

stored in the ATE vector memory, and then a vector

repeat instruction is stored in the ATE instruction

memory. There is a limit to how much ATE vector repeat

can be used based on the amount of instruction memory

that is available. Consequently, ATE vector repeat is only

used for the longest runs of repeated scan slices and not

all runs.

In [Liu 02], ATE vector repeat is used for repeating

full scan vectors during a transition test. For transition

tests and other two-patterns tests, the same full scan vector

may be repeated in the scan chain if it is used as the

launch (V2) vector for one two-pattern test and then as the

initialization (V1) vector for the next two-pattern test. In

[Liu 02], transition test chains where only the very first

and last vectors in a sequence are not repeated are formed

to maximally utilize ATE vector repeat to reduce ATE

storage.

In [Vranken 03], ATE vector repeat per pin-group is

investigated. In [Barnhart 01], a single ATE vector repeat

instruction applies to all pins. However, some testers

provide the ability to specify pin-groups for which to

apply the ATE vector repeat instruction. It was shown in

[Vranken 03] that by using ATE vector repeat on smaller

pin-groups, the length of the runs increases which allows

greater compression.

In [Wang 05], ATE vector repeat is used in

conjunction with a scan slice encoding scheme. Each scan

slice is encoded into a sequence of smaller codewords,

and an on-chip decoder is used to expand the codewords

into the original scan slices. In this scheme, some

codewords may be repeated, so ATE vector repeat is used

for runs of repeated codewords.

Previously proposed approaches for utilizing ATE

vector repeat are all based on identifying runs of repeated

scan data and directly generating that data using ATE

vector repeat. The amount of compression is limited by

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

the amount of ATE instruction memory available and the

length of the runs. This paper proposes a new and more

efficient way of utilizing ATE vector repeat. The idea is

to exploit the fact that many test cubes have similar input

assignments due to the fact that they are structurally

related in the circuit. The set of test cubes in a test set are

partitioned into clusters that share many input

assignments. The scan sequence is then decomposed into

two components: the sequence of specified bits that is

common across all the test cubes in a cluster, and the

sequence of specified bits that is unique to each test cube.

Two separate on-chip decompressors are then used to

generate these two sequences as illustrated in Fig. 1.

Since the common sequence is the same for all the test

cubes in a cluster, the input stream to its decompressor

can be generated using ATE vector repeat. Only one copy

of this input stream needs to be stored in the ATE vector

memory, and only one ATE vector repeat instruction

needs to be stored in the ATE instruction memory for

decompressing the entire test cube cluster. For the unique

sequence corresponding to each test cube, it is generated

with its own decompressor. The unique sequence will

only contain very few specified bits because most of the

specified bits will be generated by the common sequence

decompressor. If a linear decompressor based on dynamic

LFSR reseeding such as those described in [Krishna 01],

[Konemann 01], and [Rajski 02] is used, the amount of

compression depends only on the number of specified bits

in the sequence. Note that the design of these

decompressors is independent of the test set, so they can

be reused when testing multiple cores in a system-on-chip

(SOC) design. The diagram of the decompression

hardware is shown in Fig. 1.

Common

Seq.

Decomp-

-ressor

Unique

Seq.

Decomp-

-ressor

Comb.

Logic

Scan chain 1

ATE

Scan chain 2

Scan chain n

Apply with

vector repeat

Figure 1. Diagram of Proposed Scheme

In comparing the proposed approach for using ATE

vector repeat with the previous approaches, it has several

advantages. Previous approaches can only generate runs

of repeated values which typically will be much shorter

than the length of a scan vector, and each run requires a

separate vector repeat instruction. The proposed approach

generates the common data component for a cluster of test

cubes, and only one vector repeat instruction is needed for

each test cube cluster. Consequently, the proposed

approach is much more efficient in utilizing the ATE

vector repeat instructions. For the limited ATE

instruction memory available, the proposed approach will

be able to achieve greater compression. The cost of the

proposed approach is the need for the on-chip

decompressors. However, the on-chip decompressors can

efficiently exploit the large percentage of don’t care bits

in the test cubes to achieve very high compression.

Compared with conventional linear decompression alone,

the proposed use of ATE vector repeat provides a

significant improvement in the amount of compression.

The concept of clustering test cubes to exploit similar

input assignments has been previously investigated in the

context of built-in self-test (BIST). STAR-BIST [Tsai 00]

generates a parent pattern and then children patterns are

generated by randomly flipping bits in the parent pattern.

In [Liang 01], a folding counter is used to generate the

children patterns. In [Li 05], frequently occurring

sequences shorter than a full pattern are stored on-chip

and used to embed deterministic patterns in a semi-

random sequence. The underlying concept of these

approaches is similar to what is proposed here, but there

are a number of significant differences. The proposed

approach generates a specific precise deterministic test set

whereas the previous methods embed a deterministic test

set into a much larger set of test vectors. The proposed

approach decomposes the vectors into a common

sequence and unique sequence, and these two sequences

are combined in a fundamentally different manner than

what is done in [Tsai 00], [Liang 01], and [Li 05].

2. Decomposing Scan Data

In the proposed scheme, the set of test cubes in a test

set are partitioned into clusters that share many input

assignments. The scan data is then decomposed into two

components: the sequence of specified bits that is

common across all the test cubes in a cluster, and the

sequence of specified bits that is unique to each test cube.

An example is shown in Fig. 2 to illustrate how the scan

data is decomposed. Assume that the eight test cubes

shown in Fig. 2 are included in one cluster. Each bit

position in a test cube cluster can be classified as either

being a don’t care if no test cube has a specified value in

that bit position, having “common data” if all test cubes

have compatible values in that bit position, or having

“unique data” if two or more test cubes have conflicting

specified values. In the example in Fig. 2, the last bit

position is a don’t care. The 1
st
and 3

rd
 bit positions have

compatible value across all of the eight test cubes and thus

are common data. The common data can be generated by

the common sequence decompressor that operates based

on ATE vector repeat since it is the same for each test

cube. The 2
nd
, 4

th
, 5

th
, 6

th
, and 7

th
 bit positions have

conflicting values and thus are unique data. They must be

generated by the unique sequence generator. The

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

common data for the test cube cluster is shown in Fig. 2

along with the unique data for each test cube.

Because the scan data is decomposed into common

data and unique data, a control signal is required to

indicate if a bit position should be filled from the common

data or the unique data. This is illustrated in Fig. 3. The

control signal is a don’t care for any don’t care bit

position in a cluster (in the example in Fig. 2, only the last

bit position is a don’t care), and it has a specified value

for all other bit positions. A key property is that the same

control sequence can be used when decompressing all test

cubes in a cluster and thus it is a “common control”. This

means that the control signal can be generated by the

common sequence generator using ATE vector repeat and

thus the storage required for the common control is

amortized across all the test cubes in the cluster. The

common control sequence for the example test cube

cluster is shown in Fig. 2.

x0000101Common control

x1011110Test cube 1

x1011100Test cube 2

x0011110Test cube 3

x1100110Test cube 4

x0011x00Test cube 5

x1110110Test cube 6

x110111xTest cube 7

x111111xTest cube 8

xxxxx1x0Common data

Encoded

x1111x1xUnique data 8

x1101x1xUnique data 7

x1110x1xUnique data 6

x0011x0xUnique data 5

x1100x1xUnique data 4

x0011x1xUnique data 3

x1011x0xUnique data 2

x1011x1xUnique data 1

Original

x0000101Common control

x1011110Test cube 1

x1011100Test cube 2

x0011110Test cube 3

x1100110Test cube 4

x0011x00Test cube 5

x1110110Test cube 6

x110111xTest cube 7

x111111xTest cube 8

xxxxx1x0Common data

Encoded

x1111x1xUnique data 8

x1101x1xUnique data 7

x1110x1xUnique data 6

x0011x0xUnique data 5

x1100x1xUnique data 4

x0011x1xUnique data 3

x1011x0xUnique data 2

x1011x1xUnique data 1

Original

Figure 2. Example of proposed encoding scheme

Unique Data

Common Data

Common Control

Scan Sequence

Figure 3. Example of proposed encoding scheme

Typically a large number of specified bits can be

included in the common data because many test cubes

have similar input assignments due to the fact that they are

structurally related in the circuit. The clustering

procedure described in Sec. 4 selects the clusters to

maximize the amount of compression for the cluster.

During decompression, the common sequence generator

produces both the common data and common control.

Only one copy of the input stream for the common

sequence generator needs to be stored in the ATE vector

memory since it can be applied using the ATE vector

repeat instruction for all the test cubes in the cluster.

Therefore, a large reduction in storage requirements can

be achieved.

In the example in Fig. 2, the number of specified bits

in the original test cubes is 53, and the number of

specified bits in the encoded test cubes is 49 (2 specified

bits in the common data, 40 specified bits in the unique

data, and 7 specified bits in the common control). The

reduction in the example shown in Fig. 2 is small, but in

real cases, the number of test cubes in a cluster is much

greater than the number of test cubes in this example, so

the number of specified bits generated from the common

data is much higher, thereby making the reduction in the

total number of specified bits larger.

3. Decompression Hardware

The proposed scheme requires relatively simple

decompression hardware (two sequential linear

decompressors and one MUX per scan chain). The

proposed decompression hardware is shown in Fig. 4.

There are two types of memory in the ATE, instruction

memory and vector memory. The instruction memory

stores the ATE instructions including the vector repeat

instructions, and the vector memory stores the data. The

data is transferred to the decompressors based on the ATE

instructions. There are two sequential linear

decompressors in Fig. 4. One decompressor (the upper

one in Fig. 4) operates with ATE vector repeat and the

other decompressor operates without the ATE vector

repeat. The decompressor that operates with vector repeat

generates the common data and common control signals

for each scan chain. Only one copy of the input stream for

generating the common data and common control for all

the test cubes in a cluster is stored in the ATE and applied

repeatedly for each test cube in the cluster using an ATE

vector repeat instruction. The other decompressor (the

lower one in Fig. 4) generates the unique data and

operates without vector repeat. This decompressor

operates in the same way as the decompressor in

conventional linear compression schemes. A 2-to-1

multiplexer is placed between the decompressors and each

scan chain.

One very nice property of sequential linear

decompressors is that regardless of how many outputs

signals they generate or how long of a sequence they

generate, the number of input bits that are required for the

decompressor depends only on the total number of

specified bits that it needs to generate (the rest of the bits

are essentially filled with random data). Thus the

architecture can be easily scaled to any number of scan

chains limited only by the rate at which data from the

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

ATE can be transferred to the sequential linear

decompressors relative to the number of specified bits that

the decompressor needs to generate. Note that the

decompression hardware does not depend on the circuit or

test set, which makes it possible to reuse it when testing

multiple cores in a system-on-chip (SOC) design.

Sequential

Linear

Decomp-

-ressor

Sequential

Linear

Decomp-

-ressor

Scan chain 1

ATE

Scan chain 2

Scan chain n

Apply with

vector repeat

Unique

Data

Common

Data

Common

Control

Figure 4. Decompression hardware

L

F

S

R

Comb.

Linear

Expand

Channels

from Tester

Figure 5. Example of sequential linear decompressor

The sequential linear decompressors that are used for

this scheme could be any of the ones described in

[Krishna 01], [Konemann 01], or [Rajski 02]. An

example of the sequential linear decompressor is shown in

Fig. 5.

4. Forming Test Cube Clusters

In the proposed scheme, test cubes are grouped into

clusters. Each cluster requires the use of an ATE vector

repeat instruction for generating the common sequence for

the cluster. Because the ATE instruction memory is

limited, the number of clusters cannot exceed the amount

of ATE instruction memory available. For that reason, the

clustering algorithm used here tries to maximize the

correlation in each cluster (to reduce the number of

specified bits, thereby minimizing the tester storage),

while at the same time generating a small number of

clusters (to minimize the number of ATE repeat

instructions required).

Test cube clustering has been previously studied and

some nice algorithms can be found in [Alleyne 94]. For

the proposed scheme, a special benefit function is needed

to account for the both the control and data bits required

to encode each cluster.

Clustering start

One cluster generation

Select a seed

All possible seeds

selected?

Store benefit value

Choose cluster that has

the highest benefit value

All test cubes included

in any cluster?

End

Yes

No

No

One cluster generated

Yes

(a) Global diagram

Start

Calculate benefit function

with all remaining test cubes

Select the best candidate

Current benefit

> k • Previous benefit

Update cluster

Yes

No
Exit of loop

(b) Sub-diagram of one cluster generation

Figure 6. Flow diagram of clustering algorithm

In order to maximize the compression achieved for

each cluster, it is important that the test cubes in each

cluster have many bit positions with compatible values.

As more test cubes are added to a cluster, the number of

clusters is reduced. This has the benefit of minimizing the

number of the ATE instructions required for the vector

repeat, but there is a tradeoff as more bit positions are

likely to have conflicts thus reducing the effectiveness of

each repeat instruction. A greedy clustering procedure

that takes this tradeoff into consideration is described here.

The flow diagram of the proposed clustering algorithm

is shown in Fig. 6 and the benefit function that is used to

assign a value to a cluster is shown in the below:

specuniquetotalposspecposcompatible

spectotal
Benefit

_

++

=

where total_spec is the total number of specified bits in

the cluster, compatible_pos is the number of bit positions

that are compatible in the cluster, spec_pos is the number

of bit positions that have specified bits, and

total_unique_spec is the total number of specified bits not

in compatible bit positions. Essentially the numerator

corresponds to the uncompressed storage requirements,

and the denominator corresponds to the compressed

storage requirements (the common data has a specified bit

for each compatible bit position in the cluster, the

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Table 1. Results for proposed scheme on benchmark circuits

Circuit Num.

Test cubes

Original

Specified Bits

Num.

Clusters

Num. Specified

in Unique Seq.

Num. Specified

in Common Seq.

Encoded

Specified Bits

Reduction

18 5612 1881 7493 20.2% s13207 266 9389

40 4551 3049 7600 19.1%

15 6335 2103 8438 22.9% s15850 269 10944

34 4650 3579 8229 24.8%

19 12427 7207 19634 35.9% s38417 376 30669

31 11044 8131 19175 37.5%

18 17505 5849 23354 10.8% s38584 296 26185

98 11293 10642 21935 16.2%

common control has a specified bit for each bit position

that has one or more specified bits in the cluster, and the

unique data has one specified bit for each specified bit not

in a compatible bit position in the cluster). The larger the

benefit value, the larger the amount of compression that is

achieved when encoding the cluster. Note that while a

greedy clustering procedure is described here, any

clustering procedure in the literature can be used to

maximize the benefit function defined here.

One issue with the benefit function is that it may

generate too many clusters in some cases. Note that one

ATE repeat instruction is required in the proposed scheme

for each cluster. Thus, there is a limit on how many

clusters can be used based on the amount of ATE

instruction memory that is available. To provide a

mechanism for reducing the number of clusters generated

by the clustering procedure, a tuning variable, k, is added

to the algorithm as shown in Fig. 6-(b). To increase the

number of test cubes in each cluster, the condition for

adding a test cube into a cluster can be loosened by

making the value of k lower than 1. By lowering the value

of k, the number of clusters reduces with a reasonable

sacrifice in the number of specified bits. Note that if the

value of k is reduced too much, at some point the number

of specified bits in the encoded test cubes approaches the

number of specified bits in original test cubes and hence

no compression is achieved. In Sec. 5, experimental

results are shown for different values of k to illustrate the

tradeoffs.

5. Experimental Results

Experiments were performed on the four largest

ISCAS-89 benchmark circuits. In Table 1, the number of

test cubes and the original number of specified bits in the

deterministic test sets are shown in the second and third

columns. The fourth column shows the number of clusters

generated by the clustering algorithm described in Sec. 4.

For each circuit, results are shown for two different

numbers of clusters. One was obtained with a value of

k=1, and the other was obtained by adjusting the value of

k. The fifth and sixth columns show the number of

specified bits in the unique sequence and the number of

specified bits in common sequence. The seventh column

shows the total number of specified bits in the encoded

test cubes. The last column shows the reduction in the

number of specified bits. Note that the maximum number

of clusters shown in Table 1 is 98, which means that the

maximum number of ATE vector repeat instructions that

have to be stored in the ATE instruction memory is only

98 or less for these circuits. In most circuits, the number

of clusters is below 40. Of course, the number of clusters

can also be reduced if necessary by lowering k. Since the

number of specified bits with the proposed scheme is

reduced, the number of free-variables that are needed to

encode the data using the linear decompressors will also

reduce correspondingly.

Table 2. Results for using linear decompressor in

[Krishna 01] alone versus using it with proposed scheme

[Krishna 01] Proposed Circuit

Num.

Spec.

Vector

Mem.

Num.

Spec.

Vector

Mem.

Reduc. Comp.

s13207 9389 9872 7493 7750 21.5% 95.3%

s15850 10944 11322 8229 8694 23.2% 88.4%

s38417 30669 31245 19175 20769 33.5% 86.8%

s38584 26185 28312 21935 24268 14.3% 86.7%

Table 3. Results comparing with [Vranken 03]

[Vranken 03] Proposed

Reduction

Circuit

Num.

Repeat

Inst.

Vector

Mem.

Num.

Repeat

Inst.

Vector

Mem. Inst. Mem. Vector Mem.

s13207 976 8464 18 7750 98.1% 8.4%

s15850 894 15974 34 8694 96.2% 45.6%

s38417 2518 41506 31 20769 98.8% 50.0%

s38584 3264 53952 98 24268 96.9% 55.1%

To get results for the actual tester storage requirements

using the proposed approach, we did experiments using

the linear decompressor described in [Krishna 01] (other

linear decompressors could also be used). There results

are shown in Table 2. The same test sets are compressed

using the linear decompressor in [Krishna 01] by itself,

and using it in conjunction with the proposed scheme to

utilize ATE vector repeat. The results show that the

amount of data that needs to be stored in the ATE vector

memory is significantly reduced with the proposed scheme.

The second to last column shows the vector memory

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

reduction compared with [Krishna 01], and the last column

shows the percentage of compression achieved comparing

the compressed test set with a highly compacted test set

generated with COMPACTEST [Pomeranz 93].

In Table 3, the proposed scheme is compared with the

scheme described in [Vranken 03] for utilizing ATE

vector repeat. In [Vranken 03], the best results were

obtained when a sequencer controls two pins, so we also

assumed that a sequencer controls two pins. And as

suggested in [Vranken 03], only the vectors that can be

repeated at least 16 times are encoded by the ATE vector

repeat to reduce the number of the repeat instructions.

Using this criteria, we generated experimental results on

our test sets in the manner described in [Vranken 03]

(note that results published in [Vranken 03] were for test

sets that are not publicly available). The number of ATE

repeat instructions is shown in the second and the fourth

columns, and the amount of data stored in the vector

memory is shown in the third and fifth columns. As can

be seen, much larger reductions in the vector memory can

be obtained with the proposed approach using an order of

magnitude fewer ATE repeat instructions compared with

[Vranken 03]. Of course, it should be pointed out that the

method in [Vranken 03] does not require any on-chip

hardware, whereas the proposed method requires two on-

chip linear decompressors. However, note that the linear

decompressors used in the proposed scheme will require a

very small amount of area with current chip densities, and

they can be reused when testing multiple cores.

Table 4. Results comparing with [Wang 05]

Circuit [Wang 05] Proposed

Name Test

Cubes

Scan

Cells

Vector

Memory

Repeat

Inst.

Vector

Memory

Reduction

121 1518409 53.5% ckt-4 1529 43414 3264850

404 1341943 58.9%

283 2579402 57.6% ckt-5 4900 26970 6079410

841 2268261 62.7%

In Table 4, a comparison is made with the scheme

described in [Wang 05] that also utilizes ATE vector

repeat. Here results are shown for the exact same test

cube files for two of the industrial circuits that were used

in [Wang 05] (the others were not publicly available).

The circuit information is shown in the first, second and

third columns. The fourth column shows the best results

in terms of vector memory requirements reported in

[Wang 05]. For the proposed method, results are shown

for two different numbers of ATE vector repeat

instructions. Note that the number of repeat instructions

used in [Wang 05] is not reported in the paper and thus is

not shown in Table 4. The vector memory required is

shown in the sixth column. The last column shows the

reduction in the vector memory required. There is a

substantial reduction. A lot of the reduction comes from

the fact that the proposed scheme is based on linear

decompression. A major advantage of the proposed

scheme is that it is compatible with linear decompression

which is known to be highly efficient.

6. Conclusions

The proposed scheme provides a way to utilize ATE

vector repeat to achieve additional compression on top of

the compression achieved using a linear decompressor.

The design of the decompressor for the proposed scheme

is independent of the test set or CUT and thus can be

reused when testing multiple cores.

Acknowledgements

This material is based on work supported in part by the

National Science Foundation under Grant No. CCR-

0306238.

References

[Alleyne 94] Alleyne, Ronald, “Clustering of Test Cubes: a Procedure

for the Efficient Encoding of Complete Test Sets Based on the

Intelligent Reseeding of LFSRs”, Masters Thesis, McGill

University, 1994.

[Barnhart 01] Barnhart, C., Brunkhorst, V., Distler, F., Farnsworth, O.,

Keller, B., and Koenemann, B., “OPMISR: the Foundation for

Compressed ATPG Vectors,” Proc. of Int. Test Conf., pp. 748-

757, 2001.

[Krishna 01] Krishna, C.V., A. Jas, and N.A. Touba, "Test Vector

Encoding Using Partial LFSR Reseeding", Proc. of Int. Test Conf.,

pp. 885-893, 2001.

[Könemann 01] Könemann, B., “A SmartBIST Variant with Guaranteed

Encoding” Proc. of Asian Test Symposium, pp. 325-330, 2001.

[Li 05] Li, L., and K. Chakrabarty, “Hybrid BIST Based on Repeating

Seequences and Cluster Analysis,” Proc. of Design, Automation,

and Test in Europe (DATE), pp. 1142-1147, 2005.

[Liang 01] Liang, H.-G., S. Hellebrand, and H.-J. Wunderlich, “Two-

Dimensional Test Data Compression for Scan-Based Deterministic

BIST,” Proc. of International Test Conference, pp. 894-902, 2001.

[Liu 02] Liu, X., Hsiao, M., Chakravarti, S., and Thadikaran, P.J.,

“Techniques to Reduce Data Volume and Application Time for

Transition Test,” Proc. of Int. Test Conf., pp. 983-992, 2002.

[Pomeranz 93] Pomeranz, I., L.N. Reddy, and S.M. Reddy,

"COMPACTEST: A Method to Generate Compact Test Sets for

Combinational Circuits," IEEE Transactions on Computer-Aided

Design, Vol. 12, No. 7, pp. 1040-1049, Jul. 1993.

[Rajski 02] Rajski, J., et al., “Embedded Deterministic Test for Low

Cost Manufacturing Test,” Proc. of Int. Test Conf., pp. 301-310,

2002.

[Tsai 00] Tsai, K.-H., J. Rajski, and M. Marek-Sadowska, “Star Test:

The Theory and Its Applications,” IEEE Trans. on Computer-

Aided Design, Vol. 19, Issue 9, pp. 1052-1064, Sep. 2000.

[Vranken 03] Vranken, H., Hapke, F., Rogge, S., Chindamo, D., and

Volkerink, E., “Atpg Padding and ATE Vector Repeat per Port for

Reducing Test Data Volume,” Proc. of Int. Test Conf., pp. 1069-

1078, 2003

[Wang 05] Wang, Z., and Chakrabarty, K., “Test Data Compression for

IP Embedded Cores Using Selective Encoding of Scan Slices,”

Proc. of Int. Test Conf., pp. 581-590, 2005.

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

