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Abstract Winner selection by majority, in elections between two candidates,
is the only rule compatible with democratic principles. Instead, when candi-
dates are three or more and voters rank candidates in order of preference, there
are no univocal criteria for the selection of the winning (consensus) ranking
and the outcome is known to depend sensibly on the adopted rule. Building
upon XVIII century Condorcet theory, whose idea was maximising total voter
satisfaction, we propose here a new basic principle (dimension) to guide the se-
lection: satisfaction should be distributed among voters as equally as possible.
With this new criterion we identify an optimal set of rankings, ranging from
the Condorcet solution to the the most egalitarian one with respect to the
voters. Most importantly, we show that highly egalitarian rankings are much
more robust, with respect to random fluctuations in the votes, than consen-
sus rankings returned by classical voting rules (Copeland, Tideman, Schulze).
The newly introduced dimension provides, when used together with that of
Condorcet, a more informative classification of all the possible rankings. By
increasing awareness in selecting a consensus ranking our method may lead
to social choices which are more egalitarian compared to those achieved by
presently available voting systems.

Keywords Preferential voting · Rank aggregation · Pareto frontier · Variance
minimization

1 Introduction

A voting process starts with individuals giving a formal indication of a choice
(ballot) or, more generally, a set of preferences between two or more candidates
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(or alternatives). The process ends with an aggregation procedure (winner se-
lection method) of these indications, in order to produce the consensus ranking,
that is the ranking on which voters should agree more upon and which should
be the output of the election. The complexity of the selection process comes,
in general, from the presence of competing interests and conflicting opinions
which make it impossible to satisfy all the preferences expressed by the voters.
With his seminal work on voting theory, Condorcet [17] discovered that the
majority rule, applied to pairwise preferences, may lead to invalid solutions.
For instance in an election among three candidates the preferences may sum
up to prefer the first to the second, the second to the third and the third
to the first. Similarly, from the formal logic perspective, Arrow’s theorem [2]
states that a perfectly fair voting system may not exist (see also Easley and
Kleinberg[7]). The lack of an ideal voting system when there are three or more
candidates implies that any winner selection procedure contains some kind of
arbitrariness and makes the studies on voting methods an interesting research
problem.

Typical examples of voting processes are political elections [4]. In that case
the need of a single winner, or a single winning ranking, has encouraged the
use of very elementary selection rules, easy to compute and to understand by
voters and competitors at the expense of making sub-optimal choices. Vot-
ing theory include also cases beyond political matters. Survey rankings for
instance, typically made for commercial purposes, like hotel listings, movie
rankings, best product on the market etc, are selected with totally different
criteria. The choice of the ten best smartphones, say, is not made by maximis-
ing the voter total satisfaction, but rather to ensure that each customer finds,
among those ten, a satisfactory model.

A similar problem is very much studied in computer science under the name
of Rank Aggregation: a typical example is the merging of webpage rankings
produced by different search engines or obtained according to different criteria
[8]. The main difference from the examples above is that here the number of
voters (engines/criteria) is small, while the number of candidates (webpages)
is large. This is why in that field of research the focus is more on the algo-
rithmic challenge of computing the consensus ranking efficiently. Here we are
more interested in presenting the new criterion for better selecting the con-
sensus ranking; thus we concentrate on small number of candidates, so that
all possible rankings (with ties) can be easily computed.

It is therefore clear that the problem of finding a good consensus ranking is
an interdisciplinary topic of research: it is inspired and guided by studies in so-
ciology, marketing, economy and political sciences. The disciplines technically
involved in the solutions are statistics, mathematics and computer science.

While the social choice theory is mostly interested in classifying voting
methods according to some well established principles (axioms) [24] our ap-
proach here is different: we introduce a new measurable quantity to investigate
the properties of the whole ballot system that may, eventually, lead to more
informed choices.
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The scholars working hard science research may realise that throughout the
paper we make use of ideas and methods, albeit at a very elementary level and
embryonal form, that come from statistical physics. It is worth mentioning that
there is a quite large amount of statistical physics studies on opinion dynamics
[5] where the main focus is to understand how opinions rise and propagate
among voters. Moreover attempts to quantitative modelling of social choice
problems have naturally led to consider disordered models such as the random
field Ising model [22] and the spin glass model [20]. However the subject of
the present work, that is how to extract an informative and robust consensus
ranking from a set of ranked-ballots, has not received, to the best of our
knowledge, an adequate attention in physics and mathematics. We believe
that statistical mechanics techniques will shed some light on the complexity
of social choices and we hope that the present work will stimulate further
research on this fundamental problem.

2 Results

2.1 Definition of the problem.

Each of n voters expresses a preference about m candidates by sorting them
in a ranked list, possibly with ties, resulting in n ballots. For the sake of sim-
plicity, we prefer not to discuss partial rankings, because the meaning of not
ranking a candidate may change a lot from application to application. Valid
ranked lists for m = 4 candidates are for instance B>A>D>C, D>A=C>B
and C>A=B=D. We call rv the ballot of voter v. Each voter wishes the con-
sensus ranking to be as close as possible to his ballot and, following Condorcet
[17], a good winner selection method should work by maximising the total sum
of those wishes, i.e. minimising the sum of the distances between the consen-
sus ranking and the ballots (this method is also known in the literature as
the Kemeny rule or median procedure). Therefore the search for a consensus
ranking needs to be based on a notion of distance between the rankings. There
are several definitions of distance between rankings and many studies on the
relations among them [9]. Among these, the Kemeny distance dKem [15,16] is
widely used due to its robust properties [14]. Intuitively, when restricted to
rankings without ties, dKem is twice the minimum number of swaps of nearby
candidates required to transform one ranking into another. Alternatively, it
counts the number or pairwise preferences that do not match in the two rank-
ings. When ties appear, these count 1

2 in the distance, if they do not match
between the two rankings. A more formal definition is included in the Meth-
ods section. Our approach applies regardless of the type of distance used. We
will conventionally use the Kemeny distance to develop the discussion in the
next sections (see the Supplementary Information for a discussion on other
distances and also Ref. [25] and references therein).



4

The Condorcet consensus ranking c∗ has been defined as the ranking (or
more properly the rankings) minimising the function

µ(c) =
1

n

n∑
v=1

dKem(rv, c) , (1)

in formulae, c∗ = argmin µ(c) (see Young [26] for a review on Condorcet theory
and Monjardet[19] for a complete elucidation of its mathematical significance).
The Condorcet consensus ranking is not to be confused with the notion of
Condorcet candidate: the candidate which wins in pairwise comparison with
all other candidates. The computation of c∗ is in general a NP-hard problem,
since the space of all possible rankings with ties grows faster than m!. In
practice several polynomial time algorithms have been developed that return
an approximated answer to the problem of selecting a consensus ranking. Most
of these are the voting rules used in everyday applications. Among them it is
worth recalling the Pairwise comparison (or Copeland), Schulze and Tideman
methods, which are perhaps the most used single-round ranked-ballot winner
selection methods (they are all described in the Methods section).

None of the above voting methods is perfectly fair (in the sense of Arrow’s
theorem), however they all return a “reasonable” consensus ranking, and this
is why they are used in practical applications. Nonetheless some problems and
inconsistencies remain unsolved: (i) different voting methods return different
consensus rankings and selecting the ‘best’ among them is difficult (this is the
well known problem that the outcome of an election may very well depend
on the electoral system); (ii) by returning a unique consensus ranking, a lot
of information about voter preferences is lost; (iii) often there are consensus
rankings with a value of µ(c) very close to the optimal µ(c∗), and it is unclear
why they should be discarded. It is worth noting that, in an election/survey
with n voters, fluctuations of O(1/

√
n) in µ(c) are somehow unavoidable: if

µ(c1) < µ(c2), but with µ(c2) − µ(c1) ∼ 1/
√
n, then choosing c1 as the

consensus ranking instead of c2 is equivalent to taking a decision based on the
toss of a coin.

2.2 A new dimension for choosing the consensus ranking.

In order to solve the above problems we suggest to consider as valid consensus
rankings all the rankings c close enough to the optimal one (i.e., those for
which µ(c)− µ(c∗) ∼ 1/

√
n), and we introduce a new dimension to select the

best among these valid consensus rankings. Our idea is that not only the global
number of satisfied preferences is to be maximized, but also each individual
voter should have more or less the same number of satisfied preferences. With
this aim we propose to compute also the voter-to-voter satisfaction variability
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(standard deviation) as

σ(c) =

√√√√ 1

n

n∑
v=1

[
dKem(rv, c)− µ(c)

]2
(2)

=

√√√√ 1

n

n∑
v=1

dKem(rv, c)2 − µ(c)2 .

If σ(c) = 0, the consensus ranking c satisfies equally each voter; while, if σ(c)
is large, then there are voters more satisfied and others less satisfied than the
average. Clearly the smaller is σ(c) the more egalitarian is c.

To illustrate the new criterion, we start with a very simple example. We
consider an election with m = 4 candidates and we do not allow for ties;
the number of possible rankings is m! = 24, as shown in the table included
in Figure 1. The distance between these 24 rankings can be easily visualised
in the same figure, top left panel, which includes a graph where each vertex
corresponds to a ranking, with an edge connecting rankings at distance 2
(differing only by a swap of two neighbouring candidates). For rankings at
distance larger than 2, it is enough to count the edges along the shortest path
connecting the rankings in this graph.

Suppose the electorate is equally polarised on two opposite rankings: half of
the voters rank candidates A > B > C > D and the other half D > C > B > A.
A simple calculation shows that any possible ranking has µ(c) = 6, therefore
there is no way to choose one of them according to the Condorcet criterion
alone. However the 24 possible consensus rankings have very different σ(c)
as can be seen in the middle panel of Figure 1: the point with largest σ(c)
corresponds to rankings A > B > C > D and D > C > B > A that fully sat-
isfy half of the voters and fully deceive the second half, while the point with
σ(c) = 0 corresponds to the six rankings that are at the same distance from
the ballots, thus satisfy them equally well. It is clear that the latter are the
more egalitarian consensus rankings. In other words, spreading satisfaction as
equally as possible among voters, i.e. minimising σ(c), is a new criterion to
select the consensus ranking that deserves, at least, the same consideration as
the Condorcet criterion of minimising µ(c).

Even more interesting is the case when some noise is added to the example
above. For instance we can consider small fluctuations in the number of electors
participating to the poll, resulting in a fraction 1

2 + ε of voters ranking the
candidates as A > B > C > D and the complement fraction 1

2−ε ranking them
as D > C > B > A. For an election with n voters a noise of order ε = O(1/

√
n)

is somehow unavoidable. In lower panels in Figure 1 we report µ(c) and σ(c)
values for the 24 possible consensus rankings. For ε > 0, the small unbalance
decreases µ for ranking A > B > C > D, making it the consensus ranking under
the Condorcet criterion. For ε < 0, the opposite ranking would win. The
difference between the two cases is, however, only due to noise; so selecting a
consensus ranking by strictly minimising µ(c) would be equivalent to selecting
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Fig. 1 A very simple example with four candidates.There are 24 possible rankings
without ties (listed) in panel (b)), whose relative distances are given by the graph in panel
(a). In panel (c) we report (µ, σ) values for possible consensus rankings in case the electorate
is equally polarised on opposite ballots (codes 1 and 24); panels (d) and (e) have been
computed by adding a small noise to the perfectly balanced situation. Our web platform
allows one to interact with panels c, d and e.

the winner on a coin toss. Rankings with lower σ(c), as lower panels in Figure 1
shows, are much less sensitive to noise: by minimising σ(c) one gets always the
same consensus rankings independently on the noise. This is a very important
observation in favour of the new criterion, given that a fair voting system

http://www.sapienzaapps.it/rateit.php?ex=1c
http://www.sapienzaapps.it/rateit.php?ex=1d
http://www.sapienzaapps.it/rateit.php?ex=1e
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should be robust with respect to small fluctuations due to the unavoidable
noise.

Although very simplified, the example above contains in a stylized form
the relevant facts we have observed in real data, to be discussed below.

2.3 Analysis of data from real polls.

We have now two criteria for the identification of the best consensus ranking:
minimising µ(c) and minimising σ(c) (among rankings of small µ(c)). In gen-
eral is not possible to find a consensus ranking satisfying both criteria, and
some compromise must be adopted, as we will exemplify with data from real
polls.

The first dataset consists of ratings for jokes from the Jester database[12].
The full dataset is made of 100 jokes rated by 24938 users. Ratings are con-
tinuous values between -10 and 10. We have selected the five jokes rated by
most users, and considered only those users who rated all five jokes, resulting
in 24921 voters. For each voter, the ballot is obtained by ranking the 5 jokes
according to the continuous-valued rating.

In the upper panel of Figure 2 we show the
(
µ(c), σ(c)

)
values for all

possible consensus rankings of the m = 5 jokes: the 120 black circles cor-
respond to rankings without ties, while gray diamonds are the 421 rankings
with ties. One ranking was excluded from the plot, for better visualisation:
ranking A=B=C=D=E at position (9.81,0.63). The consensus ranking min-
imising µ(c) is c∗ : D=E>C>B>A and has µ(c∗) = 8.615. However, close
to c∗ we see a cloud of points with small values of µ(c). The lower panel
in Figure 2 zooms over this set of rankings, all having a distance from the
Condorcet optimum c∗, comparable with O(1/

√
n) fluctuations. So, from the

point of view of the Condorcet criterion, all these rankings are equally good
within the noise. On the contrary they show a much larger variation in σ(c),
that changes between 3.36 and 4.29, allowing for a better consensus ranking
selection by minimising σ(c). The consensus ranking minimising σ(c) in this
region is D=E>A=B=C with coordinates (µ, σ) = (8.66, 3.36). It seems to
convey all the relevant information contained in this set of low µ(c) rankings:
indeed the only information shared by all the rankings in the lower panel of
Figure 2 is that jokes D and E are better than jokes A, B and C. Any consen-
sus ranking more refined that D=E>A=B=C would just amplify the noise,
rather than providing further useful information.

Three commonly used winner selection methods were also applied to the
data (Copeland, Schulze and Tideman), and the corresponding consensus rank-
ings are marked in Figure 2. All of them rank jokes as E>D>C>B>A with
(µ, σ) = (8.62, 4.12). This consensus ranking differs from c∗, the Condorcet
consensus ranking, and it has a quite large σ(c) value, hence being among the
less egalitarian rankings.

In applying the criterion of minimising σ(c) one has to be careful, because
this criterion tends to select consensus rankings with ties (gray diamonds are
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Fig. 2 Aggregation of 24921 ballots rankings 5 jokes. The upper panel shows the
entire set of possible rankings, except for A=B=C=D=E, at position (9.81,0.63) which is
omitted for visualisation purposes. The lower panel zooms in the leftmost part of the first
plot. Solutions found by Copeland, Tideman and Schulze coincide in this example. None of
these is optimal under the Condorcet criterion of minimising µ or under the new criterion
of minimising σ. Here you may interact with this figure.

on average below black circles in Figure 2). If ties are not allowed in the con-
sensus ranking, one should focus only on black points in Figure 2: even in this
case, the consensus ranking D>E>B>A>C with (µ, σ) = (8.74, 3.65) looks
much more egalitarian than the consensus ranking E>D>C>B>A found by
common voting methods: it gains more than 10% in σ(c), while loosing just
1% in µ(c). The final decision on which rule is to be used to select the consen-

http://www.sapienzaapps.it/rateit.php?ex=2a
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sus ranking is left to the organisers of the poll/survey, but clearly a plot in the
(µ, σ) plane is much more informative than any previously available method.

Fig. 3 Uncertainty plots. Uncertainties on the values of µ(c) and σ(c) as obtained
from resampling experiments using either 80% or 90% of the original data (α = 0.2 and
α = 0.1 respectively). Rankings with smaller σ(c) are more reliable, since they have smaller
fluctuations.

Similar to the simple example discussed earlier, the data from real polls
also show that consensus rankings of smaller σ(c) are less sensitive to noise.
In this case we investigate the effect of small fluctuations in participation
by using a subsampling procedure: from the joke ratings provided by 24921
users, a fraction α of randomly chosen votes has been removed, and µ(c)
and σ(c) recomputed. Resampling was repeated 100 times with α = 0.1 and
α = 0.2. From the variations of µ and σ between different subsamplings we may
compute the noise fluctuations on µ and σ (see Supplementary Information
for a detailed derivation of the scaling law for fluctuations). In Figure 3 these
fluctuations are reported, showing a very clear and strong correlation with the
value of σ(c). A good consensus ranking should be as robust as possible to noise
produced by fluctuations in e.g. the number of voters. For example, suppose a
poll/survey is run for 10 days, then the outcome of the survey is reliable if it
does not change sensibly in case the data were collected for one or two days
less. What we observe in Figure 3 is that noise sensitivity is larger for points of
large σ(c), while no relation can be observed between noise sensitivity and µ.
So, choosing a consensus ranking according to the new criterion of minimising
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Fig. 4 Aggregation of 930 ballots ranking 5 movies. Here rankings with ties play an
important role. Again the solution found by standard voting methods (Copeland, Schulze,
Tideman) is far from the optimal set. Here you may interact with this figure.

σ(c), provides in general a result much more robust to noise (e.g. unavoidable
fluctuations in the number of participants to the poll/survey/election). We
also analysed opinion fluctuations for this dataset, similarly to the analytical
example of Figure 1, and results show same robustness for rankings with lower
σ(c) (see Supplementary Information for details).

The second example from real polls considers the rankings of 5 movies
provided by 930 users. These are a subset of a larger database consisting of
1,000,209 ratings from 6040 users for 3952 movies [13]. Here, users rated the
movies on a discrete scale from 1 to 5. As before, we sorted the movies for
each user, to obtain the ballots. Since equal ratings are very probable here,
given that only 5 possible rating values exist, many ballots have ties.

Once again the plot in (µ, σ), shown in Figure 4 is very informative. First of
all we notice that consensus rankings with ties, although having much smaller
values of µ(c), are not chosen by any commonly used voting method. Moreover
the optimal consensus ranking according to the Condorcet criterion seems to
have a very large value for σ(c). There are a few other rankings worth to
be considered, that have slightly higher µ(c) but much lower σ(c). Indeed
we identify a set of optimal rankings (red diamonds in Figure 4) combining
the two criteria. These optimal rankings start from the Condorcet ranking c∗

and include other rankings in the bottom left part of the plot, that cannot be
improved in terms of both µ(c) and σ(c) (the Methods section includes a more
formal definition of this sequence). In the example from the movie data, two

http://www.sapienzaapps.it/rateit.php?ex=4
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additional rankings should be considered, along with the Condorcet ranking, to
be part of the optimal set: these are A=B=C=D=E with (µ, σ) = (5.48, 2.30),
and B>A=C=D=E with (µ, σ) = (6.37, 2.08), both are red-marked in the
bottom left corner of the plot. We suggest that the consensus ranking should
be selected from the optimal set, and the choice should be made after careful
analysis of the (µ, σ) plot. The set of optimal rankings resembles somehow the
Pareto efficient frontier used in economic theory [10].

Fig. 5 AIRESIS data. Here you may interact with this figure.

Both examples above have a large number of voters and one may think
that the complex behaviour we have illustrated could be due to the large
number of voters. This is not actually the case, as we are going to show with
an example from a poll with a small number of voters (n = 14), that ranked
m = 5 alternatives. This is a poll organised on the Airesis platform [1], which
is a web platform freely available to organisations to manage internal deci-
sion making. The data shown in Figure 5 represent a real election where the
consensus ranking has been selected according to the Schulze method. The
first evidence is that the consensus ranking of that election (Schulze) is far
from the optimal one: the Condorcet optimal consensus ranking is better (i.e.
lower) both in µ(c) and σ(c). Additionally, a large number of rankings are
part of the optimal set, defined previously, and marked with red diamonds in
the plot, which should be taken into consideration. Even willing to restrict to
consensus rankings without ties (this is an election, and ties may be problem-
atic for the decision process), it is clear that the consensus ranking selected

http://www.sapienzaapps.it/rateit.php?ex=5
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by Schulze, C>E>D>B>A with (µ, σ) = (5.78, 2.99), has a quite large σ(c)
with respect to consensus rankings C>D>E>B>A with (µ, σ) = (5.92, 2.89),
and C>E>D>A>B with (µ, σ) = (6.21, 2.48). The latter correspond to the
two leftmost purple circles in Figure 5.

3 Discussion

We analyze voting results in a ranked-ballot poll by plotting potentially win-
ning rankings on the plane (µ, σ). In this way both the standard Condorcet
criterion of minimizing µ(c) and the new criterion of minimizing σ(c), that we
have introduced, can be considered at the same time in order to identify the
optimal consensus ranking. The fundamental importance of the new criterion
relies on the fact that consensus ranking of small σ(c) are much more robust to
noise in the data, e.g. fluctuations in the number of voters, which are somehow
unavoidable.

We have also shown that standard voting rules, such as Copeland, Schulze
or Tideman, may provide a consensus ranking which is not the best represen-
tative consensus. Indeed, trying to minimize only µ(c), these classical meth-
ods may eventually prefer a ranking which improves over other rankings by
O(1/

√
n), that is the order of magnitude of noise-induced fluctuations. This is

related to the very well known problem of data over-fitting. The best solution
to this over-fitting problem would be to estimate the uncertainty on the data,
then compute the a posterior probability distribution on all the possible rank-
ings and finally extract the most representative consensus ranking from this
probability distribution. Given that the just outlined procedure is not easy
to implement, we have provided, through the use of both µ(c) and σ(c), a
more economic way of finding a consensus ranking which is at the same time
representative and robust.

To help in this new analysis we have set up a webpage with an interactive
tool that produces the graph in the (µ, σ) plane [6], once the list of ranked
ballots is given as input. All plots in this manuscript, using the standard
Kemeny distance, are based on those produced by the web tool. We have
analysed many different datasets coming from real polls and in general the
plots in the (µ, σ) plane are similar to those shown above. Moreover we expect
polynomial time algorithms can be developed that minimise (approximately)
both µ(c) and σ(c) in analogy to presently used voting rules that tend to
minimise only µ(c).

Once the graph in the (µ, σ) plane is available, we believe any good con-
sensus ranking should be chosen from the optimal set, resembling the concept
of Pareto frontier in economics. A point belongs to the optimal set if no other
point exists improving both in µ(c) and σ(c) or improving only one of them
while keeping the other constant. This set has been red-marked in the examples
above and it extends from the Condorcet optimal ranking c∗, that minimizes
µ(c), to the ranking c minimising σ(c). The meaning of moving along this
set should be clear: while the ranking c∗ maximises total societal satisfaction
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ignoring individual satisfaction, c is the more egalitarian in terms of individ-
ual satisfaction regardless of the total satisfaction. We are not claiming that
c should be the consensus ranking: often µ(c) is much larger that µ(c∗) and
the optimal consensus ranking is actually in the middle of the optimal set.
Instead, we are proposing a new tool that provides a quantitative meaning to
each possible choice. Which consensus ranking should be chosen among the
optimal set is no longer a technical matter, it is rather a decision to be taken
by the people in charge and the criteria may change according to the domains:
political elections, marketing, web page ranking, etc. In some cases, like for
instance in political election, the decision on which point to select along this
line must be taken before the poll is run. There are polls, like political elec-
tions, where the consensus ranking must produce a unique winner among the
candidates. In this case one can restrict the analysis to rankings having no tie
at the first position and a line of optimal rankings can be defined as well in
this subset of rankings. The optimal set can be also used to compare consensus
rankings suggested by the existing winner selection methods.

The cases where the plot in the (µ, σ) plane is even more useful is when
the final decision can be taken after the poll/survey is run. In this case having
a data aggregation like the one we are presenting in terms of µ(c) and σ(c)
provides a lot of information and allows for a much better choice. A typical
example is when politicians want to decide a list of priorities based on sugges-
tions coming from the electorate: the politicians can run a poll/survey among
the electorate and this would determine the optimal rankings, leaving to the
politicians the final choice of the consensus ranking, to be chosen among those.
We believe this is an ideal compromise between taking in serious consideration
the desiderata of the electorate (the line of optimal consensus rankings is fully
determined by the votes) and leaving the political decision to those in charge.

The applications where technical tools provide a set of optimal preferences
among which the final choice is left to the user are not new in other fields. For
example in quantitative financial risk management the mathematical analysis
produces a risk-return curve (called efficient frontier [18]) and the choice of a
point along such a curve is left to the investor. From a different perspective a
voting theory purely based on the maximisation of voters satisfactions would
be equivalent, in political economy, to the maximisation of total wealth in a
country regardless of its distribution and welfare criteria.

We have shown that our method leads to the identification of an optimal
set in the two-dimensional space of satisfaction and egalitarianism, based on
a theoretical assumption of distance among rankings. In fact, our study may
be applied only to winner selection methods based on a distance. Once the
choice of the distance is made, the optimal set is uniquely determined. The
arbitrariness of such choice could be eliminated by inferring, with an inverse
problem procedure, what is the ‘proper’ distance to be used in specific cases.
Namely post-vote polls could be performed by asking the voters to evaluate
their personal satisfaction with some proposed winning rankings, obtaining
in this way an experimental two-dimensional classification of the optimal set.
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This information could hint at the best distance to be used, by minimising the
differences between theoretical and experimental points.

The voting method we have presented here provides an efficient techni-
cal tool to determine the line of optimal rankings, among which a political
decision has to be taken. While it is generally understood and acknowledged
that democratic organisations should not only maximise their goods but also
distribute them as equally as possible, such awareness did not lead so far to a
proper solution in social choice theory. We believe therefore that the quanti-
tative method we have introduced is a fundamental tool to apply democratic
principles, especially in voting processes.

4 Materials and Methods

4.1 Distance between rankings

The Kemeny distance [15,16] dKem(r, s), is one of the possible means of quan-
tifying how dissimilar two rankings r and s are. Intuitively, the distance relates
to how many pairwise comparisons of candidates do not match between the
two rankings. For instance, if candidate A is preferred to candidate B in one
ranking, but B is preferred to A in the other, that would count 1 in the dis-
tance. If one ranking considers A=B while the other does not, then that would
count 1/2 in the distance. By summing over all possible pairs, with (A,B) and
(B,A) counted separately, one obtains the Kemeny distance between the two
rankings.

The computation of dKem(r, s) is simpler if rankings are rewritten in terms
of the score matrices M(r):

Mij(r) =

 1 if candidate i is preferred to candidate j in ranking r

−1 if candidate j is preferred to candidate i in ranking r

0 otherwise

(3)

The Kemeny distance between rankings r and s is thus given by

dKem(r, s) =
1

2

∑
i,j

|Mij(r)−Mij(s)| (4)

4.2 Combinatorics

The set of rankings without ties for m candidates, Rm, has cardinality m!.
Let us call Tm the cardinality of the set of rankings including ties, Rm. Tm
are sometimes called Fubini, or Cayley numbers. One can show (see the OEIS
website[21] and references therein) that their exponential generating function
is

F (x) =

∞∑
m=0

Tm
m!

xm =
1

2− ex
, (5)



Egalitarianism in the rank aggregation problem: a new dimension for democracy 15

whose radius of convergence is ln 2. This can be used to find Tm from deriva-
tives and gives T0 = 1, T1 = 1, T2 = 3, T3 = 13, T4 = 75, T5 = 541, T6 = 4683,
T7 = 47293, T8 = 545835, T9 = 7087261, T10 = 102247563, etc. These numbers
grow according to the formula

Tm '
m!

2(ln 2)m+1
' (1.44)mm! , (6)

with a sub-leading correction decaying exponentially fast(
Tm −

m!

2(ln 2)m+1

)
1

Tm
' (0.11)m . (7)

One can also consider the set of rankings with l ties, where 0 ≤ l ≤ m − 1:

R(l)

m . Clearly Rm = R(0)

m and Rm = ∪m−1l=0 R
(l)

m . Another interesting set for

applications is the set R̂m containing rankings where the first candidate is
untied. For each set of rankings our method provides a subset of optimal
rankings according to the following definition.

4.3 Optimal set

For two rankings s and r in S, we say s improves r if σ(s) ≤ σ(r) and µ(s) ≤
µ(r), and at least one of the two inequalities is strict. The optimal set OS is
the set of points in S that cannot be improved by other elements of S.

On the web platform that we have developed [6] we show the global optimal
set ORm

(red diamonds) and the one with no ties ORm
(purple circles). In

other contexts, like engineering or economics, the optimal set of vectors of a
d-dimensional space is called Pareto frontier [10]. In general the computation
of such an optimal set requires a time proportional to the cardinality Tm [11],
that is a time exponential in the number m of candidates.

Indeed also the computation of the Condorcet optimal consensus ranking
with Kemeny distances (which is one element of the optimal set) is in general
a NP-hard problem. However, if the n ranked ballots given in input are not too
dissimilar, such an optimum can be computed in polynomial time [3]. Nonethe-
less the cases where our new criterion is meaningful are exactly those where
the ranked ballots are not too similar. We believe that for the computation of
the optimal set in the large m limit, one should resort to Monte Carlo meth-
ods, already successfully used in the computation of Kemeny optimal rankings
[23].

4.4 Some winner selection methods

In the plots in the main paper we have shown the consensus rankings ob-
tained by some well-known winner selection methods, Copeland, Schulze and
Tideman [4]. Here we provide a detailed description of these methods, which
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are the most commonly used in situations where the voter ballots are lists of
candidates ordered by preference (ranked ballots).

We consider the same situation as in the main paper, where n voters ex-
press their preferences about m candidates. The ballot of each voter can be
conveniently mapped in a vector r of m integers representing the positions of
each candidate in the preference list. For example the ballot C>A>E>D>B
corresponds to the vector r = (2, 5, 1, 4, 3). From the n vectors r(k), with
k = 1 . . . , n, representing the voter ballots we can build the matrix of total
preferences whose elements are

Pij =

n∑
k=1

I(r(k)j > r
(k)
i ) , (8)

where the indicator function I is defined as

I(condition) =

{
1 if condition is true
0 if condition is false

(9)

In practice the matrix element Pij counts how many voters prefer candidate
i to candidate j. The result of any voting method based only on pairwise
comparisons between candidates can be obtained from matrix P .

A method of selecting a consensus ranking based on scores is Copeland,
also known as the pairwise comparison. Candidates are ranked according to
the score Ci that counts the number of pairwise comparisons won plus half of
those tied

Ci =

m∑
j=1

[
I(Pij > Pji) +

1

2
I(Pij = Pji)

]
. (10)

The Copeland candidate(s) is the one with maximum Ci.
The Schulze method is also based on pairwise comparisons between can-

didates. To compute the Schulze ranking from the matrix P we first have to
compute the matrix B of beatpaths, by initialing it as Bij = Pij and then
iterating until convergence

Bij = max

(
Bij , max

k
min(Bik, Bkj)

)
. (11)

The number of iterations to make the matrix B converge is given by the
length of the longest beatpath, which is at most the number of candidates m.
Successively, candidates are ranked according to a score similar to the pairwise
one for the B matrix, that is

Zi =

m∑
j=1

[
I(Bij > Bji) +

1

2
I(Bij = Bji)

]
. (12)

The Schulze candidate(s) is the one with maximum Zi.
Tideman is a further method of selecting a consensus ranking. To compute

the Tideman solution, the elements of matrix P are sorted in a decreasing



Egalitarianism in the rank aggregation problem: a new dimension for democracy 17

order and taken into account one by one. When element Pij is considered, the
relative order i > j in the final ranking is assigned unless in contrast with the
partial ordering already fixed by larger values of P previously considered.
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