
RD-R148 056 EGP (EXTERIOR GATEWAY PROTOCOL) GATEWAY UNDER BERKELEY i/i
UNIX 42(U) UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL
REY INFORMATION S- P KIRTON OCT 84 ISI/RR-84-i45

UNCLASSIFIED MDA903-8i-C-0335 F/G 9/2 M

EhhmhhhhhmhohE
Ehh~~EE.hEh

* r.7

li"5

111140 111 2.0

1 .511111
-6

111WII~

":: III.o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

-,., : .,. , . ., . , ... , , S. ,, .. ,

/ ISI Research Report 0

ISI/RR-84-145

Ociober 1984

In

Universitiy
of Southern0

California N

Paul Kirton

. Gateway Unde

Berkeley UNIX4.2

%

-.-.- -,

SCE S. T-.

. ' -; , . ! .. Z'.

d Cafora 90292-6695 V.

Paul Ki rtonI ,,.2---.-%

INerkeTINey 2 NX4 ----.

0-. 4_.-

6
.

Unclassified
*'. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT BEFORE COMPLETING FORM

TITL. EOMN OadS~~ RGI ZAIO AM.N)ADRS51. TPEOFRMEPORET PRIO O E REDTSK

•REPORT NUMBER GOVTAtio NO. I. R ATALOG NUMBER

ISI/RR-84-145 y,.CA 9ATAOGNU95

." TICOTOL N (and Subttle 5. ADDREE OF. EPOR T 4 EROTCVEE

- DResearch Report

EGP Gateway Under Berkeley UNIX 4.2 6 EFRIGOG EOTNME

140G. WisnBvdPs.ERMN ORG RAEPOTME

7. AUTHiOR(&) II. CONTRACT OR GRANT NUMBER(@)

SPaul Kirton MDA903 81 C 0335

9 " PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

USC/Information Sciences InstituteE U

4676 Admiralty Way
Marina del Rey, CA 90292-6695 ______________

I I CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency October 1984
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 43
14. MONITORING AGENCY NAME A ADDRESS~If different from, Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
......... 15. DECLASSIFICATION/DOWNGRADING

SCH4EDULE

t6. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, It different from Report)

-- ..o..o.. .

- IS. SUPPLEMENTARY NOTES

~......

' S19. KEY WORDS (Continue on reverse side if neceeery and Identify by block number)

_. ARPANET, autonomous systems, computer networks, EGP, Exterior Gateway Protocol, gateways,
- internetwork communication, network management, protocols, routing algorithms, UNIX4

,* 20. AUSTRACT (Continue on reveree side if neceesry and Identify by block number)

This report describes an implementation of the Exterior Gateway Protocol that runs under the UNIX
-. 4.2 BSD operating system. Some issues related to local network configurations are also discussed.

.

DD , 1473 EDITION OFINOV 65 IS OBSOLETE Unclassified
0 SECURITY CLASSIPICATION OF THIS PAGE (Mhen DeS Rntered)

, . ,

- -- - - - *---- - - - ---- ----.- .-1

ISI Research Report
ISL/RR-84-145

October 1984

University k

of Southern
California

Paul Kirton

.., EGP Gateway UnderBerkeley UNIX 4.2

.

P..

.- .:: ". --- - -----...

INFORMATION
SCIENCES 2131822-1-51!

INSTITUTE

,r 'd J-" I- It Waltri -6695

NE4676 Admiralty Way/Marina del Rey/California 90292-6695
This research Is supported by the Defense Advanced Research Projects Agency under Contract No. MDA3 81 C 03f, and by a Telecom
Australia Development Award. Views and conclusions contained in this report are the auts and ihould not be wterpreted a representingfte off icial opinion or policy of DARPA, fth U.S. Government, Telecom Australia. or any person or agency connected with them.

CONTENTS

1. INTRODUCTION..7I
1.1 Motivation for Development .. 71
1.2 Overview of EGP .. 2

2. GATEWAY DESIGN... 3
2.1 Routing Tables.. 3
2.2 Neighbor Acquisition ... 5
2.3 Hello and Poll Intervals.. 5
2.4 Neighbor Cease... 6
2.5 Neighbor Reachability .. 6
2.6 Sequence Numbers... 7
2.7 Treatment of Excess Commands .. 7
2.8 Inappropriate Messages... 8
2.9 Default Gateway... 8

3. TESTING... 9

4. FUTURE ENHANCEMENTS... 10
4.1 Multiple Autonomous Systems..710
4.2 Interface Monitoring ... 10
4.3 Network Level Status Information ... 10
4.4 Interior Gateway Protocol Interface .. 1I1

*5. TOPOLOGY ISSUES.. 12
5.1 Topology Restrictions and Routing Loops 12
5.2 Present ISI Configuration..714
5.3 Possible Future Configuration .. 11

6. RUNNING THE EGP PROCESS 20
6.1 Starting the EGP Process and Trace Facilities 20
6.2 Process Termination... 20
6.3 Site-Dependent Initialization ... 20

6.4 Compiler Switches... 22I6.5 UNIX Interface ... 22
6.6 EGP and Routed .. 24

7. SOFTWARE DESCRIPTION .. 25
7.1 Source Files ... 25
7.2 Software Overview .. 26
7.3 Main Data Structures... 26
7.4 Functions... 27

8. RESOURCE USE... 30

A.SAMPLE TRACE OUTPUT ... 31

REF REN ES 37

ACKNOWLEDGMENTS

I acknowledge with thanks the many people who have helped me with this project, but in particular,
Dave Mills, who suggested the project, Jon Postel for discussion and encouragement, Liza Martin for
providing the initial EGP code, Berkeley for providing the "routed" code, Mike Brescia for assistance
with testing, Telecom Australia for funding me, and ISI for providing facilities.

'p

I%

1, INTRODUCTION

IA- - The Exterior Gateway Protocol (EGP)l[Rosen 82, Seamonson & Rosen 84, Mills 8ft# has been
specified to allow autonomous development of different gateway systems while still maintaining
global distribution of internet routing information. EGP provides a means for different autonomous
gateway systems to exchange information about the networks that are reachable via them.

This report mainly describes an implementation of EGP that runs as a user process under the
Berkeley UNIX 4.2 operating system run on a VAX computer. Some related issues concerning local
autonomous system configurations are also discussed.

The EGP implementation is experimental and is not a part of UNIX 4.2 BSD. It is anticipated that
Berkeley will incorporate a version of EGP in the future.

The program is written in C. The EGP part is based on the C-Gateway code written by Liza Martin at
MIT and the route management part is based on a UNIX 4.2 BSD route management daemon,
"routed".

The EGP functions are consistent with the specification of [Mills 84a] except where noted.

A knowledge of EGP as described in [Seamonson & Rosen 84; Mills 84a] is assumed.

,1.' Requests for documentation and copies of the EGP program should be sent to Joyce Reynolds

S(JKReynolds@ USC- ISIF.ARPA). Software support is not provided.

This chapter discusses motivation for the project, Chapter 2 describes the gateway design, Chapter 3
is on testing, Chapter 4 suggests some enhancements, Chapter 5 discusses topology issues, Chapter
6 discusses how to run the EGP program, and Chapter 7 describes the software. Chapters 1 to 5 are

also published as RFC 911 [Kirton 84].

1.1 Motivation for Development
F. With the introduction of EGP, the internet gateways will be divided into a "core" autonomous system

(AS) of gateways maintained by Bolt Beranek and Newman, Inc. (BBN) and many "stub" AS's that are
maintained by different organizations and that have at least one network in common with a core AS
gateway. The core AS will act as a hub for passing on routing information between different stub AS's
so that it will only be necessary for stub AS's to conduct EGP with a core gateway. Further det is
given in [Rosen 82).

UNIX is a trademer of AT&T.

I "VAX i a trademark of D40M Equipment CArporelon.

r. .% *- 'q .% * ~ .

2

. At the time of this project there were 28 "non-routing" gateways in the internet. Non-routing gateways
* did not exchange routing information but required static entries in the core gateway routing tables.

Since August 1, 1984, these static entries have been eliminated and previously non-routing gateways
- are required to communicate this information to the core gateways dynamically via EGP [Postel 84].

• .At USC/Information Sciences Institute (ISI) there was a non-routing gateway to the University of
California at Irvine network (UCI-ICS). With the elimination of non-routing gateways from the core

-. gateway tables it is now necessary to inform the core ISI gateway of the route to UCI-ICS using EGP.

ISI has suggested building a backup gateway between ISI-NET and the ARPANET in case the core ISI
gateway is down. Such a gateway would need to convey routing information via EGP. Details of the
ISI network configuration are discussed in Section 5.2.

Of the 28 non-routing gateways, 23 were implemented by UNIX systems, including ISI's. Also, ISI's
proposed backup gateway was a UNIX system. Thus there was a local and general need for an EGP
implementation to run under UNIX. The current version of UNIX that included Department of Defense

?. (DoD) protocols was Berkeley UNIX 4.2, so this was selected.

1.2 Overview of EGP

This report assumes a knowledge of EGP; however, a brief overview is given here for completeness.
For further details refer to [Rosen 82] for the background to EGP, [Seamonson & Rosen 84] for an
informal description, and [Mills 84a] for a more formal specification and implementation details.

EGP is generally conducted between gateways in different AS's that share a common network, that is,
*i neighbor gateways. EGP consists of three procedures: neighbor acquisition, neighbor reachability,
-• .and network reachability.

* Neighbor acquisition is a two-way handshake in which gateways agree to conduct EGP by
- exchanging Request and Confirm messages which include the minimum Hello and Poll intervals.
- Acquisition is terminated by an exchange of Cease and Cease-ack messages.

Neighbor reachability is a periodic exchange of Hello commands and I-H-U (I heard you) responses to
4 ensure that each gateway is up. Currently a 30-second minimum interval is used across the
• "ARPANET. Only one gateway need send commands, as the other can use them to determine
• reachability. A gateway sending reachability commands is said to be in the active mode, while a
* gateway that just responds is in the passive mode.

Network reachability is determined by an exchange of Poll commands and Update responses which
indicate the networks reachable via one or more gateways on the shared network. Currently a two.
minute minimum interval is used across the ARPANET.

. . . . ,4 % % . . , 'q I P q. " " ' " -

2. GATEWAY DESIGN

EGP is a polling protocol with loose timing constraints. Thus the only gateway function requiring good

performance is packet forwarding. UNIX 4.2 already has packet forwarding built into the kernel where

best performance can be achieved. At the time of writing, UNIX 4.2 does not send ICMP (Internet

Control Message Protocol) redirect messages for misrouted packets. This is a requirement of internet

gateways and will later be added by Berkeley.

The EGP and route update functions are implemented as a user process. This facilitates development

and distribution as only minor changes need to be made to the UNIX kernel. This is a similar

approach to the UNIX route distribution program "routed" [Berkeley 83], which is based on the Xerox

NS Routing Information Protocol [Xerox 81].

2.1 Routing Tables

A route consists of a destination network number, the address of the next gateway to use on a directly

connected network, and a metric giving the distance in gateway hops to the destination network.

There are two sets of routing tables, the kernel tables (used for packet forwarding) and the EGP

process tables. The kernel has separate tables for host and network destinations. The EGP process

maintains only the network routing tables. The EGP tables are updated when EGP Update messages

are received. When a route is changed the kernel network tables are updated via the SIOCADDRT

and SIOCDELRT ioctl system calls. At initialization the kernel network routing tables are read via the

kernel memory image file, /dev/kmem, and copied into the EGP tables for consistency.

This EGP implementation is designed to run on a gateway that is also a host. Because of the relatively

slow polling to obtain route updates, it is possible that the host may receive notification of routing

changes via ICMP redirects before the EGP process is notified via EGP. Redirects update the kernel

tables directly. The EGP process listens for redirect messages on a raw socket and updates its

routing tables to keep them consistent with the kernel.

The EGP process routing tables are maintained as two separate tables, one for exterior routes (via

different AS gateways) and one for interior routes (via the gateways of this AS). The exterior routing

table is updated by EGP Update messages. The interior routing table is currently static and is set at

initialization time. It includes all directly attached nets, determined by the SIOCGIFCONF ioctl system

call and any interior non-routing gateways read from the EGP initialization file, EGPINITFILE (see

Section 6.3). The interior routing table could in future be updated dynamically by an Interior Gateway

Protocol (IGP).

Maintaining separate tables for exterior and interior routing facilitates the preparation of outgoing

Update messages which only contain interior routing information [Mills 84b]. It alo permits

N-0

4,4

alternative external routes to the internal routes to be saved as a backup in case an interior route fails.
Alternate routes are flagged, RTS..NOTINSTALL, to indicate that the kernel routes should not be
updated. In the current implementation alternate routes are not used.

2. 1.1 Incoming Updates

EGP Updates are used to update the exterior routing table if one of the following is satisfied:

No routing table entry exists for the destination network and the metric indicates the
-. route is reachable I(< 255).

*- The advised gateway is the same as the current route.

-The advised distance metric is less than the current metric.

-:- The current route is older (plus a margin) than the maximum poll interval for all acquired
EGP neighbors. That is, the route was omitted from the last Update.

If any exterior route entry, except the default route, is not updated by EGP within four minutes or three
times the maximum poll interval, whichever is the greater, it is deleted.

If there is more than one acquired EGP neighbor, the Update messages received from each are
treated the same way in the order they are received.

In the worst case, when a route is changed to a longer route and the old route is not first notified as
unreachable, it could take two poll intervals to update a route. With the current poll interval this could
be four minutes. Under UNIX 4.2 BSD, TCP connections (Transmission Control Protocol' are closed
automatically after they are idle for six minutes, so this worst case does not result in the automatic
closure of TOP connections.

2.1.2 Outgoing Updates

Outgoing Updates include the direct and static networks from the interior routing table, except for the
* network shared with the EGP neighbor. The networks that are allowed to be advised in Updates may

be specified at initialization in EGPINiTFILE. This allows particular routes to be excluded from exterior
updates in cases where routing loops could be a problem. This option is also necessary when there is
a non-routing gateway belonging to a different AS which has not yet implemented EGP. Its routes may
*eed to be included in the kernel routing table, but they are not allowed to be advised in outgoing

updates.

If the interior routing table includes other interior gateways on the network shared with the EGP
'1/ neighbor they are included in Updates as the appropriate first hop to their attached networks.

.J. The distance to networks is set as in the interior routing table except if the route is marked down, in
which case the distance is set to 255. At present, routes are marked down only if the outgoingdr

'%V

5

interface is down. The state of all interfaces is checked prior to preparing each outgoing Update

using the SIOCGIFFLAGS ioctl system call.

Unsolicited Updates are not sent.

2.2 Neighbor Acquisition

EGPINITFILE lists the addresses of trusted EGP neighbor gateways, which are read at initialization.

These will usually be core gateways, as only core gateways provide full internet routing information.

At the time of writing three core gateways on the ARPANET support EGP: CSS-GATEWAY, ISI- -.

GATEWAY, and PURDUE-CS-GW. Two core gateways on the MILNET support EGP: BBN-MINET.A-

GW and AERONET-GW.

EGPINITFILE also includes the maximum number of these gateways that should be acquired at any

one time. This is usually expected to be just one. If this gateway is declared down, another gateway

on the list will then be acquired automatically in sufficient time to ensure that the current routes are

not timed out.

The gateway will accept acquisitions only from neighbors on the trusted list and will not accept them if -

it already has acquired its maximum quota. This prevents Updates being accepted from possibly

unreliable sources.

The ability to acquire core gateways that are not on the trusted list but that have been learned of

indirectly via Update messages is not included, because not all core gateways run EGP.

New acquisition Requests are sent to neighbors in the order they appear in EGPINITFILE. No more

new Requests than the maximum number of neighbors yet to be acquired are sent at once. Any

number of outstanding Requests are retransmitted at 32-second intervals up to 5 retransmissions

each, at which time the acquisition retransmission interval is increased to 4 minutes. Once the

maximum number of neighbors has been acquired, unacquired neighbors with outstanding Requests

are sent Ceases. This approach provides a compromise between fast response when neighbors do

not initially respond and a desire to minimize the chance that a neighbor may be Ceased after it has

sent a Confirm but before it has been received. If the specified maximum number of neighbors cannot Ni

be acquired, Requests are retransmitted indefinitely to all unacquired neighbors.

2.3 Hello and Poll Intervals

The Request and Confirm messages include minimum values for Hello and Poll intervals. The advised

minimums are 30 and 120 seconds, respectively. These are the values currently used by both the

core gateways and this gateway.

;A,.

6

-. The received intervals are checked against upper bounds to guard against nonsense values. The
upper bounds are currently set at 120 and 480 seconds, respectively. If they are exceeded by any
neighbor, that particular neighbor is considered bad and is not sent further Requests for one hour.

-.4 This allows the situation to be corrected at the other gateway and normal operation to automatically

resume from this gateway without unnecessary network traffic.

The actual Hello and Poll intervals are computed by first selecting the maximum of the intervals

advised by this gateway and its peer. A 2-second margin is then added to the Hello interval to account
for possible network delay variations, and the Poll interval is increased to the next integer ratio of the

- -Hello interval. This results in 32-second Hello and 128-second Poll intervals.

If an Update is not received in response to a Poll, at most one repoll (same sequence number) is sent
._ instead of the next scheduled Hello.

2.4 Neighbor Cease

-. If the EGP process is sent a SIGTERM signal via the Kill command, all acquired neighbors are sent
S..Cease(going down) commands. Ceases are retransmitted at the hello interval at most three times.

-. Once all have either responded with Cease.acks or been sent three retransmitted Ceases, the

process is terminated.

2.5 Neighbor Reachability

Only active reachability determination is implemented. It is done as recommended in [Mills 84a] with a
o* minor variation noted below.

A shift register of responses is maintained. For each Poll or Hello command sent, a zero is shifted into
the shift register. If a response (I-H-U, Update, or Error) is received with the correct sequence

*number, the zero is replaced by a one. Before each new command is sent the reachability is
determined by examining the last four entries of the shift register. If the neighbor was considered

reachable and at most one response was received, the neighbor is now considered unreachable. If

the neighbor was considered unreachable and at least three responses were received, it is now

considered reachable.

* A neighbor is considered reachable immediately after acquisition, so that the first poll received from a

core gateway (once it considers this gateway reachable) will be responded to with an Update. Polls
are not sent unless a neighbor is considered reachable and it has not advised that it considers this

gateway unreachable in its last Hello, I-H-U, or Poll message. This prevents the first Poll from being
discarded after a down/up transition. This constraint is important, as the Polls are used for

reachability determination. Following acquisition, at least one message must be received before the

5 7

first Poll is sent. This is to determine that the peer does not consider this gateway down. Because of
this requirement, at least one Hello must usually be sent prior to the first Poll. The discussion of this

paragraph differs from [Mills 84a], which recommends that a peer be considered down following
acquisition and allows Polls to be sent as soon as the peer is considered up. This is the only

* significant departure from the recommendations in [Mills 84a].

Polls received by peers that are considered unreachable are sent an Error response, which allows
their reachability determination to progress correctly. This action is an option within [Mills 84a].

When a neighbor becomes unreachable, all routes using it as a gateway are deleted from the routing
* table. If there are known unacquired neighbors, the unreachable gateway is ceased and an attempt is

made to acquire a new neighbor. If all known neighbors are acquired, the reachability determination
is continued for 30 minutes ([Mills 84a] suggests 60 minutes), after which time the unreachable

S.* neighbor is ceased and reacquisition is attempted every 4 minutes. This is aimed at reducing]

If valid Update responses are not received for three successive polls, the neighbor is ceased and an

alternative is acquired or reacquisition is attempted in four minutes. This provision is included in case]
erroneous Update data formats are being sent by the neighbor. This situation did occur on one
occasion during testing.

2.6 Sequence Numbers

* Sequence numbers are managed as recommended in [Mills 84a]. Single send and receive sequence
numbers are maintained for each neighbor. The send sequence number is initialized to zero and is
incremented before each new Poll'(not repoll) is sent and at no other time. The send sequence

number is used in all commands. The receive sequence number is maintained by copying theI
sequence number of the last Request, Hello, or Poll command received from a neighbor. This
sequence number is used in outgoing Updates, All responses (including Error responses) return the

* sequence number of the message just received.

2.7 Treatment of Excess Commands
If more than 20 commands are received from a neighbor in any 8-minute period, the neighbor is
considered bad, Ceased, and reacquisition prevented for one hour.

At most one repoll (same sequence number) received before the poll interval has expired (less a]
four-second margin for network delay variability) is responded to with an Update; others are sent an
Error response. When an Update is sent in response to a repoll, the unsolicited bit is not set; this

* differs from the recommendation in [Mills 84a].

04

8

2.8 Inappropriate Messages

If a Confirm, Hello, I-H-U, Poll, or Update is received from any gateway (known or unknown) that is in
the unacquired state, synchronization has probably been lost for some reason. A Cease(protocol
violation) message is sent to try and reduce unnecessary network traffic. This action is an option in

[Mills 84a].

2.9 Default Gateway

A default gateway may be specified in EGPINITFILE. The default route (net 0 in UNIX 4.2 BSD) is used
by the kernel packet forwarder if there is no specific route for the destination network. This default

route provides a final level of backup if all known EGP neighbors are unreachable. The default
• "gateway is especially useful if there is only one available EGP neighbor, as in the ISI case (see Section

"; 5.2.2).

* The default route is installed at initialization and deleted after a valid EGP Update message is
*received. It is reinstalled if all known neighbors are acquired but none are reachable, if routes time out

while there are no EGP neighbors that are acquired and reachable, and prior to process termination.

"" It is deleted after a valid EGP Update message is received, because the default gateway will not know
any more routing information than can be learned via EGP. If it were not deleted, all traffic to

-"unreachable nets would be sent to the default gateway under UNIX 4.2 forwarding strategy.

'- The default gateway should normally be set to a full-routing core gateway other than the known EGP
neighbor gateways to give another backup in case all of the EGP gateways are down simultaneously.

2%

"2%

o4

5, . -
, ".~.

9

3. TESTING

A few interesting cases that occurred during testing are briefly described in this section.

The use of sequence numbers was interpreted differently by different implementers. Consequently,

some implementations rejected messages as having incorrect sequence numbers, resulting in the
peer gateway being declared down. The main problem was that the specification was solely in
narrative form which is prone to inconsistencies, ambiguities, and incompleteness. The more formal

specification of [Mills 8a] has eliminated these ambiguities.

When testing the response to packets addressed to a neighbor gateway's interface that was not on

the shared net, a loop resulted as both gateways repeatedly exchanged error messages indicating an

invalid interface. The problem was that both gateways were sending Error responses after checking

the addresses but before checking the EGP message type. This problem was rectified by not sending

an Error response unless it was certain that the message was not itself an Error response.

On one occasion a core gateway had some form of data error in the Update messages which caused

them to be rejected even though reachability was being satisfactorily conducted. This resulted in all

routes being timed out. The solution was to count the number of successive Polls that did not result

in valid Updates being received and, if this number reached three, to Cease EGP and attempt to

acquire an alternative gateway.

Another interesting idiosyncrasy, reported by Mike Karels at Berkeley, results from having multiple

-gateways between the MILNET and the ARPANET. Each ARPANET host has an assigned gateway to

use for access to the MILNET. In cases where the EGP gateway is a host as well as a gateway, the

EGP Update messages may indicate a different MILNET/ARPANET gateway from the assigned one.

When the host/gateway originates a packet that is routed via the EGP-reported gateway, it will

receive a redirect to its assigned gateway. Thus the MILNET gateway can keep being switched

*between the gateway reported by EGP and the assigned gateway. A similar situation occurs when

using routes to other nets reached via MILNET/ARPANET gateways.

.-

°,t.

5a*I .a
a s -.S * S a* 4

I, ''.",J ;' , . . '.''." " "" *"
" . .- '"..".,,." ".."...,. "...." 1.','. "',*..'.' '" , *,, "',:":,-. ":, - ,, -,',.,

10

4. FUUEENHANCEMENTS

4.1 Multiple Autonomous Systems
The present method of acquiring a maximum number of EGP neighbors from a trusted list implies that
all the neighbors are in the same AS. The intention is that they all be members of the core AS. When
the routing tables are updated, Updates are treated independently with no distinction made as to
whether the advised routes are internal or external to the peer's AS. Also, routing metrics are

compared without reference to the AS of the source.

If EGP is to be conducted with additional AS's besides the core AS, all neighbors on the list would
need to be acquired in order to ensure that gateways from both AS's were always acquired. This
would result in an unnecessary excess of EGP traffic if redundant neighbors were acquired for
reliability. A more desirable approach would be to have separate lists of trusted EGP gateways and

K the maximum number to be acquired for each AS. Routing entries would need to have the source AS
_ added so that preference could be given to information received from the owning AS (see Section
-a. 5.1.2).

4.2 Interface Monitoring
At present, interface status is only checked immediately prior to the sending of an Update in response
to a Poll. The interface status could be monitored more regularly and an unsolicited Update sent
when a change is detected. This is one area where the slow response of EGP polling could be
improved. This is of particular interest to networks that may be connected by dial-in lines. When such
a network dials in, its associated interface will be marked as up but it will not be able to receive

a. packets until the change has been propagated by EGP. This case would be helped by the unsolicited

* Update message, but there would still be a delay while other non-core gateways polled core EGP
* gateways for the new routing information.

It was initially thought that a kernel EGP implementation might help in this case. However, the kernel
does not presently pass interface status changes by interrupts, so a new facility would need to be
incorporated. If this were done it might be just as easy to provide a user level signal when an
interface status changed.

4.3 Network Level Status Information

At present, network level status reports, such as IMP Destination Unreachable messages, are not
* used to detect changes in the reachability of EGP neighbors or other neighbor gateways. This

information should be used to improve the response time to changes.

m ~ ~ ~ ~ ~ - lL - ,

4, 11

4.4 Interior Gateway Protocol Interface

At present, any routing information that is interior to the AS is static and is read from the initialization

file. The internal route management functions have been written so that it should be reasonably easy

to interface an IGP for dynamic interior route updates. This is facilitated by the separation of the

exterior and interior routing tables.

The outgoing EGP Updates will be correctly prepared from the interior routing table by rtNRnetsO

whether static or dynamic interior routing is done. Functions are also provided for looking up,

adding, changing, and deleting internal routes, i.e., rtint lookupO, rt.addO, rtichangeO, and rtdeleteO,

respectively.

The interaction of an IGP with the current data structures basically involves three functions: updating

the interior routing table using a function similar to rt.NRupdateO, preparing outgoing interior updates
similarly to rtNRnetsO, and timing out interior routes similarly to rt.timeO.

q *

.1

Q'",

. . .

,r7T r -7 .,l %-I - ,12

11

5. TOPOLOGY ISSUES

~ 5.1 Topology Restrictions and Routing Loops

5.1.1 Background

EGP is not a routing algorithm; it merely enables exterior neighbors to exchange routing information
which is likely to to be needed by a routing algorithm. It does not pass sufficient information to

* prevent routing loops it cycles exist in the topology [Rosen 82).

* Routing loops can occur when two gateways think there are alternate routes to reach a third gateway
via each other. When the third gateway goes down they end up pointing to each other, forming a

* routing loop. Within the present core system, loops are broken by counting to "infinity" (the internet
diameter in gateway hops). This (usually) works satisfactorily, because GGP propagates changes
fairly quickly as routing updates are sent as soon as changes occur. Also, the diameter of the internet
is quite small (5) and a universal distance metric, hop count, is used. However, this wilt be changed in
the future.

* With EGP, changes are propagated slowly. Although a single unsolicited NR message can be sent, it
won't necessarily be passed straight on to other gateways who must hear about it indirectly. Also, the
distance metrics of different AS's are quite independent and hence can't be used to count to infinity.

The initial proposal for preventing routing loops involves restricting the topology of AS's to a tree
structure so that there are no multiple routes via alternate AS's. Multiple routes within the same AS
are allowed as it is the interior routing strategies' responsibility to control loops.

* i. [Mills 84b] has noted that even with the tree topology restriction, "we must assume that transient
loops may form within the core system from time to time and that this information may escape to other
systems; however, it would be expected that these loops would not persist for very long and would be

* broken in a short time within the core system itself. Thus a loop between non-core systems can
persist until the first round of Update messages sent to the other systems after all traces of the loop
have been purged from the core system or until the reachability information ages out of the tables,

* whichever occurs first".

With the initial simple stub EGP systems, the tree topology restriction could be satisfied. However, this
does not provide sufficient robustness for the long term.

[Mills 83] proposed a procedure by which the AS's can dynamically reconfigure themselves such that
the topology restriction is always met, without the need for a single "core" AS. One AS would own a
shared net and its neighbor AS's would just conduct EGP with the owner. The owner would pass on

4 awrAem L

- - - - . -

13

such information indirectly as the core system does now. If the owning AS is defined to be closest to
the root of the tree topology, any haphazard interconnection can form itself into an appropriate
tree-structured routing topology. By routing topology I mean the topology as advised in routing

%" updates. There may well be other physical connections. but if they are not advised they will not be
used for routing. Each AS can conduct EGP with at most one AS that owns one of its shared nets. Any
AS that is not conducting EGP over any net owned by another AS is the root of a subtree. It may
conduct EGP with just one other AS that owns one of its shared nets. This "attachment" combines
the two suotrees into a single subtree such that the overall topology is still a tree. Topology violations
car be determined because two different ASs will report that they can reacr the same net.

* ,tn such a dvnarmi tree. there may be preferred and backup links. In such cases it is necessary to
mortor the iailec h;i so that routing car be changed back to the preferred link when service is

A"-kotler aspect .o consider is the possiloity of detecting routing loops and then breaking them
cpiration of tne pack.et time-to-live (TTL, could be used to do this. If such a loop is suspected a
diagnostic packet. such as CMP echo, could be sent over the suspect route to confirm whether it is a
loop. If a boo s detvcted. a special routing packet could be sent over the route that instructs each

gateway to delete the route after forwarding the packet on. The acceptance of new routing
information may need to be delayed for a hold down period This approach would require sensible
selection of the initial TTL. However, this is not done by many hosts.

, 5.1.2 Current Policy

Considering tne general trend to increased network interconnection and the availability of alternative
long-haul netwo's such as ARPANET, WBNET (wideband satellite network), and public data
networks. the tree topology restriction is generally unacceptable. A less restrictive topology is
currently recommended. The following is taken from [Mills 84b].

[•EGP topological model:

An autonomous system consists of a set of gateways connected by networks. Each
gateway in the system must be reachable from every other gateway in its system by paths
including only gateways in that system.

A gateway in a system may run EGP with a gateway in any other system as long as the
I",'-7 path over which EGP itself is run does not include a gateway in a third system.

The "core system" is distinguished from the others by the fact that only it is allowed to
distribute reachability information about systems other than itself.
At least one gateway in every system must have a net in common with a gateway in the
core system.

C_.. ,There are no topological or connectivity restrictions other than those implied above.

,
N.-

14

A gateway will use information derived from its configuration (directly connected nets), the IGP of its

system, called S in the following (interior nets), and EGP (interior and exterior nets of neighboring

systems) to construct its routing tables. If conflicts with respect to a particular net N occur, they will

be resolved as follows:

" If N is directly connected to the gateway, all IGP and EGP reports about N are
disregarded.

" If N is reported by IGP as interior to S and by EGP as either interior or exterior to another
system, the IGP report takes precedence.

* If N is reported by EGP as interior to one system and exterior to another, the interior
report takes precedence.

" If N is reported as interior by two or more gateways of the same system using EGP, the
reports specifying the smallest hop count take precedence.

" In all other cases the latest received report takes precedence.

Old information will be aged from the tables.

The interim model provides an acceptable degree of self-organization. Transient routing loops can

occur between systems, but these are eventually broken by old reachability information being aged

out of the tables. Given the fact that transient loops can occur due to temporary core-system loops,

the additional loops that might occur in the case of local nets homed to multiple systems does not

seem to increase the risk significantly.

5.2 Present ISI Configuration

A simplified version of the ISI network configuration is shown in Figure 5-1. ISI-Hobgoblin can

provide a backup gateway function to the core ISI-Gateway between the ARPANET and IS1-NET.

ISI-Hobgoblin is a VAX 11/750 which runs Berkeley UNIX 4.2. The EGP implementation described in

this report is run on ISI-Hobgoblin.

• ISI-Troll is part of a split gateway to the University of California at Irvine network (UCI-ICS). The

complete logical gateway consists of ISI-Troll, the 9600 baud link, and UCI-750A [Rose 84]. ISI-Troll

runs Berkeley UNIX 4.1a and hence cannot run the EGP program. It is therefore a non-routing

gateway. The existence of the UCI-ICS net must be advised to the core AS by ISI-Hobgoblin. This

can be done by including an appropriate entry in the EGPINITFILE.

Hosts on ISI-NET, including ISI-Troll, have static route entries indicating ISl-Gateway as the first hop

for all networks other than UCI-ICS and ISI-NET.

EGP can be conducted with ISI-Gateway across either the ARPANET or ISI-NET.

d",p

. ., ,, .* . . >' i,.. -..-,, .

15

/ ARPANET
10/ I

--
I I I
I I I+

---------- ------- +---------- ------- + ------- ----------

I ISI-PNG11 I I I I
Arpanet ISI-GATEWAY f ISI-HOBGOBLIN

I Address I I I I VAX 11/750

logical I I Core EGP I I UNIX 4.2

multiplexer I I I I
+----------------+ ---------------- + ------------------- 4

I I I
I I I

----- --------------- ---

3 Mb/s Ethernet \ ISI-NET

net 10 / 128.9 /!\/ \/

I S

+-----------------4

ISI-TROLL
VAX 11/750

IUNIX 4.1a
Non-routing I

9600 ISI-TROLL, UCI-750A

J baud and the link form a

i link single logical gateway
III
UCI-750A
VAX 11/750
UNIX 4.2

* I
I I

/ UCI-ICS
192.5.19 /

--

I r i

I"Flgu re 5.1 : Simplified ISI network configuration

'
I,''.. ... ; .''''''''':.''",L,,.'" " '.; ''; '.,... . . ,'' .'''''':..."''.,.'''''' . ,, .:,, .,-".-' "...:-

16

5.2.1 EGP Across the ARPANET

ISI-Hobgoblin will advise ISI-Gateway across the ARPANET, and hence the core system, that it can

reach ISI-NET and UCI-ICS.

Packets from AS's exterior to ISI and destined for UCI-ICS will be routed via ISI-Gateway, ISI-

Hobgoblin, and ISI-Troll. The extra hop via IS-Gateway (or other core EGP gateway) is necessary

because the core gateways do not currently pass on indirect-neighbor exterior gateway addresses in

their IGP messages (Gateway-to-Gateway Protocol). Packets originating from UCI-ICS destined for

exterior AS's will be routed via ISI-Troll and ISI-Gateway. Thus the incoming and outgoing packet
routes are different.

Packets originating from ISI-Hobgoblin as a host and destined for exterior AS's will be routed via the

' appropriate gateway on the ARPANET.

UCI-ICS can communicate with exterior AS's only if ISI-Troll, ISI-Hobgoblin, and ISI-Gateway are all

up. The dependence on ISt-Gateway could be eliminated if ISI-Troll routed packets via ISI-Hobgoblin

rather than ISI-Gateway. However, as ISl-Hobgoblin is primarily a host and not a gateway, it is

preferable that ISI-Gateway route packets when possible.

ISl-Hobgoblin can provide a backup gateway function to ISl-Gateway as it can automatically switch to

an alternative core EGP peer if ISI-Gateway goes down. Even though ISI-Hobgoblin normally advises

the core system that it can reach ISI-NET, the core uses its own internal route via ISI-Gateway in

"'.' preference. For hosts on ISI.NET to correctly route outgoing packets they need their static gateway

-: ert-ies changed from ISI-Gateway to iSIHobgoblin. At present this would have to be done manually.

This would only be appropriate if tSC Oateway were going to be down for an extended period.

5.2 2 EGP Across ISi-NET

!S: 4obgoblin wi! advise !SI.Gate-,i, across ISI-NET that its indirect reighbor. ISI-TrolI can reach
~JC1 'CS

A!! exterior pacKet routing for UCG ;k.S will be via ISI-Gateway in both directions with no hops via

;Sl-nobgoblir Packets originating from ISI-Hobgoblin as a host and destined for exterior AS's will be

routed via ISI-Gateway rather than the ARPANET interface, in both directions, thus taking an

additional hop.

UCI-ICS can communicate with exterior AS's only if ISI-Troll and ISI-Gateway are up and ISI-

Hobgoblin has advised ISI-Gateway of the UCI-ICS route. If ISI-Hobgoblin goes down, communication

will still be possible because ISI-gateway (and other core gateways) do not time out routes to indirect

neighbors. If ISI-Gateway then goes down, it will need to be readvised by ISI-Hobgoblin of the UCI-ICS

," route when it comes up.

"
%

17

Conducting EGP over ISI-NET rather than the ARPANET should provide more reliable service for

UCI-ICS for the following reasons: ISI-Gateway is specifically designed as a gateway, it is expected to

be up more than ISI-Hobgoblin, it is desirable to eliminate extra routing hops where possible, and the

exterior routing information will persist after ISI-Hobgoblin goes down. If ISI-Hobgoblin is to be used

in its backup mode, EGP can be restarted across the ARPANET after the new gateway routes are

manually installed in the hosts. Therefore, EGP across ISI-NET was selected as the preferred mode of

operation.

5.2.3 Potential Routing Loop

Because both ISI-Gateway and ISI-Hobgoblin provide routes between the ARPANET and ISI-NET,
there is a potential routing loop. This topology in fact violates the original tree structure restriction

Provided ISI-Hobgoblin does not conduct EGP simultaneously with ISl-Gateway over ISI-NET and the

ARPANET, the gateways will know about the alternative route only from the shared EGP network and

not from the other network. Thus a loop cannot occur. For instance, if EGP is conducted over
* ISI-NET. both ISI-Gateway and ISI-Hobgoblin will know about the alternative routes via each other to

the ARPANET from ISI-NET. but they will not know about the gateway addresses on the ARPANET
needed to access ISI-NET from the ARPANET. Thus they have insufficient routing data to be able to

route packets in a loop between themselves.

5.3 Possible Future Configuration

5.3.1 Gateway to UCI-ICS

An improvement in the reliability and performance oi the service offered to UCI-ICS can be achieved

by moving the UCI-CS interface from ISI-Troll to ISI-Hobgoblin Reliability will improve because the
connection will rec:re : .!y lSI-Hobgoblir and its ARPANET interface to be up. and performance will

improvc Decaus th eyltra gateway nop will be eliminated.

This cori-guration wvi also alk"w EGP to be conducted across the ARPANET. giving access to the

alterr~atve core gaeavs running EGP. This will increase the chances of reliably acquirng an EGP

neighbor at al! times 't w,;l also eliminate the extra hop via ISI-Gateway for packets origirating from

"SI-Hobgoblin. as a rost, and destined for exterior networKs.

This configuration change will be made sometime in the future. It was not done initially because

' ISI-Hobgoblin was experimental and was down more often than ISI-Troll.

, °p.

.-. '

18

5.3.2 Dynamic Switch to Backup Gateway

It was noted in Section 5.2.1 that ISl-Hobgoblin can provide a backup gateway function to ISI.

Gateway between the ARPANET and ISI-NET. Such backup gateways could become a common
approach to providing increased reliability.

At present the change over to the backup gateway requires the new gateway route to be manually

entered for hosts on ISI-NET. This section describes a possible method for achieving this changeover

dynamically when the primary gateway goes down.

- The aim is to be able to detect when the primary gateway is down, and to have all hosts on the local

network change to the backup gateway with a minimum amount of additional network traffic. The

hosts should revert back to the primary gateway when it comes up again.

The proposed method is for only the backup gateway to monitor the primary gateway status and for it

"- to notify all hosts of the new gateway address when there is a change.

5.3.2.1 Usual Operation

The backup gateway runs a process which sends reachability-probe messages, such as ICMP
echoes, to the primary gateway every 30 seconds and uses the responses to determine reachability as
for EGP. If the primary gateway goes down, a "gateway-address message" indicating the backup

*- gateway address is broadcast (or preferably multicast) to all hosts. When the primary gateway comes
- up, another gateway message indicating the primary gateway address is broadcast. These

broadcasts should be done four times at 30-second intervals to avoid the need for acknowledgments
and knowledge of host addresses.

': Each host runs a process that listens for gateway-address messages. If a different gateway is advised

it changes the default gateway entry to the new address.

.* 5.3.2.2 Host Initialization

When a host comes up, the primary gateway could be down, so it needs to be able to determine that it
should use the backup gateway. The host can read the address of the primary and backup gateways

from a static initialization file. It then sets its default gateway as the primary gateway and sends a
.$gateway-request message" to the backup gateway requesting the current gateway address. The

*backup gateway responds with a gateway-address message. If no response is received, the gateway-
request should be retransmitted three times at 30-second intervals. If no response is received, the

backup gateway can be assumed down and the primary gateway retained as the default. Whenever
'- the backup gateway comes up it broadcasts a gateway-address message.

• .Alternatively, a broadcast (or multicast) gateway-request message could be defined to which only

gateways would respond. The backup gateway-address message needs to indicate that it is the

%

C, 19

backup gateway so that future requests need not be broadcast. Again, three retransmissions should
be used. However, the primary gateway also needs to broadcast its address whenever it comes up.

5.3.2.3 When Both Primary and Backup are Down

If the primary gateway is down and the backup knows it is going down, it should broadcast gateway-
address messages indicating the primary gateway in case the primary gateway comes up first.
However, the backup could go down without warning and the primary come up before it. If the

* primary gateway broadcasts a gateway-address message when it comes up, there is no problem.
Otherwise, while hosts are using the backup gateway they should send a gateway-request message
every 10 minutes. If no response is received, the message should be retransmitted three times at
30-second intervals and, if still no response, the backup should be assumed down and the primary
gateway reverted to.

Thus the only time hosts need to send messages periodically is when the primary gateway does not
C

4
I'., send gateway-address messages on coming up and the backup gateway is being used. In some

cases, such as at ISI, the primary gateway is managed by a different organization and experimental
% features cannot be conveniently added.

- 5.3.2.4 UNIX 4.2 BSD
One difficulty with the above is that there is no standard method of specifying internet broadcast or

-. multicast addresses. Multicast addressing is preferable, as only those participating need process the
- message (interfaces with hardware multicast detection are available). In the case of UNIX 4.2 BSD, an

internet address with zero local address is assumed for the internet broadcast address. However, the
- general Internet Addressing policy is to use an all ones value to indicate a broadcast function.

-, On UNIX 4.2 BSD systems, both the gateway and host processes could be run at the user level so that
kernel modifications would not be required.

* A User Datagram Protocol (UDP) socket could be reserved for host- backup-gateway communication.

Super user access to raw sockets for sending and receiving IOMP Echo messages requires a minor
modification to the internet-family protocol switch table, the same as for ICMP Redirects as discussed

in Section 6.5.

r •-

20

6. RUNNING THE EGP PROCESS

6.1 Starting the EGP Process and Trace Facilities

The EGP User Process is named "egpup". The command for starting the EGP User Process is:

-- ==-Iegpup [-t[i][e][r][p]] [Iogfile]

There are four levels of diagnostic tracing that are set by command arguments: t alone turns on all

trace levels; i turns on tracing for internal error messages; e turns on tracing for EGP errors and state

changes: r turns on tracing for route changes: and p turns on tracing for all packets sent and

received. The file in which tracing information is to be written (appended) is defined by "logfile"; if not

supplied the controlling terminal is used. Fatal error messages are always logged. A sample of the

trace messages is given in the appendix.

The process should not be run until after user level interface and route initialization commands have
been executed. The EGP process should not normally be run concurrently with the UNIX 4.2 BSD

route management daemon "routed". This is discussed in Section 6.6. Once egpup is started, any

manual changes to the kernel routing tables via the /etc/route command will result in inconsistencies

between the EGP process routing tables and the kernel routing tables. No periodic consistency check

is currently done. A few minor changes to the UNIX 4.2 BSD kernel are required for egpup to function

correctly. These are described in Section 6.5.

'..

6.2 Process Termination

If the EGP process is sent a SIGTERM signal via the Kill command, all acquired neighbors are sent

Cease(going down) commands and, once all have either responded with Cease-acks or been sent

three retransmitted Ceases, the process is terminated. This allows the static initialization data to be

changed or trace options to be changed.

6.3 Site-Dependent Initialization
The name of the initialization file is defined by EGPINITFILE in the egp source file "defs.h". It is

currently defined as "etc-egp". EGPINITFILE may include the following site-dependent initialization

data: autonomous system number, addresses of trusted EGP neighbors, the maximum number of

these to acquire at any one time, static interior routing information (optional), networks to be advised

in outgoing Updates (optional), and a default gateway (optional).

The information in the file is identified by keywords at the start of a line. Any text to the right of a # is

a comment. The keywords (bold type) and data formats are as follows:

21

autonomoussystem valuel

egpneighbor namel

* egpmaxacquire value2

net name2 gateway name3 metric value3 # optional

egpnetsreachable name4 name4 name4 # optional

defaultgateway name5 # optional

where:

valuel is the gateway autonomous system number.

names are either symbolic as located in /etc/hosts or /etc/networks or internet
addresses in dot notation.

namel is an EGP neighbor gateway. Normally all neighbors are on the same net.
Attempts to acquire neighbors are made in the order in which the neighbors are
listed.

value2 is the maximum number of EGP neighbors to be acquired.

name2 is a net reachable via a non-routing gateway name3 (belonging to this AS) at
distance value3 hops from this gateway.

name4 is a net whose reachability is allowed to be made public in EGP Network
Reachability update messages. Normally, the nets to be advised will be direct nets
(other than the net shared with the EGP peer) and nets via interior non-routing
gateways. If an egpnetsreachable statement is included, all nets not declared by it
will be excluded from update messages.

name5 is a default gateway. The default route (net 0 in UNIX 4.2 BSD) is installed at
initialization and deleted after a valid EGP Update message is received. It is
reinstalled if all EGP neighbors are acquired but none are reachable, if routes time ,
out while no EGP neighbors are acquired and reachable, and prior to EGP
process termination. The default gateway should normally be set to a full-routing

core gateway other than the listed EGP neighbor gateways to give another backup
in case all of the EGP gateways are down simultaneously.

An example initialization file that could be used at ISI is as follows:

4.2 r.

22

autonomoussystern 4

egpneighbor isi-gateway # 10.3.0.27 - Core EGP on arpanet

egpneighbor 10.2.0.25 # css-gateway - core EGP on arpanet
egpneighbor purdue-cs-gw # 10.2.0.37 - core EGP on arpanet

egpmaxacquire 1

net uciics gateway isi-troll metric 1 # U.C. Irvine Network

egpnets reachable isi-net arpanet uciics

'.p
4

defaultgateway isi-milnet-gw # 10.2.0.22 .core with no EGP on arpanet

At the time of writing, ISI-GATEWAY, CSS-GATEWAY, and PURDUE-CS-GW are the only operational

core gateways running EGP over the ARPANET, and BBN.MINET.A-GW and AERONET.GW the on,4

. ones for the MILNET.

"" Before running EGP with operational EGP gateways it should be tested with the test gateway, BBN.

TEST3, 10.3.0.63, which is isolated from the rest of the core system.

- Before bringing up an EGP gateway, it is necessary to have an Autonomous System number allocated

by Joyce Reynolds (JKReynolds@ USC.ISIF.ARPA).

6.4 Compiler Switches

The source file "defs.h" defines three compiler switches at the start.

INSTALL if 0, prevents routing changes from being installed in the kernel, normally 1.

SAMENET if 1, will cause a fatal error if all EGP neighbors read from EGPINITFILE are not on
the same network, normally 0.

ALLOWNONNEIGHBORS
if 1, allows EGP peers who are not on a common network with this gateway to
conduct EGP for testing, normally 0. If 1, SAMENET should be 0 and DEFAULTIF
(in "defs.h") should define the internet address (host specific) of the source
interface to use for sending and receiving EGP messages.

6.5 UNIX Interface

The EGP process uses the raw socket interface for the Internet Protocol (IP) to send and receive EGP

packets and to receive ICMP redirects. This interface currently lacks a facility for arbitrarily assigning

a protocol number to a socket. An entry must be added for EGP (protocol #8) to the UNIX kernel

* internet.family protocol switch table, inetsw[], which is initialized in the UNIX source file

"../netinet/in.proto.c". The entry should be the same as for the raw socket but with the protocol

number replaced by IPPROTOEGP, which should be defined as 8 in "../netinet/in.h":
-.

,4 I
-4 * **** ~n ~ ~S Lt

1, Z23

"-SOCK.RAW, PF.INET, IPPROTQEGP, PR.ATOMICIPR.ADDR,

ripinput, rip output, 0, 0,
raw usreq,

0, 0, 0, 0,

The raw socket interface does not currently support wildcard addressing, so separate sockets are

opened for each interface for both EGP and ICMP packets.

ICMP Redirects update the kernel routing tables directly. Redirect messages are meant to be

available from raw sockets, but the standard kernel does not give the super user raw-socket access to

ICMP (protocol # 1). The internet-family protocol switch table must be modified to allow this. In

"../netinet/in.proto.c change the entry for ICMP to:

{ SOCK.RAW, PF.INET, IPPROTQICMP, PR.ATOMICIPR.ADDR,

icmp-input, rip.output, 0, 0,

raw usreq,

0, 0, 0, 0,

Redirects are then received. If redirects were not received there would be no great problem. It merely

means that the kernel routing tables would be updated ahead of the EGP tables, which must wait for

- the next EGP Update message.

-i It should be noted that EGP packets received by raw sockets include the IP header, whereas ICMP

redirect packets do not.

-- System calls are used for determining the interface configuration (SIOCGIFCONF ioctl), determining

interface status (SIOCGIFFLAGS ioctl), and altering the kernel routing tables (SIOCADDRT and

SIOCDELRT ioctl system calls).

The UNIX kernel currently sets the Type of Service field randomly for raw IP output packets. The

gateways complain about this, so this should be set to zero in the UNIX source file

S../netInet/rawripsc", rip.output Tm.

.4 A bug in the UNIX raw packet code is that once a packet has been sent on a raw socket all

subsequent packets use the same route. This doesn't really affect EGP, as all peers must be on a
'- shared net. However, this bug can cause trouble during testing if you try to peer with a neighbor not

on a shared net as well as a neighbor on the shared net. The bug can be fixed (courtesy of Robert

Scheifler at MIT) by zeroing the old route pointer to allow a new route to be allocated. In UNIX source

. file "../net/raw usrreq.c", raw.usrreqo, case PRU.SEND,

24

replace:

if(rp->rcb.route.ro~rt)

RTFREE(rp->rcbroute.ro.rt);

by:
if(rp->rcb.route.ro rt) {

RTFREE(rp.>rcbroute.ro~rt);

rp->rcbroute.ro rt = NULL;)

A UNIX kernel routing bug, which does not affect EGP, was found while considering effects of adding

dynamic route management. TCP connections continue to use old routes even after they have been
marked as down, because the IP output code fails to check whether the route is up. To fix this bug, in

the UNIX source file "../netinet/ippoutput.c", check that the route is up before using it and, if it is not,
free it and allocate a new route. Also, in the UNIX source file "../net/route.c", rtalloco, check that any

supplied route is up and, if not, allocate a new route.

6.6 EGP and Routed

The EGP process can be run concurrently with the UNIX 4.2 BSD route management daemon
"routed", or any other route management process, only if they manage separate parts of the routing
information. This is because there is no means at present of coordinating their respective route

changes.

If "routed" manages any of the routes managed by EGP, the EGP routing tables will become
inconsistent with the kernel routing tables, resulting in error returns for some SIOCADDRT and

SIOCDELRT ioctl system calls.

The EGP process manages only the kernel network routing table, not the host routing table. It

assumes that routes interior to its own AS are static and reads these from EGPINITFILE.

When EGP is initialized it first reads the kernel network routes. Except for the default route and static
interior routes, these will all be timed out and deleted after six minutes if they are not updated by EGP.

*" If "routed" is to be used as an Interior Gateway Protocol to provide dynamic routing information for
interior routes, the EGP code needs to be modified so that its interior routing table is appropriately

updated. This involves combining the functions of "routed" and the EGP process into a single route
management daemon. Berkeley plans to do this at some future stage.

2'I

rI

25

7. SOFTWARE DESCRIPTION

7.1 Source Files

, egp-notes notes from this report on the EGP program operation and description.

etc-egp site-dependent initialization file defined by EGPINITFILE in defs.h.

makefile

include.h system and EGP header files to be included.

defs-h compiler switches and miscellaneous definitions.

ext.c external variable definitions.

* main.c main function of the EGP user process: packet reception, ICMP handler, and timer
interrupt handler.

init.c initialization functions for interface data, sockets, EGP neighbors, and state
tables.

rtinit.c initialization functions for routing tables including interface routes, kernel routes,
non-routing gateways, and routes to be advised in exterior EGP Update
messages.

egp.h various EGP definitions, packet formats, and state table.

egp.param.h various EGP parameter definitions.

egp.c EGP functions.

* rt.egp.c EGP route update processing and preparation.

rt.table.h routing table data and parameter definitions.

rt.table.c routing table management functions.

if.h interface data definition.

A if.c interface checking functions.

trace.egp.h definitions for tracing.

.traceegp.c tracing functions for route changes, received packets, and EGP messages.

AL

26

7.2 Software Overview

At start up, the controlling function, maino, first sets up trace options based on command arguments,

calls functions to do initialization, and calls timeoutO, which starts periodic interrupts and waits to

. receive incoming EGP or ICMP redirect packets.

*When an EGP packet is received. egpinO is called to handle it. It in turn calls a separate function for

each EGP command type, which sends the appropriate response. When an ICMP packet is received

icmpinO is called.

* .- The timer interrupt routine, timeout), calls egpjobO to perform periodic EGP processing such as
reachability determination, command sending, and retransmission. It in turn calls separate functions

to format each command type. TimeoutO also periodically calls rt.timeO to increment route ages and

delete routes when too old.

7.3 Main Data Structures

The main data structures are interface, egpngh, and rtentry.

Structure "interface" stores information about a directly attached interface such as name, internet
address, and bound sockets. The interface structures are in a singly linked list pointed to by external

variable "ifnet'. This is similar to the structure used in UNIX 4.2 BSD "routed".

-Prj' Structure "egpngh" stores state information for an EGP neighbor. There is one such structure

allocated at initialization for each of the trusted EGP neighbors read from EGPINITFILE. The egpngh
structures are in a singly linked list pointed to by external variable "egpngh". The major states of a
neighbor are ACQUIRED, ACOUIRE.SENT, NEIGHBOR, and CEASE.SENT. In the NEIGHBOR state
there are three reachability substates according to whether the neighbor and this gateway both

consider each other up (BOTH.UP), this gateway considers its neighbor down (NG.DOWN), or the
*.I neighbor has reported that it considers this gateway down (ME.DOWN).

Structure "rt.entry" stores information about one particular route, similarly to "routed". Only routes

to networks are used.

* The interior routes are stored in a doubly linked list pointed to by the external variable "rtjinterior". A

V- single list is used because there are typically only a few internal routes, 3 in ISI's case. The exterior

routes are organized as a hashed array of 19 doubly linked lists, as in "routed". The hash function is
the network number of the destination network, modulo 19. The hash array is named nethasho.

"%W
-. 1 .

4°
. . . - *. . -,. -. . ° . • . 4 ,,4

27

7.4 Functions

This section describes the major software functions and their dependencies. Not all functions are

included in the discussion.

7.4.1 Controlling Functions

mainO first sets tracing options based on starting command arguments. It then calls the initialization

functions described in the next section, sets up signal handlers for termination (SIGTERM) and timer

interrupt (SIGALRM) signals, calls timeouto to start periodic interrupt processing, and finally waits in

a loop to receive incoming packets.

timeoutO is called when the periodic interrupt timer expires. It calls egpjob0 and/or rt.time0 at the

appropriate times. The interrupt timer interval is set as the smallest value of the route age interval (60

- seconds) and the periodic command intervals for all the EGP neighbors (typically 32 seconds).

7.4.2 Initialization Functions

init if() initializes the interface tables for the internet interfaces configured into the system.

init.sock0 sets up raw sockets on each interface for sending and receiving EGP messages or

*receiving ICMP redirect messages. Sockets are established on all interfaces even when trusted

neighbors are all on the same network so that EGP requests from all gateways will be appropriately
responded to.

init.egpngh0 reads EGPINITFILE for EGP AS number and EGP neighbor addresses.

_ .' init egp0 initializes the state tables for each EGP neighbor.

rt-init0 initializes the routing table doubly linked lists.

T

rt readkernel0 reads the kernel routes and initializes the exterior routing tables consistent with the

kernel tables.

rt.ifinit0 adds routes to the interior routing table for all directly attached networks and deletes these

from the exterior table.

rt.dumbinit0 reads EGPINITFILE for non.routing gateways and a default gateway and then deletes

these from the exterior table if present and installs them in the kernel if they were not previously read

from the kernel.

rt.NRadvise.init0 reads EGPINITFILE for any user specification of the networks allowed to be

advised in outgoing update messages. All other interior routes are flagged RTS*NOTADVISENR.

, ,,. - •%. .- ". % %" ° V ' *

28

7.4.3 EGP Functions

egpjobO is called periodically by timeoutO after each timer interrupt. It checks each neighbor's state

table in turn and decides what action to take based on the state and time elapsed. It initiates the

sending of Acquisition Request, Hello, and Poll commands and the retransmission of Acquisition

Request, Poll, and Cease commands. Appropriate functions are called to format each of these

messages. In the NEIGHBOR state it determines the current reachability of the peer. After 480

seconds have elapsed it calls egpchkcmdO to check whether peer commands are being received at

an excess rate.

egpinO handles received EGP packets. It first checks for fragmented packets, valid EGP checksum,

version. and length. If any of these are in error the packet is discarded. If the source and dew, .ation

addresses match those expected in the state tables the appropriate function is called according to the

EGP message type. Otherwise the appropriate Refuse, Cease.ack, Error, or Cease message is

returned. Received Error messages are merely logged with no other action taken.

egpacqO handles received Neighbor Acquisition messages: Request, Confirm, Refuse, Cease, and

Cease-ack. It calls egpsetintO to validate and set Hello and Poll intervals, egpstnghO to initialize

state tables when the state changes to ACOUIRED, and egpstunacq0 when the state changes to

UNACQUIRED. The last two functions call egpstimeO to recompute the interrupt timer interval.

egphelloO, egppoll0, and egpnro handle received EGP Neighbor Reachability messages (Hello and

I-H-U). Poll. and network reachability Updates, respectively. The function egpnr0 calls

rt.NRupdateO to update the routing tables as described in Section 2.1.1, and the function

rt.NRupdate0 calls rt defaultO to delete the default route.

egpsacqO, egpshelloO, egpspoll0, egpsnrO, and egpserrO format outgoing Neighbor

Acquisition, Neighbor Reachability, Poll, network reachability Update, and Error messages,
. respectively. They call egp.cksum0 to compute the checksum and egp.sendO to send the message.

The function egp.send0 calls if withnetO to determine which interface, and hence socket, has the

required source address.
J

The function egpsnr calls if.checkO to check the status of all interfaces, rt.ifupdate0 to update

• .interior route status if any interfaces have changed state, and rt.NRnets0 to form. . the network

reachability part of the outgoing update in accord with Section 2.1.2.

egpallceaseO is called when the kill signal, SIGTERM, is received. It ceases each acquired neighbor

by calling egpceaseO.

.-

29

7.4.4 Routing Table Management Functions

rtextlookupO and rt.inttlookupO look up a destination network in the exterior or interior routing

tables, respectively.

rt.addO, rt.changeO, and rtdelete add. change, or delete a route entry, respectively, to/from either

the interior or exterior routing table.

rt-default adds or deletes a default route entry to/from the kernel.

rt timeO is called approximately every minute by timeoutO to increment the route ages. If a route has

been updated since the last increment, its age is set to zero. If a route is older than 4 minutes or 3

times the maximum poll interval, whichever is the greater, it is deleted. If old routes are deleted,

rtcheck default() is called.

rt-check-defaultO checks whether any of the EGP neighbors are acquired and reachable. If not,

rt-defaultO is called to install the default route.

rt-un reachO deletes all routes that use a specified gateway from the exterior routing table.

rtredirect() changes the routing table entry in response to an ICMP redirect message.

-' 7.4.5 Tracing Functions

•f. traceactionO records changes to the routing tables. It is similar to the "routed" function.

- . tracercvO traces a received packet. It calls traceegpO to trace EGP packets.

V V,,
,5N

* '.. **. ,.. ;. .v ,.. * . % 5 . . ; .* ;. S.; ;. \ .\ . """" . ,"."", , """" . .", .","", , "9.."' "

30

8. RESOURCE USE

The EGP process when run on a VAX has a typical virtual memory size of 100 Kbytes, which consists

of the following:31 K Code

7 K Static compiled data

18 K Data allocated at run time prior to the start of maino for unknown purposes
24 K Dynamic data allocated by mallocO for library file-input functions during initialization
14 K Dynamic data allocated by malloco for EGP User Process data; only 5K is actually used
6 K Stack

100 K

. Typically, resident memory is 42 Kbytes, of which 26K is code and 16K is data and stack.

EGP functions average 31 ms processing time per command/response pair. Based on the Hello and
Polling intervals quoted here and assuming both peers conduct active reachability determination, the
total CPU utilization is approximately 0.2 percent. This does not include the packet forwarding
function (done in the kernel), which is typically the most significant gateway load.

" I

°,.I
"o9

=jI

'31
.,

A. SAMPLE TRACE OUTPUT

File "egpout" logs trace and error messages for the EGP user process, "egpup".
Tracing levels turned on: i e r p

Start egpup at Wed Jul 25 17:00:34 1984

mit if: interface name: ecO, address 128.9.0.42
init if: interface name: imp , address 10.1.0.52
init.egpngh: EGP neighbor 10.3.0.27
init.egpngh: EGP neighbor 10.2.0.25
init egpngh: egpmaxacquire = 1
rtreadkernel: Initial routes read from kernel (if any):
ADD EXT dst 0.0.0.0, router 10.3.0.27, metric 254, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.19.0, router 128.9.0.44, metric 254, flags UPIGATEWAY, state CHANGED
ADD EXT dst 4.0.0.0, router 10.1.0.20, metric 254, flags UPIGATEWAY, state CHANGED
ADD EXT dst 26.0.0.0, router 10.2.0.22, metric 254, flags UPIGATEWAY, state CHANGED

*:: ADD EXT dst 128.4.0.0, router 10.0.0.111, metric 254, flags UPIGATEWAY, state CHANGED
rtifinit: interior routes for direct interfaces:
ADD INT dst 10.0.0.0, router 10.1.0.52, metric 0, flags UP, state INTERFACEICHANGED
ADD INT dst 128.9.0.0, router 128.9.0.42, metric 0, flags UP, state INTERFACEICHANGED

*Routes are being installed in kernel

rt.dumbinit: non-routing gateway routes (if any):
DELETE EXT dst 192.5.19.0, router 128.9.0.44, metric 254, flags UPIGATEWAY, state CHANGED
ADD INT dst 192.5.19.0, router 128.9.0.44, metric 1, flags UPIGATEWAY, state PASSIVEICHANGED
CHANGE dst 0.0.0.0, router 10.2.0.22, metric 254, flags UPIGATEWAY, state CHANGED
rt.NRadviseinit: user specified nets allowed to be advised in NR updates:
isi-net arpanet uciics
main: commence EGP route updates:

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:00:46 1984
vers 2, typ 3, code 0, status 1, AS # 4, id 1, hello int 30, poll int 120

. EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 25 17:00:47 1984
vers 2, typ 3, code 1, status 1, AS# 256, id 1, hello int 30, poll int 120
egpstngh: acquired 10.3.0.27 Wed Jul 25 17:00:47 1984

EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 25 17:00:47 1984
vers 2, typ 5, code 0, status 2, AS # 256, id 30137

EGP SENT 10.1.0.52 .> 10.3.0.27 Wed Jul 25 17:00:47 1984
vers 2, typ 5, code 1, status 1, AS# 4, id 30137

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:01:19 1984

vers 2, typ 5, code 0, status 1, AS # 4, id 1

EGP RECV 10.3.0.27 .> 10.1.0.52 Wed Jul 25 17:01:19 1984

0- I _A

32

vers 2, typ 5, code 1, status 1, AS# 256, id 1

EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 2517:01:21 1984
vers 2, typ 2, code 0, status 0, AS# 256, id 30142, src net 10.0.0.0

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 2517:01:21 1984
vers 2, typ 1, code 0, status 1, AS # 4, id 30142. src net 10.0.0.0, # int 1, # ext 0
105220112891 1 192519

EGP RECV 10.3.0.27 .> 10.1.0.52 Wed Jul 2517:01:47 1984
vers 2, typ 5, code 0, status 1, AS# 256, id 30146

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 2517:01:47 1984
vers 2, typ5, code 1, status 1, AS# 4, id 30146

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:01:51 1984
vers 2, typ 2, code 0, status 1, AS# 4, id 2, src net 10.0.0.0

EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 25 17:01:51 1984
vers 2, typ 1, code 0, status 1, AS# 256, id 2, src net 10.0.0.0, #int 26, #ext 1
3027 201 128921 192519205401 1921 21310192171921 421 1282255159
50530 1 261724 1925912844612821 1925381282521512849 192535 192521 12820

192 5 25 192 5 22 128 3128 8 192 515 192 5 27 192 5 26 192 5 52 192 5 66 192 5 54 192 5 24
10 20402471 4192528192529321281622192530183312831 1921041 12852
20221 21 192589202521 312839 192546192531 21 1925561 0281 01 192518

- 2037 20 1 128 10 2 1 192 548 1049202 192 13128 11 2 1 192551 4051 1 22 192514 192 564
3072201 821 1925880094101 192520041 1 1 1925122091 1 1 12836
1011 11 13600151111925370025111192511704911119255810541 1119257
20781 111283230891111925433091111192583096111192536006812119256
5051 101128185063201 1421128420011110212851284
ADD EXT dst 128.9.0.0, router 10.3.0.27, metric 0, flags UPIGATEWAY, state CHANGEDINOTINSTALL
ADD EXT dst 192.5.19.0, router 10.3.0.27, metric 2, flags UPIGATEWAY, state CHANGEDI

NOTINSTALL
ADD EXT dst 192.1.2.0, router 10.2.0.5, metric 0, flags UPIGATEWAY, state CHANGED
ADD EXT dst 10.0.0.0, router 10.2.0.5, metric 1, flags UPIGATEWAY, state CHANGEDINOTINSTALL
ADD EXT dst 192.1.7.0, router 10.2.0.5, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.1.4.0, router 10.2.0.5, metric 1, flags UPIGATEWAY, state CHANGED

*,- ADD EXT dst 128.2.0.0, router 10.2.0.5, metric 2, flags UPIGATEWAY, state CHANGED
CHANGE dst 26.0.0.0, router 10.5.0.5, metric 0, flags UPIGATEWAY, state CHANGED
ADD EXT dst 24.0.0.0, router 10.5.0.5, metric 1, flags UPIGATEWAY, state CHANGED.ADD EXT dst 192.5.9.0, router 10.5.0.5, metric 1, flags UPGATEWAY, state CHANGED
ADD EXT dst 128.44.0.0, router 10.5.0.5, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 6.0.0.0, router 10.5.0.5, metric 1, flags UPIGATEWAY, state CHANGED

ADD EXT dst 128.21.0.0, router 10.5.0.5, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.38.0, router 10.5.0.5, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 128.25.0.0, router 10.5.0.5, metric 1, flags UPIGATEWAY, state CHANGED

'. ADD EXT dst 128.49.0.0 router 10.5.0.5 metric 2, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.35.0, router 10.5.0.5, metric 2, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.21.0, router 10.5.0.5, metric 2, flags UPIGATEWAY, state CHANGED

ADD EXT dst 128.20.0.0, router 10.5.0.5, metric 2, flags UPIGATEWAY, state CHANGED

AD"ETa 19..10 otr1...,'etic'2;flgs:-' GA-"A-:.tae.CHNGE

33

ADD EXT dst 192.5.25.0, router 10.5.0.5, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.22.0, router 10.5.0.5, metric 2, flags UPIGATEWAY, state CHANGED
ADD EXT dst 128.3.0.0, router 10.5.0.5, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 128.8.0.0, router 10.5.0.5, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.15.0, router 10.5.0.5, metric 2, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.27.0, router 10.5.0.5, metric 2. flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5,26.0, router 10.5.0.5, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.52.0, router 10.5.0.5, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.66.0, router 10.5.0.5, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.54.0, router 10.5.0.5, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.24.0, router 10.5.0.5, metric 2, flags UPIGATEWAY, state CHANGED
CHANGE dst 4.0.0.0, router 10.1.0.20, metric 0, flags UPIG ATE WAY, state CHANGED
ADD EXT dst 7.0.0.0, router 10.1.0.20, metric 0, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.28.0, router 10.1.0.20, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.29.0, router 10.1.0.20, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 32.0.0.0, router 10.1.0.20, metric 1, flags UPIGATE WAY, state CHANGED

* ADD EXT dst 128.16.0.0, router 10.1.0.20, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.30.0, router 10.1.0.20, metric 2, flags UPIGATEWAY, state CHANGED
ADD EXT dst 18.0.0.0, router 10.1.0.20, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 128.31.0.0, router 10.1 .0.20, metric 3, flags UPIGATE WAY, state CHANGED
ADD EXT cist 192.10.41 .0, router 10. 1. 0.20, metric 3, flags UPIGATEWAY, state CHANGED
ADD EXT dst 128.52.0.0. router 10.1.0.20, metric 3, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.89.0, router 10.2.0.22, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 128.39.0.0, router 10.2.0.25, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.46.0, router 10.2.0.25, metric 1, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.31.0, router 10.2.0.25, metric 1, flags UPIGATE WAY, state CHANGED
ADD EXT cist 192.5.56.0, router 10.2.0.25, metric 2, flags UPIG ATE WAY, state CHANGED
ADD EXT cist 192.5.18.0, router 10.1.0.28, metric 0, flags UPIGATEWAY, state CHANGED
ADD EXT dst 128.10.0.0, router 10.2.0.37, metric 0, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.48.0, router 10.2.0.37, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.1.3.0, router 10.1.0.49, metric 0, flags UPIGATE WAY, state CHANGED

V ADD EXT dst 128.11.0.0, router 10.1.0.49, metric 0, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.51 .0, router 10.1.0.49, metric 2, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.14.0, router 10.4.0.51, metric 2, flags UPIGATE WAY, state CHANGEDI ADD EXT dst 192.5.64.0, router 10.4.0.51, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT cist 8.0.0.0, router 10.3.0.72, metric 0, flags UP IGATE WAY, state CHANGED
ADD EXT dst 192.5.88.0, router 10.3.0.72, metric 2, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.2.0, router 10.0.0.94, metric 0, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.12.0, router 10.0.0.4, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 128.36.0.0, router 10.2.0.9, metric 1, flags UP jGATE WAY, state CHANGED
ADD EXT dst 36.0.0.0, router 10.1.0.11, metric 1, flags UPIGATEWAY, state CHANGED

F ADD EXT dst 192.5.37.0, router 10.0.0. 15, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dat 192.5.11.0, router 10.0.0.25, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.58.0, router 10.7.0.49, metric 1, flags UPIGATEWAY, state CHANGED

* ADD EXT dst 192.5.7.0, router 10.1.0.54, metric 1, flags UPjGATEWAY, state CHANGED p

ADD EXT dst 128.32.0.0, router 10.2.0.78, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dat 192.5.43.0, router 10.3.0.89, metric 1, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.8.0, router 10.3.0.91, metric 1, flags UPIGATE WAY, state CHANGED
ADD EXT dst 192.5.36.0, router 10.3.0.96, metric 1, flags UPIGATEWAY, state CHANGED
ADD EXT dst 192.5.6.0, router 10.0.0.68, metric 2, flags UPIGATEWAY, state CHANGED

ADD XT st 18.30.0,rouer 0.5..5,metrc 2 flas UIGAEWAY stte CANGD -

34

ADD EXT dst 128.18.0.0, router 10.5.0.51. metric 0. flags UPIGATEWAY, stato CHANGED
ADD EXT dst 14.0.0.0, router 10.5.0.63. metric 0, flags UPIGATEWAY. state CHANGED
ADD EXT dst 128.42.0.0, router 10.5.0.63. metric 2. flags UPIGATEWAY, state CHANGED
ADD EXT dst 128.5.0.0, router 10.0.0.111, metric 0. flags UPIGATEWAY, state CHANGED
CHANGE dst 128.4.0.0, router 10.0.0.111. metric 0. flags UPIGATEWAY, state CHANGED
DELETE DEFAULT dst 0.0.0.0, router 10.2.0.22. metric 254, flags UPIGATEWAY, state PASSIVE
rtNRupdate: above routes from 10.3.0.27 updated Wed Jul 25 17:01:51 1984

EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 25 17:02:21 1984
vers 2, typ 5. code 0. status 1, AS # 256. id 30151

*EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:02:21 1984
vers 2, typ 5, code 1, status 1, AS# 4, id 30151

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:02:23 1984
vers 2, typ 5, code 0. status 1, AS# 4, id 2

EGP RECV 10.3.0.27 .> 10.1.0.52 Wed Jul 25 17:02:23 1984
vers 2, typ 5, code 1, status 1, AS# 256, id 2

EGP RECV 10.3.0.27 .> 10.1.0.52 Wed Jul 25 17:02:47 1984
vers 2, typ 5, code 0, status 1, AS# 256, id 30155

EGP SENT 10.1.0.52 .> 10.3.0.27 Wed Jul 25 17:02:47 1984
vers 2, typ 5, code 1. status 1, AS# 4, id 30155

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:02:55 1984
vers 2, typ 5, code 0, status 1, AS # 4, id 2

EGP RECV 10.3.0.27 .> 10.1.0.52 Wed Jul 25 17:02:55 1984
vers 2, typ 5, code 1, status 1, AS # 256, id 2

EGP RECV 10.3.0.27 .> 10.1.0.52 Wed Jul 25 17:03:21 1984
vers 2, typ 5, code 0, status 1, AS # 256, id 30160

EGP SENT 10.1.0.52 .> 10.3.0.27 Wed Jul 25 17:03:21 1984
vers 2, typ 5, code 1, status 1, AS # 4, id 30160

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:03:27 1984
vers 2, typ 5, code 0, status 1, AS # 4, id 2

EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 25 17:03:27 1984
vers 2, typ 5, code 1, status 1, AS# 256, id 2

EGP RECV 10.3.0.27 .> 10.1.0.52 Wed Jul 25 17:03:47 1984
vers 2, typ 2, code 0, status 0, AS# 256, id 30164, src net 10.0.0.0

EGIP SENT 10. 1.0.52 -> 10.3.0.27 Wed Jul 25 17:03:47 1984
vers 2, typ 1, code 0, status 1, AS # 4, id 30164, src net 10.0.0.0, # int 1, # ext 0

10 052 201 128 91 1192 519

S e

35

EGP SENT 10.1.0.52 -> 10.3.0.27 Wed Jul 25 17:03:59 1984
vers 2, typ 2, code 0, status 1, AS# 4, id 3, src net 10.0.0.0

EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 25 17:03:59 1984
vers 2, typ 1, code 0, status 1, AS # 256, id 3. src net 10.0.0.0, # int 26, # ext 1
3027201128921 192519205401192 1213101921719214211282255116
50530 1 26 1 7 24 192 59 12844 6 12821 192 538128 25 2 15 12849 192 535 192521 12820
192 5 25 192 5 22 128 3 128 8 192 5 15 192 5 27 192 5 26 192 5 52 192 5 66 192 5 54 192 5 24
10204024714192528192529321281622192530183312831 1921041 12852
20221 21 1925892025211 192531 21 192556 1 0 28101 192518
2037201 1281021 1925481 0492021921312811211925514051122192514192564
3072201821 19258800941 01 19252004111 19251220911112836
1011 1113600151 111925370025111 1925117049111 192558105411119257
20781 111283230891111925433091 11119258309611 1 19253600681 21 19256

5 051 10 1 128 18 50 63 201 14 2 1 12842 00 111102 128 5 1284

EGP RECV 10.3.0.27 -> 10.1.0.52 Wed Jul 25 17:04:21 1984
vers 2, typ 5, code 0, status 1, AS # 256, id 30169

EGP SENT 10.1.0.52 .> 10.3.0.27 Wed Jul25 17:04:21 1984
vers 2, typ 5, code 1, status 1, AS # 4, id 30169

OLD: DELETE EXT dst 192.5.46.0, router 10.2.0.25, metric 1, flags UPIGATEWAY, state
OLD: DELETE EXT dst 128.39.0.0, router 10.2.0.25, metric 1, flags UPIGATEWAY, state
rttime: above old routes deleted Wed Jul 25 17:09:19 1984

(full packet traces have been omitted in the following)

egpacq: cease from 10.3.0.27, reason 1, Mon Jul 30 09:13:551984

egpstngh: acquired 10.2.0.25 Mon Jul 30 09:14:27 1984

egpacq: cease from 10.2.0.25, reason 1, Mon Jul 30 09:16:36 1984

* egpstngh: acquired 10.3.0.27 Mon Jul 30 09:18:11 1984

egp.send: sendto: 10.3.0.27 : Host is down
egp.send: sendto: 10.3.0.27 : Host is down
egpjob: 10.3.0.27 unreachable Mon Jul 30 09:26:111984

egp.send: sendto: 10.3.0.27 : Host is down
egpcease: cease to 10.3.0.27, reason 0, Mon Jul30 09:26:11 1984

egpstngh: acquired 10.2.0.25 Mon Jul 30 09:26:11 1984

36

"12i

egp.send: sendto: 10.3.0.27 : Host is down
egp.send: sendto: 10.3.0.27: Host is down
egp..send: sendto: 10.3.0.27: Host is down

*EGP SENT 10.1.0.52 -) 10.2.0.25 Mon Jul 30 09:57:03 1984
* vers 2, typ 3, code 3, status 5, AS # 4, id 15
* egpcease: cease to 10.2.0.25, reason 5, Mon Jul 30 09:57:03 1984

EGP RECV 10.2.0.25 -> 10.1.0.52 Mon Jul 30 09:57:03 1984
* vers 2, typ 3, code 4, status 5, AS # 256, id 15
'.4 ADD DEFAULT dst 0.0.0.0, router 10.2.0.22, metric 254, flags UPIGATEWAY, state PASSIVE

Exit egpup at Mon Jul 30 09:57:03 1984

5-4

4,

:,.

.J-

0o

oo

4.

37

*REFERENCES

* [Berkeley 83] "UNIX Programmer's Manual", Vol. 1, 4.2 Berkeley Software Distribution,
University of California, Berkeley.

[Kirton 84] Kirton, P.A., "EGP Gateway Under Berkeley UNIX 4.2", Network Information i
Center RFC 911, to be published.

* [Mills 83] Mills, D.L., "EGP Models and Self-Organizing Systems", Message to
EGP.PEOPLE@BBN-UNIX, November 1983. Z

[Mills 84a] Mills, D.L., "Exterior Gateway Protocol Formal Specification", Network
Information Center RFC 904, April 1984.

[Mills 84b] Mills, D.L., "Revised EGP Model Clarified and Discussed", Message to
EGP-PEOPLE@BBN-UNIX, May 1984.

[Postel 84] Postel, J., "Exterior Gateway Protocol Implementation Schedule", Network
Information Center RFC 890, February 1984.

[Rose 84] Rose, M.T., "Low-Tech Connection into the ARPA-Internet: The Raw-Packet Split
Gateway", Department of Information and Computer Science, University of
California, Irvine, Technical Report 216, February 1984.

[Rosen 82] Rosen, E.C., "Exterior Gateway Protocol", Network Information Center RFC 827,
October 1982.

[Seamonson & Rosen 84]
Seamonson, L.J., and E.C. Rosen, "Stub Exterior Gateway Protocol", Network

Information Center RFC 888, January 84.

[Xerox 81] "Internet Transport Protocols", Xerox System Integration Standard XSIS 028112,December 1981.

I
%AT." ,--"

4x

p74.

.440

4.1-

'4 @7

*~ IN 7

4 poll

