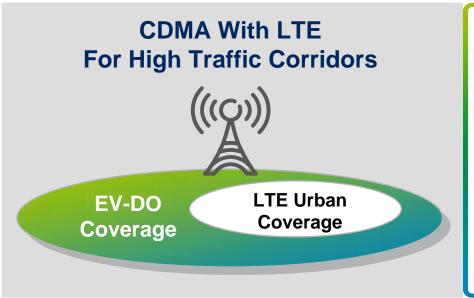
EHRPD EV-DO & LTE INTERWORKING

BILL CHOTINER ERICSSON CDMA PRODUCT MANAGEMENT NOVEMBER 15, 2011

EHRPD – LTE & CDMA INTERWORKING

What is eHRPD?

- HRPD Is Standards Name For EV-DO
- eHRPD Is "evolved HRPD"
- eHRPD Enables EV-DO & LTE Interworking



Purpose / Value of eHRPD

- Enables Inter-Technology Handoff Between LTE and EV-DO Networks
- Enables Roaming For LTE Subscribers On EV-DO Networks
- Leverages Existing EV-DO Network Coverage When Deploying LTE
- Enables Common Applications To Be Used Across EV-DO & LTE Access

EV-DO - LTE APPLICATION UBIQUITY

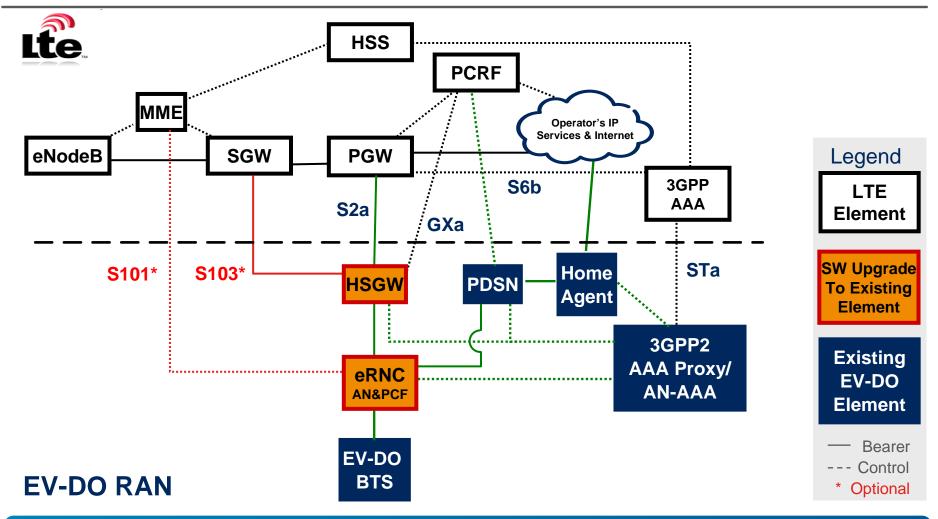
- LTE EV-DO Interoperability & Handover Enabled Via eHRPD
- Functionality Is Generally Available
 In EV-DO Products Today
- Launched In Commercial Networks
 In North America

Enabling CDMA – LTE Broadband Synergies

EHRPD – SUBSCRIBER NEEDS

- Subscribers Require Universal Coverage
- Subscribers Expect Seamless Mobility Between Access Technologies
- Applications / Services Must Function Consistently Irrespective Of Access Technology
- > Universal Roaming

EHRPD Integrates EV-DO & LTE Networks


EHRPD – OPERATOR BENEFITS

- > Enables A Phased Build-Out Of The LTE Network
 - Operators can build LTE in phases by deploying LTE in selective areas first
 - Operators can utilize LTE core network elements in place of EV-DO core network elements for eHRPD subscribers
- > Enables Operator to Provide Roaming Services
 - Incoming Roamers will be able to access the eHRPD network and the same services from their home EPC
- > Mitigates LTE Transition Challenges

CDMA & LTE Networks Will Coexist For A Long Time

EHRPD NETWORK ARCHITECTURE

eHRPD Integrates EV-DO RAN Into The LTE Network

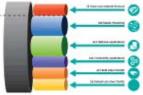
EHRPD FUNDAMENTAL CONCEPTS

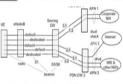
Common IP Address & Services Between EV-DO & LTE RAN via the PDN Gateway
 Network Purfix
 Interface ID

 3000X
 300X
 <td

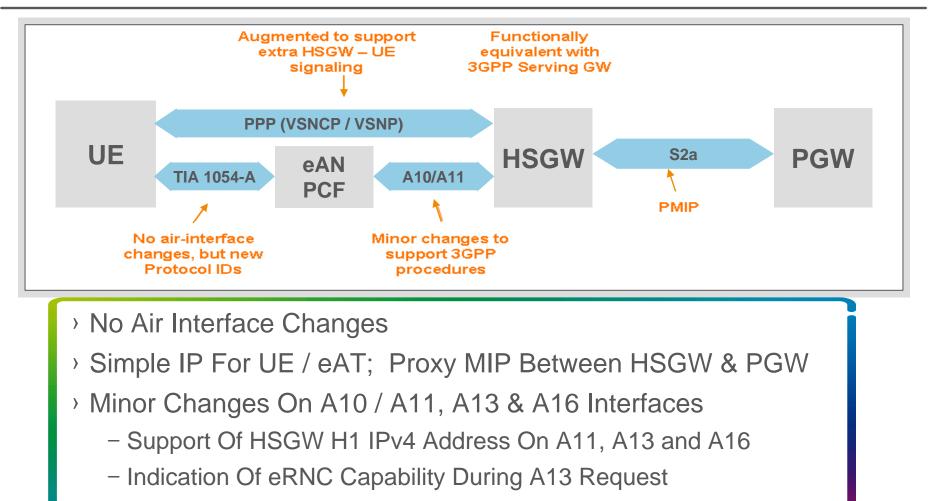
10101100,00010000,11111110,00000001

Common Subscriber Database & Authentication Mechanism Via The 3GPP HSS EAP-AKA' For Authentication In Place Of CHAP

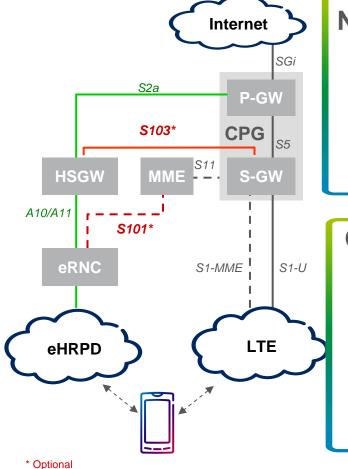

Common QoS Control Mechanism Via PCRF Network Directed QoS


Support Multiple & Dedicated LTE Bearer Functionality Via The EV-DO RAN

Support The LTE Functionality Of Multiple PDN Gateway Connectivity Via The EV-DO RAN



PDN: Packet Data Network HSS: Home Subscriber Server PCRF: Policy and Charging Rules Function Ericsson | 2011-11-15 | Page 7


EV-DO RAN CHANGES FOR EHRPD

> Network Directed QoS Support

OPTIMIZED VS. NON-OPTIMIZED HANDOFF

Non-Optimized Handoff

- Allows Handoff between LTE & eHRPD
- Interruption Of Active Calls From LTE To eHRPD
 - > ~6* seconds for 1st time handoff to eHRPD
 - > ~1-2* second with Partial HSGW Context * Based on lab measurements

Optimized Handoff

- Support Of Active Handoff Between LTE & eHRPD
- Expected Interruption Less Than 200 msec
- Complex Implementation; Requires Multi-Vendor Coordination

Non-Optimized Handoff Deployed In Commercial Networks Today

BEHAVIOR DURING HANDOFF

	LTE Network	eHRPD Network	Handoff Type	Comments
1	ldle 🔶	→ Idle	Non- Optimized	 > IP continuity at PDN GW > No user impact
2	Active —	──→ Idle	Non- Optimized	 Handoff Initiated by UE / eAT IP continuity at PDN GW Interruption of data flow or call to be re-initiated (e.g. VoIP)
3	Idle	— Active	Non- Optimized	 > UE / eAT initiated when active call is completed on eHRPD > IP continuity at PDN GW > No user impact
4	Active ┥	→ Active	Optimized	 Requires S101 / S103 interfaces & UE / eAT support Interruption suitable for voice services handoff

IP Continuity Maintained With eHRPD At PDN GW

NODES REQUIRED TO SUPPORT EHRPD

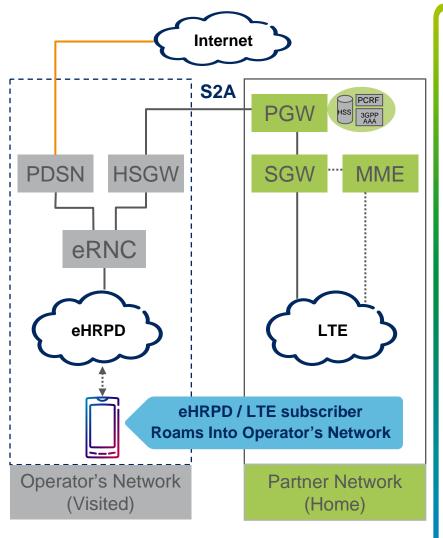
EV-DO RAN – Software Upgrade

Introduce HSGW or Upgrade PDSN To HSGW

PDN Gateway – S2A Interface Support

Implement 3GPP AAA & HSS

Deploy Dual Technology Device LTE & eHRPD Capable UE / eAT


LTE HANDOFF TRIGGERS TO EV-DO RAN

- Serving E-UTRAN Cell Controls Idle Mode
 Reselection Behavior
- Broadcast Of Parameters Via The System
 Information Block Messages (SIB3 and SIB8)
 - SIB 3 (Intra-Frequency Cell Reselections)
 - > IRAT Search Parms (LTE Signal Thresholds, etc.)
 - SIB 8 (IRAT Cell Reselection CDMA2000)
 - > List Of Target EV-DO Sectors To Optimize Search
 - Identified By Band Class, Frequency, PN

LTE Network Triggers Initiate Handoff to the EV-DO (eHRPD) RAN

DEPLOYMENT MODEL – ROAMERS ONLY

Network View Simplified To Illustrate The Concept

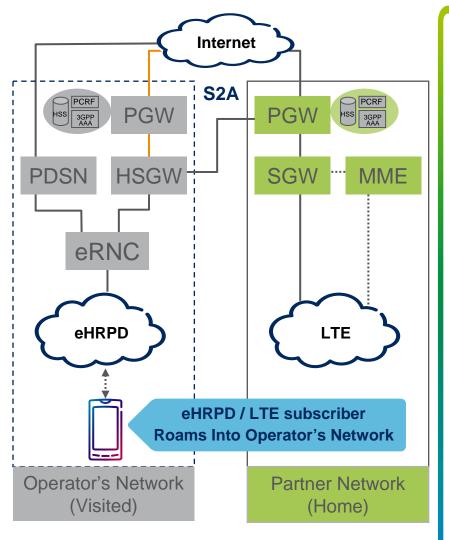
Operator's (Visited) Network:

- eHRPD Capable EV-DO RAN
- HSGW Addition Or HSGW Capable PDSN
- Operator Roaming Agreement To Support Partner eHRPD Subscribers On RAN

> eHRPD-enabled Roaming Subscribers:

- Roamers Establish eHRPD Session In Visited EV-DO RAN
- Visited Network Routes IP Session to Partners' (Home) EPC
- Anchor Point For Roamer Is Home EPC

Operator's eHRPD Enabled Subscribers:


 Operator's eHRPD Enabled Subscribers May Be Directed To use Partner EPC

<u>Or</u>

 Operator May Disable eHRPD For Their Own Subscribers

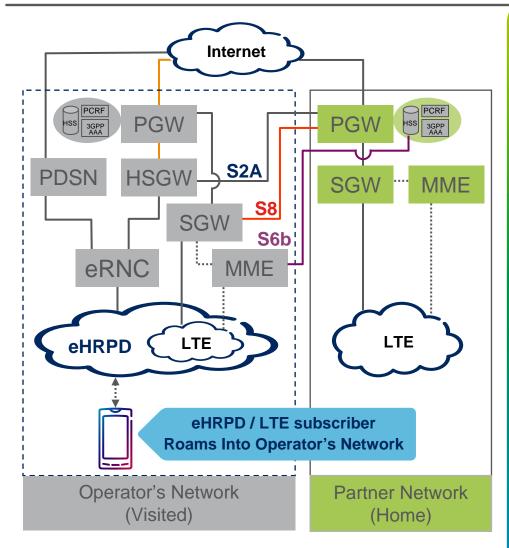
DEPLOYMENT MODEL – LTE LATER

Network View Simplified To Illustrate The Concept

› Operator's (Visited) Network:

- eHRPD Capable EV-DO RAN
- HSGW Addition Or HSGW Capable PDSN
- Operator Roaming Agreement To Support Partner eHRPD Subscribers On RAN
- EPC Deployed For Future LTE Plans

> eHRPD-enabled Roaming Subscribers:


- Roamers Establish eHRPD Service In Visited EV-DO RAN
- Visited Network Routes IP Session to Partners' (Home) EPC
- Anchor Point For Roamer Is Home EPC

Operator's eHRPD Enabled Subscribers:

 Operator's eHRPD Enabled Subscribers Use Operator's EPC

DEPLOYMENT MODEL – LTE & EHRPD

Network View Simplified To Illustrate The Concept

> Operator's (Visited) Network:

- eHRPD Capable EV-DO RAN
- HSGW Addition Or HSGW Capable PDSN
- Operator Roaming Agreement To Support Partner eHRPD Subscribers On RAN
- EPC Deployed For LTE Support
- LTE RAN Deployed
- LTE & eHRPD-enabled Roaming Subscribers:
 - Roamers Establish LTE Service In Visited LTE RAN
 - Roamers Establish eHRPD Service In Visited EV-DO RAN
 - Visited Network Routes IP Session to Partners' (Home) EPC
 - Anchor Point For Roamer Is Home EPC

Operator's Subscribers:

- Operator's eHRPD Enabled Subscribers Use Operator's EPC
- Operator's LTE Subscribers Use Operator's EPC

EHRPD SUMMARY

- Continue to Utilize EV-DO RAN
 - Allow Gradual Build-out Of LTE Network
 - Provide Improved Day 1 Network Coverage
- Enable Consistent User Services
 Across LTE and EV-DO Networks
 - Support Of Roaming Subscribers
 - Common Network Services
 - Common Evolved Packet Core Nodes
- Leverage LTE Performance & Efficiency
 - Higher Data Rates
 - Reduced Network Latency
 - Improved Network Capacity

LTE Access While Inter-Working with EV-DO Network for Services Continuity & Expanded Coverage

QUESTIONS & DISCUSSION

ERICSSON

ACRONYMS

	and Concretion Dorte eaching Duris et
3GPP	3rd Generation Partnership Project
3GPP2	3rd Generation Partnership Project 2
AAA	Authentication, Authorization and Accounting server
AN	Access Network
APN	Access Point Name
AT	Access Terminal
BS	Base Station
eAN	Evolved Access Network
EAP-AKA'	Extensible Authentication Protocol - Authentication and Key
	Agreement
eAT	Evolved Access Terminal
eHRPD	Evolved High Rate Packet Data
eNB	Evolved Node B
EPC	Evolved Packet Core
ePCF	Evolved Packet Control Function
EPS	Evolved Packet System
E-UTRAN	Enhanced Universal Terrestrial Radio Access Network
EVDO	CDMA 2000 Evolution – Data Optimized
HRPD	High Rate Packet Data
HSGW	HRPD Serving Gateway
HSS	Home Subscriber Server
IMSI	International Mobile Subscriber Identity
IOS	Inter-Operability Specification
IP	Internet Protocol
LTE	Long Term Evolution
MEID	Mobile Equipment Identity
MME	Mobility Management Entity
MNID	Mobile Node Identification
MS	Mobile Station
MSC	Mobile Switching Center

NAI PDN PGW PCF PCRF PDN PDSN PMIP PPP QoS RADIUS RAN RFC RLP ROHC RT S-GW SC/MM SO UATI UE VOIP VoLTE VSA VSNCP	Network Access Identifier Packet Data Network Packet Data Network Gateway Packet Control Function Policy and Charging Rules Function Packet Data Network Packet Data Serving Node Proxy Mobile Internet Protocol Point-to-Point Protocol Quality of Service Remote Authentication Dial-In User Service Radio Access Network Request for Comment Radio Link Protocol RObust Header Compression Radio Transceiver Serving Gateway Session Control / Mobility Management Service Option Unicast Access Terminal Identifier User Equipment (LTE Device) Voice over Internet Protocol Voice Over LTE Vendor Specific Attribute
VSNP	Vendor Specific Network Protocol

ERICSSON