

Elemental Impurity Risk Assessment -Case Studies

Author: Andrew Teasdale and Laura Rutter (on behalf of EFPIA) Date: 5 April 2016 * Version: Final

Overview

Using the principles outlined in ICH Q3D and training modules we will:

- Present a series of risk assessments based on actual products.
 - Examining different routes of administration.
- Through this seek to highlight there is more than one approach, illustrated through the examples shown.
- Marketing application example summary and proposed location.
- Approach to products during clinical development.

www.efpia

ICH Q3D Guideline for Elemental Impurities – Practical Implementation of ICH Q3D

- ICH Q3D recommends taking a **risk based approach.**
- Focus is on the final product the fishbone diagram assists by advising on the components for consideration: all potential sources of elemental impurities should be considered and evaluated for their contribution to the drug product.
- The product assessment will form the basis of a specific control strategy for EIs and should be available to be presented to Regulators during an inspection upon request.
- An industry position paper has been jointly authored and published in <u>PharmTech</u>.

Risk Process – General Principles

- ICH Q3D advocates a 3 step process:
 - Identify
 - Evaluate
 - Summarize Control
- Different approaches to each stage are now examined through a series of actual risk assessments.

Industry Risk Assessment Example 1

Synthetic API – tablet

Industry Risk Assessment Example 1 – Oral Solid Dose

Product		Compound X					
Dose Form		Tablet					
Strength		200/ 400 mg compound X					
Therapeutic Target (Why patie	nts take this	Osteoarthritis					
product)							
Dosing Regemine (Frequency 8	k Duration of	Daily, one tablet					
dosing)							
Maximum Daily Dose of Active		400mg Compound X	400mg Compound X				
Mass of Dosage Unit		638.6 mg					
Route of Administration		Oral					
USP Monograph for Product		No					
Site of Manufacture		GMP					
Packing Site		GMP					
Elements being Evaluated							
	Class 1	Cd, Pb, AS, Hg					
	Class 2A	Co, V, Ni					
Class 2B		Pd – Metal catalyst used in API synthesis					
	Class 3	Sn - Hypromellose					

Additional metals identified by risk

Assessment

Example 1 – Oral Solid Dose

The theoretical mathematics work Components that make up a small part of the

daily dose are unlikely to "tip-the-balance"

Component	Functionality	Amount per 400 mg tablet (mg)	% in coated tablet	Type (Excipient)
Core				
ΑΡΙ	Drug substance	400.00	62.64	
Hypromellose 2910	Binder	21.70	3.40	Plant
Microcrystalline Cellulose	Diluent	37.20	5.83	Plant
Lactose Monohydrate	Diluent	111.50	17.46	Animal
Crospovidone	Disintegrant	43.40	6.79	Synthetic
Magnesium stearate	Lubricant	6.20	0.97	Mineral
Coating				
Hypromellose 2910	Film-former	11.16	1.75	Plant
Titanium dioxide	Pigment	5.55	0.87	Mineral
Triacetin	Plasticiser	1.49	0.23	Synthetic
	Colorant			
Blue Aluminium Lake #2	Colorant	0.37	0.06	Mineral
Blue Aluminium Lake #1		0.03	0.005	Mineral

Product Information – API Synthesis

cf. ICH Q3D: "For biotechnology-derived products, the risks of elemental impurities being present at levels that raise safety concerns at the drug substance stage are considered low.")

Product Information – drug product manufacture

	Formulation and components		Unit operations	Formulation and components		Unit operations
1	API Lactose Microcrystalline Cellulose Crospovidone Hypromellose Hypromellose	\rightarrow	 Stage 1: Dry Mix High shear wet granulator Stage 2: High Shear Wet Granulation High shear wet granulator 	Crospovidone Magnesium stearate	→	Stage 6: Blending Diffusion mixers (tumble) Stage 7: Lubrication Diffusion mixers (tumble)
,	Purified water		↓ Stage 3: Wet Milling			↓ Stage 8: Compression Tablet press
Grade			Screening Mills Stage 4: Fluidised Bed Drying Direct heating, fluidised solids bed	Film Coat	\rightarrow	↓ Stage 9: Film Coating Pan coating
			↓ Stage 5: Milling Screening mill			Stage 10: Packing

Evaluation process not just data driven

• Can be based on first principles.

Pharmacopeial

- With regards to the process described an evaluation was conducted prior to manufacture
 - Concluded that risk very low given lack of any extremes of pH and low residence times.
 - Visual inspection / cleaning also part of GMP.

Section 5.2 – Risk can be <u>reduced</u> through process understanding / equipment selection / qualification and GMP processes. www.efpia.eu

Product Information – packaging

Drug Substance packaging

• Drug substance stored in double low density polyethylene bags individually closed with plastic tie wraps. The closed bags are stored inside a rigid outer container/drum.

Drug Product packaging

 X tablets are presented as blister packs formed from unplasticized polyvinyl chloride (PVC) film laminated to a polychlorotrifluoroethene (PCTFE) and sealed to push-through blister foil

Risk factors:

- Contact Solid to Solid <u>no mechanism*</u>
- Data relating to PE / PVC show very low EI risk

Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review PDA J Pharm Sci Technol January/February 2015 69:1-48;

www.efpia.eu

Section 5.3 – Probability of elemental leaching into solid dosage forms is minimal and does not require further consideration in the risk assessment

Step 1 – Identify

- In this example all input materials were recorded and a specific risk assessment tool used to evaluate each potential EI source
 - Using a pre-defined scoring system.
- This is then represented graphically coding risk in terms of red/amber/green as well as the numerical risk factor.

There are multiple ways to conduct an assessment

Identify

Typical nge, (ug/g) Detectability PDE/ Current ntrol limit (ug/g) sk Priority Number robability (failure mode) Criticality Number Unit Severity Failure Effect product Operation/Source Failure Mode, (Material) General Comments/Control Strategy Action daily dose (Metal of interest) of Metal (ug/g) Drug substance 25 Test for environmental metals environmental metal impurities 25 Inorganic reagents used in later stages of synthesis. 1 Pd 10 10 Residues controlled to 10ppm in drug substance intermediate X (typical levels 0.3ppm) 10 ppm 0.1 1 Typical high risks: Hq 5 25 Potentially introduced with sodium hydroxide 25 Excipients Hypromellose environmental metal impurities 2.3 <20ppm heavy 5 25 USP, Ph Eur and JP 20 ppm heavy metals 25 Test for environmental metals. 5 20 ppm metal catalysts/reagents, 10021.9 <0.6 ppm Identified as likely to be present in supplier survey (< 0.6 ppm in 12 samples by ICP-OES). 5 Sn 1 5 Microcrystalline Cellulose mined excipients environmental metal impurities 2.3 ≤+0ppm 5 5 25 USP, Ph Eur and JP 10 ppm heavy metals 1 25 Test for environmental metals. 10 ppm actose monohydrate 2.3 ≤sppm 5 5 25 USP, Ph Eur and JP 5 ppm heavy metals 25 Test for environmental metals. environmental metal impurities 5 ppm Crospovidone environmental metal impurities 29.5 < 10ppm 5 USP and Ph Eur 10 ppm heavy metals 10 ppm Pharmaceutical excipient handbook suggests that a catalyst is used. Contact supplier. 50 Contact supplier to confirm if a metal catalyst is used. Catalyst (1 Lead 7.8 ≤5ppm Test is on current supplier CofA 1 Arsenic 2.3 ≤2ppm Test is on current supplier CofA Magnesium stearate environmental metal impurities 20 ppm only in JP 2.3 ≤20ppm 25 1 25 Test for environmental metals. USP and Ph Eur 5 ppm. Identified as present in a raw material by supplier survey. 0.2 Nick 391.5 ≤ 1ppm 5 ppm Cadmiun 7.8 ≤ 1ppm USP and Ph Eur 3 ppm 3 ppm 0.2 1 USP and Ph Eur 10 ppm. Specification 5 ppm from supplier survey. 0.2 1 7.8 ≤ 1ppm Lead 5 ppm 0.2 Periodic testing by ICP-OES confirmed by supplier survey. Aa. 2.3 <0.05 ppm 1 1ppm 0.2 Hq 23.5 <0.05 ppm Periodic testing by ICP-OES confirmed by supplier survey. 1ppm Coating Film coating Hypromellose environmental metal impurities 2.3 <20ppm heavy 5 25 USP, Ph Eur and JP 20 ppm heavy metals 1 25 Test coating for environmental metals. 20 ppm **Titanium Dioxide** 7.8 ≤20 ppm 50 USP, Ph Eur and JP 20 ppm heavy metals environmental metal impuritie-10 20 ppm 50 Test coating for environmental metals. Antimonu 1879 ≤ 100ppm 10 Ph Eur 100 ppm 100 ppm 0.2 10 - 2 2.3 ≤1ppm 10 10 USP 1 ppm, Ph Eur 5 ppm, JP 10 ppm 0.2 2 Argenio 1ppm Risks controlled by GMP: Barium 20357 10 10 limit is absence by the test used. Unlikely to exceed allowed 2% 10 200 ppm Iron 20%57 ≤200ppm 10 1 10 Ph Eur 200 ppm 0.2 2 purified water, 10 1 10 JP 60 ppm 10 Lead 156.6 >60 ppm 1 Triacetin 1 5 5 1 5 environmental metal impurities equipment compatibility Blue #2 50 No information available on this component. Testing of coating will inform risk-level. 50 Test coating for environmental metals. environmental metal impurities X AL N/A 10 Al colourant, low toxicological concern 1 ue + 50 No information available on this component. Testing of coating will inform risk-level. environmental metal impurities 10 5 50 Test coating for environmental metals. 10 0 Al colourant, low toxicological concern AL. N/A Equipment Equipment 1 Primary Pack: PVC blisters Packing Potentially leached metals Process materials Water 1 environmental metal impurities 5 5 - 5

Identify

Other factors

- Any risk assessment needs to be supported by an appropriate overall quality system. Key aspects of this would typically include:
 - Vendor Assurance
 - Change Control ٠
 - Supplier Information
 - Certificate of Analysis
 - El risk assessment ٠

In this example for Crospovidone the following information available:

- Pharmaceutical excipient handbook suggests that a catalyst can be used in the production of crospovidone.
- Supplier provided a statement to confirm that no metal catalysts are used in the manufacture of their xx grade crospovidone.

Evaluation process not just data driven

Can be based on first principles

www.efpia.eu

IPEC Questionnaire

5 V	IEW						IPEC_EM	emental_Impurities_templat	e-rev1 [Read	I-Only] [Comp	nibilit	y Mode]	- Word			
ilier Na	me: dress					Supplier Phone	Number: Address:			Elemental Impurity		Class	u	kely to be	Present	If Known, P Identity t Expects Concentra /Units (or R
ufactur	er (if	differen	than Su	pplier):		Date Form Fille	d Out:			Cobell	Co	2A	Yes	No 🗖	Unknown 🔲	
nction ntify e	s: Iem	ental	impui	rities ir	n (Material	Name) that a	are likely to be j	present. If likely		Nickel	N	2A	Yes	No 🔲	Unknown 🔲	
e pre of de	sen etec	t, idei tion, i	ntify e. f knov	xpecte vn. Plé	ed concent ease note	tration (or ran if any metals	ge), analytical i catalysts or res	method used and Igents are inten-		Vanadium	٧	2A	¥ee □	No 🔲	Unknown 🔲	
ally u	sed	in the	man	ufactu	ring proce	ss in the Con	nments column			Silver	4	28	Yes E	No 🗐	Unknown 目	
ase c	om	plete	a sep	arate	form for	each materia	1			Gold	A12	28	Yes	No 🔲	Unknown 🔲	
erial										Iridium	k	20	Yes E	No 🔲	Unknown 🔲	
										Osmium	Os	28	Yes	No 🔲	Unknown 🔲	
rce/Ty Synth	pe o etic	of Exci	pient ermer	N	derived	_Mineral derive	edPlant	Plant derived		Paladium	Pd	28	¥es □	No 🔲	Unknown 🔲	
er (ex-	·		onnor	ridadori -	denred					Platinum	Pt	20	Yas E	No 🔲	Unknown 🔲	
ı):										Rhodium	Rh	20	¥ee E	No 🗖	Unknown 🔲	
rental		Church			_	If Known, Please Identify the	Analytical Method Used (and Limit of	Comments regarding source of information (i.e.;		Ruthenium	R ₄	28	Yes E	No 🔲	Unknown 目	
urity		Cars	u	kely to be	Present	Expected Concentration /Units (or Range)	Detection if Available)	frequency of testing, process understanding, etc.)		Selenium	Se	28	Yes	No 🔲	Unknown 🔲	
nic Senit)	As	1	Yes	No 🗆	Unknown 🗐					Thallium	Π	20	Yes E	No 🔲	Unknown 🔲	
nium.	08	,	¥e:	No 🗖	Unknown 🔲					Barlum	Ba	э	Yes E	No 🗐	Unknown 目	
uty janic)	на	,	Yas	No 🗖	Unknown 🔲					Chromium	œ	3	¥es E	No 🗖	Unknown 🔲	
	Po	1	Yes E	No 🗖	Unknown 🗖					Copper	Cu	3	Yes	No 🗖	Unknown 🔲	

Elemental Impurity		Class	u	kely to be	Present	If Known, Please Identify the Expected Concentration (Whits (or Range)	Analytical Method Used (and Limit of Detection if Available)	Comments regarding source of information (i.e., frequency of testing, process understanding, etc.)
Cobell	Co	2A	Ĭ	No 🔲	Unknown 🔲			
Nickel	N	2A	¥45	No 🔲	Unknown 🔲			
Vanadium	v	2A	¥es E	No 🗖	Unknown 🔲			
Silver	Åg	28	Yes E	No 🗐	Unknown 目			
Gold	A12	28	Ĭ	No 🔲	Unknown 🔲			
Iridium	k	20	¥ee E	No 🔲	Unknown 🔲			
Osmium	Os	28	¥es E	No 🗐	Unknown 目			
Paladium	Pd	28	Ĭ	No 🔲	Unknown 🔲			
Platinum	Pt	28	¥45	No 🔲	Unknown 🔲			
Rhodium	Rh	20	¥ee E	No 🗖	Unknown 🔲			
Ruthenium	R ₄	28	¥es E	No 🗐	Unknown 目			
Selenium	Se	28	ĭ.	No 🔲	Unknown 🔲			
Thelium	۳	28	¥	No 🔲	Unknown 🔲			
Barium	Ba	э	Ť	No 🔲	Unknown 目			
Chromium	¢	з	Ť	No 🔲	Unknown 目			
Copper	Cu	3	Yes	No 🔲	Unknown 🔲			

FILE TOO

Step 2 - Evaluate

- Based on the risk analysis screening requirements were defined.
- Screening focused on Class 1 and Class 2A metals + Identified metals.
 - Section 5.6 3 production or 6 pilot scale lots
- Analysis performed using 'fit for purpose' methodology

Section 9 – The determination of EIs should be conducted using appropriate procedures suitable for their intended purpose

Potential source of metal impurities	No. of batches to be analysed	Elemental l impu analytical screen	Comments	
		Environmental and naturally abundant elements	Intentionally added' metals e.g. metal catalysts/reagents	
Hypromellose	3 batches representative of the quality/supplier/grad e to be used during commercial manufacture	Class 1: As, Cd, Hg, Pb Class 2A: V, Co, Ni	Sn	
Microcrystalline cellulose	3 batches		None	
Lactose monohydrate	3 batches		None	
Magnesium stearate	3 batches		None	
Crospovidone	None		None	Addressed through detailed supplier response
Coating	3 batches	Class 1: As, Cd, Hg, Pb Class 2A: V, Co,		Aluminium lakes are used to colour the coating blue.
API	3 batches	Ni	Pd - catalyst	

Step 2 – Evaluate

• Negligible levels of Class 1 / Class 2A metals across API and excipients tested

Potential source of	Batch Number	Elemental impurity concentration in $\mu g/g$									
impurities		As	Pb	Cd	Hg	V	Со	Ni	Pd		
	Batch 1	<0.1	<0.1	<0.1	1.8	<0.1	<0.1	1.0	<5		
ΑΡΙ	Batch 2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.0	<5		
	Batch 3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	<5		
Limit of dete	ction (µg/g)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	5		
Option 2a target limit µg/g (0.64 g/day drug product)		23	7.8	7.8	47	160	78	310	160		
30% Option 2a target limit µg/g		7.0	2.3	2.3	14	47	23	94	47		

15

Step 3 – Summarize Control - Actions

The overall risk to Patients is very low.

Element	Intentionally added (if used in the process)	Elemental impurities with a relatively high environmental abundance	Manufacturing equipment	Leached from container closure systems	Acceptable variability of elemental impurity contribution	Control threshold µg/day (30% PDE)	Action
As	No	Negligible levels	No	No	Yes	4.5	no further controls required. See control section for summary of existing controls
Pb	No	Negligible levels	No	No	Yes	1.5	no further controls required. See control section for summary of existing controls
Cd	No	Negligible levels	No	No	Yes	1.5	no further controls required. See control section for summary of existing controls
Hg	Potentially introduced into drug substance with sodium hydroxide	Negligible levels	No	No	Yes	9.0	no further controls required. See control section for summary of existing controls

Summarize Control - Actions

Element	Intentionally added (if used in the process)	Elemental impurities with a relatively high environmental abundance	Manufacturing equipment	Leached from container closure systems	Acceptable variability of elemental impurity contribution	Control threshold µg/day (30% PDE)	Action
V	No	Negligible levels	No	No	Yes	30	no further controls required. See control section for summary of existing controls
Со	No	Negligible levels	No	No	Yes	15	no further controls required. See control section for summary of existing controls
Ni	No	Negligible levels	No	No	Yes	60	no further controls required. See control section for summary of existing controls
Pd	Catalyst used pre-RSM	Negligible levels in drug substance	No	No	Yes	30	no further controls required. See control section for summary of existing controls
Sn	Potentially introduced with Hypromellose	Negligible levels in Hypromellose	No	No	Yes	1800	no further controls required. See control section for summary of existing controls.

Summarize Control

- No requirement for additional control measures has been identified in the evaluate stage.
- The existing measures adequately control the levels of metal impurities in the drug product

Industry Risk Assessment Example 2

Inhaled formulation – dry powder

Step 1 - Identify

Product	Drug Product Y (DPY)			
Dose Form	Dry Powder Inhalation			
Strength	500 μg			
Therapeutic Target (Why patients take this product)	Asthma			
Dosing Regemine (Frequency & Duration of dosing)	One inhalation once a day; daily			
Maximum Daily Dose of Active	500µg of DPY drug substance			
Mass of Dosage Unit	25 mg			
Route of Administration	Inhalation			
USP Monograph for Product	No			
Site of Manufacture	Manufacturing Site 1			
Packing Site	Manufacturing Site 1			
Elements being Evaluated				
Class 1	Cd, Pb, As, Hg			
Class 2A	Co, V, Ni			
Class 2B	Pd, Pt			
Class 3	Li, Sb, Ba, Mo, Cu, Sn, Cr			
Other Elements	N/A			
	www.efpia.			

API and Excipients Product Components & Sources

e

Component	Amount	Max Daily	Percent of Daily	Supplier	Information A Supp	vailable from blier	Natural/	Natural Material	
	/Unit (mg)	Intake (mg)	Intake		General Declarations	Risk Assessment	Synthetic	Source	
DPY Drug Substance (micronized)	0.500	0.500	2.0	Manufacturing Site 1	Yes	No	Synthetic	N/A	
Lactose monohydrate,	24.5	24 5	0.8	Vendor A	Yes	No	Notural	Animal	
	24.5	24.5	90	Vendor B	Yes	No	Naturai	Animai	
Unit Weight (mg)	25	S	ection 5	– The level o	f effort and j	formality of	^f the risk as	sessment	
Units per day	1	should be proportional to the level of risk							
Daily Intake (mg)	25								

Known Information Regarding Elemental Impurity Content

Component	Supplier	Metals Intentionally Added (used in process)	Metals as Naturally Occurring/ Contaminants	Testing For Metals Performed	Current Limits	Data Available	Comments
DPY Drug Substance (micronized)	Manufacturing Site 1	Yes Pd/Pt heterogeneous catalyst used	Negligible risk Class 1 Class 2A Class 3	Pd Pt USP<231>	NGT 5ppm NGT 5ppm NGT 20ppm	Yes Yes Yes	Pd & Pt determined by ICP- OES on a routine basis
Lactose monohydrate,	Vendor A	No	Negligible risk Class 1 Class 2A Class 3	USP <231>	NMT 5µg/g	On CoA	Heavy Metals testing reported on COA as limit test
	Vendor B	No	Negligible risk Class 1 Class 2A Class 3	USP<231>	NMT 5µg/g	On CoA	Heavy Metals testing performed weekly and reported on COA, limit test

Manufacturing Equipment

Step	Notes (e.g. Machine type)	Contact Material	Risk from Abrasion/ Attrition	Risk from Corrosion, Leaching or Chelating	Overall Risk Relative to PDE	Actions
Blending	Bowl 1	Stainless Steel	Moderate	Very Low	Low	Low Risk – no action needed
Filling	EQUIP 1	Stainless Steel	Very Low	Very Low	None	Low Risk – no action needed

Utilities/Water

- Water is not used in the manufacture of Drug Product Y Dry Powder Inhaler 500 µg. Utilities (such as air) used in the manufacture of the product will comply to USP/Ph.Eur. and appropriate Manufacturing Site 1 standards.
- As such, the probability of elemental impurities being introduced into the product by the utilities is very low.

Container Closure

Pack Type	Supplier	Contact Material	Does Component Contain Elemental Impurities?	Overall Risk Relative to PDE	Actions
Polyethylene Bag	N/A	Polyethylene	No	None	None – used to store blend before filling strips.
Lid Foil Laminate	N/A	Heat Seal Lacquer	Yes Aluminium	None	Low Risk – no action needed
Base Foil Laminate	N/A	PVC (Polyvinyl Chloride)	Yes Aluminium	None	Low Risk – no action needed

4	В	С	D	Select el	ements									_								×
	Product	Elemental Impurities	Product A	Please i Those t intentio	dentify hat are nally ad	the eleme required t ded to (e.	nts req to be a: g. cata	quired ssess alyst)	d by th sed for or ma	e ICH (the ch y have	(and El losen f e leache	MEA) (formula ed into	guidar ation o the i	nce base will be au material	d on utom must	the fo atically be ma	rmula selec nually	tion (ro ted. Th / select	ute o ne eler red.	f admin ments t	istratio hat are	n).
	Formulation	Inhalation		Element	s highlig	hted in b	old blue	e hav	e beer	select	ted and	d will b	e liste	ed below	the	table.	Other	colour	codin	ig has b	een ap	plied
	Excipient stat	ements made below		H		NU EMEA	Classific	For	mulatio	on [Inhal	ation	-	[He
	Туре	Content (mg/dose) Component	0.0 Content	Li	Be					,							B	С	N	0	F	Ne
			(mg/dose)	Na	Mg												AI	Si	Р	S	Cl	Ar
		Control Strategy (see Evalua	te section, ri	К	Са	Sc	Ti	V	Cr	Mn	Fe	Co	N	Cu	Z	n	Ga	Ge	As	Se	Br	Kr
				Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	P	l Ag	С	d]	In	Sn	Sb	Те	Ι	Xe
				Cs	Ba		Hf [·]	Та	w	Re	Os	Ir	P	Au	Η	g	TI	Pb	Bi	Ро	At	Rn
	Consideratio	ns for Product Assessment	_	Fr	Ra		Rf I	Db	Sg	Bh	Hs	Mt	D	s Rg	С	n u	Jut	FI	Uup	Lv	Uus	Uuo
						La	Ce	e P	r N	d P	m S	m	Eu	Gd 1	ГЬ	Dy	Но	Er	Tn	ı Yb	Lu]
	<u>Consideratio</u>	ns for API	_			Ac	: Th	I P	al	JN	lp P	Pu /	۱m	Cm I	3k	Cf	Es	Fm	Md	l No	Lr	1
	[DELETE/AM XXX is not lik	END THIS PARAGRAPH AS APPR ely to be present in their produc	OPRIATE] XXX ts. Therefore,	Select	ed elem	ents: As,	Ba, Cd	l, Co,	, Cr, Ci	u, Hg,	Li, Mo,	Ni, Pl	o, Pd,	Pt, Sb,	Sn, ۱	/						
	Considerations for Drug Product																					
	Consideratio	OK Cancel																				
۲	▶ Produc	ct Assessment 🖉 💋																				_

Step 2 - Evaluate – Option 2b

Excipient statements made below

Levels for Pb based on Pharmacopeial Monograph limit

Evaluate – Option 2b

Option 2b – permitted concentration limits of elements in individual components of a product with a specified intake.

Takes into account the amount of each component in the formulation

Excipient stat	ements made belo	ow	_																		
	Content (mg/dose)	25.0											Evaluate	e (µg/day)							
Туре	Component	Content (mg/dose)	Manuf	acturer	Batch / Lot Number	Cadmium	Lead	Arsenic	Mercury	Cobalt	Vanadium	Nickel	Palladium	Platinum	Lithium	Antimony	Barium	Molybdenum	Copper	Tin	Chromium
			Company	Site		Cd	Pb	As	Hg	Co	V	Ni	Pd	Pt	Li	Sb	Ва	Мо	Cu	Sn	Cr
			ICH Q3D Perr	nitted Daily Expos	ure (μg/day)	2	5	2	1	3	1	5	1	1	25	20	300	10	30	60	3
			30 % Co	ontrol Threshold	(µg/day)	0.6	1.5	0.6	0.3	0.9	0.3	1.5	0.3	0.3	7.5	6	90	3	9	18	0.9
	Evaluate		Final Evaluated	Value (adjusted fo	r dose)(µg/day)	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Actual Values (µg/g)(overrides s	um evaluation)	Override	Override	Override	Override	Override	Override	Override	Override	Override	Override	Override	Override	Override	Override	Override	Override
			A	ction or No actio	n	Action	No action	Action	Action	Action	Action	Action	No action	No action	Action	Action	Action	Action	Action	Action	Action
API	DPY Drug Substance	0.5	DP Company	Manufacturing Site 1	DPY-API 123	NO DATA	0.01	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	0.00	0.00	NO DATA						
Excip	Lactose Monohydrate	24.5	Vendor A	LAC site	LAC 456	NO DATA	0.12	NO DATA													

Evaluate - Option 2b

Elemental Impurity Levels for components- based on

- Screening data on API
- Data from the excipient Vendor

Where observed levels <LOD, use LOD as observed level to represent worst case.

Evaluate - Option 2b

Comparison of Elemental Impurity Levels against PDE – based on

- Screening data on Drug Substance
- Data from the excipient Vendor

Excipient sta	atements made bel	low	_																		
	Content (mg/dose)	25.0											Evaluate	(µg/day)							
Туре	Component	Content (mg/dose)	Manuf	acturer	Batch / Lot Number	Cadmium	Lead	Arsenic	Mercury	Cobalt	Vanadium	Nickel	Palladium	Platinum	Lithium	Antimony	Barium	Molybdenum	Copper	Tin	Chromium
			Company	Site		Cd	Pb	As	Hg	Co	V	Ni	Pd	Pt	Li	Sb	Ва	Мо	Cu	Sn	Cr
			ICH Q3D Per	mitted Daily Expos	sure (μg/day)	2	5	2	1	3	1	5	1	1	25	20	300	10	30	60	3
	30 % Control Threshold ((µg/day)	0.6	1.5	0.6	0.3	0.9	0.3	1.5	0.3	0.3	7.5	6	90	3	9	18	0.9	
	Evaluate		Final Evaluated	Value (adjusted fo	<i>r dose)</i> (µg/day)	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Actual Values	(µg/g)(overrides s	sum evaluation)	override	override	override	override												
			A	Action or No actio	n	No action	No action	No action	No action												
API	DPY Drug Substance	0.5	DP Company	Manufacturing Site 1	DPY-API123	0.00	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Excip	Lactose Monohydrate	24.5	Vendor A	LAC Site	LAC456	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Evaluate – Option 3

Comparison of Elemental Impurity Levels against PDE – based on screening data on Product

Product Daily Intake = 25 mg	Metal Symbol	D Cadmium	Сеаd ФД	s Arsenic	BH Mercury	O Cobalt	< Vanadium	X Nickel	d Palladium	J Platinum	I. Lithium	S Antimony	Barium	Molybdenum	Copper	ц Уп	J. Chromium
Maximum	Batch 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	0.3	<0.1
Result	Batch 2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	0.3	<0.1
(µg/g)	Batch 3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	0.2	<0.1
Element	Batch 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Daily Intake	Batch 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(µg)	Batch 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Element I Intake	Max Daily ∋ (µg)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PDE (µ	g/day)	2	5	2	1	3	1	5	1	1	25	20	300	10	30	60	0.3
MDI as %	6 of PDE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Step 3 – Summarize Control

Summary Table for Submission, based on Existing Controls – Class 1 & 2

Element	Class	Added during Process?	Present in API	Present in Excipients	Manuf. Equipment	Packaging Components	Utilities/Water	Observed Level (µg/day)	Control Threshold (30% of PDE)	Actions/Control Strategy
Cd	1	No	Negligible risk	Negligible risk	No	No	No	0	0.6	No further controls required
Pb	1	No	Negligible risk	Negligible risk	No	No	No	0.12	1.5	No further controls required
As	1	No	Negligible risk	Negligible risk	No	No	No	0	0.6	No further controls required
Hg	1	No	Negligible risk	Negligible risk	No	No	No	0	0.3	No further controls required
Со	2A	No	Negligible risk	Negligible risk	No	No	No	0	0.9	No further controls required
V	2A	No	Negligible risk	Negligible risk	No	No	No	0	0.3	No further controls required
Ni	2A	No	Negligible risk	Negligible risk	No	No	No	0	1.5	No further controls required
Pd	2B	API Cat	Potentially, but Controlled	No	No	No	No	0	0.3	No further controls required
Pt	2B	API Cat	Potentially, but Controlled	No	No	No	No	0	0.3	No further controls required

Summarize Control

Summary Table for Submission, based on Existing Controls – Class 3

Element	Class	Added during Process?	Present in API	Present in Excipients	Manuf. Equipment	Packaging Components	Utilities/Water	Observed Level (µg/day)	Control Threshold (30% of PDE)	Actions/Control Strategy
Li	3	No	Negligible risk	Negligible risk	No	No	No	0	7.5	No further controls required
Sb	3	No	Negligible risk	Negligible risk	No	No	No	0	6	No further controls required
Ва	3	No	Negligible risk	Negligible risk	No	No	No	0	100	No further controls required
Мо	3	No	Negligible risk	Negligible risk	No	No	No	0	3	No further controls required
Cu	3	No	Negligible risk	Negligible risk	No	No	No	0	9	No further controls required
Sn	3	No	Negligible risk	Negligible risk	No	No	No	0	18	No further controls required
Cr	3	No	Negligible risk	Negligible risk	No	No	No	0	0.9	No further controls required

Conclusion

• As demonstrated by the summary above, the cumulative effect of the material specifications, in combination with adherence to the overall control strategy for Drug Product Y Dry Powder Inhaler, 500µg, is sufficient to control elemental impurities in the product to within safe levels, below 30% of the proposed ICH Q3D PDE, therefore elemental impurities are not included in the drug product specification.

www.efp

Industry Risk Assessment Example 3

Parenteral

Step 1 - Identify

Product	Powder for reconstitution for IV infusion
Dose Form	Powder in a Type 1 glass vial
Strength	0.54 g API 1 and 2.4 g API 2
Therapeutic Target (Why patients take this product)	Infection
Dosing Regimen (Frequency & Duration of	
dosing)	Maximum of 3 vials per day
Maximum Daily Dose of Active(s)	1.6 g API 1 and 7.2 g API 2
Mass of Dosage Unit	9.4 g per day
Route of Administration	Parenteral
USP Monograph for Product	No
Site of Manufacture	GMP
Packing Site	GMP
Elements being Evaluated	
Class 1	Cd, Pb, AS, Hg
Class 2A	Co, V, Ni
Class 2B	To be confirmed via risk assessment
Class 3	Li, Sb, Cu
Other Elements	To be confirmed via risk assessment

Example 3 – Parenteral, powder for reconstitution for infusion

 The vial is reconstituted with commercially available infusion fluid. The reconstituted vial is then further diluted with infusion fluid prior to administration by intravenous infusion.

The infusion fluid is outside the scope of this risk assessment.

Product Information – drug product manufacture

Evaluation process not just data driven Can be based on first principles

Section 5.2 – Risk can be <u>reduced through</u> process understanding / equipment selection / qualification and GMP processes.

Product Information – packaging

Drug Substance packaging

Low Density Polyethylene (LDPE)/Laminate bag.

• Drug Product Intermediate Powder Blend packaging

Low Density Polyethylene (LDPE)/Laminate bag.

• Drug Product packaging

Clear, Type I glass vial with a bromobutyl rubber stopper with a fluorinated polymer coating and aluminium flip-off over seal.

Step 1 – Identify

- In this example the review of the drug substance and drug product manufacturing process was facilitated by a **questionnaire** designed to aid identification of any high-risk sources of elemental impurities for further attention.
- Potential sources of Els are captured alongside the elemental impurities of concern.

Identify

Simple templated process for identification of high-risks

Microsoft Word Document Please answer guestions 1-6 below. For any 'yes' responses please document the patential source of elemental imputties and any particular elements of concern. If the response to a guestion is 'no' then move on to the next guestion.

1. METAL CATALYSTS		
Are any metal catalysts/reagents used in the manufactu exclipients?	ire of the drug substance or	Yes/ <u>No</u>
Component:	Catalyst/reagent elements:	
Final intermediate stage	₩.	
2. ENVIRONMENTAL IMPURITIES		
Are there any mined or plant based excipients present in	n the drug product?	Yes/ <u>No.</u>
Exclipient:	Environmental elements":	
	"Oral-decage (As, Cd, Pb, Hg, N, V, Cd)	
Sodium carbonalt	"Infravenous dasage (As, Cd, Pb, Hg, N, V, Co, U, Sb, Cu]	Asis Celo Pleo Hg, Nio V, Ceo Lio Sleo Cerr
	Tabalation dosage (As. Co. Ro. Ho. N. V. Co. U. Sb. Co. So. Mo. So. Co.	
	"Other	Notapplicable
3. MANUFACTURING EQUIPMENT		
Are there any extreme or corresive manufacturing cond drug substance, excipients or drug product? E.g. high te	itions used in manufacture of the mperature and low/high pH	_Yes/No
Are there any high-energy processes used in the manufa excipients or drug product? e.g. milling or <u>adjoint</u>	acture of the drug substance,	Yes/No
Monufacturing stage:	Equipment related elements":	
Notapplicable	"Stainless steel (Pa, NI, Cr, Ma)	
	"Hastelay (N. Mo. Cr. Po (Co. W Cu. V)	
	Other	
4. WATER		
Has any non-GMP (see ICH Q7) water source been used substance, excipients or drug product? Ep. operpetable, putfield water (see <u>bhorrocopoold</u> standards) in final or manufacturing stages.	in the manufacture of the drug water (see WHO guidance) or non- irug substance and drug product	Yee/No
Manufacturing stage:	Environmental elements":	
Not applicable	"Oral dosage (As, Cd, Pb, Hg, N, V,	

Step 2 - Evaluate

- Based on the templated assessment – screening requirements were defined.
- NB The risk associated with the mined/mineral excipient, was based on absence of data to effectively quantify risk.

Section 9 – The determination of EIs should be conducted using appropriate procedures suitable for their intended purpose

		Metal impurities in	cluded in analytical			
Potential source of metal impurities	No. of batches to be analysed	Scree Environmental metals	'Intentionally added' metals e.g catalysts/reagents			
API 1	A minimum of 3 commercially representative batches.	None	Class 2B: Pd			
ΑΡΙ 2	None	None	None			
Sodium Carbonate	A minimum of 3 commercially representative batches.	Class 1: As, Cd, Hg, Pb Class 2A: V, Co, Ni Class 3: Li, Sb, Cu	None			

Section 5.6 - 3 production or 6 pilot scale lots

Step 2 – Evaluate

The Big 4, Class 1 metals are not as ubiquitous as feared in materials used in the Pharma Industry

• No Els > 30% PDE across API 1 and excipient batches tested

Sample	Batch											
	number	As	Pb	Cd	Hg	V	Со	Ni	Li	Sb	Cu	Pd
	1											0.2
API 1	2											0.2
	3											0.2
	1	<0.05	<0.1	<0.05	<0.05	<0.1	<0.1	0.4	<0.1	<0.1	0.5	
Sodium carbonate	2	<0.05	<0.1	<0.05	<0.05	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	
	3	<0.05	<0.1	<0.05	<0.05	<0.1	<0.1	0.5	<0.1	<0.1	0.4	
Option 2A li	mit (μg/g)	0.16	0.53	0.21	0.16	1.1	0.53	2.1	27	9.5	10.6	1.1
30% Option	2A (μg/g)	0.05	0.16	0.06	0.05	0.32	0.16	0.64	8.0	2.9	3.2	0.32

Step 3 – Summarize Control - Actions

The overall risk to Patients is very low.

Element	Intentionally added (if used in the process)	Elemental impurities with a relatively high environmental abundance	Manufacturing equipment	Leached from container closure systems	Maximum elemental impurity daily intake μg/day	Acceptable variability of elemental impurity contribution	Control threshold µg/day (30% PDE)	Action
As	No	Negligible levels	No	No		Yes		no further controls required
Cd	No	Negligible levels	No	No		Yes		no further controls required
Hg	No	Negligible levels	No	No		Yes		no further controls required
Pb	No	Negligible levels	No	No		Yes		no further controls required

Step 3 – Summarize Control - Actions

The overall risk to Patients is very low.

Element	Intentionally added (if used in the process)	Elemental impurities with a relatively high environmental abundance	Manufacturin g equipment	Leached from container closure systems	Maximum elemental impurity daily intake µg/day	Acceptable variability of elemental impurity contribution	Control threshold µg/day (30% PDE)	Action
Ni	No	Negligible levels	No	No		Yes		no further controls required
Со	No	Negligible levels	No	No		Yes		no further controls required
V	No	Negligible levels	No	No		Yes		no further controls required
Pd	Yes	Negligible levels	No	No		Yes		no further controls required
Li	No	Negligible levels	No	No		Yes		no further controls required
Sb	No	Negligible levels	No	No		Yes		no further controls required
Cu	No	Negligible levels	No	No		Yes		no further controls required

Option 3 Also an option

- Examples presented all involve component assessment.
- Can also utilize Option 3 Test Final Drug Product:
- <u>Advantages</u>: less time and resource consuming + no need to get

information from excipient suppliers/process etc. (or an alternative

when they are not available...)

• If the outcome of the DP risk assessment is elemental impurities > 30% PDE, a component risk analysis approach may then be set up to identify route cause.

Marketing Application – Key Principles

Performed in accordance with principles outlined in ICH Q3D – <u>Section 6</u>

- Will typically be presented in DP specification justification P5.6
 - Cross referenced to API section where relevant S4.5.

Summary of risk assessment

- Key aspects of process
- Key risks identified

Summary of control strategy

- Defined controls (limits and method) for specific EI as necessary
- Risk assessment and / or data supports that (other) Els will not arise at levels

>30% of target threshold

Clinical Applications

ICH Q3D SCOPE – Section 2

- "This guideline <u>does not apply</u> to DP used during clinical research stages of development"
- Patient Safety is assured during the clinical research stages as EIs are controlled by
 - Control of API specifically control of metal catalysts
 - Use of pharmaceutical grade Excipients
- Formal risk assessment initiated when commercial formulation and process is defined.

Key Learnings

- The overall risk to Patients is very low.
 - Drug product / API / excipient data generated to date has found very few issues.
 - The Big 4, Class 1 metals are not as ubiquitous as feared in materials used in the Pharma Industry.
- There are multiple ways to conduct a risk assessment Section 6
 - The basic process and considerations are well aligned across product manufacturers.
 - Everyone does it slightly differently.
- Evaluation process not just data driven
 - Can be based on first principles.
- Prior Knowledge can form an important part of the risk assessment
 - Literature, test data from related materials, databases etc.
- The theoretical mathematics work
 - Components that make up a small part of the daily dose are unlikely to "tip-the-balance".
- Control Strategy should be based on the outcome of the risk assessment
 - If the risk assessment demonstrates that EIs are not present then routine QC testing of drug

substance, excipients or drug product for environmental elements should not be performed.

Key Learnings (cont.)

- Appreciate the Analytical Challenges
 - Validation should be fit for purpose.
 - ICP-MS is not a "magic answer"
 - Specific challenges in the use of ICP-MS e.g. interference / sample preparation challenges digestion.

• A New Way of Thinking is needed

- APIs and Excipients will not have the sort of EI specifications we are used to seeing.
- ICH allows for multiple options for limit setting one size does not fit all.
- 30% control threshold routinely applied.
- Marketing applications
 - Presentation of risk assessment summaries in the submission should be high-level.
 - The full risk assessment would be available during inspection, if requested
- Lifecycle management
 - Product manufacturers do have a lifecycle approach: review, revise, update.

References

- <u>ICH Q3D</u>
- ICH Q3D IWG Q3D Training Pack, Modules 0-7
- Elemental Impurities in Pharmaceutical Excipients, G Li, D Schoneker, K Ulman, J Sturm, L Thackery, J Kauffman, <u>J Pharm Sci. DOI 10.1002/jps.24650</u>
- Implementation of ICH Q3D Elemental Impurities Guideline: Challenges and Opportunities, <u>PharmTech.com</u>, <u>39(3)</u>, 02-Mar-15
- Establishing Limits for Dermal Absorption of Elemental Impurities, PharmTech.com, 39(9), 02-Sep-15
- Compilation of Metals and Trace Elements Extracted from Materials Relevant to Pharmaceutical Applications such as Packaging Systems and Devices, D Jenke, C Rivera, T Mortensen, et al., <u>PDA J Pharm Sci and Tech</u> <u>2013, 67 354-375</u>
- Elemental Impurities in Pharmaceutical Waters, A Bevilacqua, TC Soli, Stimuli to the Revision Process,
 <u>PF39(1)</u>
- Guidance for Industry. Container Closure Systems for Packaging Human Drugs and Biologics. Chemistry, Manufacturing, And Controls Documentation. <u>CDER (1999)</u>

