

- Schritt für Schritt zum eigenen Computerspiel
- Mit C#-Programmierkurs für Unity-Skripte
- ▶ 18 fertige Spiele als Vorlage für eigene Ideen

Kapitel 1

Einführung

Unity ist eine Entwicklungsumgebung zur Erstellung und Gestaltung von Computerspielen, sowohl unter Windows als auch unter Linux und unter macOS. Unity-Projekte können darüber hinaus auch zu Lern- und Trainingszwecken genutzt werden.

Es gibt unterschiedliche Lizenzmodelle für Unity. Falls Sie Unity zu Übungsund Lernzwecken nutzen, können Sie die Lizenz *Unity Personal* kostenfrei verwenden.

1.1 Was machen wir mit Unity?

Unity bietet eine Vielfalt von Möglichkeiten. In diesem Einsteigerbuch beschäftigen wir uns mit den wichtigsten Elementen, die Ihnen eine selbstständige Gestaltung und Programmierung Ihrer Projekte ermöglichen.

Physil

Ihre Projekte

Wir werden mit einfachen Flächen und Körpern arbeiten, die Ihnen ein Verständnis für Elemente im zweidimensionalen Raum und im dreidimensionalen Raum vermitteln. Daraus bauen wir gemeinsam Schritt für Schritt eine ganze Reihe verschiedener Spiele auf. Dabei lernen Sie, wie die Elemente aufeinander reagieren, besonders unter physikalischen Bedingungen.

Abläufe gestalten

Sie lernen die Elemente der Programmierung mit C# von Grund auf kennen, um vielseitige Abläufe gestalten zu können. Dadurch werden Sie in die Lage versetzt, die vorhandenen Spiele nach Ihren Wünschen weiter zu verändern und selbstständig eigene Spiele zu entwickeln.

Verständnis

Wir werden nicht einfach vorgefertigte komplexe Elemente miteinander kombinieren, wie sie z. B. in großer Zahl im *Asset Store* von Unity angeboten werden. Diese Elemente besitzen zwar eine Fülle von Fähigkeiten und bieten zahlreiche optische Effekte, allerdings trägt das reine Einsetzen und punktuelle Verändern dieser Elemente nur wenig zum Verständnis ihres komplexen Aufbaus bei. Sie vereinfachen auch nicht das Verständnis für den programmierten Spielablauf. Viele reichhaltig gestaltete Spielfiguren

können zudem nur mit externen Programmen erstellt werden und müssen danach zunächst in Unity importiert werden.

2D-Spiele

Die Begriffe *zweidimensional* und *dreidimensional* kürze ich in diesem Buch häufig mit *2D* und *3D* ab. Wir entwickeln zunächst reine 2D-Spiele. Dabei arbeiten wir bereits mit vielen Unity-Elementen, die später auch für die Entwicklung von 3D-Spielen benötigt werden.

2D-Spiele finden ausschließlich auf der Ebene des Bildschirms statt. Sie sind übersichtlicher und einfacher zu erfassen als 3D-Spiele. Sie können sich also auf das Erlernen der Spieleentwicklung konzentrieren und müssen sich nicht gleichzeitig mit der Orientierung, der Drehung und der Perspektive im dreidimensionalen Raum befassen.

Mein Dank: Für die Hilfe bei der Erstellung dieses Buchs bedanke ich mich bei dem ganzen Team vom Rheinwerk Verlag, ganz besonders bei Almut Poll und Anne Scheibe.

1.2 Wie entsteht der programmierte Spielablauf?

Zur Programmierung der logischen Abläufe in den Unity-Projekten können Sie mit der Programmiersprache C# (sprich: C-Sharp) arbeiten. Alle benötigten Elemente der Sprache lernen Sie im Verlauf der Projekte an der passenden Stelle kennen. Bei Unity wird der Begriff C#-Scripte statt des Begriffs C#-Programme verwendet. Daher verwende ich diesen Begriff ebenfalls.

Zur Entwicklung der C#-Scripte wird bei der Installation der aktuellen Unity-Versionen eine kostenfreie Version der Entwicklungsumgebung *Visual Studio* der Firma Microsoft angeboten. Alternativ können Sie auch die Entwicklungsumgebung *MonoDevelop* installieren, die aus einer älteren Unity-Version stammt und von den Unity-Entwicklern weiterhin gepflegt und zur Verfügung gestellt wird.

Programmierkurs

In Kapitel 19, »Ein Programmierkurs in C#«, finden Sie zusätzlich einen reinen C#-Programmierkurs, in dem ohne die eigentlichen Unity-Elemente gearbeitet wird. Im Vordergrund stehen diejenigen Elemente der Sprache, die Sie in den Unity-Projekten besonders benötigen. Neben dem Erlernen von C# anhand der Unity-Projekte können Sie den C#-Programmierkurs als Ergänzung für das bessere Verständnis und als Nachschlagewerk nutzen, falls Sie etwas über bestimmte Elemente von C# erfahren möchten.

1.3 Dateiendungen anzeigen lassen

Für eine Installation unter Windows und für die nachfolgende Projektentwicklung ist es nützlich, Windows so einzustellen, dass die Endungen der Dateinamen angezeigt werden. Im Explorer von Windows 10 geht das wie folgt:

r

Windows Explorer

- ► Klappen Sie die Liste Optionen auf der Registerkarte Ansicht auf, und wählen Sie Ordner- und Suchoptionen Ändern.
- ► Wechseln Sie im Dialogfeld Ordneroptionen auf die Registerkarte Ansicht.
- ► Entfernen Sie die Markierung bei Erweiterungen bei bekannten Dateitypen ausblenden.
- ▶ Bestätigen Sie Ihre Änderungen über die Schaltfläche OK.

1.4 Unity Hub installieren

Zur Installation und Verwaltung von Unity und zur Verwaltung Ihrer eigenen Unity-Projekte empfehle ich zunächst, die Anwendung *Unity Hub* zu installieren. Nachfolgend nenne ich diese Anwendung vereinfacht den Unity Hub.

Sie finden sie mithilfe Ihres Browsers über die folgende Adresse:

Adresse

https://unity3d.com/de/get-unity/download

Betätigen Sie die Schaltfläche Unity Hub Herunterladen, siehe Abbildung 1.1.

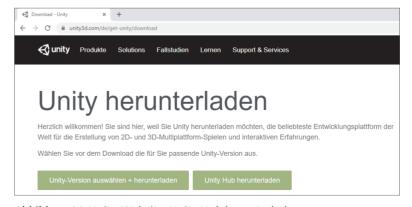


Abbildung 1.1 Unity-Website, Unity Hub herunterladen

Installationsdatei

Unter Windows wird die Datei *UnityHubSetup.exe* heruntergeladen, siehe Abbildung 1.2, die Sie anschließend zum Start der Installation aufrufen können. Unter Linux und unter macOS handelt es sich um andere Dateien. Deren Aufruf wird in Abschnitt 22.3, »Unity unter anderen Betriebssystemen«, beschrieben.

Abbildung 1.2 Installationsprogramm für den Unity Hub

Zu Beginn der Installation müssen die allgemeinen Lizenzbedingungen akzeptiert werden. Im nächsten Dialogfeld wählen Sie das Zielverzeichnis für die Installation aus. Nach der Installation können Sie den Unity Hub ausführen lassen. Zunächst erscheint gegebenenfalls ein Windows-Sicherheitshinweis, in dem Sie den blockierten Zugriff des Unity Hubs explizit zulassen sollten.

Unity-Lizenz

Falls Sie Unity erstmals nutzen, haben Sie noch keine Unity-Lizenz. In diesem Fall erscheinen die Einstellungen (engl. *Preferences*) des Dialogfelds UNITY HUB mit der Seite LICENSE MANAGEMENT zur Verwaltung der Unity-Lizenz, siehe Abbildung 1.5.

Zur Erlangung einer Lizenz benötigen Sie als Erstes eine Unity ID. In der Fußzeile erscheint die Meldung You need to be logged in to manage Your License. Betätigen Sie daneben den Link Login.

Unity-ID

Es erscheint das Dialogfeld UNITY HUB SIGN IN, siehe Abbildung 1.3. Falls Sie noch keine Unity ID haben, betätigen Sie den Link CREATE ONE, um Ihre persönliche Unity ID zu erzeugen. Melden Sie sich anschließend mit Ihrer E-Mail und Ihrem Passwort an.

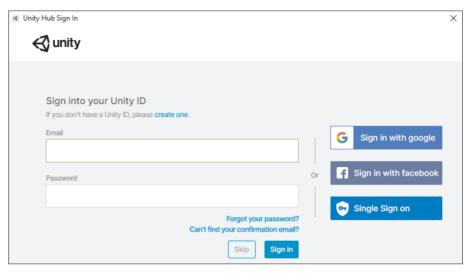
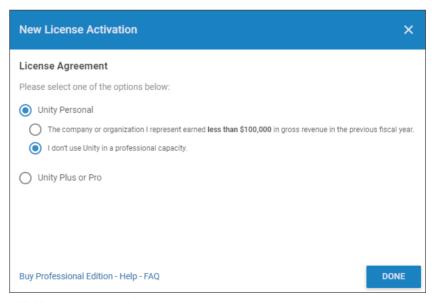



Abbildung 1.3 Anmeldung mit Unity ID

Nach der erfolgreichen Anmeldung betätigen Sie im Dialogfeld Preferences die Schaltfläche Activate New License. Wählen Sie im Dialogfeld New License Activation die kostenfreie Lizenz Unity Personal und danach diejenige Option, die bei Ihnen zutrifft, siehe Abbildung 1.4.

Unity Personal

Abbildung 1.4 Auswahl der Lizenz

Nach der Betätigung der Schaltfläche Done kehren Sie wieder zum Dialogfeld Preferences zurück. Ihre Lizenz wird wie in Abbildung 1.5 angezeigt.

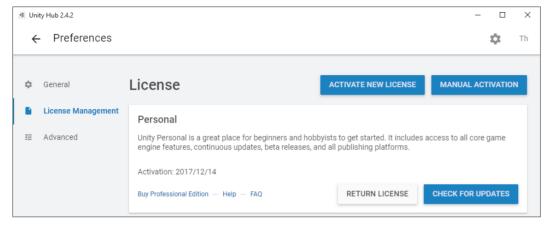


Abbildung 1.5 Lizenz »Personal«

Verlassen Sie das Dialogfeld Preferences über den Pfeil oben links. Sie gelangen zur Hauptseite des Dialogfelds Unity Hub. In Abbildung 1.6 sehen Sie die Version 2.4.2. Sobald eine neue Version oder ein neues Release (= Unterversion) des Unity Hubs erscheint, wird Ihnen ein Update vorgeschlagen. Ich empfehle, dem Vorschlag zu folgen.

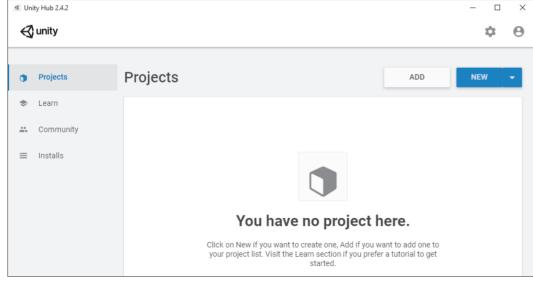


Abbildung 1.6 Unity Hub, Projects

Auf der linken Seite befindet sich ein Menü, mit dessen Hilfe Sie verschiedene Seiten aufrufen können. Auf der Seite Projects werden später Ihre eigenen Unity-Projekte angezeigt.

Neue Versionen, neue Releases und neue Vorversionen von Unity erscheinen parallel und in kurzen Zeitabständen. Alle werden ständig weiterentwickelt und können von Ihnen gleichzeitig genutzt werden. So können Sie permanent von der Modernisierung von Unity profitieren. Der Unity Hub ist dafür vorgesehen, Ihnen die parallele Nutzung und den schnellen Umstieg zu ermöglichen.

Parallele Nutzung

Auf der Seite Installs werden später die verschiedenen Unity-Versionen angezeigt, die Sie installiert haben, siehe Abbildung 1.7.

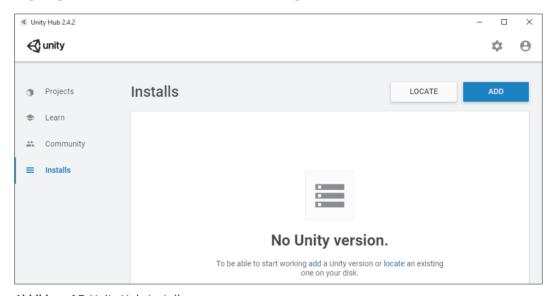


Abbildung 1.7 Unity Hub, Installs

1.5 Unity-Version installieren

Zur Installation einer Unity-Version betätigen Sie auf der Seite Installs die Schaltfläche Add, siehe Abbildung 1.7. Es erscheint die erste Seite des Dialogfelds Add Unity Version, siehe Abbildung 1.8. Es gibt ein empfohlenes Release mit Langzeitunterstützung (engl.: Long Term Support, kurz LTS), offizielle Releases und Vor-Releases. Wählen Sie z. B. das Vor-Release Beta 2 zu Unity 2021.1.0 aus, und betätigen Sie die Schaltfläche Next.

Version auswählen

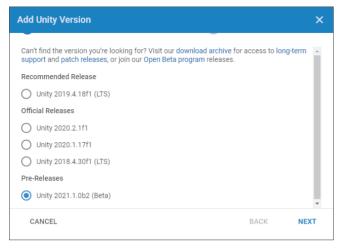


Abbildung 1.8 Unity-Version hinzufügen

Komponenten hinzufügen

Anschließend erscheint die zweite Seite des Dialogfelds ADD UNITY VERSION, siehe Abbildung 1.9. Hier können Sie weitere Komponenten zur Installation auswählen, u. a. eine Version von *Visual Studio* der Firma Microsoft. Alternativ können Sie *MonoDevelop* installieren, wie es in Abschnitt 1.6, »MonoDevelop installieren«, beschrieben wird.

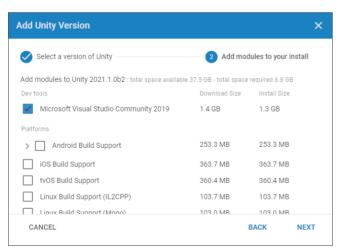


Abbildung 1.9 Weitere Komponenten

Weitere Komponenten werden zurzeit noch nicht benötigt. Sie könnten im Übrigen jederzeit nachinstalliert werden. Daher wird als Nächstes die Schaltfläche Done betätigt.

Die eigentliche Installation startet und nimmt eine gewisse Zeit in Anspruch. Es erscheint ein neues Element mit einem Fortschrittsbalken am oberen Rand, an dem Sie den Stand der Installation erkennen können, siehe Abbildung 1.10. Über das Menü mit den drei Punkten könnten Sie eine laufende Installation jederzeit abbrechen.

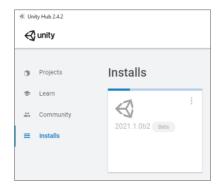


Abbildung 1.10 Unity Hub, laufende Installation

Haben Sie Visual Studio als Zusatzmodul ausgewählt, gilt Folgendes:

Visual Studio

- ▶ Nach einiger Zeit erscheint das Dialogfeld END USER LICENSE AGREEMENT für Visual Studio, in dem die allgemeinen Lizenzbedingungen akzeptiert werden müssen.
- ▶ Nach der Fertigstellung der Unity-Installation sollte der Unity Hub beendet und ein Neustart des Rechners durchgeführt werden.
- ► Sie nehmen in Ihrem ersten Unity-Projekt eine weitere notwendige Einstellung vor, damit Visual Studio anschließend in Ihren sämtlichen Unity-Projekten automatisch genutzt wird, siehe Abschnitt 4.3.1, »Wählen Sie die Entwicklungsumgebung«.

Im Folgenden gehe ich davon aus, dass Sie eine Unity-Version installiert haben.

1.6 MonoDevelop installieren

MonoDevelop kann unter allen Unity-Versionen installiert und genutzt werden. Rufen Sie zum Download von MonoDevelop in Ihrem Browser die folgende Seite auf:

https://unity3d.com/de/get-unity/download/archive

Wählen Sie den Reiter 2017.X aus. Die im Dezember 2020 aktuelle 2017er-Version (hier: 2017.4.40) steht oben in der Liste. Wählen Sie in der Liste DOWNLOADS (WIN) das UNITY-INSTALLATIONSPROGRAMM aus, siehe Abbildung 1.11.

Abbildung 1.11 Unity-Website, Version 2017.4.40 herunterladen

Es wird die Installationsdatei *UnityDownloadAssistant-2017.4.40f1.exe* heruntergeladen. Starten Sie die Installation. Wählen Sie unter den Komponenten ausschließlich MONODEVELOP aus, siehe Abbildung 1.12.

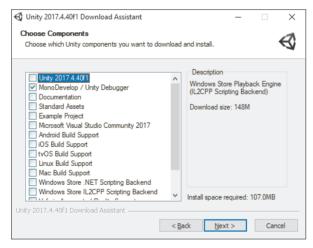


Abbildung 1.12 Komponente MonoDevelop

Die Unity-Version 2017.4.40 selbst muss nicht installiert werden. Sie können als Installationsverzeichnis ebenfalls $C:\UnityHub$ auswählen.

In Ihrem ersten Unity-Projekt nehmen Sie eine weitere notwendige Einstellung vor, damit MonoDevelop anschließend in Ihren sämtlichen Unity-Projekten automatisch genutzt wird, siehe Abschnitt 4.3.1, »Wählen Sie die Entwicklungsumgebung«.

1.7 Beispielprojekte und Assets

In diesem Buch arbeite ich mit einer Reihe von Beispielprojekten, die Ihnen sowohl als Hilfestellung bei der eigenen Entwicklung als auch zum Kennenlernen und Ausprobieren in ausführbarer Form dienen. Sie stehen in den Materialien zum Buch über die Webseite https://www.rheinwerk-verlag.de/5293 zum Download zur Verfügung.

Beispielprojekte

Bei Unity wird jedes Projekt in einem eigenen Projektverzeichnis gespeichert. Legen Sie zur besseren Übersicht ein eigenes Oberverzeichnis an, z. B. *C:\UnityProjekte*. Kopieren Sie alle Verzeichnisse mit meinen Beispielprojekten nach dem Download in dieses Verzeichnis.

\ssets

In den Beispielprojekten nutze ich eine Reihe von einfachen vorgefertigten Elementen, sogenannte *Assets*. Sie finden sie, zusammen mit den bereits erwähnten Projektverzeichnissen, im Verzeichnis *FreieAssets* in den Materialien zum Buch.

Bonusprojekte

27

In Abschnitt 22.6, »Bonusprojekte«, werden zwei Bonusprojekte beschrieben, die sich ebenfalls in den Materialien zum Buch befinden. Sie sind den bekannten Spielen *Pacman* und *Frogger* nachempfunden. Mit den Fähigkeiten, die Sie aus diesem Buch erworben haben, sind Sie in der Lage, den Aufbau dieser Projekte zu erkennen und sie mit eigenen Ideen selbstständig weiterzuentwickeln.

1.8 Unity-Projekte und Unity-Versionen

Aufgrund der kurzen Zeitabstände beim Erscheinen neuer Unity-Versionen kommt es häufig vor, dass die Entwicklung eines Unity-Projekts zunächst unter einer bestimmten Version beginnt und später unter einer anderen Version fortgesetzt wird. Beim Öffnen eines Projekts in einer neueren Version ist ein Upgrade notwendig. Mithilfe des Unity Hubs ist das leicht möglich.

Beim Öffnen eines Projekts wird zunächst die gewünschte Version ausgewählt. Klicken Sie dazu auf den kleinen Pfeil in der Spalte Unity-Version. Es erscheint eine Liste der installierten Unity-Versionen zur Auswahl. In Abbildung 1.13 wird das am Beispiel des Projekts *TomsJumpAndRun* aus Kapitel 3, »Spielen Sie ein 2D-Jump&Run-Spiel«, gezeigt. Es wurde zunächst unter der Unity-Version 2019.4.14f1 entwickelt und soll unter der Unity-Version 2020.1.12f1 weiterentwickelt werden.

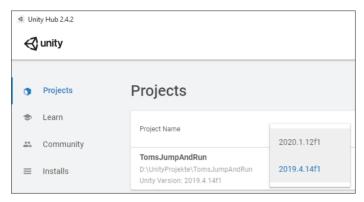
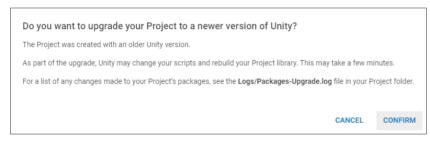



Abbildung 1.13 Auswahl einer Unity-Version

Nach Auswahl der Unity-Version wird das Projekt geöffnet, indem die gesamte Projektzeile angeklickt wird. Es erscheint das in Abbildung 1.14 dargestellte Dialogfeld. Die Konvertierung nimmt eine gewisse Zeit in Anspruch. Anschließend kann das Unity-Projekt weiterbearbeitet werden.

Abbildung 1.14 Upgrade eines Projekts

Die Beispielprojekte, die Screenshots und die Erläuterungen in diesem Buch sind mithilfe der Unity-Version 2021.1.0b2 entstanden, also der zweiten Beta-Vorversion der Unity-Version 2021.1.0.

Die Erfahrungen der letzten Jahre zeigen, dass in neuere Unity-Versionen zwar Verbesserungen einfließen, aber die grundsätzliche Orientierung erhalten bleibt. Daher werden die Inhalte dieses Buchs Sie noch sehr lange bei der Entwicklung von Unity-Projekten unterstützen.

Ähnliche Elemente

Kapitel 9

Das erste 3D-Projekt

Mit Einführung der dritten Dimension werden Ihre Projekte räumlicher und realistischer. Gleichzeitig werden sie auch komplexer. Nach dem Bearbeiten der bisherigen Kapitel haben Sie aber einen Vorteil: Sie haben bereits viele Unity-Elemente und grundsätzliche Abläufe in 2D-Projekten kennengelernt und können sie in 3D-Projekten in gleicher oder ähnlicher Form weiterverwenden.

Verständnis

In einem ersten 3D-Projekt mit dem Namen DreiDimensionen werden mithilfe von einfachen 3D-Objekten einige Grundlagen erläutert. Ähnlich wie im Einführungsprojekt ZweiDimensionen aus Kapitel 2, »Das erste 2D-Projekt«, handelt es sich nicht um ein Spielprojekt, sondern dient Ihrem Verständnis für typische 3D-Elemente. Einige der Abläufe können Sie zudem in Ihren eigenen 3D-Projekten einsetzen.

9.1 Grundlagen eines 3D-Projekts

Sie erfahren mehr über die Kamera sowie die Elemente und Materialien, aus denen einfache 3D-Objekte zusammengesetzt sind. Zudem gestalten Sie die dreidimensionale Ansicht in der Scene View.

9.1.1 Kamera, Skybox und Licht

Erstellen Sie ein neues Projekt mit dem Namen DreiDimensionen. Achten Sie darauf, dass die Option 3D markiert ist. Damit erhalten 3D-Projekte die passenden Voreinstellungen.

3D-Projekt anlegen

Horizont

Wie bei 2D-Projekten gibt es zu Beginn bereits das Spielobjekt Main Camera. Wir setzen es auf die Position -2/1/-7 und schauen damit aus einer leicht erhöhten Position von links vorn auf die Szene. In der Komponente CAMERA des Spielobjekts Main Camera finden Sie die Eigenschaft CLEAR FLAGS. Sie steht auf dem Standardwert Skybox. Mit dieser Einstellung wird der Eindruck einer realen Szene inklusive eines Himmels und eines Horizonts erzeugt. Dagegen würde der Hintergrund z.B. mithilfe des Werts Solid Color nur in einer einheitlichen Farbe dargestellt.

Licht-Objekt

Außerdem gibt es in 3D-Projekten zu Beginn ein Licht-Objekt. Es sorgt für eine Beleuchtung der Elemente und dient zur Erzeugung von Schatten und zur weiteren Verbesserung der räumlichen Wirkung. Sie können in einem Projekt mehrere Licht-Objekte gleichzeitig einsetzen.

Hier handelt es sich um ein Licht-Objekt des Typs *Directional Light*. Wir belassen es bei den Standardwerten, also bei der Position 0/3/0 und bei der Rotation 50/330/0.

Hinweis

Es gibt u. a. die folgenden Typen von Licht-Objekten:

- ▶ Ein Objekt des Typs *Directional Light* beleuchtet die gesamte Szene aus einer bestimmten Richtung. Die Lichtstärke ist überall gleich. Die Wirkung ist ähnlich wie beim Licht der Sonne.
- ► Ein Objekt des Typs *Point Light* strahlt von einem bestimmten Punkt aus in alle Richtungen. Die Lichtstärke nimmt mit der Entfernung zu diesem Punkt ab. Die Wirkung ist ähnlich wie beim Licht einer Glühlampe.
- ▶ Ein Objekt des Typs *Spot Light* strahlt ebenfalls von einem bestimmten Punkt aus. Die Lichtstärke nimmt ebenso mit der Entfernung zu diesem Punkt ab. Allerdings wird das Licht mithilfe eines Winkels eingeschränkt, sodass sich ein Lichtkegel ergibt. Die Wirkung in der Szene ist ähnlich wie beim Licht eines Scheinwerfers.

9.1.2 Einfache 3D-Objekte

Sie können in Ihren 3D-Unity-Projekten beliebige komplexe 3D-Objekte einsetzen. Diese 3D-Objekte können mithilfe von verschiedenen Modellierungsprogrammen außerhalb von Unity erstellt werden. Im Unity Editor werden aber bereits einige einfache 3D-Objekte bereitgestellt, die für viele Projekte ausreichen. Einige dieser Objekte werden nachfolgend eingefügt. Klappen Sie dazu jeweils das Menü der Hierarchy View mithilfe eines Klicks auf das Pluszeichen auf:

Würfel

► Erzeugen Sie einen Würfel mithilfe des Menüpunkts 3D OBJECT • CUBE. Er verbleibt in der Mitte, und zwar an der Position 0/0/0.

Kuge

► Erzeugen Sie als Nächstes mithilfe des Menüpunkts 3D OBJECT • SPHERE eine Kugel. Positionieren Sie sie bei O/2/O. Sie wird also auf der positiven Y-Achse verschoben und befindet sich oberhalb des Würfels.

- ► Es folgt eine Kapsel, die mithilfe des Menüpunkts 3D OBJECT CAPSULE erstellt wird. Sie wird auf der positiven X-Achse verschoben, und zwar an die Position 4/0/0.
- ► Als Letztes erstellen Sie über den Menüpunkt 3D OBJECT CYLINDER Zylinder noch einen Zylinder. Er wird auf der negativen X-Achse an die Position −4/0/0 verschoben.

In der Scene View ergibt sich ein Bild wie in Abbildung 9.1.

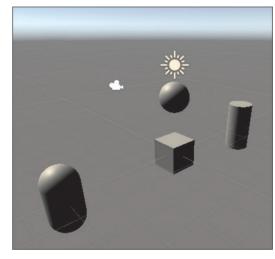


Abbildung 9.1 Einfache 3D-Objekte in der »Scene View«

Hinweis

Der Einfluss des Lichts, der Schattenwurf und die Skybox sind gut zu erkennen. Standardmäßig werden die Objekte perspektivisch dargestellt. Objekte, die weiter weg vom Betrachter sind, werden also kleiner dargestellt. Auch das trägt zur Verbesserung der räumlichen Wirkung bei.

9.1.3 Farbiges Oberflächenmaterial

Die Oberflächen der 3D-Objekte sollen eine Farbe erhalten. Erstellen Sie das Asset-Verzeichnis MATERIALS. Öffnen Sie durch einen Klick auf das Pluszeichen das Menü der Project View, und erzeugen Sie in dem neuen Verzeichnis mithilfe des Menüpunkts MATERIAL ein neues Asset für Oberflächenmaterialien. Nennen Sie es OrangeMat als Abkürzung für *Orangefarbenes Oberflächenmaterial*.

Neues Material

Albedo

Markieren Sie das Asset, und stellen Sie in der Inspector View die wichtigste Farbe ein: Wählen Sie für die Eigenschaft Albedo im Bereich MAIN MAPS (siehe Abbildung 9.2) die RGB-Werte 255/128/0. Die Eigenschaft Albedo bestimmt das Reflexionsverhalten von Oberflächen, die angeleuchtet werden.

Erstellen Sie durch Kopie ein weiteres Asset für Oberflächenmaterialien, und nennen Sie es HellblauMat. Es erhält für die Eigenschaft Albedo die RGB-Werte O/128/255.

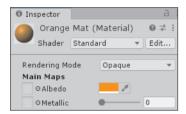


Abbildung 9.2 Wichtigste Farbe für ein Oberflächenmaterial

Material zuordnen

Zur Zuordnung der Oberflächenmaterialien klappen Sie bei den einzelnen Objekten in der Komponente MESH RENDERER den Bereich MATERIALS auf. Ziehen Sie das jeweilige Material-Asset auf die Eigenschaft Element 0. Die Kugel wird orangefarben, die Kapsel hellblau, siehe Abbildung 9.7.

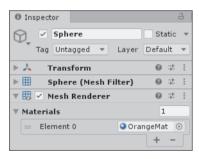


Abbildung 9.3 Oberflächenmaterial zuordnen

9.1.4 Oberflächenmaterial mit Textur

Eine Textur ist ein zweidimensionales Bild, das auf die Oberfläche eines dreidimensionalen Körpers gelegt wird, damit dieser realistischer wirkt. Erstellen Sie das Asset-Verzeichnis TEXTURES, und importieren Sie aus dem Verzeichnis *FreieAssets* die beiden Bilddateien *Holzfass.png* und *Mauer.png* in das neue Verzeichnis. Sie sollen als Texturen dienen.

Erstellen Sie im Asset-Verzeichnis Materials ein neues Material, und nennen Sie es HolzfassMat als Abkürzung für *Oberflächenmaterial mit Holzfass-Textur*. Markieren Sie es, und wählen Sie in der Liste SHADER (dt.: Schattierung) statt des Eintrags STANDARD den Eintrag LEGACY SHADERS • DIFFUSE, siehe Abbildung 9.4.

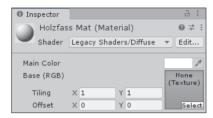


Abbildung 9.4 Typ der Schattierung einstellen

Bei diesem Typ der Schattierung haben Sie die Möglichkeit, nach Betätigung der Schaltfläche Select eine Textur einzustellen. Wählen Sie im Dialogfeld Select Texture die zuvor importierte Textur Holzfass, siehe Abbildung 9.5.

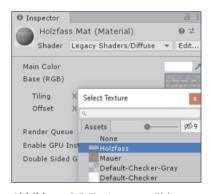


Abbildung 9.5 Textur auswählen

Erstellen Sie ein weiteres Material mit dem Namen MauerMat, und geben Sie ihm auf dieselbe Weise die Textur MAUER.

Hinweis

Standardmäßig wird ein Bild bei der Texturierung nur einmal auf einer Oberfläche abgebildet. Abhängig von der Größe der Oberfläche kann es aber realistischer wirken, wenn das Textur-Bild wie eine Wand- oder Bodenfliese mehrmals nebeneinander und übereinander abgebildet wird. Dieser Vorgang wird *Tiling* (engl.: to tile, dt.: Fliesenlegen) genannt.

Stellen Sie beim Material Mauer Mat den TILING-Wert für X auf 2, siehe Abbildung 9.6. In diesem Fall erscheint die Textur in X-Richtung zweimal nebeneinander auf der Oberfläche. Der Wert für Y bleibt beim Standardwert 1.

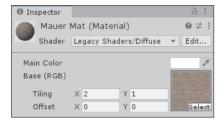


Abbildung 9.6 Tiling einstellen

Hinweis

Sind die Übergänge der neben- bzw. übereinanderliegenden Fliesen nicht sichtbar, ist eine Bilddatei besonders gut für das Tiling geeignet. Die Strukturen am linken und am rechten Rand eines Bilds sollten also ebenso zueinander passen wie diejenigen am oberen und am unteren Rand.

Anschließend sieht das Asset-Verzeichnis MATERIALS aus wie in Abbildung 9.7.

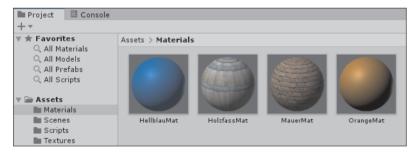


Abbildung 9.7 Vier Materialien

Weisen Sie dem Zylinder das Material HolzfassMat und dem Würfel das Material MauerMat zu.

9.1.5 Oberflächenmaterial wechseln

Klasse »Cylinder«

Sie können das Aussehen von 3D-Objekten zur Laufzeit eines Projekts verändern, indem Sie z. B. das Oberflächenmaterial wechseln, wie im nachfolgenden Code für den Zylinder:

```
using UnityEngine;
public class Cylinder : MonoBehaviour
{
    public Material hellblauMat;
    public Material holzfassMat;

    void Update()
    {
        if (Input.GetKeyDown (KeyCode.B))
            GetComponent<MeshRenderer>().material = hellblauMat;
        else if (Input.GetKeyDown (KeyCode.F))
            GetComponent<MeshRenderer>().material = holzfassMat;
    }
}
```

Listing 9.1 Klasse »Cylinder«

Es werden die beiden öffentlich zugänglichen Variablen hellblauMat und holzfassMat vom Datentyp Material erstellt. Falls der Benutzer die Taste B oder die Taste F betätigt, erhält die Eigenschaft material der Komponente MESH RENDERER des zugehörigen Spielobjekts einen neuen Wert.

Das C#-Script wird dem Spielobjekt Cylinder zugeordnet. Im UNITY EDITOR werden die beiden Material-Assets auf die zugehörigen Slots gezogen.

Material zuordnen

Mesh Renderer

9.1.6 Ansicht in der »Scene View« gestalten

Da wir nun einige Objekte zur Verfügung haben, können wir uns die Möglichkeiten veranschaulichen, die Ansicht in der Scene View zu gestalten. Klicken Sie zunächst auf das Hand-symbol in der oberen linken Symbolleiste:

Verschieben

Handsymbol

- ► Verschieben Sie die Ansicht in der SCENE VIEW durch Verschieben der Maus bei gedrückter linker Maustaste nach links, rechts, oben oder unten.
- ► Drehen Sie die Ansicht in der SCENE VIEW um verschiedene Achsen durch Verschieben der Maus bei gedrückter rechter Maustaste nach links, rechts, oben oder unten.
- ► Zoomen Sie in der SCENE VIEW durch Drücken und Festhalten der Taste

 Alt und gleichzeitiges Verschieben der Maus bei gedrückter rechter

 Maustaste nach links, rechts, oben oder unten.

Zoomen

Drehen

Gizmo

Rechts oben in der Scene View befindet sich ein kleines Hilfselement, ein sogenanntes *Gizmo* (siehe Abbildung 9.8). Es zeigt die aktuelle Lage der drei Koordinatenachsen und die aktuelle Darstellungsart.

Hinweise

Wie in Abschnitt 2.8.1, "Die Eigenschaften der Transform-Komponente«, wenden Sie auch hier die *Linke-Hand-Regel* an: Der Daumen der linken Hand weist in Richtung der positiven X-Achse. Der Zeigefinger der linken Hand wird, von der Handfläche aus gesehen, nach vorn gestreckt. Damit weist er in Richtung der positiven Z-Achse.

Der positive Teil der Achse (oder kurz: die positive Achse) ist derjenige Teil mit dem farbigen Kegel und der Achsenbezeichnung (x, y oder z). Die negative Achse ist diejenige mit dem nicht farbigen Kegel.

Abbildung 9.8 Gizmo

Isometrisch

Klicken Sie einmal auf den Schriftzug Persp (Abkürzung für *perspektivisch*) unter dem Gizmo: Die Darstellungsart wechselt zu *isometrisch*, der Text des Schriftzugs auf Iso. Alle 3D-Objekte werden unabhängig von der Entfernung zum Betrachter gleich groß dargestellt. Der räumliche Effekt geht verloren. Ein erneuter Klick auf den Schriftzug wechselt wieder zur perspektivischen Darstellungsart.

Klick auf Achse

Klicken Sie nacheinander auf die drei positiven Achsen des Gizmos. Anschließend betrachten wir die Szene aus der jeweiligen positiven Achsenrichtung. Klicken Sie nacheinander auf die drei negativen Achsen. Anschließend betrachten wir die Szene aus der jeweiligen negativen Achsenrichtung.

Ansicht ändern

Versuchen Sie durch Verschieben, Drehen und Zoomen ungefähr die Ansicht in Abbildung 9.9 herzustellen: Die positive X-Achse weist nach rechts, die positive Y-Achse weist nach oben. Die Ansicht wird gedreht,

sodass die linke und die obere Seite des Würfels zu sehen sind. Das ist beim ersten Mal nicht einfach, stellt aber eine gute Übung dar.

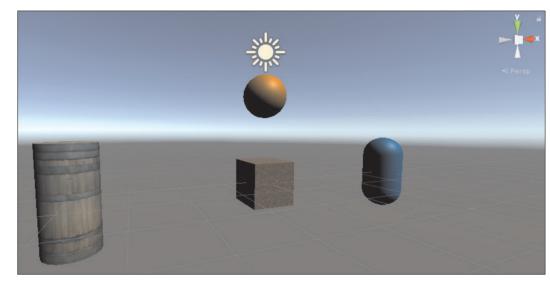


Abbildung 9.9 Gewünschte Ansicht

Bei Bedarf können Sie nun auch die Ansicht in der GAME VIEW gleichartig gestalten. Wählen Sie dazu in der HIERARCHY VIEW das Spielobjekt Main Camera aus, und rufen Sie den Menüpunkt GAMEOBJECT • ALIGN WITH VIEW auf.

Align with View

9.2 Verschieben und Drehen

Bei der Verschiebung und besonders bei der Drehung von 3D-Objekten sollten Sie eine gute Vorstellung des dreidimensionalen Raums haben. Es folgen einige Bewegungen der Objekte mithilfe von Programmcode im Projekt *DreiDimensionen*.

9.2.1 Spielobjekte drehen

Den 3D-Objekten werden *Drehmomente* zugeordnet. Damit werden Drehungen der 3D-Objekte um bestimmte Achsen des dreidimensionalen Koordinatensystems verdeutlicht.

9 Das erste 3D-Projekt

9.2 Verschieben und Drehen

Hinweis

Was ist ein Drehmoment? Nehmen wir an, die vorhandenen 3D-Objekte könnten sich nur drehen, aber ihre Position nicht verändern. Nehmen wir des Weiteren an, Sie stecken eine lange Stange durch ein 3D-Objekt, z. B. durch den Würfel, der im Zentrum steht, und zwar genau entlang der Y-Achse. Drücken Sie in X-Richtung außerhalb des Würfels gegen die Stange, dreht sich der Würfel um seine Z-Achse: Sie üben ein Drehmoment aus. Das Drehmoment ergibt sich aus der Formel *Kraft mal Hebelarm*. Es gilt:

- ▶ Je größer Ihre Kraft ist, desto größer ist das Drehmoment.
- ▶ Je größer die Entfernung Ihres Angriffspunkts vom Würfel ist, desto größer ist Ihr Hebelarm und damit auch das Drehmoment.

Richtige Kategorie wählen

Dem Zylinder, dem Würfel und der Kapsel wird jeweils eine Rigidbody-Komponente zugeordnet. Das geschieht in der Inspector View mithilfe der Schaltfläche ADD COMPONENT. Achten Sie bei 3D-Objekten darauf, die Komponente Rigidbody aus der Kategorie Physics zu wählen. Wählen Sie nicht die Komponente Rigidbody 2D aus der Kategorie Physics 2D, denn sie ist nur für zweidimensionale Objekte sinnvoll.

Keine Schwerkraft

Entfernen Sie in der Komponente RIGIDBODY die Markierung bei der Eigenschaft USE GRAVITY, sodass die 3D-Objekte keiner Schwerkraft unterliegen.

Kein Drehwiderstand Setzen Sie den Wert für ANGULAR DRAG auf O, damit einer Drehung kein Widerstand entgegengesetzt wird.

Klasse »Cube«

Es folgt der Code für die Drehung des Würfels um die Y-Achse:

```
using UnityEngine;
public class Cube : MonoBehaviour
{
    void Update()
    {
        if (Input.GetKeyDown (KeyCode.U))
            GetComponent<Rigidbody>().AddTorque (0, 5, 0);
        else if (Input.GetKeyDown (KeyCode.I))
            GetComponent<Rigidbody>().AddTorque (0, -5, 0);
    }
}
```

Listing 9.2 Klasse »Cube«

Betätigt der Benutzer die Taste U oder die Taste I, wird die Methode AddTorque() der Komponente RIGIDBODY aufgerufen. Damit wird dem 3D-Objekt ein Drehmoment zugeordnet, und zwar um die Achse, die mit den nachfolgenden Parametern für x, y und z festgelegt wird. In der Klasse Cube handelt es sich jeweils um die Y-Achse. Anschließend dreht sich das 3D-Objekt immer weiter, da der Drehung kein Widerstand entgegengesetzt wird (ANGULAR DRAG = 0).

Hinweis

Ein positiver Wert erzeugt eine Drehung in positiver Drehrichtung, ein negativer Wert entsprechend in negativer Drehrichtung. Zur Verdeutlichung der Drehrichtung um eine Achse kann wiederum die linke Hand genutzt werden: Der Daumen der linken Hand weist in Richtung der positiven Achse, um die gedreht wird. Die restlichen Finger der Hand werden leicht gekrümmt. Die Fingerspitzen weisen in die positive Drehrichtung um die jeweilige Achse.

Betätigt der Benutzer die Tasten U oder I mehrfach, werden weitere Drehmomente addiert. Das 3D-Objekt dreht sich dann schneller bzw. langsamer oder ändert seine Drehrichtung.

Es sollen zwei weitere Drehungen hinzukommen. Ergänzen Sie zunächst die Methode Update() der Klasse Cylinder wie folgt, damit eine Drehung des Zylinders um die X-Achse ermöglicht wird:

```
void Update()
{
    ...
    else if (Input.GetKeyDown(KeyCode.Y))
        GetComponent<Rigidbody>().AddTorque(5, 0, 0);
    else if (Input.GetKeyDown(KeyCode.X))
        GetComponent<Rigidbody>().AddTorque(-5, 0, 0);
```

Listing 9.3 Klasse »Cylinder«, Ergänzung

Erstellen Sie wie folgt die Klasse Capsule, damit eine Drehung der Kapsel um die Z-Achse ermöglicht wird:

```
using UnityEngine;
public class Capsule : MonoBehaviour
{
```

AddTorque()

Drehung ändern

Zylinder drehen

9 Das erste 3D-Projekt

```
void Update()
{
   if (Input.GetKeyDown (KeyCode.A))
     GetComponent<Rigidbody>().AddTorque (0, 0, 5);
   else if (Input.GetKeyDown (KeyCode.S))
     GetComponent<Rigidbody>().AddTorque (0, 0, -5);
}
```

Listing 9.4 Klasse »Capsule«

Testen

Die drei C#-Scripte sind den Spielobjekten Cube, Cylinder und Capsule zugeordnet. Betätigen Sie die genannten Tasten, und führen Sie sich anhand der Drehungen die Achsen, Drehmomente und Drehrichtungen vor Augen. In Abbildung 9.10 sehen Sie eine Momentaufnahme, nachdem alle drei Objekte in Drehung versetzt wurden.

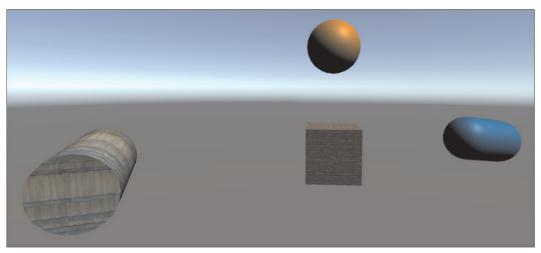


Abbildung 9.10 Zylinder, Würfel und Kapsel drehen sich

9.2.2 Animiert verschieben

Klasse »Sphere«

Ein Spielobjekt soll sich mithilfe von Programmcode wie bei einer Animation in einer bestimmten Zeit von einem Startpunkt A zu einem Zielpunkt B bewegen. Erstellen Sie die Klasse Sphere mit folgendem Code:

```
using UnityEngine;
public class Sphere : MonoBehaviour
{
```

```
bool bewegung;
float zeitGesamt;
Vector3 startPunkt;
Vector3 streckeGesamt;
float bewegungZeitStart;
void Start()
  bewegung = false;
  zeitGesamt = 5;
  startPunkt = new Vector3(0, 2, 0);
  Vector3 zielPunkt = new Vector3(0, -2, 0);
  streckeGesamt = zielPunkt - startPunkt;
void Update()
  if (Input.GetKeyDown (KeyCode.H) && !bewegung)
     bewegung = true;
     bewegungZeitStart = Time.time;
  if (bewegung)
     float zeitAnteil =
        (Time.time - bewegungZeitStart) / zeitGesamt;
     Vector3 streckeAnteil = zeitAnteil * streckeGesamt;
     transform.position = startPunkt + streckeAnteil;
     if(zeitAnteil >= 1)
        bewegung = false;
```

Listing 9.5 Klasse »Sphere«, Verschiebung von A nach B

Zunächst werden einige Variablen deklariert, die innerhalb der gesamten Klasse gelten. Sie werden innerhalb der Methoden erläutert.

In der Methode Start() werden die Daten für die gewünschte Bewegung festgelegt. Die boolesche Variable bewegung wird auf false gesetzt. Sie steht

Gesamtzeit und Gesamtstrecke nur während der Bewegung auf true. Die Gesamtzeit für die Bewegung wird auf fünf Sekunden gesetzt. Den Variablen für den Startpunkt und den Zielpunkt der Bewegung werden Vector3-Werte zugewiesen. Die Gesamtstrecke ist ebenfalls ein Vector3-Wert. Sie entspricht dem Vektor vom Startpunkt zum Zielpunkt.

In der Methode Update() wird die Bewegung nach Betätigung der Taste [H] gestartet, falls sie zurzeit nicht ausgeführt wird. Dabei wird der Startzeitpunkt festgehalten.

Anteilige Verschiebung Nach dem Start der Bewegung wird das 3D-Objekt kontinuierlich weiterbewegt. Es wird der Anteil an der Gesamtzeit berechnet, der seit dem Startzeitpunkt vergangen ist. Daraus wird der zugehörige Anteil an der Gesamtstrecke berechnet. Anschließend wird das 3D-Objekt auf die Position gesetzt, die sich aus dem Startpunkt und diesem Streckenanteil ergibt. Die Bewegung wird gestoppt, falls die Gesamtzeit abgelaufen ist. Das 3D-Objekt hat in diesem Fall den Zielpunkt erreicht.

Testen

Ordnen Sie das C#-Script dem Spielobjekt Sphere zu, und testen Sie die Bewegung. Da das Spielobjekt keinen Rigidbody besitzt, bewegt es sich durch das Spielobjekt Cube hindurch (siehe Abbildung 9.11). Das gilt auch, wenn sich das Spielobjekt Cube zurzeit drehen sollte. Stellen Sie unterschiedliche Zielpunkte und Laufzeiten ein, und starten Sie die Bewegung erneut. Versehen Sie das Spielobjekt Sphere kurzzeitig mit einem Rigidbody, und beobachten Sie die Auswirkungen.

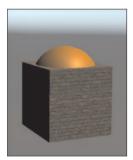


Abbildung 9.11 Kugel bewegt sich von A nach B

9.2.3 Kamera bewegen

Sie können nicht nur die Spielobjekte, sondern auch die Kamera bewegen. Damit vergrößern Sie das mögliche Spielfeld. Zudem wird das Spiel anschaulicher. Folgende Bewegungen werden verdeutlicht:

- ▶ Die Kamera wird geradlinig bewegt.
- ▶ Die Kamera wird um sich selbst gedreht.
- ▶ Die Kamera wird um einen bestimmten Punkt gedreht.

In Kapitel 15, »Jagen auf einem 3D-Terrain«, finden Sie außerdem ein Projekt, bei dem der Benutzer selbst mit der Kamera herauszoomen und wieder hineinzoomen kann.

Zoomen

Klasse »KameraBewegen«

Es folgt der Code der Klasse KameraBewegen:

```
using UnityEngine;
public class KameraBewegen : MonoBehaviour
   void Update()
      if (Input.GetKeyDown (KeyCode.C))
        transform. Translate (0.2f, -0.1f, 0.7f);
      else if (Input.GetKeyDown (KeyCode.V))
        transform. Translate (-0.2f, 0.1f, -0.7f);
      else if (Input.GetKeyDown (KeyCode.0))
        transform.Rotate(0, 5, 0);
     else if (Input.GetKeyDown (KeyCode.P))
        transform.Rotate(0, -5, 0);
      else if (Input.GetKeyDown (KeyCode.J))
        transform.RotateAround (new Vector3 (-4, 0, 0),
            new Vector3 (0, 1, 0), 5);
     else if (Input.GetKeyDown (KeyCode.K))
        transform.RotateAround (new Vector3 (-4, 0, 0),
           new Vector3 (0, 1, 0), -5);
```

Listing 9.6 Klasse »KameraBewegen«

Die Klasse erhält nicht den Namen Camera, weil es bereits eine gleichnamige Komponente des Spielobjekts Main Camera gibt.

> ie a-

Name der Klasse

In der Klasse KameraBewegen führt die Betätigung der Taste © oder der Taste V zu einer kurzen geradlinigen Bewegung der Kamera auf der Linie zwischen der Startposition der Kamera und dem Nullpunkt des Koordinatensystems. Die Kamera ist zu Beginn bei –2/1/–7 positioniert. Die Parameter der Methode Translate() stehen in demselben Verhältnis zueinander.

Rotate()

Die Betätigung der Taste ① oder der Taste P führt zu einer 5-Grad-Drehung der Kamera um ihre eigene Y-Achse herum. Die Parameter der Methode Rotate() geben den Winkel an, um den das Spielobjekt um die eigene X-, Y- und Z-Achse weitergedreht wird.

RotateAround()

Die Betätigung der Taste 🗓 oder der Taste 🔣 führt zu einer 5-Grad-Drehung der Kamera um eine Achse herum, die parallel zur Y-Achse des Koordinatensystems durch die Mitte des Zylinders verläuft. Die drei Parameter der Methode RotateAround() geben Folgendes an:

- ▶ den Punkt, um den gedreht wird (hier die Position des Zylinders)
- ▶ die Lage der Drehachse, die durch den genannten Punkt verläuft (hier eine Achse parallel zur Y-Achse)
- ▶ den Winkel, um den das Spielobjekt um die genannte Achse weitergedreht wird

Tester

Das C#-Script wird dem Spielobjekt Main Camera zugeordnet. Betätigen Sie die genannten Tasten, und führen Sie sich die Bewegung der Kamera und die Auswirkungen vor Augen. In Abbildung 9.12 sehen Sie die Ansicht, nachdem die Taste J mehrmals betätigt wurde.

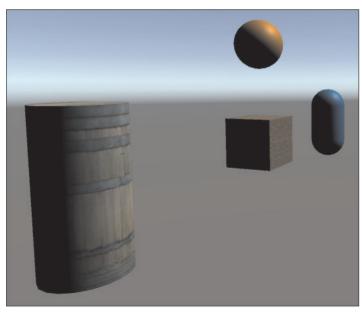


Abbildung 9.12 Kamera wird um Zylinder gedreht

9.2.4 Animiert drehen

Ein Spielobjekt soll sich mithilfe von Programmcode wie bei einer Animation in einer bestimmten Zeit und von einem Startwinkel A ausgehend so lange um eine bestimmte Achse drehen, bis ein Zielwinkel B erreicht ist. Das wird mithilfe des nachfolgenden Codes für das Spielobjekt Main Camera realisiert:

Klasse »KameraBewegen«

```
using UnityEngine;
public class KameraBewegen : MonoBehaviour
   bool bewegung;
   float zeitGesamt;
   float winkelGesamt;
   float bewegungZeitStart;
   float zeitAnteilAlt;
   void Start()
     bewegung = false;
     zeitGesamt = 3;
     winkelGesamt = 90;
     zeitAnteilAlt = 0;
  void Update()
     if...
     else if (Input.GetKeyDown (KeyCode.L) && !bewegung)
        bewegung = true;
        bewegungZeitStart = Time.time;
     if (bewegung)
        float zeitAnteil =
            (Time.time - bewegungZeitStart) / zeitGesamt;
        float winkelAenderung =
            (zeitAnteil - zeitAnteilAlt) * winkelGesamt;
        transform.RotateAround (Vector3.zero,
```

```
new Vector3 (0, 1, 0), winkelAenderung);
zeitAnteilAlt = zeitAnteil;
Debug.Log (transform.eulerAngles.y);
if(zeitAnteil >= 1)
   bewegung = false;
```

Listing 9.7 Klasse »KameraBewegen« mit Drehung von A nach B

Der Ablauf ähnelt demjenigen bei der Verschiebung von einem Startpunkt A zu einem Zielpunkt B aus Abschnitt 9.2.2, »Animiert verschieben«. Zunächst werden einige Variablen deklariert, die innerhalb der gesamten Klasse gelten. Sie werden innerhalb der Methoden erläutert.

Gesamtzeit und Gesamtwinkel

In der Methode Start() werden die Daten für die gewünschte Bewegung festgelegt. Die boolesche Variable bewegung wird auf false gesetzt. Sie steht nur während der Bewegung auf true. Die Gesamtzeit für die Bewegung wird auf drei Sekunden gesetzt und der Gesamtwinkel auf 90 Grad. Da sich der Winkel bei der Methode RotateAround() immer relativ zum vorhergehenden Winkel ändert, muss der Zeitpunkt der vorhergehenden Änderung gespeichert werden (hier in der Variablen zeitAnteilAlt).

In der Methode Update() wird die Bewegung nach Betätigung der Taste gestartet, falls sie zurzeit nicht ausgeführt wird. Dabei wird der Startzeitpunkt festgehalten.

Anteilige Drehung

Nach dem Start der Bewegung wird das 3D-Objekt kontinuierlich weitergedreht. Es wird der Anteil an der Gesamtzeit berechnet, der seit dem Startzeitpunkt vergangen ist. Anschließend wird der Winkel berechnet, um den sich das Spielobjekt seit der letzten Änderung weiterdrehen soll. Diese Drehung wird mithilfe der Methode RotateAround() ausgeführt und findet hier um die Y-Achse herum statt, die durch das Zentrum des Koordinatensystems verläuft. Der aktuelle Zeitanteil wird zur Durchführung der nächsten Änderung gespeichert. Die Bewegung wird gestoppt, falls die Gesamtzeit abgelaufen ist.

Drehwinkel

Der aktuelle Drehwinkel um die Y-Achse wird mithilfe der statischen Methode Log() der Klasse Debug zur Kontrolle ausgegeben. Die Transform-Komponente besitzt die Untereigenschaft euler Angles. Diese hat den Typ Vector3 und gibt die Drehung um die X-Achse, um die Y-Achse und um die Z-Achse in einem Winkel von O bis 360 Grad an.

Starten Sie die Bewegung. Stellen Sie unterschiedliche Zielwinkel und Laufzeiten ein, und starten Sie die Bewegung erneut. Beachten Sie auch die Kontrollausgabe des Drehwinkels in der Statuszeile.

9.2.5 Übersicht

Es folgt eine Tabelle mit allen Tastencodes im Projekt *DreiDimensionen* in Alle Tastencodes der Reihenfolge ihres Einsatzes in diesem Kapitel:

Taste	Erläuterung
В	Zylinder erhält Material mit hellblauer Farbe.
F	Zylinder erhält Material mit Holzfass-Textur.
U	Würfel erhält positives Drehmoment um die Y-Achse.
1	Würfel erhält negatives Drehmoment um die Y-Achse.
Υ	Zylinder erhält positives Drehmoment um die X-Achse.
Χ	Zylinder erhält negatives Drehmoment um die X-Achse.
А	Kapsel erhält positives Drehmoment um die Z-Achse.
S	Kapsel erhält negatives Drehmoment um die Z-Achse.
Н	Kugel wird animiert von Punkt A nach Punkt B verschoben.
С	Kamera wird verschoben, vom Betrachter weg.
V	Kamera wird verschoben, zum Betrachter hin.
0	Kamera wird positiv um ihre Y-Achse gedreht.
Р	Kamera wird negativ um ihre Y-Achse gedreht.
J	Kamera wird positiv um eine Achse gedreht, die parallel zur Y-Achse steht.
K	Kamera wird negativ um eine Achse gedreht, die parallel zur Y-Achse steht.
L	Kamera wird animiert um einen Punkt von Winkel A nach Winkel B gedreht.

Tabelle 9.1 Tastencodes im Projekt

Time.deltaTime

Möglicherweise vermissen Sie bei den Bewegungen und Drehungen den Faktor Time. delta Time. Im vorliegenden Projekt gibt es aber nur

- ▶ einmalige Bewegungen auf eine neue Position,
- ▶ einmalige Drehungen auf eine neue Rotationsposition und
- ▶ kontinuierliche Änderungen mithilfe einer eigenen Zeitsteuerung.

Daher wird der Wert von Time.deltaTime nicht benötigt.

Auf einen Blick

1	Einführung	17
2	Das erste 2D-Projekt	29
3	Spielen Sie ein 2D-Jump&Run-Spiel	45
4	Entwickeln Sie ein 2D-Jump&Run-Spiel	54
5	Ein 2D-Breakout-Spiel	105
6	Ein 2D-Spiel für zwei Spieler	143
7	Ein Gedächtnistrainer als 2D-Projekt	163
8	Ein 2D-Space-Shooter	183
9	Das erste 3D-Projekt	205
10	Eine 3D-Animation	225
11	Ein 3D-Balancer	239
12	Ein 3D-Tetris	251
13	Ein Kopfrechentrainer als 3D-Projekt	264
14	Golf spielen auf einem 3D-Terrain	277
15	Jagen auf einem 3D-Terrain	302
16	Eine Schlange aus 3D-Joints	325
17	Ein Renntraining und ein Autorennen	339
18	Erkunden Sie das Verlies	370
19	Ein Programmierkurs in C#	404
20	Speichern Sie eine Highscore-Liste	444
21	Arbeiten Sie mit mehreren Szenen	455
22	Allgemeine Hinweise	462

Inhalt

1	Einfi	ihrung	17
1.1	Was m	achen wir mit Unity?	17
1.2	Wie en	tsteht der programmierte Spielablauf?	18
1.3	Dateie	ndungen anzeigen lassen	19
1.4		Hub installieren	19
1.5	-	Version installieren	23
1.6	-	Develop installieren	25
1.7	Beispie	elprojekte und Assets	27
1.8	Unity-I	Projekte und Unity-Versionen	27
	-	•	
2	Das	erste 2D-Projekt	29
2.1	Erstellı	ung eines neuen Projekts	29
2.2		ge Bereiche im Unity Editor	30
2.3		ielobjekt »Main Camera«	32
2.4	_	importieren	33
2.5		pjekte einfügen	34
2.6		n der Hierarchie	35
2.7		ene speichern	
		•	37
2.8		mponente »Transform«	38
	2.8.1 2.8.2	Die Eigenschaften der Transform-Komponente	38 40
		•	
2.9		sicht in der »Scene View«	41
	2.9.1	Positionswerte mithilfe der Maus ändern	42
	2.9.2	Rotationswerte mithilfe der Maus ändern	43
	2.9.3	Scale-Werte mithilfe der Maus ändern	44

3	Spie	len Sie ein 2D-Jump&Run-Spiel	45
3.1	Wie ge	ht das Spiel?	45
3.2	Unsere	ersten Unity-Elemente	47
	3.2.1	Assets	48
	3.2.2	Spielobjekte	49
4	Entw	vickeln Sie ein 2D-Jump&Run-Spiel	54
4.1	Erzeug	en Sie Projekt und Assets	54
4.2	Fügen	Sie Spielobjekte ein	55
	4.2.1	Schaffen Sie einen Hintergrund	55
	4.2.2	Erzeugen Sie das Spielfeld	56
	4.2.3	Setzen Sie den Affen auf den Boden	58
4.3	Erstelle	en Sie den Spielablauf	61
	4.3.1	Wählen Sie die Entwicklungsumgebung	61
	4.3.2	Führen Sie die Klasse »Spieler« ein	62
	4.3.3	Bewegen Sie den Affen	66
	4.3.4	Verhindern Sie die Drehung	71
	4.3.5	Begrenzen Sie die Bewegung zur Seite	71
	4.3.6	Treffen Sie die Bananen	73
	4.3.7	Meiden Sie die Tiger	77
	4.3.8	Die geschweiften Klammern	79
	4.3.9	Die Tiger bewegen sich	80
4.4	Gestal	ten Sie die Benutzeroberfläche	82
	4.4.1	Erstellen Sie die erste Anzeige	82
	4.4.2	Sammeln Sie Punkte	84
	4.4.3	Verlieren Sie Leben	87
	4.4.4	Messen Sie die Spielzeit	88
	4.4.5	Speichern Sie Werte dauerhaft	91
	4.4.6	Geben Sie den Benutzern Hinweise	93
	4.4.7	Starten Sie ein neues Spiel	97
	4.4.8	Beenden Sie die Anwendung	100
	4.4.9	Ideen für Ihre Erweiterungen	101
4.5	Erzeug	en Sie eine ausführbare Version	102

5	Ein 2	D-Breakout-Spiel	105
5.1	Führen	Sie das Spiel aus	105
5.2	Erzeug	en Sie Projekt und Assets	106
	5.2.1	Fügen Sie ein Audio-Asset ein	107
	5.2.2	Erstellen Sie ein 2D-Material	107
	5.2.3	Lernen Sie 2D-Materialien kennen	108
	5.2.4	Erzeugen Sie ein Prefab	110
5.3	Fügen	Sie Spielobjekte ein	111
	5.3.1	Füllen Sie das Spielfeld	111
	5.3.2	Erzeugen Sie einen Ziegel	113
	5.3.3	Wiederholen Sie den Vorgang	114
	5.3.4	Wiederholen Sie die Wiederholung	116
	5.3.5	Erzeugen Sie unterschiedliche Ziegel	117
	5.3.6	Mehrfache Verzweigung mit »switch«-Ausdruck	119
5.4	Erstelle	en Sie den Spielablauf	119
	5.4.1	Senden Sie den Ball ab	119
	5.4.2	Bewegen Sie den Spieler	122
	5.4.3	SammeIn Sie Punkte	123
	5.4.4	Verlieren Sie Leben	126
5.5	Gestalt	ten Sie die Benutzeroberfläche	129
	5.5.1	Exportieren Sie ein Unity Package	129
	5.5.2	Importieren Sie ein Unity Package	130
	5.5.3	Passen Sie die Benutzeroberfläche an	131
	5.5.4	Punkte, Leben und Infos anzeigen	133
	5.5.5	Messen Sie die Spielzeit	134
	5.5.6	Zeigen Sie die vorherige Zeit an	136
	5.5.7	Starten Sie ein neues Spiel	137
	5.5.8	Beenden Sie die Anwendung	141
	5.5.9	Ideen für Ihre Erweiterungen	142
6	Ein 2	D-Spiel für zwei Spieler	143
6.1	Führen	Sie das Spiel aus	143
6.2	Bereite	en Sie das Spiel vor	145
	6.2.1	Frzeugen Sie Proiekt und Assets	146

	6.2.2 6.2.3	Erzeugen Sie Spielfeld und UIGestalten Sie das Spielfeld	
6.3		en Sie den Spielablauf	
	6.3.1	Führen Sie den Aufschlag aus	
	6.3.2	Bewegen Sie die Spieler vertikal	
	6.3.3	Bewegen Sie die Spieler horizontal	
	6.3.4	Sammeln Sie Punkte	
	6.3.5	Eine kleine Übung	
	6.3.6	Ideen für Ihre Erweiterungen	. 161
6.4	Künstli	iche Intelligenz	. 161
_	•		
7	Ein C	Gedächtnistrainer als 2D-Projekt	163
7.1	Führen	Sie das Training aus	. 163
7.2	Bereite	en Sie das Training vor	. 164
7.3	Das Tra	aining für drei Zahlen	. 165
	7.3.1	Verteilen Sie die Zahlen	. 166
	7.3.2	Vermeiden Sie doppelte Positionen	. 169
	7.3.3	Löschen Sie die Zahlen	. 171
	7.3.4	Prüfen Sie die Reihenfolge	. 172
7.4	Die Erv	veiterung des Trainings	. 174
	7.4.1	Machen Sie das Training leichter	
	7.4.2	Machen Sie das Training schwerer	
	7.4.3	Optimieren Sie das Training	
	7.4.4	Ideen für Ihre Erweiterungen	
8	Ein 2	D-Space-Shooter	183
8.1	Bereite	en Sie das Spiel vor	. 184
	8.1.1	Gestalten Sie die beiden Explosions-Prefabs	
	8.1.2	Erzeugen Sie Ihr Raumschiff und die Geschosse	
	8.1.3	Erstellen Sie die anderen Raumschiffe	
	8.1.4	Gestalten Sie die Energieanzeige	
	8.1.5	Erstellen Sie die Benutzeroberfläche	

8.2	Erstelle	n Sie den Spielablauf	190
	8.2.1	Bewegen Sie Ihr Raumschiff, und feuern Sie	190
	8.2.2	Bewegen Sie die Geschosse nach dem Abfeuern	193
	8.2.3	Bewegen Sie die anderen Raumschiffe	193
	8.2.4	Lassen Sie die Raumschiffe explodieren	195
	8.2.5	Kollidieren Sie mit den anderen Raumschiffen	198
	8.2.6	Führen Sie weitere Änderungen der Energie herbei	199
	8.2.7	Messen Sie die Zeit, und beenden Sie das Spiel	201
	8.2.8	Ausführbare Version	203
	8.2.9	Eine kleine Übung	203
	8.2.10	Ideen für Ihre Erweiterungen	204
9	Das e	erste 3D-Projekt	205
9.1	Grundla	agen eines 3D-Projekts	205
	9.1.1	Kamera, Skybox und Licht	205
	9.1.2	Einfache 3D-Objekte	206
	9.1.3	Farbiges Oberflächenmaterial	207
	9.1.4	Oberflächenmaterial mit Textur	208
	9.1.5	Oberflächenmaterial wechseln	210
	9.1.6	Ansicht in der »Scene View« gestalten	211
9.2	Verschi	eben und Drehen	213
	9.2.1	Spielobjekte drehen	213
	9.2.2	Animiert verschieben	216
	9.2.3	Kamera bewegen	218
	9.2.4	Animiert drehen	221
	9.2.5	Übersicht	223
10	Fine '	2D Animation	
10	Eine	3D-Animation	225
10.1	Schaffe	n Sie die Voraussetzungen	225
	10.1.1	Betrachten Sie die fertige Animation	225
	10.1.2	Bauen Sie das Beispiel auf	226
10.2	Erstelle	n Sie die Animation	228
	10.2.1	Legen Sie die Animation an	228

	10.2.2	Drehen Sie das rechte Bein	229
	10.2.3	Erstellen Sie weitere Keyframes	230
	10.2.4	Stellen Sie die Keyframes ein	231
	10.2.5	Verschieben Sie das rechte Bein	232
10.3	Arbeite	n Sie mit dem »Animator Controller«	233
	10.3.1	Gestalten Sie die States	233
	10.3.2	Erstellen Sie die Parameter	234
	10.3.3	Erzeugen Sie die Transitions	235
10.4	Fügen S	iie das C#-Script hinzu	236
	10.4.1	Verbinden Sie Bewegung und Animation	236
	10.4.2	Vervollständigen Sie die Animation	237
	10.4.3	Ideen für Ihre Erweiterungen	238
11	Fin 3	D-Balancer	239
	LIII J	Dalancei	233
11.1	Führen	Sie das Spiel aus	239
11.2	Bereite	n Sie das Spiel vor	240
	11.2.1	Erzeugen Sie Projekt und Assets	240
	11.2.2	Erzeugen Sie Spielfeld und UI	241
	11.2.3	Relative Transform-Werte	242
11.3	Erstelle	n Sie den Spielablauf	244
	11.3.1	Drehen Sie die Platte	244
	11.3.2	Bewegen Sie den Lederball und die Kamera	247
	11.3.3	Ändern Sie die Punktzahl	248
	11.3.4	Ideen für Ihre Erweiterungen	250
12	Ein 3	D-Tetris	251
12.1	Führen	Sie das Spiel aus	251
12.2	Bereite	n Sie das Spiel vor	252
	12.2.1	Erzeugen Sie Projekt und Assets	252
	12.2.2	Erzeugen Sie Spielfeld und UI	253
	12.2.3	Erstellen Sie das Würfel-Prefab	254

12.3	Erstelle	n Sie den Spielablauf	255
	12.3.1	Bewegen Sie die Würfel	255
	12.3.2	Eine »generische Liste«	256
	12.3.3	Fügen Sie Elemente zur Liste hinzu	257
	12.3.4	Entfernen Sie Elemente aus der Liste	260
	12.3.5	Eine kleine Übung	263
	12.3.6	Ideen für Ihre Erweiterungen	263
13	Ein V	anfrachantrainar als 2D Braickt	264
13	EIII K	opfrechentrainer als 3D-Projekt	264
13.1	Führen	Sie das Training aus	264
13.2	Bereite	n Sie das Training vor	265
13.3	Erstelle	n Sie den Trainingsablauf	266
	13.3.1	Erzeugen Sie die Aufgabe und die Lösungen	266
	13.3.2	Mischen Sie die Lösungen	269
	13.3.3	Sammeln Sie Punkte	271
	13.3.4	Verlieren Sie Leben	273
	13.3.5	Ideen für Ihre Erweiterungen	275
14	Golf	spielen auf einem 3D-Terrain	277
14.1	Führen	Sie das Spiel aus	277
14.2	Bereite	n Sie das Spiel vor	278
	14.2.1	Erzeugen Sie Projekt und Landschaft	279
	14.2.2	Weisen Sie der Landschaft eine Textur zu	279
	14.2.3	Erstellen Sie die drei Ebenen	280
	14.2.4	Fügen Sie den Rand hinzu	283
	14.2.5	Erstellen Sie die beiden Rampen	284
	14.2.6	Setzen Sie Spieler und Ziel in die Landschaft	286
	14.2.7	Arbeiten Sie mit einem »Physic Material«	287
14.3	Erstelle	n Sie den Spielablauf	288
	14.3.1	Schlagen Sie den Spielball	288
	14.3.2	Versetzen Sie das Ziel	291

	14.3.3	Vermeiden Sie den Verlust des Spielballs	29
	14.3.4	Ideen für Ihre Erweiterungen	29
14.4	Ein wei	teres Terrain	29
	14.4.1	Erzeugen Sie zehn Ebenen	29
	14.4.2	Fügen Sie den linken und den rechten Rand hinzu	29
	14.4.3	Fügen Sie den unteren und den oberen Rand hinzu	29
	14.4.4	Erzeugen Sie die erste Rampe	29
	14.4.5	Erstellen Sie alle Rampen links	29
	14.4.6	Erstellen Sie alle Rampen rechts	29
	14.4.7	Setzen Sie die Positionen	30
15	Jagei	n auf einem 3D-Terrain	30
15.1	Führen	Sie das Spiel aus	30
15.2	Bereite	n Sie das Spiel vor	30
	15.2.1	Erzeugen Sie Projekt und Landschaft	30
	15.2.2	Steuern Sie den Zufall	30
	15.2.3	Erzeugen Sie die weiteren Spielobjekte	30
	15.2.4	Erstellen Sie die drei Prefabs	31
	15.2.5	Zoomen Sie mithilfe eines Sliders	31
15.3	Erstelle	n Sie den Spielablauf	31
	15.3.1	Bewegen Sie den Jäger	31
	15.3.2	Treffen Sie die Ziele	31
	15.3.3	Die Ziele starten eine Abwehr	31
	15.3.4	Die Abwehr wird gefährlich	32
	15.3.5	Messen Sie die Zeit	32
	15.3.6	Ideen für Ihre Erweiterungen	32
16	Eine	Schlange aus 3D-Joints	32
16.1	Führen	Sie das Spiel aus	32
16.2	Bereite	n Sie das Spiel vor	32
	16.2.1	Frzeugen Sie die Assets und die Platte	32

	16.2.2	Erstellen Sie die Schlange und ihre Beute	327
	16.2.3	Stellen Sie die gelenkigen Verbindungen her	329
16.3	Erstelle	n Sie den Spielablauf	330
	16.3.1	Bewegen Sie die Schlange	330
	16.3.2	Treffen Sie die Beute	331
	16.3.3	Verkürzen Sie die Schlange	332
	16.3.4	Zählen Sie die Punkte	334
	16.3.5	Die Segmente treffen den Rand	335
	16.3.6	Messen Sie die Zeit	336
	16.3.7	Ideen für Ihre Erweiterungen	338
17	F: D.		
<u>17</u>	EIN K	enntraining und ein Autorennen	339
17.1	Führen	Sie das Renntraining aus	339
17.2		Sie das Autorennen aus	341
17.3	Bereiter	n Sie das Renntraining vor	342
	17.3.1	Erzeugen Sie das Projekt und die Fahrbahn	343
	17.3.2	Konstruieren Sie das Fahrzeug	344
	17.3.3	Fügen Sie die Wheel Collider hinzu	345
17.4	Erstelle	n Sie den Ablauf des Renntrainings	347
	17.4.1	Beschleunigen Sie das Fahrzeug	347
	17.4.2	Lenken Sie das Fahrzeug	348
	17.4.3	Folgen Sie dem Fahrzeug mit der Kamera	350
	17.4.4	Bauen Sie die Begrenzungen auf	352
	17.4.5	Eine »Lichtschranke« an der Startlinie	354
	17.4.6	Messen Sie die Rundenzeiten	356
17.5	Erweite	rn Sie das Renntraining zum Autorennen	358
	17.5.1	Erzeugen Sie das zweite Fahrzeug	359
	17.5.2	Steuern Sie die Fahrzeuge getrennt	360
	17.5.3	Teilen Sie den Bildschirm auf	362
	17.5.4	Eine dritte Kamera für den Überblick	364
	17.5.5	Getrennte Rundenzeiten nach einem Countdown	365
	17.5.6	Ideen für Ihre Erweiterungen	369

18	Erkur	nden Sie das Verlies	370
18.1	Führen	Sie das Spiel aus	370
18.2	Bereite	n Sie das Spiel vor	375
	18.2.1	Die Planung des Verlieses	376
	18.2.2	Der Aufbau einer Kammer	376
	18.2.3	Erstellen Sie die ersten Spielobjekte	378
	18.2.4	Bauen Sie das Prefab für die Kammer	379
	18.2.5	Die Schlüssel, Kisten und Sperren	383
	18.2.6	Gestalten Sie die Benutzeroberfläche	383
18.3	Erstelle	n Sie den Spielablauf	384
	18.3.1	Folgen Sie dem Spieler mit der Kamera	38!
	18.3.2	Erstellen Sie alle Kammern	386
	18.3.3	Konfigurieren Sie die Kammern	388
	18.3.4	Gehen Sie durch ein Tor	39:
	18.3.5	Nehmen Sie den Schlüssel aus einer Schatzkiste	394
	18.3.6	Schließen Sie eine Sperre auf	398
	18.3.7	Speichern Sie den Spielstand	400
	18.3.8	Laden Sie den alten Spielstand	403
	18.3.9	Ideen für Ihre Erweiterungen	402
19	Ein P	rogrammierkurs in C#	404
19.1	Das Uni	ity-Projekt »Programmierkurs«	404
19.2	Grundla	agen	406
	19.2.1	Variablen und Datentypen	406
	19.2.2	Rechenoperatoren	408
	19.2.3	Division von ganzen Zahlen	41:
	19.2.4	Verzweigungen	41:
	19.2.5	Logische Verknüpfungen	41
	19.2.6	Schleifen und Zufallszahlen	415
19.3	Datenfe	elder	419
19.4	Zeicher	ıketten	423
19.5	Method	den	42!
	19.5.1	Einfache Methode	426

	19.5.2	Methode mit Parametern	426	
	19.5.3	Methode mit Rückgabewert	427	
	19.5.4	Methode mit Verweis-Parameter	429	
L9.6	Generische Listen			
	19.6.1	Hilfsmethode »AusgabeListe() «	432	
	19.6.2	foreach-Schleife	433	
L9.7	Daten a	uf der Festplatte	434	
	19.7.1	Daten speichern	434	
	19.7.2	Daten laden	435	
	19.7.3	Kontrolle der Daten	436	
L9.8	Objekto	orientierung	437	
	19.8.1	Die Spielobjekte im »Unity Editor«	438	
	19.8.2	Die Klasse »Spieler«	440	
	19.8.3	Änderungen aller Objekte der Klasse	441	
	19.8.4	Änderungen einzelner Objekte	442	
20	Speic	hern Sie eine Highscore-Liste	444	
		hern Sie eine Highscore-Liste on der eigenen Klasse	444	
20.1	Definiti	on der eigenen Klasse		
20.1	Definiti	on der eigenen Klasseg der eigenen Klasse	444	
20.1	Definiti Nutzun	on der eigenen Klasseg der eigenen Klasse Generische Liste erzeugen und füllen	444 446	
20.1	Definiti Nutzun 20.2.1	on der eigenen Klasseg der eigenen Klasse	444 446 447	
20.1	Definiti Nutzun 20.2.1 20.2.2	on der eigenen Klasseg der eigenen Klasse	444 446 447 448	
20.1	Definiti Nutzun 20.2.1 20.2.2 20.2.3	on der eigenen Klasseg der eigenen Klasse	444 446 447 448 449	
20.1	Definiti Nutzun 20.2.1 20.2.2 20.2.3 20.2.4	on der eigenen Klasse	444 446 447 448 449 452	
20.1	Definiti Nutzun 20.2.1 20.2.2 20.2.3 20.2.4 20.2.5	on der eigenen Klasse	444 446 447 448 449 452	
20.1	Definiti Nutzun 20.2.1 20.2.2 20.2.3 20.2.4 20.2.5	on der eigenen Klasse	444 446 447 448 449 452 453	
20.1 20.2	Definiti Nutzun 20.2.1 20.2.2 20.2.3 20.2.4 20.2.5 Arbei	on der eigenen Klasse	444 446 447 448 449 452 453	

22 Allgemeine Hinweise		meine Hinweise	46
22.1	Projekt 22.1.1 22.1.2	e bearbeiten Projekte umbenennen Projekte kopieren	46 46 46
22.2	Unity Packages		
	22.2.1 22.2.2	Exportieren Sie ein Unity PackageImportieren Sie ein Unity Package	46 46
22.3	Unity unter anderen Betriebssystemen		
	22.3.1 22.3.2	Unity unter macOS installieren Unity unter Ubuntu Linux installieren	46 46
22.4	Browse	r-Anwendungen erstellen	46
22.5	Android-Apps erstellen		
	22.5.1	Änderungen im Code	47
	22.5.2	Installieren Sie den Android Build Support	47
	22.5.3	Stellen Sie die Player Settings ein	47
	22.5.4	Führen Sie den Android-Build durch	47
	22.5.5	Starten Sie die App unter Android	47
22.6	Bonusprojekte		
	22.6.1	Bonusprojekt »TomsFrogger«	47
	22.6.2	Bonusprojekt »TomsPacman«	47
Indev			47