

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 1

EJB and Java Bean Model Usage

in Web Dynpro Java

Applies to:

SAP NetWeaver 7.0 SP13 and onwards. For more information, visit the Web Dynpro Java homepage.

Summary

Majority of the Web Dynpro applications will be database driven and requires integration with any RDBMS
like Oracle database, DB2, etc. This document covers all the steps required to implement the business logic
in Enterprise Java Beans (EJB), persistence using Java Database Connectivity (JDBC) and how to
implement the SAP recommended approach of importing Java Bean Model to a Web Dynpro application.

Author: Subash Mathews Thomas

Company: Qatar Petroleum, Doha, Qatar.

Created on: 06/07/2009

Author Bio

Subash Mathews Thomas is currently working as Systems Engineer in Qatar
Petroleum and has over 10 years of extensive software development experience
including more than nine years developing large distributed applications using J2EE
technologies. Subash is a SUN certified and IBM certified Java professional and he has
been closely involved with the estimation, design, and development of various large
and medium Java EE-based enterprise application development projects for large client
organizations across the world. During the last few years, Subash has experience
working in the SAP NetWeaver technologies like WebDynpro Java, Guided
Procedures, etc.

http://www.sdn.sap.com/irj/sdn/nw-wdjava

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 2

Table of Contents

Prerequisites ... 4

Benefits of Java Bean Model Layered Approach ... 4

Implementation Procedure .. 5

Different Types of Projects. ... 6

Create EJB Project .. 7

Create Model Project (Java Project) ... 21

Defining the Web Dynpro Model ... 32

Importing the Java Bean Model .. 32

Creating the Context ... 39

Mapping Component Context to View Context ... 41

Binding UI Elements .. 43

Implementing Web Dynpro Application ... 43

Acronyms Used .. 45

Related Content .. 46

Copyright... 47

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 3

Scope of this Document

This document serves as a guideline cum best practices for developing database driven e-Applications using
Web Dynpro and EJB. This document does not cover all the theories of Enterprise Java Beans (EJB) and
assumes that you have a basic knowledge of EJB programming model and basic experience with webdynpro
application.

By the end of this document, you will be able to:
• Write a simple Data Access Command Bean (Java Bean) based on predefined business logic.
• Write an EJB (Stateless Session Bean) and implement the persistence with JDBC.
• Generate a model to be used for linking up the business logic of the EJB project from within the Web

Dynpro project.
• Declare a context node in the component controller in such a way so that a connection to the model

can be created.
• Perform the implementation for using business methods in Web Dynpro components.
• Import all necessary libraries to be used by the model import wizard in the Web Dynpro project.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 4

Prerequisites

Systems, installed applications, and authorizations
• You have installed the SAP NetWeaver Developer Studio.
• You have access to the SAP J2EE Engine.

Knowledge
• You have acquired some basic experience with Web Dynpro applications.
• You have basic knowledge of the EJB programming model.
• You are experience working with the SAP NetWeaver Developer Studio.

Benefits of Java Bean Model Layered Approach

 Clear segregation of responsibilities.
 Clear rules of behavior.
 Reduces coupling of layers – presentation vs. business layer.
 Hides details of underlying layer, such as EJB lookup logic, business implementation, etc.
 Using Command Bean Pattern exposes commands in addition to properties (Java Bean). Methods

take no arguments, context is JavaBean state.
 Using Java Bean Models mapped to context variables in Web Dynpro will make the life of the

developer much easier as he does not have to populate manually the context variables in Web
Dynpro Component and View controllers.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 5

Implementation Procedure

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 6

The example scenario in this document consists of different components: Enterprise JavaBeans (EJBs),
where you implement the business logic; a Data Access Command Bean (JavaBean), which acts as the java
bean model; and a Web Dynpro Project. In the Web Dynpro, the command bean will be imported into the
Web Dynpro project using the JavaBean importer wizard. This will be more explained further in this
document.

Different Types of Projects.

The following picture illustrates the different projects and the enclosed components of an application.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 7

Create EJB Project

Create a new development component of type “Development Component” and select the next button:

Select “Other” from the File Menu.

Create a DC Project.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 8

Select J2EE ->EJB Module for the type of development component and select the Next button:

Name the component <project-acronym>ejb and select the Next button.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 9

Create a new EJB class as follows:

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 10

Click on Finish button.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 11

Create Data Transfer Object (DTO).

Click on Finish button.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 12

Code snippet of DestinationDTO class.

Create a new Java Class called DestinationHelper.

This is the class where you will connect to the database and write JDBC codes.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 13

Click on Finish button.

// Sample Code for Helper class

public class DestinationHelper {

 public void createNewDestination (String destinationCode,

 String destinationName)

 throws EJBException{

 Connection conn = null;

 String destination = null;

 Statement stmt = null;

 try {

 //Getting the datasource connection

 InitialContext ctx = new InitialContext();

 DataSource dataSource = (DataSource) ctx.lookup("jdbc/HBIMS");

 conn = dataSource.getConnection();

 if (conn == null) {

 destination = "connection is null";

 throw new EJBException(destination);

 }

 conn.setAutoCommit(false);

 stmt = conn.createStatement();

String sql ="INSERT INTO hbs_destinations (destination_code,

destination_name) VALUES ('"

 + destinationCode + "','"+ destinationName+ "')";

 int k = stmt.executeUpdate(sql);

 conn.commit();

 } catch (SQLException sex) {

 sex.printStackTrace();

 throw new EJBException(sex.getMessage());

 } catch (NamingException ex) {

 ex.printStackTrace();

 throw new EJBException(ex.getMessage());

 conn.rollBack();

 } finally {

 try {

 if (stmt != null)

 stmt.close();

 if (conn != null)

 conn.close();

 } catch (SQLException se) {

 se.printStackTrace();

 }

 }

 }

}

Above is the code snippet for DestinationHelper class.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 14

Implement EJB Business method.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 15

Implement the business method in the EJB class.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 16

Build the EJB Project

Add the helper classes to the public parts, so that other DC projects can access the helper class.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 17

Click on Finish button.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 18

So now you have a public part called ejbHelper which has all the helper classes.

EJBs need not be exposed like this as they are public by default.

Create a JNDI name for the EJB.

Click on the ejb-j2ee-engine.xml as shown below.

Save the changes.

Create an Enterprise application project to deploy the EJB to J2EE server.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 19

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 20

Click on Finish button.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 21

Build and deploy the EAR file to J2EE Server.

Right click on the ear file and deploy it to the server.

Create Model Project (Java Project)

In this procedure you will create a separate Java project that serves as a container for the Data Access
Command Beans and will be imported in the Web Dynpro model. If you already have a model created, this
exercise can be skipped.

Procedure

Switch to the Java Perspective and choose File New Project to start the New Project

wizard.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 22

Click on the Next Button.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 23

Click on Finish button.

Switch to the Package explorer view. Create a new java class.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 24

Implementing the Command Bean

The JavaBean class DestinationBean, which serves as a Command Bean (or Model), should be able to store
all the data that is needed to display about the destination (including possible error messages).
DestinationBean will be initialized from within the Web Dynpro and passes the destination code and
destination name data to the session bean (HelicopterBookingBean) of the EJB Project.

DestinationBean will be imported for the JavaBean model into the WebDynpro and supplies the properties to
be bound to the controller context. For this purpose, DestinationBean must contain a field for each relevant
value. The fields will be named destinationCode, destinationName and message.

Add the following attribute to the java class.

Since we want to call the session bean from within the command bean, we now need to declare variables for
the local and the local home interface (HelicopterBookingLocal and HelicopterBookingLocalHome) of the
session bean.

Insert the following lines of code:

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 25

Now you noticed, there are compilation errors in the code. You need to add the EJB Project in the used DC
in this project.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 26

Click on Finish button.

Add Used DC – ejbHelper

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 27

Now right click on the code and say organize imports.

Now the errors are gone.

Since this Java class needs to comply with the JavaBean specification, we have to write Get and Set
methods for the properties we declared before. From the context of the editor, choose Source Generate
Getter and Setter Methods. From the screen that appears select destinationCode, destinationName and
message.

Now we have to write a constructor that will be executed each time the command bean is instantiated. In this
constructor, the look-up for the session bean will be executed. Consider, that we need to add localejbs in the
lookup string while using local interface for EJB access.

Add the following lines of code:

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 28

Do not worry if errors occur.

Add ejb20 to the used DC.

Again, from the context menu of the editor, choose Source Organize imports.

The next step is to create a method called executeCreateDestination, which calls the business method
(createDestination()) of the session bean. Insert the following lines of code:

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 29

Now you have successfully implemented the command bean, which will serve as an input for the Web
Dynpro model importer.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 30

Expose two public parts: assembly with all classes and build with DTOs and bean classes

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 31

Click on Finish button.

Then create a new public part called assembly.

Now your project structure will be looking as below:

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 32

Now let‟s move to the main part which is importing this model in an existing Web Dynpro application.

Defining the Web Dynpro Model

In compliance with the MVC paradigm, a model in Web Dynpro enables the user to access business data
that is stored outside the Web Dynpro application. In our case, however, the business data that belongs to
our sample application is made accessible through Data Access Command Beans. These beans offer
exactly the input we need for the JavaBean model importer in Web Dynpro.

Within the Web Dynpro project, you will obtain such a model as a result of proxy generation. It is represented
by a set of model classes, including their relations. However, in our quite simple case we will see only one
model class generated and there is no relation defined here. In the following step, we only need to bind the
model object to the context. Each context, however, has a node that represents the corresponding model
object. The model node, in turn, defines a set of attributes that corresponds with the properties of the
JavaBean. Finally, we only need to take care of the link from the UI elements to the business data
referenced in the view controller context (data binding for the Web Dynpro view‟s UI elements).

Importing the Java Bean Model

A model enables the user to access business data that is outside the Web Dynpro application from within the
application. In this tutorial, the business data that belongs to the sample application is made accessible
through a JavaBean import.

Within a Web Dynpro component, business data is stored in separate context structures (consisting of
context nodes and context attributes). The link between the context elements contained there and the
business data in an existing model can be set up using the communication classes and auxiliary classes
required for this purpose. You can use the Web Dynpro tools to generate such a model for a command bean.
The model mainly consists of special model classes that you can use to link context structures to the model.
Below you will learn how you can generate such a model.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 33

Procedure

Add Used DC

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 34

Click on Finish button.

Select Public Part „assembly‟ to add

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 35

Click on Finish button.

Add Web Dynpro Sharing References to EJB

In oder to access EJBs from the Web Dynpro application at runtime, we also need to add a sharing reference
to the deployed Ear from within the Web Dynpro project. To do so, select the project properties and choose
Web Dynpro References Sharing references

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 36

Choose the Add button and enter the fully qualified name (vendor name/Ear name) for the Ear required

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 37

Now you have the sharing reference to enterprise application.

Importing the Java Bean Model Implementation

1. In the project structure, expand the node Web Dynpro Models. From the context menu, choose

to start the appropriate wizard.

2. Choose the Import JavaBean Model option, followed by Next. Enter the name DestinationModel
as the model name and com.qp.itb.hbs.comp.dest.models as the package name.

3. Select Public Part of Used DCs and click Next.

4. In the next screen, select Avaialble public part DCs

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 38

5. In the next screen, select DestinationBean and chooseAdd

6. In the Next Screen, Select the default.

Click on Next and in the next screen, click on Finish button.

Result
You have now created a model named DestinationModel in your Web Dynpro project. In
accordance with the MVC paradigm, the model was not simply generated as part of the
WebDynpro component, but as an independent development object. Accordingly, you will have to
explicitly create this model for the Web Dynpro component before it can be used there.
The generated model class is now visible within the project structure in the Web Dynpro Explorer

under the node.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 39

Creating the Context

Each Web Dynpro component is supplied with a corresponding Component Controller. This controller is
responsible for the acquisition of the data required by the command bean for the destination details.
Accordingly, it must be able to depict the corresponding input and output structures of the SessionBean
model. In order to create a connection between the Component Controller and the model created in the
previous step, you will bind the context of the Component Controller to the created model structure using the
Data Modeler

Procedure

Adding a Model to the Web Dynpro Component
...

 Open the Data Modeler through the context menu entry Open Data Modeler of
the node DestinationComp. In the toolbar on the left, choose the Add an existing model to the
component icon. The icon will turn gray. Place the cursor on the Used Models area and left-click.

 Select the DestinationModel checkbox and confirm by pressing OK. The structure of the Web Dynpro
component DestinationComp will look like this in the Data Modeler:

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 40

Binding the Component Controller Context to the Command Bean

In the Data Modeler, you can easily declare the connection between the context of the Component Controller
and the BeanModel you have created.

 In the Data Modeler toolbar, choose the Create a data link icon. Draw a line beginning at
Component Controller and ending at DestinationModel. The Model Binding Wizard starts
automatically.

 Using Drag & Drop, drag the node of the model class DestinationBean in the DestinationModel to the
root node of the component controller context, and drop it.

 In the following input dialog, select the model node and all the model attributes

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 41

If you now expand the context tree in the following dialog boxes, the declared model link

between the Component Context node and the model classes, including their relations, will be

displayed graphically through link lines. The relations are expanded in the model tree (right

window) in the associated classes.

 Close the Model Binding Wizard by choosing Finish.

Result
From the model definition, you have now defined a structure of context model elements (consisting of model
nodes and model attributes) in the component controller DestinationComp, and you have also bound these
to the corresponding model class.

Mapping Component Context to View Context

In the last step, you created a structure for context model elements in the context of the component controller
and also bound this structure to a generated model class. The component controller is a central point in Web
Dynpro. From here, it is possible to control the functions of a Web Dynpro component. In this way, its context
serves as a storage area for all the data received from the model. However, a component controller cannot
be linked with a view. For this reason, model data from the context of the component controller must be able
to be passed to the context of a view controller. Only then can model data be displayed in a view.

It would be technically possible for a view context to access the model, but this would not be good design
style. To use the MVC paradigms in a consistent manner, you require the component controller as a binding
link between the view and the model. In this step of the tutorial, you will map the context structure of a
component controller onto the context of the view controller. Using this context mapping, you enable context

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 42

elements of the view to be referenced – that is, elements that have data stored in the component context and
themselves represent a copy of the actual model data.

Prerequisites
 Open the Data Modeler for the Web Dynpro component DestinationComp.

Procedure
 In the toolbar, choose Create a data link. Draw a line, beginning with the

DestinationCompView view and ending at the Component Controller. The Model Binding Wizard
starts automatically.

 Using Drag & Drop, drag the node of the model class DestinationBean in the Component
Controller to the root node of the view controller context. In the following input dialog, select the
model node and model attributes. Then choose OK.

 In the final dialog box, the context mapping is displayed graphically:

 Close the Model Binding Wizard by choosing Finish

Result
 You have created the necessary view context and mapped it to the component context you

created previously. The Data Modeler shows this through the appropriate arrow links.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 43

You are now in a position to bind UI elements such as input fields to the corresponding view context

elements.

Binding UI Elements

With the DestinationCompView, these context variables are added in the form using the Apply Template
Therefore, you do not need to worry about the layout of this example application.

You only need to take care of the link from the interface elements to the business data referenced in the view
controller context. You can do this easily through Data Binding.
Set up the data bindings between the UI element properties and the respective context model attributes.

Implementing Web Dynpro Application

After you have successfully executed all the required declarative development steps, you now need to add
some individual lines of Java code for the view controller.

Within each controller, there are some predefined places where you can add source code. These include, in
particular, the standard methods wdDoInit() and wdDoExit(),and also the Action Event-Handler in the view

controllers.

wdDoInit() is always controlled if the controller is instanced. For this reason, you must remember that at this
point there is an object that – at runtime – represents the entire input, including all the input parameters for
calling the command bean business method.

In the action event handler onActionSubmit(), the actual Command Bean call must be implemented, based
on the data entered by the user and stored in the context concerned.

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 44

In the action event handler onActionReset(), the clearing of the fields in the UI has to be defined, calling
setter methods.

Prerequisites

 You have created the JavaBean import model.

 You have mapped the view context onto the Component

Controller context.

Procedure

Implementing the Component Controller

Here you define an object that – at runtime – represents the input page of the command bean method. This
object must also be bound to the model node DestinationBean, which was declared at design time.

 Choose the Implementation tab for the component controller DestinationComp.

After the generation routines have been run once again, the updated source code of the view
controller implementation is displayed.

 Between //@@begin wdDoInit() and //@@end of the method wdDoInit(), enter the following Java
code:

 In the context menu of the source code editor, choose the function SourceOrganize Imports in
order to add the missing import line. The MessageManager class is imported into the view controller
and you can use the generic UI service to display message texts in the user interface.

Implementing the Action Event Handler of the View Controller

The actual command bean is now called through the executeCreateDestination() method call of the model
object currently stored in the context model node. This already contains the destination code and destination
name data entered by the user – through data binding and context mapping.

 ...

 Choose the Implementation tab for the view controller DestinationCompView.

 In the onActionCreateDestination () method, add the following source code:

 In the onActionReset() method, add the following source code:

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 45

Result
The Developer Studio updates and compiles the Java classes belonging to your project. (Note: Compilation
only occurs if you are using the Workbench standard settings.) After you have done this, no more error
messages should appear in your tasks view.

Acronyms Used

MVC – Model View Controller

SQL – Standard Query Language

RDBMS – Relational Database Management System

JDBC – Java Database Connectivity

UI – User Interface

DC – Development Component

API – Application Programmer‟s Interface

EJB – Enterprise Java Bean

DAO – Data Access Object

 DTO – Data Transfer Object

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 46

Related Content

a) WebDynpro Tutorials:

https://www.sdn.sap.com/irj/sdn/nw-wdjava?rid=/webcontent/uuid/00b64d9f-fea2-2910-c988-
ee2544047f8c

b) Importing Complex JavaBean model into WebDynpro by creating relationships for the model classes:
https://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/3511

c) Oracle as Back end with Web Dynpro
https://forums.sdn.sap.com/thread.jspa?threadID=53343

d) https://forums.sdn.sap.com/thread.jspa?threadID=98009
e) For more information, visit the User Interface Technology homepage.

https://www.sdn.sap.com/irj/sdn/nw-wdjava?rid=/webcontent/uuid/00b64d9f-fea2-2910-c988-ee2544047f8c
https://www.sdn.sap.com/irj/sdn/nw-wdjava?rid=/webcontent/uuid/00b64d9f-fea2-2910-c988-ee2544047f8c
http://www.sdn.sap.com/
http://www.sdn.sap.com/
https://forums.sdn.sap.com/thread.jspa?threadID=53343
https://forums.sdn.sap.com/thread.jspa?threadID=98009
https://www.sdn.sap.com/irj/sdn/nw-ui

 EJB and Java Bean Model Usage in Web Dynpro Java

SAP COMMUNITY NETWORK SDN - sdn.sap.com | BPX - bpx.sap.com | BOC - boc.sap.com | UAC - uac.sap.com

© 2010 SAP AG 47

Copyright

© Copyright 2010 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10, System z9, z10, z9,
iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server,
PowerVM, Power Architecture, POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes,
BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX,
Intelligent Miner, WebSphere, Netfinity, Tivoli and Informix are trademarks or registered trademarks of IBM Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by
Netscape.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP products and services mentioned
herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and
other Business Objects products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Business Objects S.A. in the United States and in other countries. Business Objects is an SAP company.

All other product and service names mentioned are the trademarks of their respective companies. Data contained in this document
serves informational purposes only. National product specifications may vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies ("SAP
Group") for informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and services are those that are set forth in the
express warranty statements accompanying such products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

