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The Practical

8 lectures
slides on homepage
reading assignments on homepage

Course literature
Skogestad and Postlethwaite, Multivariable Feedback Control, 2nd
ed.
Supporting text: Zhou, Doyle and Glover, Robust and Optimal
Control

8 homeworks, compulsory
download from homepage after each lecture, hand in within one
week
require Matlab with Robust Control toolbox

1-day take home open book exam, within 6 weeks after last lecture
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Course Content

Feedback control of MIMO LTI systems under model uncertainty

frequency domain analysis and design;
extension of classical SISO methods to MIMO systems
optimal control problems formulated in input-output space

input-output controllability; what can be achieved with feedback in
a given system?

robustness: stability and performance under model uncertainty
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Course goals

After completed course you should be able to
quantify the performance that can be achieved with feedback for a
given system
analyze feedback systems with respect to stability and
performance in the presence of structured and unstructured
model uncertainty
design/synthesize controllers for robust performance
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Lecture Plan

L1: Introduction, classical SISO feedback control (Ch.1-2)
L2: Performance limitations in SISO feedback (Ch. 5)
L3: Introduction to MIMO systems, excerpts from Linear Systems

Theory (Ch. 3-4)
L4: Performance limitations in MIMO feedback (Ch. 6)
L5: Uncertainty and robust stability (Ch. 7-8)
L6: Robust performance (Ch. 7-8)
L7: Controller synthesis and design (Ch. 9-10)
L8: Alternative formulations (LMIs, IQCs, ...), summary (Ch. 10, 12)
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Todays Lecture

The Control Problem
A Historical Perspective
Brief introduction to norms
Brief recap of classical control
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The Control Problem

Control problems usually formulated in terms of signal tracking

y = Gu + Gdd

y - output / controlled variable

u - input / manipulated variable

d - disturbance

r - reference, setpoint

– Regulator problem: attenuate effect of d on y
– Servo problem: make y follow r

Control objective: make e = r − y “small” using feedback u = C(y , r)
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Why Feedback?

Why not u = G−1r −G−1Gdd ?
1 model uncertainty - uncertain knowledge of system behavior
2 unmeasured disturbances
3 instability

Cost of feedback:
– potentially induce instability
– feed measurement noise into process
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Fact 1: Feedback has its limitations

feedback is a simple and potentially very powerful tool for tailoring
the dynamic behavior of a system, but with hard limitations to what
can be achieved
control performance depends on controller and system

Ziegler and Nichols (1943): In the application of automatic controllers, it is
important to realize that controller and process form a unit; credit or discredit
for results obtained are attributable to one as much as the other. . . . The
finest controller made, when applied to a miserably designed process, may
not deliver the desired performance. True, on badly designed processes,
advanced controllers are able to eke out better results than older models, but
on these processes, there is a definite end point which can be approached by
instrumentation and it falls short of perfection.
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Approaches to Control Design

"Traditional":
1. specify desired performance
2. design controller that meets specifications
3. if 2 fails, try more advanced controller and repeat from 2

This course:
1. specify desired performance
2. determine achievable performance
3. if conflict between 1 and 2, change specifications or modify system
4. design controller using your favorite method
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Fact 2: Models are always uncertain

Models (G,Gd ) always inaccurate, e.g., true system

Gp = G + E

with E = “uncertainty”, or “perturbation” (unknown)

Definitions for closed loop:

Nominal stability (NS): stable with no model uncertainty
Nominal performance (NP): satisifies performance requirements
with no model uncertainty
Robust stability (RS): stable for “all” possible perturbations E
Robust performance (RP): satisifies performance requirements
for “all” possible perturbations E
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System Representations

State-space representation

ẋ = Ax(t) + Bu(t), x ∈ Rn,u ∈ Rp

y(t) = Cx(t) + Du(t), y ∈ Rl

Transfer-function

Y (s) = G(s)U(s) ; G(s) = C(sI − A)−1B + D

Frequency response

Y (jω) = G(jω)U(jω)

Sometimes we write[
ẋ
y

]
=

[
A B
C D

] [
x
u

]
; G =

[
A B
C D

]
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A Brief History of Control

Classical, 30’s-50’s: frequency domain methods
Bode, Nyquist, Nichols, . . .

+ yields insight (loop shaping)
+ address model uncertainty (gain and phase margins)
÷ only applicable to SISO systems

”Modern”, 60’s-70’s: state-space optimal control
Bellman, Pontryagin, Kalman, . . .

+ control cast as time-domain optimization problem
+ applicable to MIMO systems (LQG)
÷ can not accomodate for unmodeled dynamics
÷ LQG has no guaranteed stability margins
÷ no clear link to classical methods

Lecture 1: classical SISO control EL3210 MIMO Control 13 / 44



Famous paper (and abstract...) (IEEE Trans AC, 1978)
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A Brief History of Control

”Postmodern”, 80’s-90’s: robust control
Zames, Francis, Doyle, . . .

+ frequency domain methods for MIMO systems
+ explicitly adress model uncertainty
+ control cast as optimization problem (H2,H∞)
+ links classical and modern approaches; “formulate and analyze in

input-output domain, compute in state-space”
÷ high order controllers, computational issues, ...

It was the introduction of norms in control, in particular the H∞-norm,
that paved the way for analyzing fundamental limitations and
robustness in MIMO systems
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A Brief History of Control

Post 90’s
- analysis/synthesis using convex optimization, e.g., LMIs
- combining H2 for performance with H∞ for robustness
- beyond LTI systems, e.g., Integral Quadratic Constraints (IQCs)
- . . .
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Control Structures

1-Degree of freedom

2-Degrees of freedom
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Control Structures

General control structure

P - generalized system, K - controller

w - exogeneous inputs (d , r ,n) z - exogeneous outputs (e,u)
u - manipulated inputs v - measurements, setpoints

Objective: minimize gain from w to z. With appropriate
weights/scaling, make gain smaller than 1
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Brief on Norms (more in Lec 3)

A real valued function ‖ · ‖ on a linear space H, over the field of real or
complex numbers, is called a norm on H if it satisfies

(i) ‖x‖ ≥ 0
(ii) ‖x‖ = 0 if and only if x = 0
(iii) ‖ax‖ = |a|‖x‖ for any scalar a
(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖
for any x , y ∈ H
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Vector and Matrix Norms

For x ∈ Cn the p-norm is

‖x‖p = (Σn
i=1|xi |p)

1/p

We will mainly consider p = 2, the Euclidian norm

‖x‖2 = |x | =
√

xHx

For A ∈ Cm×n the (induced) p-norm is

‖A‖p = sup
x∈Cn,x 6=0

‖Ax‖p
‖x‖p

We will mainly consider p = 2

‖A‖2 = σ̄(A) = max
i

√
λi(AHA)
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Operator Norms

For a vector valued signal x(t) the Lp-norm is

‖x(t)‖p =

(∫ ∞
−∞

Σi |xi(τ)|pdτ
)1/p

We will mainly consider p = 2, i.e., the L2-norm

‖x(t)‖2 =

√∫ ∞
−∞

x(τ)T x(τ)dτ =

√∫ ∞
−∞
|x |2dτ

In frequency domain (by Parsevals thm)

‖x‖2 =
1

2π

√∫ ∞
−∞

x(iω)Hx(iω)dω
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Operator Norms

For a transfer-function G(s)

the H2-norm is

‖G(s)‖2 =

√
1

2π

∫ ∞
−∞

tr(G(jω)HG(jω))dω

and the H∞-norm is

‖G(s)‖∞ = sup
ω
σ̄(G(jω))

H denotes Hardy space, H∞ (H2) is the set of stable and (strictly) proper
transfer-functions
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The H2- and H∞-norms

The H∞-norm is an induced norm from L2 to L2, i.e., the L2-gain

y = Gu ; ‖G(s)‖∞ = sup
u(t)6=0

‖y‖2
‖u‖2

The H2-norm is not an induced norm. But, e.g., equals
amplification from a white noise input to the 2-norm of the output

We will consider both norms for design later, but the fact that the
H∞-norm is an induced norm makes it useful for analyzing
performance limitations (Lec 2) as well as robustness (Lec 5) .
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Scaling - simplifies analysis and design

Unscaled model:

ŷ = Ĝû + Ĝd d̂ ; ê = r̂ − ŷ

Scale all variables so that expected/allowed magnitude is less than 1:

u =
û

ûmax
; d =

d̂
d̂max

; y =
ŷ

êmax
; e =

ê
êmax

; r =
r̂

êmax

Introduce Dd = d̂max ; Du = ûmax ; De = êmax

y = D−1
e ĜDu︸ ︷︷ ︸

G

u + D−1
e ĜdDd︸ ︷︷ ︸

Gd

d

In the scaled model, all signals should have magnitude less than
1, i.e., expected |d | < 1 and acceptable |e| < 1
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Example: scaled frequency response

Bode plot for |Gd (jω)|:
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Need disturbance attenuation for frequencies where |Gd (jω)| > 1,
i.e., for ω < 0.33 rad/s
Or, equivalently, we require

‖SGd‖∞ < 1
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Next: classical control revisited
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Closed-Loop Transfer Functions - 1-DOF structure

Closed-loop transfer-functions

y = (1 + GK )−1GK︸ ︷︷ ︸
T

r + (1 + GK )−1︸ ︷︷ ︸
S

Gdd − (1 + GK )−1GK︸ ︷︷ ︸
T

n

control error
e = r − y = −Sr + SGdd − Tn

input
u = KSr − KSGdd − KSn
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The Sensitivity Functions

Introduce the loop gain L = GK

S = (1 + L)−1 ; T = (1 + L)−1L

⇓

S + T = 1

S - the sensitivity function

T - the complimentary sensitivity function
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The name ”Sensitivity”

Bode: relative sensitivity of T to model perturbations (uncertainty)

S = (dT/T )/(dG/G)

But, also effect of feedback on sensitivity to disturbances

y = SGdd

|S(jω)| < 1: feedback reduces disturbance sensitivity

|S(jω)| > 1: feedback increases disturbance sensitivity
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Frequency Plots

Definitions:
crossover frequency ωc : |L(jωc)| = 1
bandwidth ωB: |S(jωB)| = 1/

√
2

bandwidth for T , ωBT : |T (jωBT )| = 1/
√

2
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Bandwidth and Crossover Frequency

Effective feedback for frequencies where |S(jω)| < 1, i.e., up to
bandwidth ωB

|S(jω)| < 1, ω ∈ [0, ωB]

Bandwidth and crossover frequencies:

ωB < ωc < ωBT

Proof: see (2.53) in book
Typically assume

ωc ≈ ωB
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Stability margins

Gain margin GM and phase margin PM - robustness measures

Bode diagram Nyquist diagram
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Sensitivity peaks

Stability margins and performance are related

|S|−1 = |1 + L(jω)| is distance from L(jω) to critical point −1 in
Nyquist diagram

define MS = maxω |S(jω)| ; MT = maxω |T (jω)|, then

MS ≥
1

PM
MS ≥

GM
GM − 1

MT ≥
1

PM
MT ≥

1
GM − 1

– obtained by considering the loop gain at L at ωc and ω180,
respectively
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Controller Design

Three main approaches:

1. Shaping transfer-functions
a. Loop shaping (classic): use controller K to shape loop gain L(jω)

b. Shaping the closed loop: shape S, T etc, using optimization
based methods

2. Signal based approaches: minimize signals, i.e., control error e
and input u, given characteristics of inputs d , r ,n.

3. Numerical optimization: optimize “real” control objectives, e.g.,
rise time and overshoot for step responses.
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Classic Loop Shaping - shaping |L|

recall
e = − 1

1 + L︸ ︷︷ ︸
S

r +
1

I + L︸ ︷︷ ︸
S

d − L
I + L︸ ︷︷ ︸

T

n

Fundamental trade-offs:
– setpoint following: |L| large
– disturbance attenuation: |L| large
– noise propagation: |L| small

Also:
u = KSr − KSGdd − KSn

– input usage: |K | small
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Resolving the trade-off

Typically: make |L| large in frequency range where disturbances and
setpoints important, and |L| small for higher frequencies,

|L| >> 1, ω ∈ [0, ωB]

|L| << 1, ω > ωB

i.e., want |L| to drop off steeply around ωB ≈ ωc

But, slope of |L| and phase arg L coupled

Lecture 1: classical SISO control EL3210 MIMO Control 36 / 44



Bode Relation

arg L(jω0) ≤ 1
π

∫ ∞
−∞

d ln |L|
d ln ω

ln
∣∣∣∣ω + ω0

ω − ω0

∣∣∣∣ dω
ω

equality for minimum phase systems
with slope N = d ln |L|/d ln ω,

arg L(jω0) ≈ π

2
N(jω0)

Thus, slope around crossover ωc should be at most −2, less to yield
some phase margin.
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A Procedure for Loop Shaping

1. First try
L(s) =

ωc

s
⇒ K =

ωc

s
G−1(s)

yields
y =

ωc

s + ωc
r

But, bad disturbance rejection if Gd slow
2. For disturbances

e = SGdd

Require
|SGd | < 1 ∀ω

corresponds to
|1 + L| > |Gd | ∀ω
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A Procedure for Loop Shaping

2. cont. If |Gd | > 1 we get approximately

|L| > |Gd |

Simple choice
L = Gd ⇒ K = G−1Gd

and with integral action

K =
s + ωI

s
G−1Gd

3. High frequency correction

K =
s + ωI

s
G−1Gd

τs + 1
τ
γ s + 1

to improve stability, i.e., modify slope of |L| around ωc

4. To improve setpoint tracking, add prefilter Kr (s) on setpoint⇒
2-DOF control structure
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Shaping the Closed Loop

Shaping L = GK is just a means of achieving a desired
closed-loop
Alternative: find controller that minimizes a weighted sensitivity,
e.g.,

min
K

(
max
ω
|wPS|

)
= min

K
‖wPS‖∞

– ‖wpS‖∞ < 1 ⇒ |S| < 1/|wp| ∀ω
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Weighted Sensitivity
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Performance weight

Typical choice for weigth

wp =
s/M + ωB

s + ωBA

Magnitude of 1/|wp|:

Control objective satisfied if ‖wpS‖∞ < 1
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Next Time

Fundamental performance limitations and tradeoffs in SISO
feedback
Controllability analysis: what is achievable performance, e.g., ωB,
M, for a given system?

Homework:
Exercise 1 (download from the course homepage). Hand in next
Friday.
Read Chapter 5 (and 1-2) in Skogestad and Postlethwaite
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