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Abstract-The problem of formulating and numerically implementing finite element elastic-plastic large deformation 
analysis is considered. In general, formulations can use different kinematic descriptions and assumptions in the 
material law, and analysis results can vary by a large amount. In this paper, starting from continuum mechanics 
principles, two consistent formulations for elastic-plastic large deformation analysis are presented in which either the 
initial configuration or the current configuration is used for the description of static and kinematic variables. The 
differences between the formulations are clearly identified and it is established that, depending on the elastic-plastic 
material description, identical numerical results can be obtained. If, in practice, certain constitutive transformations 
are not included, the differences in the analysis results are relatively small in large displacement but small strain 
problems. The formulations have been implemented and representative sample analyses of large deformation 
response of beams and shells are presented. 

NOMENCLATURE 

The following convention for tensor and vector subscripts and 
superscripts is employed: 

A left superscript denotes the time of the configuration in which 
the quantity occurs. 

A left subscript can have two different meanings. If the quantity 
considered is a derivative, the left subscript denotes the time of 
the configuration, in which the coordinate is measured with 
respect to which is differentiated. Otherwise the left subscript 
denotes the time of the configuration in which the quantity is 
measured. 

Right lower case subscripts denote the components of a tensor 
or vector. Components are referred to a fixed Cartesian coordi- 
nate system; i, j, . = 1,2,3. Differentiation is denoted by a right 
lower case subscript following a comma, with the subscript 
indicating the coordinate with respect to which is differentiated. 

“A = Area of body in configuration at time 0 
,r&, & = Component of tangent constitutive tensor at 

time t referred to configuration at time 0, f 
(superscript E indicating elastic) 

‘+“;jr = Component of body force vector per unit 
mass in configuration at time t t At refer- 
red to configuration at time 0. 

F = Yield function. 
h, = Finite element interpolation function as- 

sociated with nodal point k. 
(i) = Superscript indicating number of iteration. 

‘+Af% = External virtual work expression correspond- 
ing to configuration at time t t At, defined in 
equation (2). 

‘+‘+(S 0 I,, ‘+‘:S+ = Component of 2nd Piola-Kirchhoff stress ten- 
sor in configuration at time t t At referred 
to configuration at time 0,t. 

,,S,, ,S’, = Component of 2nd Piola-Kirchhoff stress in- 
crement at time t. 

t, t t At = time t and t t At, before and after time incre- 
ment At. 

I+&, ot, = Component of surface traction vector in con- 
figuration at time t t At, referred to contigu- 
ration at time 0. 

‘u. ‘+A’~i = Component of displacement vector from ini- II 
tial position at time 0 to configuration at 
time t, t t At. 
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ui = Increment in displacement component, all = 
’ +Af& - fUi. 

Aui = Correction to displacement increment u,. 
‘u,’ = Displacement component of nodal point k in 

configuration at time t. 
*c ,,ui,, = Derivative of displacement component in con- 

figuration at time t, t +At with respect to 
coordinate Ox,. 

O~,,i, ,uii, ,+.,,JI~.~ = Derivative of displacement increment with 
respect to coordinate Ox,, *x,, ‘+*‘xr. 

“V, ‘V, t+nr V = Volume of body in configuration at time 0, t, 
ttAt. 

OXi, IX<, ‘+“x, = Cartesian coordinate in configuration at time 
0, t, t tAt. 

Ox,*, ‘xi*, ‘+A’~,* = Cartesian coordinate of nodal point k in 
configuration at time 0, t, t t At. 

0 
t&i, 

t+h* 0x,,, = Derivative of coordinate in configuration at 
time 0, t t At with respect to coordinate ‘xi, 
OX,. 

L+b, 
O~ii, kij = Component of Green-Lagrange strain tensor 

in the configuration at time t t At, t, 
referred to the configuration at time 0. 

;rz= Component of total plastic strain tensor at 
time t in total Lagrangian formulation. 

f+M ,e,, = Component of Green-Lagrange strain tensor 
in the configuration at time t t At, referred 
to the configuration at time t (i.e. using 
displacements from the configuration at 
time t to the configuration at time t t At). 

oe~j, re,, = Component of strain increment tensor refer- 
red to configuration at time 0, t. 

di, dc, = Linear part of strain increment 04,, ,E,,. 
onij, tnir = Nonlinear part of strain increment Ocg, r~ii. 

a ’ P. PT ‘+A’p = Specific mass of body in configuration at time 
0, t, t + At. 

‘r-- ‘+A’7ji = Component of Cauchy stress tensor in con- ‘,> 
figuration at time t, t t At. 

‘A = Constant of proportionality at time t 

Matrices 
AB,, :Br = Linear strain-displacement matrix in contigu 

ration at time t referred to configuration at 
time 0, t. 

;B,,, :B,, = Nonlinear strain-displacement matrix in con- 
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figuration at time t referred to configuration 
at time 0, t. 

&, ,C = Tangent material property matrix at time t 
and referred to configuration at time 0, t 

h F, : F = Vector of nodal point forces in configuration 
at time t referred to configuration at time 0, 
t. 

hKr, :Kr = Linear strain stiffness matrix in configuration 
at time t referred to configuration at time 0, 
t. 

: K,,, : L = Nonlinear strain stiffness matrix in configura- 
tion at time t referred to configuration at 
time 0, t. 

M = Mass matrix. 
‘+*‘R = Vector of external loads in configuration at 

time t t At. 
: S, i ,!? = 2nd Piola-Kirchhoff stress matrix and vector 

in configuration at time t and referred to 
configuration at time 0. 

‘7, ‘i = Cauchy stress matrix and vector in configura- 
tion at time t. 

‘II, ‘+“‘u = Vector of displacements at time t, t + At. 
u = Vector of incremental displacements at time t. 

Au = Vector of corrections to II. 

INTRODUCTION 

The importance of investigating the elastic-plastic 
dynamic behavior of structural components for adequate 
design is being recognized to an increasing extent. In the 
analysis of some problems, large deformation effects can 
be neglected, but in other cases geometry changes 
significantly influence the predicted response. 

Lately, the finite element method has proven to be very 
effective in linear analysis and solutions have also been 
obtained to some complex nonlinear problems. However, 
much research is now underway to improve the con- 
tinuum mechanics, material and finite element formula- 
tions, the numerical integration procedures and computer 
program implementations. 

The specific problem considered in this paper is the 
formulation and implementation of incremental finite 
element equations of motion for large deformation 
elastic-plastic dynamic analysis. It is assumed that 
isoparametric finite element discretization and an implicit 
time integration scheme shall be used, because these 
techniques are believed to be most effective for a wide 
range of problems. 

Considering the formulation of the incremental finite 
element equilibrium equations, using an implicit time 
integration procedure all static and kinematic variables 
must be referred to a known equilibrium configuration. In 
practice the choice lies between using the initial 
configuration or the last calculated configuration as 
reference. For elastic-plastic analysis, Hibbitt, Marcal 
and Rice [9], Larsen [ll], McNamara and Marcal [13], 
Stricklin et al.[21], Sharifi and Yates[19], Felippa and 
Sharifi[6] and Nagarajan[l6] have used the initial 
configuration. However, Hibbitt et al. pointed out that it 
may be more effective to employ the current configuration 
as reference[9]. Larsen[l l] and Felippa and Sharifi[6] 
rejected the idea of updating the reference configuration 
without giving details about a possible implementation. 
Murray and Wilson[lS], Yaghmai[22] and Yaghmai and 
Popov[23] updated the reference configuration in static 
analysis, and Belytschko and Hsieh[S] in dynamic 
analysis using an explicit time integration scheme. 
Considering the different procedures currently in use, an 
important question is under what conditions, if at all, the 
same numerical results are obtained. 

The objective in this paper is to present in detail two 
formulations in which either the initial configuration or 
the last calculated configuration is used for reference. 
These formulations have been termed total Lagrangian 
and updated Lagrangian formulations and have been 
described in detail earlier for elastic analysis[3,4]. An 
important feature to be discussed is that provided the 
constitutive relations are defined appropriately, identical 
numerical results are obtained using the two formulations 
and indeed the same finite element matrices are employed. 
If, however, the appropriate constitutive transformations 
are not included, the differences can be expected to be 
small in case large displacement but small strain response 
is considered. The formulations have been implemented 
and various sample solutions are described in the paper. 

CONTINUUM MECHANICS FORMULATION 

Consider the motion of a general body such as shown in 
Fig. 1 and assume that the solution has been obtained for 
the time points 0, At, 2At,. . . , t. The basic aim is to 
establish an equation from which the unknown static and 
kinematic variables in the configuration at time t t At can 
be solved. Because it is the objective to use a 
displacement-based finite element procedure with an 
implicit time integration scheme, the principle of virtual 
displacements is used to express the equilibrium of the 
body in the configuration at time t t At. Using the 
notation in Fig. 1, the principle of virtual displacements 
requires 

(1) 

where 

and ‘+“‘~,i are Cartesian components of the Cauchy stress 
tensor at time t t At, and ?tk and I+‘& are surface 
tractions and body force components at time t t At, but 
referred to time 0. Also, 8 denotes ‘variation in’, Sur is a 
variation in the current displacement components ‘i”ur 
and 

where 

(3) 

au, -_ *+atUl."> - a'+a'X,n 

It should be noted that in a dynamic analysis the body 
force components include mass inertia effects. 

Using an implicit time integration procedure equation 
(1) cannot be solved directly, because the configuration at 
time t t At is unknown. For solution the equation is 
recast into a form in which all variables are referred to a 
previously calculated equilibrium configuration. In this 
form the equilibrium relation can be linearized and be 
employed effectively in a Newton iteration[7]. 

In principle, any one of the already calculated 
equilibrium configurations could be used as a reference 
configuration. However, in practice the choice lies 
essentially between two formulations which have been 
termed total Lagrangian (T.L.) and updated Lagrangian 
(U.L.) formulations[3,4]. In the T.L. solution all static 
and kinematic variables are referred to the initial 
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I CONFIGURATION 
AT TIME 0 

t+Atx. = tX. 
I 1 + ui 

c 

ox,,+x,,++A+x, 
t+At 

3 

Fig. 1. Motion of body in Cartesian coordinate system. 

configuration at time 0. The U.L. formulation is based on 
the same procedures that are used in the T.L. formulation, 
but in the solution all static and kinematic variables are 
referred to the configuration at time t. 

Using the T.L. formulation, equation (1) is transformed 
to@, 12, 181, 

I ov 
‘+“& St+*& Odv = ‘+A’W (4) 

where ‘+‘:Sij are components of the 2nd Piola-Kirchhoff 
stress tensor and ‘+“& are components of the Green- 
Lagrange strain tensor using the displacements r+A’uk. 
Similarly, in the U.L. formulation equation (1) becomes 

As pointed out above the objective is to linearize the 
equations of motion. Tables 1 and 2 summarize the 
relations used to arrive at the linearized equations of 
motion in the T.L. and the U.L. formulations. As shown in 
the tables, the linearized equilibrium equations are in the 
T.L. formulation 

I OY 
oCiirs s, So% ‘dv + 

I 9 
& 6oqi “dv 

= t+ditgy _ 

I QY 
& Soeii “dv (6) 

and in the U.L. formulation 

I 
I 

‘V 
C. e &e, ‘dv + l,,S f Is 

I ‘v 
‘rij S,q, ‘dv 

= L+%! - 
I 

‘v *Q Sreii ‘dv (7) 

where oCii,s and ,C& are the incremental material 
property tensors in the configuration at time t and re- 
ferred to the configurations at times 0 and t, respectively. 

It need be noted that in equations (6, 7) & and l~ii are 
given 2nd Piola-Kirchhoff and Cauchy stresses acting in 
the configuration at time t ; and oeii, oqii and , eii, *vii are the 
linear and nonlinear incremental strains referred to the 
configurations at times 0 and t, respectively. 

Having linearized equation (1) about the equilibrium 
configuration at time t, a modified Newton iteration is 
employed effectively to evaluate an accurate solution. 
Defining for the k’th iteration 

r+Atl(i(k) = l+AtuI(k-I) + Au/k’ 
(8) 

where ‘+*‘~i(‘) = *Us, the equation considered in the T.L. 
formulation is 

I 
o C 

QY 
iirs Oers (Ir) 6oea’ ‘dv + 

I 
ov :& S&;’ ‘dv 

= 1+atg _ 

I “V 

t+A;S{;-‘) S’+A;Ey;-‘) Odv k = 1,2,. . . 

(9) 

where ,e$’ and OV!~) are evaluated as given in Table 1 but 
using AU/~’ instead of ui; and *‘“&k#-” and ‘+*&{;-” are 
the stresses and strains calculated using r+a’~!k-‘). 
Similarly, using the U.L. formulation the equation 
considered is 

I ‘V 
,& ,ej!’ &et’ ‘dv t 

I ‘V 
‘q &T$ ‘do 

= r+Atg _ 

I l+Arv,t-l) 
l+Af$-I) a,+Are;;-l’ l+Al&,(k-1) 

k=1,2,... (10) 

It need be noted that for k = 1 equations (9, 10) reduce 
to equations (6, 7), respectively. 

FINITE ELEMENT SOLUTION 

For the finite element solution of equations (9, 10) 
isoparametric elements have been employed[24]. In the 
isoparametric finite element solution the coordinates and 



K. J. BATHE and H. OZDEMIR 

Table 1. Total Latvian fo~ulation 

where 

(a) Stresses 

1. Equations of motion 

(b) Strains 

3. ~quationsof motion w~thincrementaldecom~os~tions 

Noting that S’+*& = &,E~~ and O&j = ,&,, *c, the equa~ons of motion are 

4, Linea~2ation of equations of motion 

Using the approximations OSji =&&, oeiit &eii = &e, we obtain as approximate 
equations of motion 

Table 2. undated Lagraagiaa formulation 

I. Equations of motion 

where 

(a) Stresses 

2. Incremental decompositions 

(b) Strains 

3. equations of motion with incremental decompositions 

Noting that & = ,Cii,, ,e, the equations of motion are 

4. Linearization of equatjons of motion 

Using the approximations ,S, = ,C,,, c e,s, be, = 8, e, we obtain as approximate 
equations of motion 
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displacements of an element are interpolated using 

j=1,2,3 (11) 

li=, 

‘~,=~h~‘u:;Au,=~h~Au: j=1,2,3 (12) 
k=l k=l 

where ‘.x: is the coordinate of nodal point k correspond- 
ing to direction j at time 0, ‘x;, ‘+“x:, ‘u: and AU; are 
defined similarly, hr is the interpolation function corres- 
ponding to nodal point k, and N is the number of nodal 
points of the element. Using these interpolations to 
evaluate equations (9, 10) and taking into account that in 
dynamic analysis the body force components include 
inertia forces, the matrix equilibrium equation for a single 
element is in the T.L. formulation 

(;KL +~KNL)Au(k)=f+AIR_r+A~F(k-t)_~ t+Ar$k) 

k = 1,2,3.. . (13) 

where iKL and iKNL are the linear and nonlinear strain 
stiffness matrices, r+AfR is the vector of externally applied 
nodal point loads, ‘+‘~I?‘-” is a vector of nodal point 
forces equivalent to the current element stresses, M is the 
mass matrix and AU”’ is a vector of nodal point 
displacement increments, with ‘+ar~(k) = f+A*~(k-l) + Au”‘. 
The vector of nodal point accelerations is evaluated 
differently depending on the time integration scheme 
used. 

Considering next the U.L. formulation the equilibrium 

equations to be solved are 

(:KL t :KNL)h(lr) = ““‘R 

_ ::“,:p-‘) _ M’+A’$‘) k = 1, 2, 3. . . 

(14) 

in which matrices equivalent to those in equation (13) are 
used. Table 3 summarizes the matrix evaluations. The 
strain-displacement and stress matrices used in Table 3 
have been defined in[3,4]. 

Once the matrices corresponding to a single element 
have been calculated, the equilibrium equations corres- 
ponding to an assemblage of elements are obtained using 
standard procedures[24]. These equations are 

(‘KL + fKNL)AU(k) = t+AfR_ f+AIF(k-I)_Mt+At$k) 

k=1,2,3... (15) 

where the left subscript indicating whether the T.L. or 
U.L. formulation is used has been omitted, because 
equation[l5] is applicable to an assemblage of elements 
that individually may be described by either formulation. 
For the numerical solution of equation (15) the 
Newmark scheme and Wilson 0 method have been 
employed[l, 171. Table 4 summarizes the integration 
procedures. It should be noted that because implicit 
numerical time integration is used, the step-by-step 
algorithm reduces to a static analysis when inertia effects 
are not considered. 

ELASTIC-PLASTIC CONSTITUTIVE RELATIONS 

Comparing the U.L. and T.L. formulations in Tables 1 
and 2, it is noted that the formulations are analogous and, 
in fact, the only theoretical difference between the two 

Table 3. Evaluation of integrals 

Integral Matrix evaluation 
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Table 4. Summary of step-by-step integration 

Initial calculations 

Form mass matrix M; initialize “u, “h, “ii. 
Calculate the following constants: 
to1 5 0.01; nitem 2 3; in static analysis 0 = 1 and go to A. 
Wilson .9 method: 0 z 1.37, usually 0 = 1.4, 7 = BAt 

a0 = 6/r’ a, =6/1 a2=2 a, = a,,/0 a, = -a,/0 a, = 1 - 3/0 
as=At/2 a, = At216 

Newmark method: tJ = 1.0, S 20.50, (Y 2 0.25 (0.5 t 6)2, 7 = At 

aa = l/(crAt*) a, = l/(oAf) a* = 1/(2a) - I a, = a, a4 = -a, a, = -a2 
ah = At(l - 6) a, = SAt. 

Calculate mass contribution to effective stiffness matrix: K = a,M 

For each timestep 

(A) Calculation of displacement increment 
(i) If a new stiffness matrix is to be formed, calculate and triangularize ‘K 

‘K=LDL’. 

(ii) Form effective load vector: 

(iii) Solve for displacement increments using latest D, L factors: 

(iv) If required, iterate for dynamic equilibrium; then initialize u’“’ = u, i = 0 
(a) i=i+l. 
(b) Calculate (i - 1)st approximation to accelerations and displacements: 

“‘$-“= ao”“?l’_a,‘h_a,‘ii ; f+r”‘l-n=1”+“‘I-I 

(c) Calculate (i - 1)st effective out-of-balance loads: 

“++” = LR+ ,(,+A, R_‘R)_M”‘ii”~“_“~~~~-,~ 

(d) Solve for i’th correction to displacement increments: 

(e) Calculate new displacement increments: 

(f) Iteration convergence if ~JAu"'~~&"' t ' u]j2 < tol. 
If convergence: u = tt(j’ and go to B; 
If no convergence and i < nitem: go to (a); otherwise restart using new 

stiffness matrix and/or a smaller time step size 

(B) Calculate new accelerations, velocities and displacements 
Wilson B-method: 

@‘h= o “+a ‘h+a ‘ii 
I+a.U=‘;+a,;+&‘ii;,ii) 
“~‘“=‘“+At’li+a,(‘+“‘u+2’ii) 

Newmark method: 
““‘it= a,ut a,‘it+a,‘ii 
“b’ti=,t.t+a,‘i+a,‘+“‘ii 
I*Altt=‘“+U 
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formulations lies in the choice of different reference 
configurations for kinematic and static variables. Indeed, 
if in the numerical solution the appropriate constitutive 
tensors are used, the evaluation of the corresponding 
integraIs in equations (67) results into the same matrices 
and thus identical response is predicted using either 
formulation. The conditions for obtaining the same 
equations are that the stresses must be related as given in 
Tables 1 and 2 and the relation between the constitutive 
tensors must be as follows, 

These relations are precisely the kinematic transforma- 
tions required for the integrals in equations (6, 7) to be 
identical. Any differences in response calculations would 
then lie in the de~nition of ,Cif,$ or o(&. However, in 
practice, the transfo~ations in equations (16, 17) add to 
the total computational effort required for solution. 
Therefore, the aim is to formulate the elastic-plastic 
constitutive relations directly corresponding to the 
specific kinematic nonlinear formulation used, and the 
following two constitutive formulations have been im- 
pIemented and ev~uated in this work. The basic 
ingredients of the constitutive relations are those used in 
small displacement analysis; namely, in addition to the 
elastic stress-strain relations, the following assump 
tions are employed: (1) a yield condition, which specifies 
the state of multiaxial stress corresponding to start of 
plastic flow; (2) a flow rule relating plastic strain 
increments to the current stresses and stress increments 
subsequent to yielding; and (3) a h~dening rule, which 
specifies how the yield condition is modified during plastic 
flow [8]. 

Total Lagrangian formulation 
For an elastic-plastic material, the constitutive rela- 

tions depend on the complete stress and strain history. At 
any time between the discrete time points t and t + Ar the 
elastic-plastic material behavior is therefore described in 
the T.L. formulation using 

0) 

where d@Sj and doem are differenti~ increments in 2nd 
Piola-Kirchhoff stresses and Green-Lagrange strains, 
respectively, and &i,s is the elastic-plastic constitutive 
tensor at the current stress and strain conditions. 
Referring to Tables 1 and 3 and equation (13), it is noted 
that in the caiculation of the linear strain stiffness matrix 
iKL, the following approximate relation is employed 

OS+ = OCiirs oers (1% 

where oers is the linear part of ~e,~, and ,&i, is the 
stress-strain relation at time t. However, in the equilib- 
rium iterations the total incremental strains are calculated 
using 

oErr - IL) _ “I;e$‘_ f 06s (201 

and then, because 0&S is a function of the stresses and 
strains, 

To evaluate the integral in equation (21) Euler’s method 
has been used[7]. The stresses corresponding to ‘+$e$’ 
are then 

t+$# = ;S, +& (221 

The above description shows that basically the material 
tensor ,,C& need be evaluated for a given stress and strain 
state. Consider the calculation of &$ corresponding to 
,& and &. In the investigation carried out isothermal and 
elastic-perfectly plastic or isotropic hardening conditions 
have been assumed. In this case the initial and subsequent 
yield condition is 

F(iSij, ‘K) = 0 (23) 

where ‘K is a hardening parameter that depends on the 
total plastic strains &g. The total plastic strain is obtained 
by addition of the incremental plastic strains d& 

doe;= d,eii -d& (24 

where doe: is the elastic part of the differential increment 
in strain 4~. Assuming an associated flow rule 

and because F = 0 during plastic deformation 

0.6) 

The stress increments are catculated using 

do& = nC;?$ d& (27) 

where ,& is a component of the elasticity tensor relat- 
ing 2nd Piola-Kirchhoff stresses to Green-Lagrange 
strains [3]. 

Equations (23-27) enable the calculation of the compo- 
nents of the constitutive tensor oCii,s in equation (18) in the 
usual way 181, 

It may be noted that once ‘+‘$Sjf) has been evaluated 
and the iteration converged, Cauchy stresses are calcu- 
lated as given in Table 1 whenever stress output is 
required. 

Updated Lagra~gia~ fo~ulation 
In the U.L. formulation the elastic-plastic material 

response is described using 

d& = J&s d, ers (2% 

where d,S, and dIers are differential increments in the 2nd 
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Piola-Kirchhoff stress referred to the configuration at 
time t and the linear part of ,Q, respectively. In analogy 
to the T.L. formulation, in the calculation of the linear 
strain stiffness matrix :KL, the relation used is 

& = C- e f t,rs f 0 (30) 

A main difference appears in the calculation of stresses. 
The solution of equation (14) yields A@ and thus corres- 
ponding strain components ,e!:’ can be calculated and 

where (C,,,.? is a function of the current total stress and 
strain conditions. Cauchy stresses are then evaluated 
using 

and 

‘+“;s!;) ZZ tr,, +,s;;’ (32) 

The calculation of the constitutive relations is carried 
out as in the T.L. formulation but using Cauchy stresses 
and the small displacement strain increments ,e,,. It 
should be noted that in the evaluation total plastic strains 
are obtained by addition of the plastic components of , e, 
occurring in each time step. The U.L. formulation is 
therefore quite similar to the calculation of elastic-plastic 
constitutive relations in small displacement analysis, but 
to take large displacements into account the transforma- 
tion in equation (33) is used for stress calculations. 

Comparison of formulations 
On comparing the evaluation of the elastic-plastic 

constitutive relations in the U.L. and T.L. formulations, it 
is noted that different basic assumptions are used. In the 
T.L. formulation the elastic properties, the yield function 
and flow rule are defined in the 2nd Piola-Kirchhoff stress 
space whereas in the U.L. formulation the Cauchy stress 
space is employed. Under large displacement and large 
strain conditions, it would therefore be necessary to 
specify the appropriate elasticity constants, yield stresses 
and hardening constants. If the same material constants 
were used large differences between the response pre- 
dicted using the T.L. and U.L. formulations would, in 
general, be observed. However, if only moderate defor- 
mations are considered the response predicted using the 
U.L. and T.L. formulations can be expected not to differ a 
great deal. Namely, for moderate deformations 

‘7:; = is, + 0 (&&,l &J) (34) 

where o signifies ‘of order’. But then considering the 
calculation of the elastic-plastic incremental constitutive 
relations, it is noted that products of stresses are emp- 
loyed and hence the differences in the elements of the 
stress-strain matrices used in the T.L. and U.L. formula- 
tions will be small. 

Considering the implementation of the two formula- 
tions, it is noted that the T.L. formulation is programmed 
more easily. Namely, in this case large displacement 
analysis is a simple extension of small displacement 
analysis in that the same subroutine which calculates the 

material matrix in small displacement analysis can be used 
without modification for large displacement conditions. It 
is only necessary to work with 2nd Piola-Kirchhoff 
stresses and Green-Lagrange strains instead of conven- 
tional small displacement strains and stresses. 

SAMPLE SOLUTIONS 

To implement the T.L. and U.L. formulations described 
above program NONSAP was employed[2]. The program 
is available with the T.L. formulation for elastic-plastic 
analysis and thus had to be modified for the U.L. 
formulation. 

Static large displacement analysis of a cantilever 
The cantilever in Fig. 2 was analyzed for a uniformly 

distributed load using five g-node plane stress isoparamet- 
ric elements. The material of the cantilever was assumed 
to be isotropic and linear elastic. An analytical solution 
for the response of the cantilever was given by 
Holden [IO]. 

The purpose of this analysis was to compare the Holden 
solution with the response predicted using the T.L. and 
U.L. formulations. Since the beam is elastic, to prevent 
plastic response the yield stress of the material was 
selected sufficiently high. It should be noted that in this 
case the same material constants have been employed in 
both formulations. 

The response of the cantilever using the T.L. and U.L. 
formulations and 100 equal load steps is shown in Fig. 3, 
in which Holden’s solution is also given. It is seen that for 
the accuracy with which the response can be presented in 
the figure all three solutions are identical. 

In order to observe the effect of the load step size the 
analysis was repeated using only five equal load steps. 
Fig. 4 shows the calculated response. In this case the 
displacement response predicted using the two formula- 

L= IO I” E~12xlO’lb/,n~ 
h= 8,” u=o2 

b= I,” 

Fig. 2. Cantilever under uniformly distributed load. 

0.0 
0 2 4 6 8 IO 

LOAD PARAMETER K = j$ 

Fig. 3. Large displacement analysis of a cantilever. 
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ov 
2 4 6 8 IO 

LOAD PARAMETER K = 2’ 

Fig. 4. Large displacement analysis of a cantilever, comparison of 
nonlinear formulations. 

tions is significantly different, because the incremental 
solution using either formulation was not obtained 
accurately. 

Static large displacement analysis of a spherical shell 
The elastic spherical shell shown in Fig. 5 was analyzed 

for its static response due to a concentrated apex load. 
The shell was idealized using the g-node isoparametric 
elements. The same shell was also analyzed by 
Stricklin[20] and Mescall[l4], and the objective was to 
compare those solutions with the response predicted in 
this study. As in the analysis of the cantilever, because the 
shell is assumed to remain elastic, the yield stress of the 
material was selected sufficiently high and in both 
formulations the same material constants have been used. 

Figures 5 and 6 show the response predicted by 
Stricklin, Mescall and in this study. Taking into account 
that this shell behaves highly nonlinear, good agreement 
between the different solutions is observed. It should be 
noted that the difference between the U.L. and T.L. 
solutions becomes smaller as the number of load steps is 
increased. 

Dynamic large displacement analysis of a second spheri- 
cal shell 

The dynamic response of the spherical cap shown in 
Fig. 7 was investigated. The shell was subjected to a 
distributed step pressure p = 600 lb/in’. The material was 
assumed to obey the von Mises yield condition with linear 
isotropic hardening. The objective in the analysis was to 
compare the response predicted using the U.L. and T.L. 
formulations. 

Figure 7 shows the response calculated using the 
Newmark time integration scheme. In this analysis the 
difference between the response predicted using the T.L. 
and U.L. formulations is very small indeed. (It should be 
noted that in this analysis using the U.L. formulation 2nd 
Piola-Kirchhoff stresses referred to the configuration at 
time t instead of Cauchy stresses have been used to define 
,C,,,$ in equation (31).) In order to observe the effect of 
elastic-plastic behavior and the additional effect due to 
large displacements on the response, a linear analysis and 
an analysis including only the nonlinear material effects 
were carried out. As shown in Fig. 7 the material and 
geometric nonlinear effects are very significant. A 
comparison of the results obtained in this study with the 
response predicted by Nagarajan, who used degenerate 
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Fig. 5. Load-deflection curves for spherical shell. 
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Fig. 6. Load-deflection curves for spherical shell. 
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Fig. 7. Large displacement dynamic elastic-plastic analysis of spherical cap, Newmark method, 6 = 0.50, (Y = 0.25. 
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isoparametric elements and (Y = 0,276, 6 = 0.55 in the 
Newmark method is given in Fig. 8[16]. 

The objective in this work was to study the T.L. and 
U.L. incremental formulations for elastic-plastic analysis. 
However, since the errors in dynamic response calcula- 
tions are also due to the numerical time integration 
scheme used, it is also of interest to compare the solutions 
presented in Fig. 7 with solutions obtained using the 
Wilson o-method for time integration. These results are 
given in Fig. 9. 

SUMMARY AND CONCLUSIONS 

In the analysis of geometrically nonlinear static or 
dynamic response using an implicit time integration 
method, it is necessary to employ a known configuration 
as reference for stresses and strains. Corresponding to the 
choice of reference configuration different stress and 
strain measures must be used. In elastic-plastic analysis 
the constitutive relations depend on stresses and strains, 
and an important problem is how to define the material 
behavior in conjunction with the specific kinematic 
formulation used. 

In this paper two consistent and effective formulations 
for elastic-plastic analysis have been presented and 
compared. In the total Lagrangian formulation all static 
and kinematic variables are referred to the initial 
configuration whereas in the updated Lagrangian formula- 
tion the last calculated configuration is used as reference. 
It is pointed out that provided the same material 
description is employed and the appropriate kinematic 
transformations are carried out identical numerical results 
are obtained by either formulation. On the other hand, if 
the constitutive relations are defined directly for each 

-0 06 r 
Tt =055~lO-~sec 

At =05x10-'set 

formulation, as given in the paper, because such material 
descriptions are numerically more effective, differences 
will be relatively small provided “moderate” deforma- 
tions are considered. Since the implementation of the total 
Lagrangian formulation is simplest, it appears that this 
formulation is most attractive. 

The updated and total Lagrangian formulations have 
been implemented and in the paper the large deformation 
response of a cantilever and two shells as predicted using 
the formulations has been presented. 
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