

ELE 414 Microprocessors and Digital Logic

Number systems, Codes and coding, Minimization techniques applied to design of logic systems,

Component specifications, Discussion of microprocessors, Memory and I/O logic elements,

Microcomputer structure and operation, I/O modes and interfacing, Machine language and

assembly programming, Design and application of digital systems for data collection and control

of pneumatic, hydraulic, and machine systems.

Instructor: Dr. Salah Gad Foda

Prerequisite(s): ELE 413

Lecture Hours: 3 Exercise/Lab Hours: 2

Textbook: M.A. Mazidi, J.G. Mazidi, and R.D. McKinlay, The 8051 Microcontroller and

Embedded Systems , Prentice Hall.

Topics Covered:

1. Introduction to computing and microprocessors

2. The 8051 assembly language programming

3. Control instructions and I/O port programming

4. Addressing modes

5. Arithmetic and logical instructions

6. 8051 timer programming

7. 8051 serial port programming

8. Interrupts in 8051

9. 8051 interfacing

10. Applications

Evaluation:

Midterm tests* and projects 40%

Assignments and class participation 20%

Final Examination 40%

Total 100%

* On 6th and 11th weeks of the term.

Chapter I

Introduction to computing and microprocessors

Decimal and Binary Numbers

It is possible that our counting is based on decimal digits due to the fact that we have

ten fingers, but, in general, we can express any number in terms of a general base d.

In this case, our numbers will be written as

 + a3  d
3
 + a2  d

2
 + a1  d

1
 + a0  d

0

where a0, a1, etc., are a number between 0 and d-1. A short form of writing our

number would be a3 a2 a1 a0 where the weight of each digit is implied by its relative

position. For example, the number (23) 8 = 28
1
 + 38

0
which is 19 in decimal.

Counting to the base 8 is called octal. The same number to the base 16

(Hexadecimal counting) would be (23) 16 = 216
1
 + 316

0
 which is 35 in decimal.

However, in digital systems we have two possible states, a HIGH and a LOW. Since

our numbers can be either HIGH or LOW or 1 and 0, it makes sense for digital

systems to count using a base-two system.

Example: Convert the binary number 10011 to decimal form.

Solution:

Binary weight 2
4
 2

3
 2

2
 2

1
 2

0

Weight value 16 8 4 2 1

Binary number 1 0 0 1 1

So that the equivalent decimal number is 19.

Octal and Hexadecimal Numbers

In octal numbering system, the base is 8 so our code symbols are limited to 8 (0-7)

as for the hexadecimal system, we need 16 symbols to properly present numbers to

the base 16. The adopted convention is to use the familiar ten decimal symbols plus

A, B, C, D, E, and F to represent the decimal numbers 10, 11, 12, 13, 14, and 15,

respectively.

Table: Binary/Octal and Hex conversion

Binary Octal Binary Hexadecimal

000 0 0000 0

001 1 0001 1

010 2 0010 2

011 3 0011 3

100 4 0100 4

101 5 0101 5

110 6 0110 6

111 7 0111 7

 1000 8

 1001 9

 1010 A

 1011 B

 1100 C

 1101 D

 1110 E

 1111 F

From the above table, it can be seen that the conversion between binary and octal or

hexadecimal formats is quite straight forward as the following example shows.

Example: Convert the binary number 110001101 to its octal and hexadecimal

formats.

Solution:

First, divide the given binary number into groups of 3 bits 110 001 101 and the

equivalent octal number would be (615) 8.

Similarly, to get the equivalent hexadecimal number, divide the number into

groups of 4 bits 0001 1000 1101 so that equivalent hexadecimal number would

be (18D) 16.

Since hexadecimal presentation of a decimal number is more compact than its binary

presentation while it is a simple matter to expand it into its binary format,

hexadecimal presentation is widely used in computer programming. Hex numbers

also bear more resemblance with machine register (two hex digits form a byte). An

intel convention often used in Hex representation is to end a Hex number with h.

This is not a general convention. Motorola, for example, prefaces a Hex number

with a $ sign while in the MS Macro Assembler Hex numbers are the default. The

Debug command H adds and subtracts two hex numbers, for example H 23FD 1000

produces 33FD 13FD.

Binary or Hex fractions can also be represented by placing binary/Hex digits to the

right of a binary/Hex point. The weights in this case are

 d
2
 d

1
 d

0
 

d
1

 d
2

 d
3

 

Example: Convert the binary number 010011 to decimal form.

Solution:

Binary weight 2
1

 2
2

 2
3

 2
4

 2
5

Weight value 0.5 0.25 0.125 0.0625 0.03125

Binary number 1 0 0 1 1

So that the equivalent decimal fraction is 0.59375 which can be obtained by simply

dividing 19 by 2
5
.

Decimal numbers can also be converted to binary numbers as shown in these two

examples:

Example: Convert the decimal number 25 to binary form.

Solution:

25/2 12 Remainder = 1  Least significant digit

12/2 6 0

6/2 3 0

3/2 1 1

1/2 0 1  Most significant digit

And the answer is (11001) 2.

Example: Convert the decimal fraction 0.78125 to binary form.

Solution:

0.781252 = 1.5625 Integer = 1  Most significant digit

0.56252 = 1.125 1

0.1252 = 0.25 0

0.252 = 0.5 0

0.52 = 1.0 1  Least significant digit

And the answer is (0.11001) 2.

Signed and Unsigned Numbers

To identify positive and negative numbers, a sign bit is often added to the binary

number as the most significant bit. The convention is to use 0 for positive numbers

and 1 for negative numbers. For example, 19 will be written as S10011 where S is

zero for +19 and one for 19. However, using this notation, we need two different

hardware types for addition and subtraction.

With a fixed number of bits we can only represent a certain number of objects. For

example, with eight bits we can only represent 256 different objects. Negative

values are objects in their own right, just like positive numbers. Therefore, we have

to use some of the 256 different values to represent negative numbers. In other

words, we got to use up some of the positive numbers to represent negative numbers.

To make things fair, we assign half of the possible combinations to the negative

values and half to the positive values. So we can represent the negative values –128

 –1 and the positive values 0  127 with a single eight-bit byte. With a 16-bit

word we can represent values in the range –32,768  +32,767. In general, with n

bits we can represent the signed values in the range –2n-1 to +2n-1 –1.

There are many ways to represent negative values, but most microprocessors use the

two’s complement notation. In the two’s complement representation, the number

with negative sign is first one’s complemented and then a one is added. In this way,

the high order bit of a number is a sign bit. If it is zero, the number is positive;

otherwise, the number is negative. For examples, 8000h is negative and 7FFFh is

positive.

Example: Convert the binary number 1001 1110 1000 into two’s complement.

Solution: First, perform the one’s complement 0110 0001 0111 and add 1 to get

0110 0001 1000.

An alternative way to obtain the two's complement of a binary number is to leave

unultered the binary bits which are 0 from the right up to and including the first 1

encountered and then complement every other bit. To demonstrate the method, use

the binary number 1001 1110 1000:

 0110 0001 1000

 1’s complement unaltered bits
Which is the same as before.

The above method is used to go back and forth between positive numbers and their

negative counterparts (two’s complement). Note that using the above methods, the

two’s complement of 8000h is also 8000h which means that – (–32,768) is –32,768.

Of course, this is not true but this means that the value +32,768 cannot be

represented with a 16-bit signed number. Therefore, we cannot negate the smallest

negative value.

With the two’s complement representation, most operations are as easy as the binary

system. For example, suppose you were to perform the addition 13+(–13). Consider

what happens when we add these two values in the two’s complement system:

The result is zero as expected except that we end up with a carry into the ninth bit.

As it turns out, if we ignore the carry out, adding two signed values always produces

the correct result when using the two’s complement numbering system. This means

we can use the same hardware for signed and unsigned addition and subtraction. As

mentioned before, this would not be the case with some other numbering systems.

In many occasions, you need to convert an eight bit two’s complement value to 16

bits. This problem, and its converse (converting a 16 bit value to eight bits) can be

accomplished via sign extension and contraction operations. Consider the value “–

64”. The eight bit two’s complement value for this number is C0h. The 16-bit

equivalent of this number is FFC0h. Now consider the value “+64”. Hence, to sign

extend a value from some number of bits to a greater number of bits, just copy the

sign bit into all the additional bits in the new format.

Bit Fields and Packed Data

Although the 80x86 operates most efficiently on byte, word, and double word data

types, occasionally you may need to work with a data type that uses some number of

00001101

11110011

1 00000000

bits other than eight, 16, or 32. For example, consider a date of the form

“14/9/2011”. It takes three numeric values to represent this date: a day, month, and

year value. Days range between 1  30. So it takes five bits (maximum of 32

different values) to represent the day entry. Months, on the other hand, take on the

values between 1  12. So, it requires four bits (maximum of sixteen different

values) to represent the month. The year value requires eleven bits (which can be

used to represent up to 2048 different values). Five plus four plus eleven is 20 bits,

or more than two memory bytes.

In other words, we can pack our date data into three bytes rather than the four bytes

that would be required if we used a separate byte for each of the month, day, and two

bytes for year values. This saves one byte of memory for each date stored, which

could be a substantial saving if you need to store a lot of dates. The bits could be

arranged as shown in figure below.

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D D D D D M M M M Y Y Y Y Y Y Y Y Y Y Y

Although packed values are efficient in terms of memory usage, they are

computationally inefficient. The reason is that it takes extra instructions to unpack

the data packed into the various bit fields. These extra instructions take additional

time to execute (and additional bytes to hold the instructions); hence, you must

carefully consider whether packed data fields will save you anything. Examples of

practical packed data types abound. For example, you could pack two BCD digits

into a single byte.

ASCII Code

Alphanumeric codes are used to represent numbers, alphabetic letters and control

characters. The most common alphanumeric code is the ASCII (American Standard

Code for Information Interchange) code. It uses 7 binary digits and a parity bit.

The ASCII character set (excluding the extended characters defined by IBM) is

divided into four groups of 32 characters. The first 32 characters, ASCII codes 0

through 1Fh (31), form a special set of non-printing characters called the control

characters. They are called control characters because they perform various

printer/display control operations rather than displaying symbols. Examples include

carriage return, which positions the cursor to the left side of the current line of

characters 8, line feed (which moves the cursor down one line on the output device),

and back space (which moves the cursor back one position to the left).

Unfortunately, different control characters perform different operations on different

output devices. There is very little standardization among output devices. To find

out exactly how a control character affects a particular device, you will need to

consult its manual.

The second group of 32 ASCII character codes comprises various punctuation

symbols, special characters, and the numeric digits. The most notable characters in

this group include the space character (ASCII code 20h) and the numeric digits

(ASCII codes 30h  39h). Note that the numeric digits differ from their numeric

values only in the high order nibble. By subtracting 30h from the ASCII code for

any particular digit you can obtain the numeric equivalent of that digit.

The third group of 32 ASCII characters is reserved for the upper case alphabetic

characters. The ASCII codes for the characters “A”  ”Z” lie in the range 41h 

5Ah (65  90). Since there are only 26 different alphabetic characters, the

remaining six codes hold various special symbols.

The final group of 32 ASCII character codes are reserved for the lower case

alphabetic symbols, five additional special symbols, and another control character

(delete). Note that the lower case character symbols use the ASCII codes 61h 

7Ah. If you convert the codes for the upper and lower case characters to binary, you

will notice that the upper case symbols differ from their lower case equivalents in

exactly one bit position.

ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex

NUL 00 SOH 01 STX 02 ETX 03 EOT 04 ENQ 05

ACK 06 BEL 07 BS 08 HT 09 LF 0A VT 0B

FF 0C CR 0D SO 0E SI 0F DLE 10 DC1 11

DC2 12 DC3 13 DC4 14 NAK 15 SYN 16 ETB 17

CAN 18 EM 19 SUB 1A ESC 1B FS 1C GS 1D

RS 1E US 1F SP 20 ! 21 ” 22 # 23

$ 24 % 25 & 26 ‘ 27 (28) 29

* 2A + 2B , 2C - 2D • 2E / 2F

0 30 1 31 2 32 3 33 4 34 5 35

6 36 7 37 8 38 9 39 : 3A ; 3B

< 3C = 3D > 3E ? 3F @ 40 A 41

B 42 C 43 D 44 E 45 F 46 G 47

H 48 I 49 J 4A K 4B L 4C M 4D

N 4E O 4F P 50 Q 51 R 52 S 53

T 54 U 55 V 56 W 57 X 58 Y 59

Z 5A [5B \ 5C] 5D ↑ 5E ─ 5F

‘ 60 a 61 b 62 c 63 d 64 e 65

f 66 g 67 h 68 i 69 j 6A k 6B

l 6C m 6D n 6E o 6F p 70 q 71

r 72 s 73 t 74 u 75 v 76 w 77

x 78 y 79 z 7A { 7B | 7C } 7D

~ 7E DEL 7F

Control Characters:

ACK Acknowledge BEL Ring bell BS Backspace

CAN Cancel CR Carriage Return DC14 Direct control

DEL Delete idle DLE Data link escape EM End of medium

ENQ Enquiry EOT End of transmission ESC Escape

EOB End of transmission

Block

ETX End text FF Form feed

FS Form separator GS Group separator HT Horizontal tab

LF Line feed NAK Negative Acknowledge NUL Null

RS Record separator SI Shift in SO Shift out

SOH Start of heading SP Space STX Start text

SUB Substitute SYN Synchronous idle US Unit Separator

VT Vertical tab

Table: Hexadecimal representation of the ASCII Code

Bits and Bytes

A single binary digit is called a bit. Four bits grouped together are called a nibble.

The nibble is not a particularly interesting data structure except for BCD and

hexadecimal numbers. A collection of eight bits forms a byte. It is the smallest

addressable data item on a processor. Main memory and I/O addresses on the

processor are all byte addresses. To access anything smaller requires that you read

the byte containing the data and mask out the unwanted bits. The bits in a byte are

normally numbered from zero to seven using the convention shown below:

7 6 5 4 3 2 1 0

Two bytes may be grouped together to form a word. With a word, you can represent

216 (or 64K) different values. The three major uses for words are integer values,

offsets, and segment values. A double word is a pair of words (32 bits). A double

word may be used to represent segmented addresses, a 32-bit integer value (which

allows unsigned numbers in the range 0  4,294,967,295 or signed numbers in the

range 2,147,483,648 to +2,147,483,647), or a 32-bit floating point number.

Boolean Logic and Digital Gates

Logical expressions are either simple or compound expressions. Simple logical

expressions are:

(a) Logical variables (True or False)

(b) Relational expression of the form

Table: Basic logical operators

A B !A A and B A or B A xor B

0 0 1 0 0 0

0 1 1 0 1 1

1 0 0 0 1 1

1 1 0 1 1 0

 AND

 NAND

OR

 XOR

Computer Architecture

Figure: Von Neumann architecture

CPU

Memory

I/O Devices

Address Bus

Data Bus

Control Bus

Figure: Harvard architecture

Harvard and Von Neumann Architectures

Harvard Von Neumann

 processor is connected to two

different memory banks via two

sets of buses to provide the

processor with two distinct data

paths, one for instruction and one

for data

 CPU can read instructions and data

from the respective memory banks

at the same clock cycle which

increases the throughput of the

machine

 Such system is complex in

hardware and commonly used in

DSPs

 processor is connected to a single

sequential memory and uses a

single data path (bus) for both

instructions and data

 CPU can either fetch an instruction

or read/write data from memory

during a certain clock cycle

 Processor speeds are much faster

than memory access times, and an

extremely fast cache memory is

used

 Modern processors use a Harvard

Architecture to read from two

instruction and data caches, and use

a Von-Neumann Architecture to

access external memory

Data Memory
Bank

Program Memory
Bank

I/O Devices

Data address bus
Program address bus
Data bank data bus
Program data bus
Control bus
I/O address bus
I/O data bus

CPU

Chapter 2

Microcontrollers and Embedded Systems

What is an imbedded system?

An embedded system is a device or devices used to control, monitor or assist the

operation of equipment, machinery or plant. The word “Embedded” reflects the

fact that they are an integral part of the system. In many cases, their

“embeddedness” may be such that their presence is far from obvious to the casual

observer.

Institute of Electrical Engineers (IEE)

Mechatronics is the synergistic combination of precision mechanical engineering,

electronic control and systems thinking in the design of products and processes

processors vs. controllers

It is a single chip with ALU, memory and I/O ports on board.

Advantages:

 Low cost (order of a few dollars)

 Low power consumption

 Low speed, on the order of 10 KHz – 33 MHz

 Small architecture (8-bit ALU, no cache, no floating-point processor, etc.)

 Small memory size, but usually enough for a typical application

 Limited I/O, enough for intended applications

 Small size

The 8051 controllers Family

 8051 8052 8031

ROM (on-chip program space) 4k 8k 0k

RAM 128 256 128

Timers 2 3 2

I/O pins 32 32 32

Serial port 1 1 1

Interrupt sources 6 8 6

The block diagram for the Intel 80C51BH family of high speed 8-bit controllers

Tutorial (I)

1. Convert the following binary numbers to decimal:

(a) 0110, (b) 1011, (c) 1111 0000, (d) 1010 1010

2. Convert these binary numbers to octal and hexadecimal:

(a) 1110 (b) 11011 (c) 110110101 (d) 1010111101110010

3. Convert the following decimal numbers to binary, and then to octal and

hexadecimal:

(a) 12 (b) 15 (c) 27 (d) 96

4. Perform the following binary additions:

(a) 1 + 1, (b) 1010 + 1111, (c) 11 0111 + 1 1000

5. Using each finger as a binary digit, what is the highest binary number you

could count using one hand? How about two hands? Why is this more

efficient than the usual way of counting on your fingers?

6. A program variable is to be used to store a unique number identifying any day

in the year. How many bits will be required to store it?

7. Multiply 0111 by 0011 in binary.

8. Add –35 to 85 using the two’s complement

9. What is the address decoded by the NAND shown:

Answers:
1. (a) 6, (b) 11, (c) 240, (d) 170

2. (a) 1110 = 16 (Octal), E (Hex).

(b) 1 1011 = 33 (Octal), 1B (Hex)

(c) 1 1011 0101 = 665 (Octal), 1B5 (Hex)

(d) 1010111101110010 = 127562 (Octal), AF72 (Hex)

3. (a) 12 = 1100 = 14 (Octal) = C (Hex)

(b) 15 = 1111 = 17 (Octal) = F (Hex)

(c) 27 = 11011 = 33 (Octal) 1B (Hex)

(d) 96 = 1100000 = 140 (Octal) = 60 (Hex)

4. (a) 1 + 1 = 10

(b) 1010 + 1111 = 1 1001

(c) 11 0111 + 1 1000 = 100 1111

5. One hand: 31 and Two hands: 1023.

6. If the days are numbered 0 to 365, then 9 bits will be insufficient.

8. 0101 0101+1101 1101 = 0011 0010

9. 9DH =10011101

A7

A0

http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/noanswer.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/noanswer.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/noanswer.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/noanswer.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/noanswer.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/binocthex.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/binocthex.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/binocthex.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/binocthex.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/binadd.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/binadd.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/binadd.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/powersof2.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/powersof2.html
http://www.cse.dmu.ac.uk/~cph/Teaching/CSYS1001/tut2/powersof2.html

Chapter 3

The 8051 Assembly Language Programming

Programming model of the 8051

We mean by the programming model the internal registers and hardware relevant to the

microcontroller programmer. Registers hold data to be processed or address of data to be

fetched.

Instructions format for the 8051 can be demonstrated by the data movement instruction

mov which copies data from a source into a destination of matching size as follows:

mov dest,source

For example,

mov A,R0 ;copies the contents of the R0 register into the accumulator A register .

mov A,#23H ;loads the accumulator A register with value 23H.

Almost all the 8051 registers are single byte wide. The following are the most widely used

registers in assembly programming:

A Register (Accumulator)

The A register is the most commonly used register in the 8051 controller. It is a general-

purpose register used for storing intermediate results obtained during an ALU operation.

Prior to executing an instruction upon any number or operand it is necessary to store it in

the accumulator first. All results obtained from arithmetical operations performed by the

ALU are stored in the accumulator. Data to be moved from one register to another must go

through the accumulator.

B Register
Multiplication and division can be performed only upon numbers stored in the A and B

registers. All other instructions in the program can use this register as a spare accumulator.

PC Program counter register
The PC register points to the next executable byte to be executed. Each code byte fetched

increments the PC register to point to the next executable instruction.

The PC in the 8051 is two-bytes wide which means that the 8051 can access addresses

from 0000h to FFFFh or 64k bytes of code. When the 8051 is powered on, the PC points at

byte in location 0000h.

Program status word (PSW) register
PSW register is one of the most important SFRs. It contains several status bits that reflect

the current state of the CPU.

P- Parity bit

Set if a number stored in the accumulator is odd. It is mainly used during data transmit and

receive via serial communication.

PSW1

This bit is intended to be used in the future versions of microcontrollers.

OV - Overflow

Set to one if the result of an arithmetical operation is larger than 255 and cannot be stored

in a single byte register.

mov A,#60H 0110 0000

add A,#46H 0100 0110

 1010 0110

It is clear that the single byte accumulator could not hold the correct answer since the

addition of two positive numbers produced a negative result (A6h = 5AH). Hence, the

overflow flag will be set OV=1.

RS0, RS1 Register bank select bits

These two bits are used to select one of four register banks of RAM; registers R0-R7 stored

in one of four banks of RAM.

RS1 RS0 Register bank Space in RAM

00 0 00H-07H

01 1 08H-0FH

10 2 10H-17H

11 3 18H-1FH

F0 - Flag 0

This is a general-purpose bit available for user

0 0 0 0 0 0 0 0 Reset value

CY AC F0 RS1 RS0 OV P Bit name
PSW7 PSW6 PSW5 PSW4 PSW3 PSW2 PSW1 PSW0

AC - Auxiliary Carry Flag

It is used for BCD operations only.

mov A,#38H 0011 1000

add A,#2FH 0010 1111

 0110 0111

AC is set since there is a carry resulted from first nibble to second nibble.

CY - Carry Flag

Carry flag bit used for all arithmetical operations and shift instructions.

mov A,#9CH 1001 1100

add A,#74H 0111 0100

1 0001 0000

CY=1 and AC =1

P0, P1, P2, P3 - I/O Registers
The 8051 has 4 ports with a total of 32 I/O pins available for connection to peripherals.

Each bit within these ports affects the state and performance of appropriate pin of the

microcontroller. Thus, bit logic state is reflected on appropriate pin as a voltage (0 or 5 V)

and vice versa, voltage on a pin reflects the state of appropriate port bit.

Figure: The block diagram for the Intel controller

1 1 1 1 1 1 1 1 Reset value

P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 Bit name

If a bit is cleared (i.e. set to 0), the appropriate pin will be configured as an output, while if

it is set (1), the appropriate pin will be configured as an input. Reset and power-on set all

port bits which means that all appropriate pins will be configured as inputs.

SP Stack pointer register
A value stored in the SP points to the first free stack address and permits stack availability.

Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack pops

decrement its value by 1.

Upon any reset and power-on, the value 7 is stored in the Stack Pointer, which means that

the space of RAM reserved for the stack starts at this location. If another value is written to

this register, the entire Stack is moved to the new memory location.

The 8051 Register Banks

The 8051 has 128 bytes of RAM that are allocated as registers and stack. They are divided

into the following three groups:

(a) First 32 bytes are reserved for register banks and stack. The PSW bits RS0 and

RS1 are used as register bank select bits.

(b) The next 16 bytes are bit-addressable read/write memory.

(c) The remaining 80 bytes are used as scratch pad RAM to store data and parameters.

7FH

30H

Scratch pad RAM

2FH

20H

Bit-addressable RAM

1FH
18H

Register bank 3

17H
10H

Register bank 2

0FH
08H

Register bank 1 (stack)

07H
00H

Register bank 0

Figure: RAM allocation in the 8051.

As shown in Figure, the first 32 bytes are allocated for 4 register banks each has 8 registers

denoted R0-R7. For example, the instruction

mov R1,#9CH

is very much the same as

mov 01,#9CH

Register bank 0 is the default unless the PSW bits RS1 RS0 are set to select another

register bank.

RS1 RS0 Register bank Space in RAM

00 0 00H-07H

01 1 08H-0FH

10 2 10H-17H

11 3 18H-1FH

This can be done using the set bit instruction as shown in the following example:

setb PSW.4 ;choose register bank 2

mov R0,#9CH ;set location 10H in RAM to be 9CH

mov R5,#26H ;set location 15H in RAM to be 26H

Stack Operations

The stack is a very important mechanism in microcontroller programming. In the

8051, the stack starts at register bank 1 of the RAM. Hence, the SP register is set

initially at 7 so that the first byte to push data into is 8. Each time a byte is pushed

into the stack, the SP is incremented by 1 till 1F is reached. Also, popping a byte

decrements SP by one till SP points at 7 again.

It must be remembered that push and pop instructions support only direct addressing,

i.e. direct RAM address as the following example shows:

mov R0,#9CH ;load R0 9CH

mov R5,#26H ;load R5 26H

push 0 ;set location 8H in RAM to be 9CH, SP=8

push 5 ;set location 9H in RAM to be 26H, SP=9

pop 3 ;pop stack into R3, i.e. R3 is set to 26H, SP=8

pop 2 ;pop stack into R2, i.e. R2 is set to 9CH, SP=7

HW#1: Problems 6, 8, 10, 37, 45, 48 (pp. 64-66).

Introduction to assembler

Assembly language codes are fast and compact which makes them easy to write

and debug. Hence, if you have a limited storage and need to develop an

application fast, the assembler language is certainly the right choice.

The following diagram illustrates the steps for producing an executable file:

Figure: Steps to assemble a file into an executable program

Assembler Directives

ORG
Used to indicate the beginning address of your code.

DATA
Used to define a name for memory locations.

SP DATA 0x81 ;special function registers

MY_VAL DATA 0x44 ;RAM location

EQU

Used to create symbols that can be used to represent registers, numbers, and

addresses

LIMIT EQU 2000

SERIAL EQU SBUF

COUNT EQU R5

MY_VAL EQU 0x44

Source File
Editor Program

ASCII

Object File

BINARY

Listing File
file.lst
ASCII

Link Library
Other object files

file.asm

Linker

Assembler Object to
Hex Converter

file.abs
Absolute

Object File
File

file.hex

OH
Executable

File

DB
CHAR DB ‘A’ ; ASCII character

SIGNED DB +127 ; Largest signed value

SIGNED2 DB 128 ; Smallest signed value

UNSIGNED DB 255 ; Largest unsigned value

BINARY DB 01011100b ; Binary value

HEX DB 42h ; Hexadecimal value

STRING DB “Salam” ; String value

END

Used to indicate the end of the assembly file

List file of a simple 8051 assembly program:

ROM

Address M/C Assembly Code

1 0000 ORG 0H ;start code at location 0

2 0000 7D26 mov R5,#26H ;load 26H into R5

3 0002 7F3C mov R7,#3CH ;load 3CH into R7

4 0004 7400 mov A,#0 ;load 0H into acc

5 0006 2D add A,R5 ;acc = acc+R5

6 0007 2F add A,R7 ;acc = R5+R7

7 0008 2415 add A,#15H ;acc = acc+15H=R5+R7+15H

8 000A 80FE here: sjmp here ;stay here

9 000C END

Rules for label:

(1) Alphanumeric in lower and upper case

(2) It can have some or all the special characters _, ?, $, @, . with some

reservations in some assemblers

(3) The first character is Alphabetic

(4) Special or reserved words are not allowed

(5) In some assemblers, the label name can start with the underline character _

Tutorial (II)

1. Determine CY and AC flags for the following code:

mov A,#0FFH 1111 1111

add A,#01H 0000 0001

1 0000 0000

ACC= 00H, CY=1 and AC =1

mov A,#0C2H 1100 0010

add A,#3DH 0011 1101

 1111 1111

ACC=FFH, CY=0 and AC =0

2. Determine the register bank used after the following code:

setb PSW.3

setb PSW.3

RS1 RS0=11 → Register bank 3

3. Determine the contents of memory locations 200H-205H after the following

code:

 ORG 200H

Data: DB “ABC123”

200H-205H has 41H 42H 43H 31H 32H 33H

Chapter 4

The 8051 Addressing Modes

General

The 8051 CPU can access data in various ways. These various ways to access data are

called addressing modes. These addressing modes are predetermined by the CPU

designer. The 8051 controller has the following addressing modes:

i. Immediate

ii. Register

iii. Memory

iv. Register indirect

v. Indexed

The immediate addressing mode

In immediate addressing, the source operand is a constant. It must be preceded by the

pound sign (#). Note the following examples:

mov A,#23H ;load 23H into acc

mov R4,#23 ;load 23 decimal into register R4

mov B,#40H ;load 40H into B

mov P1,#40H ;send 40H to port P1

mov DPTR,#4423H ;DPTR=4423H

Where the data pointer (DPTR) register is a two byte register. It can also be accessed as a

two independent single byte register DPH and DPL as shown below.

Therefore, the instruction is equivalent to the following:

mov DPH,#44H

mov DPL,#23H

DPTR DPH DPL

ORG 200H

Mydata DB “Salam”

mov DPTR,#Mydata ;DPTR=200H

The register addressing mode

Register addressing mode involves the use of registers to hold the data to be manipulated.

mov A, R0 ; copy the contents of R0 into acc

mov R2, A ; copy the contents of acc into R2

add A, R5 ; add the contents of R5 to contents of acc

add A, R7 ; add the contents of R7 to contents of acc

mov R6, A ; save the acc in R6

mov R6, R2 ; not allowed

mov DPTR, A ; error due to size mismatch

Remarks:

(a) Data movement between Rn registers is not allowed.

(b) It must be reminded that in all opcodes source and destination must match in size.

The memory addressing mode

Data in memory (RAM) can be accessed using direct addressing or register indirect

addressing modes. The RAM in the 8051 has 128 bytes allocated as follows:

a) Bytes in addresses 00-1FH are allocated to register banks and stack

b) Bytes in addresses 20-2FH are allocated for bit addressable space to save single-bit

data

c) Bytes in addresses 30-7FH are available to save data bytes

The 8051 memory map is shown in Figure below.

7FH

30H

Scratch pad RAM

2FH

20H

Bit-addressable RAM

1FH
18H

Register bank 3

17H
10H

Register bank 2

0FH
08H

Register bank 1 (stack)

07H
00H

Register bank 0

Figure: RAM allocation in the 8051.

Examples:

mov R0,40H ; copy the contents of RAM location 40H into R0

mov 55H,A ; copy the contents of acc into RAM location 55H

mov A,4 ; copy R4 into acc

mov B,0 ; copy R0 into B register

Note the absence of the pound sign #

So far, we know the RAM locations assigned to Rn registers but what about the rest of

special function registers (SFR) addresses?

a) Since RAM space from 00H to 7FH is already allocated, SFRs have addresses above

80H.

b) Not all bytes in 80-FFH are used by SFRs and may not be used by 8051

programmer.

Table: SFR addresses

Symbol Name Address
 Acc* Accumulator 0E0H
B* B register 0F0H
PSW* Program status word 0D0H
SP Stack pointer 81H
DPTR Data pointer
DPL Data pointer low byte 82H
DPH Data pointer high byte 83H
P0* Port 0 80H
P1* Port 1 90H
P2* Port 2 0A0H
P3* Port 3 0B0H
IP* Interrupt priority control 0B8H
IE* Interrupt enable control 0A8H
TMOD Time/counter mode control 89H
TCON* Time/counter control 88H
T2CON* Time/counter 2 control 0C8H
T2MOD Time/counter 2 mode control 0C9H
TH0 Time/counter 0 high byte 8CH
TL0 Time/counter 0 low byte 8AH
TH1 Time/counter 1 high byte 8DH
TL1 Time/counter 1 low byte 8BH
TH2 Time/counter 2 high byte 0CDH
TL2 Time/counter 2 low byte 0CCH
RCAP2H T/C 2 capture register high byte 0CBH
RCAP2L T/C 2 capture register low byte 0CAH
SCON* Serial control 98H
SBUF Serial data buffer 99H
PCON

Power control 87H
* Bit-addressable

Example:

Write assembly code to send 55H to port P1 and P2 using their names and addresses.

mov A,55H ; acc= 55H

mov P1,A ; copy the contents of acc into port 1

mov P2,A ;copy acc into P2

or equivalently

mov A,55H ; acc= 55H

mov 90H,A ; copy the contents of acc into port 1

mov 0A0H,A ;copy acc into P2

Register indirect addressing mode

In this addressing mode, registers R0 and R1 are used as pointers to data. This means that

the data address is held in one of these registers. They must be preceded by the address

pointer sign @.

mov A,@R0 ; move contents of RAM whose address is held in R0 into acc

mov @R1,B ; move contents of B into RAM location pointed at by contents of R1

Example:

Write an assembly code to copy the value 55H into RAM locations 40H-43H.

mov A,#55H ; A=55H

mov R0,#40H ; R0=40H to point to RAM location 40H

mov @R0,A ; RAM location 40H=55H

inc R0 ; increment R0 to point to next byte

mov @R0,A ; RAM location 41H=55H

inc R0 ; increment R0 to point to next byte

mov @R0,A ; RAM location 42H=55H

inc R0 ; increment R0 to point to next byte

mov @R0,A ; RAM location 43H=55H

A more elegant to do the above code is to use a loop as follows:

mov A,#55H ; A=55H

mov R0,#40H ; R0=40H to point to RAM location 40H

mov R2,#04H ; set counter R2=4H

again: mov @R0,A ; copy acc to RAM location

inc R0 ; increment R0 to point to next byte

djnz R2, again ; decrement R2 and jump in not zero to again

The listing file for the above code is shown below:

8051 Assembler Version 1.00 03/18/112 01:06:51 Page 1
C:\LaTeX\COURSES\Microcontrollers\8051Assembler\p1.a51

1 0000 org 0h
 2 0000 7455 mov A,#55H ; A=55H
 3 0002 7840 mov R0,#40H ; R0=40H to point to RAM location 40H
 4 0004 7A04 mov R2,#04H ; set counter R2=4H
 5 0006 F6 again: mov @R0,A ; copy acc to RAM location
 6 0007 08 inc R0 ; increment R0 to point to next byte
 7 0008 DAFC djnz R2, again ; decrement R2 and jump in not zero to again
 8 000A end

Defined Symbols:
Defined Labels:
 again 000006 6

Now, since R0 and R1 are one byte wide, data outside FFH space cannot be accessed. In

this case, the DPTR register may be used to access data stored in externally connected

RAM or on-chip ROM.

Example: (Look-up tables)

Write an assembly code to get the value of an integer between 0 and 9 from port P1 and its

square to P2. Assume the look-up table address starts at 300H.

ORG 0

mov DPTR,#300H ; look-up table pointer

mov A,#0FFH ; A=FF

mov P1,A ; configure P1 as input port

again: mov A,P1 ; get x from port P1

movc A,@A+DPTR ; move code byte pointed at by acc+DPTR (look-up table)

mov P2, A ; send square to P2

sjmp again ; short jump again

ORG 300H

xsqr_table:

DB 0,1,4,9,16,25,36,49,64,81

END

Chapter 5

Arithmetic, Logic and Program Control Instructions

Programming Instructions

The 8051 controller program comprises a set of instructions written by the programmer.

There are four classes of instructions:

1. Arithmetic operations

2. Logic operations

3. Data transfer operations

4. Branch operations

Arithmetic operations

Arithmetic instructions operate on whole numbers only and support addition,

subtraction, multiplication and division.

Addition

add A,#66H ; add the hex number 66 to the accumulator A

Remember that this is an example of immediate addressing. The # sign is important,

if it were omitted the operation would have a different meaning.

add A,66H ; add to accumulator A the contents of RAM address 0066H

This is an example of direct addressing.

inc 66H ; increment (add 1) the contents of address 0066H

Is there a difference between: (a) add A,#1H (b) inc A ?

Subtraction

subb A, #66H ; subtract 66H from the contents of A

The extra B in the instruction implies Borrow. If the contents of A are less than

the number being subtracted then bit 7 of the program status word (PSW).

dec A ; decrement A by 1and put result into A

Multiplication

The 8051 supports mutliplications of unsigned bytes.

mul AB ; multiply the contents of A and B, put the answer in AB

A is the accumulator and B is another 8-bit SFR provided for use with the

instructions multiply and divide. The 2 byte product of the multiplication process

would be stored in the concatenated AB register.

Example

If A = 135 decimal, B = 36 decimal. What would be the value in each register after

executing the instruction mul AB?

Solution

A  B = 4860 = 12FCH so that 2H would be placed in A and FCH in B

Division

div AB ; divide A by B, put quotient in A and remainder in B

Example

Let A =135, B = 36. What would be the value in each register after execution of

the instruction div AB?

Solution

Decimal values are assumed if the value quoted is not followed by an H

A/B = 3; remainder 27 = 1BH: Hence 03H in A, 1BH in B

Logic operations

The set of logic functions include:

1. anl AND Logic

2. orl OR Logic

3. xrl exclusive OR Logic

4. cpl Complement (i.e. switch to the opposite logic level)

5. rl Rotate Left (i.e. shift byte left)

6. rr Rotate Right (i.e. shift byte right)

7. setb Set bit to logic 1

8. clr Clear bit to logic 0

AND operation

The anl instruction is useful in forcing a particular bit in a register to logic 0

without altering other bits. The technique is called masking.

Suppose register 1 (R1) contains EDH (1110 1101B), i.e. bit 1 and bit 4 are at logic

0, the rest at logic 1.

anl R1, #7FH ; 7FH = 0111 1111B, forces bit 7 to zero

ORL operation

Another aspect of masking is to use the ORL instruction to force a particular bit to

logic 1, without altering other bits. For example, the power control (PCON) SFR in

the 8051 family, is not bit addressable and yet has a couple of bits that can send the

microcontroller into idle mode or power down mode, useful when the power source

is a battery. The contents of the PCON SFR are:

PCON

SMOD1 SMOD2 POF GPF1 GPF2 PD IDL

 SMOD1 and 2 are used when setting the baud rate of the serial onboard

peripheral.

 POF, GPF1, and GPF2 are indictor flag bits.

 IDL is the idle bit; when set to 1 the microcontroller core goes to sleep and

becomes inactive. The on-chip RAM and SFRs retain their values.

 PD is the Power Down bit, which also retains the on-chip RAM and SFR

values but saves the most power by stopping the oscillator clock.

orl PCON,#02H ; enables Power Down

orl PCON,#01H ; enables Idle mode

Either mode can be terminated by an external interrupt signal.

CPL complement operation

The instructions described so far have operated on bytes (8 bits) but some

instructions operate on bits and CPL is an example.

cpl P1.7 ; complement bit 7 on Port 1

Port 1 is one of the microcontroller’s ports with 8 pins.

Example

If the contents of port 0 (P0) = 125, what would be the port contents after

execution of the following instruction?

cpl P0

Solution

P0 = 125 = 01111101 B = 7DH

cpl P0 will complement P0 to 82H =130

RL, rotate left one bit, RR, rotate right one bit operations

Suppose the accumulator A contents are 01H, then

rl A ; contents of A become 0000 0010B or 02H

rl A ; 0000 0100B or 04H

rl A ; 0000 1000B or 08H

rl three times has the effect of multiplying A by 2
3
 i.e. by 8.

On the other hand, suppose the accumulator A contents are 80H, or 128 decimal,

then:

rr A ; contents of A become 0100 0000B which is 64 decimal

rr A ; A becomes 0010 0000B=32 decimal

rr A ; A becomes 0001 0000B=16 decimal

rr three times has the same effect as dividing A by 2
3
 i.e. 8.

SETB set bit, CLR clear bit operations

This instruction operates on a bit, setting it to logic 1.

setb P1.7 ; set bit 7 on Port 1 to logic 1

Example

Consider Figure below where pin 7 of port 1 is connected as shown.

setb P1.7 puts logic 1 (e.g. 5 V) onto the inverter input and therefore its output,

the LED cathode, is at 0V causing current to flow through the LED.

The LED has a particular forward voltage Vf. Typically Vf = 2.2V and forward

current If = 8mA so that:

R = (5Vf)/ If = (5-2.2)/8mA = 350

clr P1.7 ; clears bit 7 on port 1 to zero

clr P1.7 puts logic 0 on the inverter gate input and therefore its output, the LED

cathode, becomes logic 1 which is 5 V. This gives a voltage difference of 0V and

the LED turns off.

The inverter gate in the above circuit provides a good current buffer protecting the

microcontroller port pin from unnecessary current loading. In the above circuit the

current flow is between the inverter gate and the 5V DC supply.

Data transfer operations

This is mainly concerned with transfer of data bytes.

MOV operation example

Consider driving a seven-segment display (decimal point dp included) where each

LED is driven by the sink method as shown in Figure below:

where each LED illuminates a segment. The seven-segment display is shown to the

right with its standard segment identification letters.

Now, let us write two program lines, one to display 3, the second to display 4

turning the decimal point off in both cases.

 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

 dp g f e d c b a

3 1 0 1 1 0 0 0 0 B0H

4 1 0 0 1 1 0 0 1 99H

mov P1,#0B0H ; display 3

mov P1,#99H ; display 4

Note: mov P1,#B0H would give a syntax error. In common with a number of cross

assemblers the software would see B0H as a label because it starts with a hex

symbol, therefore. a zero must be placed in front of the hex symbol .

HW#2: Problems 1, 3, 12, 15, 24 (pp. 174-176).

Application Projects

Project 1: Speed control of a small DC motor

The requirement is to use the 8051 microcontroller to drive a DC motor in both

forward and reverse directions of shaft rotation and to implement a two-speed (fast

and slow) arrangement. Switches are to be used to produce the two speeds and

effect a reversal of shaft rotation.

Project 2: Speed control of a stepper motor

The requirement are similar to Project 1 but for driving a stepper motor in both

forward and reverse directions of shaft rotation and to implement a two-speed (fast

and slow) arrangement. Switches are to be used to produce the two speeds and

effect a reversal of shaft rotation.

Project 3: Function generator

The requirement is to design a function generator, using the 8051 microcontroller,

with the minimal amount of external components, to generate sine, square and

sawtooth waveforms. The output of the circuit is not designed to source an output

current to the circuits under test and a buffer circuit is required to enhance the

current sourcing capability and also provide a low output resistance for the

function generator.

Project 4: InfraRed Remote Switch

The requirement is to switch on/off the Home Appliances by using a standard

Remote control. The system is used to switch on/off several electrical devices. All

the above processes are controlled by the 8051Microcontroller. The

Microcontroller receives the Infrared Signal from the receiver and it decodes and

switch on/off the appropriate Device.

Project 5: Traffic Light Controller

The requirement is to use the 8051 microcontroller to design a four way traffic

signal with Green, Yellow, and Red LEDs. The traffic signal should be timed to

reflect road traffic condition.

Project 6: Two Line Intercom

The requirement is to use the 8051 microcontroller to design an electronic private

exchange. It has two telephones, which have the intercom facility, and they can be

connected to the telephone line. The DTMF (Dual Tone Multiple Frequency)

signals are decoded by a DTMF decoder and the switching functions are done via

relays.

Project 7: Temperature controlled Fan

The requirement is to use the 8051 microcontroller to control Fan speed according

to the temperature and it also indicates the temperature. The system will get the

temperature from sensor and it will control the speed according the values stored

by designer in the code.

