Electric Drives Potentials on Tractors and Implements

Dr. Joachim Sobotzik John Deere Global Tractor Electronic Engineering 8 July 2010

Agenda

- John Deere E-Premium
- Tractor / Implement Electrification
- Design Criteria
- Summary & Vision

E-Premium 7430 and 7530

Intro at Agritechnica in 2007 First Electrification in series production within Ag Catalyst for Electrification within Ag

JOHN DEERE

Awards: Agritechnika Gold Medal FIMA Gold Medal Royal Show Award

3

•Flywheel mount 20kW generator

•High power 14 V system, 300amps cont.

•Full reversible radiator fan drive (screen cleaning)

- •Mobile power generation
- utility tools
- emergency power supply
- 230V 1-phase / 400V 3-phase

•Auxiliary power management to reduce parasitic power losses

•Engine rpm independant cab cooling

- •Flywheel mount 20kW generator
- •High power 14 V system, 300amps cont.
- •Full reversible radiator fan drive (screen cle
- •Mobile power generation
- utility tools
- emergency power supply
- 230V 1-phase / 400V 3-phase
- Auxiliary power management to reduce para
- •Engine rpm independant cab cooling

- •Flywheel mount 20kW generator
- •High power 14 V system, 300amps cont
- •Full reversible radiator fan drive (screen
- •Mobile power generation
- utility tools
- emergency power supply
- 230V 1-phase / 400V 3-phase
- •Auxiliary power management to reduce
- •Engine rpm independant cab cooling

•Flywheel mount 20kW gene

•High power 14 V system, 3

•Full reversible radiator fan d

- •Mobile power generation
- utility tools
- emergency power supply
- 230V 1-phase / 400V 3

Auxiliary power manageme

•Engine rpm independant ca

- •Flywheel mount 20kW ger
- •High power 14 V system,
- •Full reversible radiator fan
- •Mobile power generation
- utility tools
- emergency power supp
- 230V 1-phase / 400V 3
- Auxiliary power managem
- •Engine rpm independant ca

Electrification of Auxiliaries: What's next?

A Trend?

Agritechnika 2009

Vision: Next level of Electrification

Electric power for Implements

Targets:

- Enhanced plug-n-play
- Increased power density
- Controlled power distribution
- Reduced input costs
- Optimized implements, better output quality

A New I dea?

(Above) When the power line fails, just plug in Electrall to prevent financial loss and inconvenience. It supplies power to keep the farmstead fully electrified.

PORTABLE POWER

Gives you "highline" power wherever your tractor will go

STANDBY POWER

Provides stand-by power in case of highline outage

MOBILE POWER

Drive balers and other machines with electric power

IH Electrall is a high-capacity electric generator that you can mount on your Farmall 450. It furnishes 115-volt and 208-volt single-phase service and 208-volt three-phase service. Output rating is 12.5 kva. This capacity lets you use your time-saving electric tools, and motors up to 10 hp, wherever your tractor will go; powers your house and barn equipment during highline failures; and drives a McCormick 55 baler, or other machines equipped with Electrall motor.

(Below) Electrall powered baler is started and stopped by an on-off switch. Electrall motor is completely enclosed and waterproof, readily transferred to other jobs.

Farmall 400, 1954

... should we really continue this way?

... or is there a vision?

Electric Power Interfaces: A complement

Tractor/Implement Electrification Architectures

Implement Example – Sprayer

19

Pneumatic Planter

20

Rauch EDR fertilizer spreader

Source: N. Rauch: Mit elektrischen Antrieben Traktor-Geräte Kombinationen optimieren, VDI Profi Tagung, Feb. 2010

Rauch EDR fertilizer spreader

🦲 John Deere

22

Design Criteria

Voltage level

power level to be considered

technology from industrial automation

components from automotive applications

Safety

to be ensured during design, manufacturing, operation & service safety by system design

system design has to avoid need for educated personal in service

Design Criteria: Voltage Level

- Costs for power electronics driven by current level
- same relations apply from 50...1000VAC (75...1500VDC)
- 400/480VAC common in industry/on farms
- e.g. 100kW @ 480VAC: 50A; 6mm²...10mm²
- Automotive e.g.: 300VDC (Prius 2002) to 700VDC (Lexus 2009)

Design Criteria: Automotive target costs

Automotive Industry:

Electric Propulsion System with a 15-year life capable of delivering at least 55 kW for 18 seconds and 30 kW continuous at a system cost of \$12/kw peak by 2015.*

Susan Rogers, Manager Vehicle Technologies Program: Energy Efficiency and Renewable Energy U.S. Department of Energy Feb 28, 2008

C JOHN DEERE

Traction drive system: motor, power electronics, wiring harness, 30 (50) kW

Design Criteria: Automotive target costs

Automotive Industry:

Power Electronics			Motor			Traction Drive System				
(\$/kW)	(kW/kg)	(kW/l)	(\$/kW)	(kW/kg)	(kW/l)	(\$/kW)	(kW/kg)	(kW/l)	Efficiency	Coolant
7.9	10.8	<mark>8.7</mark>	11.1	1.2	3.7	19	1.06	2.6	>90%	90°C
5	12	12	7	1.3	5	12	1.2	3.5	>93%	105°C
3.3	14.1	13.4	4.7	1.6	5.7	8	1.4	4	>94%	105°C
	Powe (\$/kW) 7.9 5 3.3	Power Electr (\$/kW) (kW/kg) 7.9 10.8 5 12 3.3 14.1	Power Electronics (\$/kW) (kW/kg) (kW/l) 7.9 10.8 8.7 5 12 12 3.3 14.1 13.4	Power Electronics (\$/kW) (kW/kg) (kW/l) (\$/kW) 7.9 10.8 8.7 11.1 5 12 12 7 3.3 14.1 13.4 4.7	Power Electronics Motor (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/kg) 7.9 10.8 8.7 11.1 1.2 5 12 12 7 1.3 3.3 14.1 13.4 4.7 1.6	Power Electronics Motor (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/kg) (kW/l) 7.9 10.8 8.7 11.1 1.2 3.7 5 12 12 7 1.3 5 3.3 14.1 13.4 4.7 1.6 5.7	Power Electronics Motor (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/kg) (kW/l) (\$/kW) 7.9 10.8 8.7 11.1 1.2 3.7 19 5 12 12 7 1.3 5 12 3.3 14.1 13.4 4.7 1.6 5.7 8	Power Electronics Motor Traction (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/kg) (kW/	Motor Traction Drive $(\$/kW)$ (kW/kg) (kW/k) (kW/kg)	Power Electronics Motor Traction Drive System (\$/kW) (kW/kg) (kW/l) (\$/kW) (kW/lg) (kW/l) (\$/kW) (kW/lg) (kW/lg) (kW/lg) Efficiency 7.9 10.8 8.7 11.1 1.2 3.7 19 1.06 2.6 >90% 5 12 12 7 1.3 5 12 1.2 3.5 >93% 3.3 14.1 13.4 4.7 1.6 5.7 8 1.4 4 >94%

Traction Drive System Efficiency Target is for 10% -100% speed @ 20% of Rated Torque

Susan Rogers, Manager Vehicle Technologies Program: Energy Efficiency and Renewable Energy U.S. Department of Energy Feb 28, 2008

Summary & Vision

Electric drives have entered the arena of Ag machinery

- Tractor
 - Engine Auxiliaries
 - Traction Drives
- Implement
 - Control and Distribution
 - New Implement Topologies (compare to industrial automation)
 - Optimized attachment, plug&play
 - Enhancement to ISOBUS and Automation

Summary & Vision

- Tractor/implement system electrification
 - Technology transfer from automation industry
 - Agricultural System Engineering will apply technology to optimize processes and reduce input costs
 - Obvious system level benefits of electric drives will allow new types of machinery
 - For Ag a standardized interface is one key element for success
 - Mitigation scenarios have to be provided for existing equipment
 - The ideas for system-level opportunities in combination with automation, navigation and energy storage systems

