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Abstract— An efficient technique for the rapid devel-
opment of electric Green’s dyadics of a transversely
layered, terminated rectangular waveguide is presented
with application to waveguide-based aperture-coupled
patch arrays. This technique uses a partial eigenfunc-
tion expansion resulting in a Sturm-Liouville problem
for one-dimensional characteristic Green’s functions in
the waveguiding direction. In this representation, the
one-dimensional characteristic Green’s functions pro-
vide physical insight into resonance and surface wave
effects occurring in overmoded layered waveguide tran-
sitions. Particularly, this is related to the correlation
between transverse resonances in the waveguide cross-
section and surface waves associated with a grounded
dielectric slab waveguide. This is demonstrated for the
examples of aperture-coupled patch arrays in the N-
port waveguide transition, although the analysis is ap-
plicable to other waveguide-based antenna structures,
which allow for the propagation of surface waves.

Index Terms — Dyadic Green’s functions, integral
equations, method of moments, patch, slot arrays,
waveguide transition, surface waves.

I. Introduction

The work described here was motivated by the need
to develop a modeling environment for waveguide-
based spatial power combining circuits in order to in-
crease the general understanding of the system behav-
ior and to aid in the design process. A general al-
gorithm for the analysis of waveguide-based amplifier
arrays has been recently developed in [1], [2]. The
full-wave analysis of interacting electric- (patch, strip)
and magnetic-type (slot, aperture) antennas is based
on the Generalized Scattering Matrix (GSM) approach
in conjunction with the integral equation formula-
tion for electric and magnetic currents discretized via
the Method of Moments (MoM). The electric Green’s
dyadics in this formulation provide the necessary rela-
tionship between scattered fields and induced currents
serving as kernels of the integral equations.

Dyadic Green’s functions for rectangular waveg-
uides and cavities have been studied by many au-

thors. A traditional and general way to construct
Green’s functions for a closed-boundary guided-wave
structure, semi-infinite waveguide, and cavity is to use
the Hansen vector wave functions M , N , and L (or
only transverse functions M and N) in a double series
expansion [3, p. 1782], [4]. Thus, electric and mag-
netic dyadic Green’s functions for uniform infinite and
semi-infinite rectangular waveguides were obtained in
[4]–[6], and in [4]–[7] for a rectangular cavity. Also,
this type of Green’s function expansion was utilized by
other authors, for example, in [8] for exterior and inte-
rior electromagnetic boundary value problems. There
also has been work on dyadic Green’s functions for
a rectangular waveguide with multilayered dielectric,
filled transversely with respect to the direction of wave
propagation. Electric and magnetic Green’s functions
for an infinite waveguide with the transverse dielec-
tric slab were presented in [9] for a full-wave analysis
of antenna radiation in a layered rectangular waveg-
uide. The method of mode expansion and scatter-
ing superposition were applied in [10] to construct the
electric Green’s function for a multilayered rectangu-
lar waveguide. A general way of constructing electric
and magnetic dyadic Green’s functions for a multilay-
ered, terminated rectangular waveguide was proposed
in [11], where coefficients of Green’s functions in a dou-
ble series expansion were obtained in terms of recur-
rent transmission matrices.

An alternative representation of a Green’s func-
tion for closed-boundary cylindrical waveguides and
cavities is a series expansion over the complete sys-
tem of eigenfunctions of a Sturm-Liouville operator
with the one-dimensional characteristic Green’s func-
tion [12]. This type of Green’s function expansion
was introduced by Schwinger for cylindrical tubes [13,
p. 301 and references therein] and waveguide dis-
continuty problems [14]. The properties of complete-
ness and orthogonality of eigenfunctions in the waveg-
uide cross-section enable the formulation of a Sturm-
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Liouville problem for the characteristic Green’s func-
tion in the waveguiding direction. In fact, it was
applied in [15] in the derivation of the magnetic po-
tential Green’s dyadic (diagonal tensor) for rectan-
gular waveguides and cavities using scalar eigenfunc-
tions of the Laplacian operator. Important develop-
ments of this approach have been reported in the Rus-
sian and Ukrainian literature, for example, in [16] for
application to three-dimensional waveguide disconti-
nuities and to antenna problems [17], [18]. Electric
dyadic Green’s functions for a multilayered rectangu-
lar waveguide were also developed in [19], [20] with ap-
plication to shielded printed-circuit transmission lines.

The central contribution of this paper is the presen-
tation of an efficient technique for the rapid develop-
ment of electric dyadic Green’s functions of the third
kind of a transversely layered, terminated rectangular
waveguide. This technique uses a partial eigenfunc-
tion expansion resulting in a Sturm-Liouville problem
for one-dimensional characteristic Green’s functions in
the waveguiding direction. Components of the Green’s
dyadics are expressed in a double series expansion over
the complete system of orthonormal eigenfunctions of
the transverse Laplacian operator. The unknown co-
efficients in this expansion represent one-dimensional
characteristic Green’s functions along the waveguide.
In this representation, transverse and longitudinal co-
ordinates are functionally separated, which allows one
to immediately reduce the three-dimensional problem
to a one-dimensional Sturm-Liouville boundary value
problem for the unknown characteristic Green’s func-
tions. The analytical form of obtained characteristic
Green’s functions provides physical insight into reso-
nance and surface wave effects occurring in overmoded
layered waveguide transitions. Specifically, the poles
of Green’s functions represent the roots of character-
istic equations for resonance frequencies of transverse
wavenumbers in the layered waveguide cross-section.
It occurs that this is associated with the propagation
constant (calculated at the resonance frequency) of TE
and TM surface waves of the grounded dielectric slab
waveguide. At transverse resonance frequency the en-
ergy of modes propagating along the waveguide is cou-
pled to the energy of surface waves of the dielectric
slab resulting in sharp resonances in the reflection co-
efficient. This is demonstrated for the examples of 2×3
and 3 × 4 aperture-coupled patch arrays analyzed in
[2], [21].

II. Integral Equation Formulation

Consider the waveguide-based transition module
containing arbitrarily shaped interacting electric-
(patch, strip) and magnetic-type (slot, aperture) dis-
continuities as shown in Fig. 1. Regions V1, V2, and
V3 are characterized by dielectric materials with per-
mittivities ε1, ε2, and ε3, respectively. The electric-
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Fig. 1. Waveguide-based transition module of interacting
electric- (patch, strip) and magnetic-type (slot, aperture)
discontinuities.

type antennas, Sq
m, are located on the transverse in-

terface Sd (z = 0) of two adjacent layers with permit-
tivities ε1 and ε2. The magnetic-type antennas, Si

a,
are positioned in the ground plane Sg (z = τ) which
separates regions V2 and V3. The problem is formu-
lated for electric currents Jq(�r ′) and magnetic cur-
rents Mi(�r ′) induced on the surfaces Sq

m and Si
a, re-

spectively, due to an impressed electric current source
Jimp(�r) ⊂ V1. The integral equation formulation was
presented in [1] for a two-port waveguide transition
similar to that shown in Fig. 1 (the formulation for an
aperture-coupled patch array in an N -port waveguide
transition was described in [2]). Here we summarize
a system of coupled integral equations obtained for
interacting electric- and magnetic-type antennas. The
electric-field integral equation is obtained by enforcing
a boundary condition for tangential components of the
total electric field on metal surfaces Sq

m at z = 0,

ẑ × E
inc

1 (�r) =

ωµ0ẑ ×
N∑

q=1

∫
Sq

m

Jq(�r ′) · G(1)

e11(�r
′, �r)dS′

−ẑ ×
M∑
i=1

∫
Si

a

Mi(�r ′) · [∇′ × G
(1)

e21(�r
′, �r)]dS′ (1)

where E
inc

1 is the incident electric field due to Jimp [1].

The electric Green’s dyadics of the third kind, G
(1)

e11

and G
(1)

e21, are obtained as the solution of the electric-
type boundary value problem for a semi-infinite par-
tially filled waveguide (regions V1 and V2) terminated
by a ground plane at z = τ (the Green’s functions are
derived in the section to follow).

The magnetic-field integral equation is obtained by
imposing a continuity condition for tangential compo-
nents of the magnetic field across surfaces Si

a at z = τ ,

ẑ × H
inc

2 (�r) =

ACES JOURNAL, VOL. 17, NO. 2, JULY 2002124



y

0 τ

ε1 2

SM

V3

ε ε3

z
V2

SG
✱

V1

r

S

r r11
s

21

D

Fig. 2. Two-layered, terminated rectangular waveguide with an
electric point source (starred) arbitrarily located in region
V1 used in the electric-field formulation.

−ε2
ε1

ẑ ×
N∑

q=1

∫
Sq

m

Jq(�r ′) · [∇′ × G
(2)

e12(�r
′, �r)]dS′

−ωε0ẑ ×
M∑
i=1

∫
Si

a

Mi(�r ′) · [ε2G
(2)

e22(�r
′, �r)

+ε3G
(2)

e (�r ′, �r)]dS′. (2)

Here, H
inc

2 is the incident magnetic field at z = τ due
to Jimp in V1. The electric Green’s dyadics of the third

kind, G
(2)

e12 and G
(2)

e22, are obtained as the solution of
the magnetic-type boundary value problem for a par-
tially filled, terminated waveguide (the Green’s func-
tions are derived in the next section). The electric

Green’s dyadic of the second kind, G
(2)

e , for a semi-
infinite rectangular waveguide (region V3) is described
in Appendix of [2]. The coupled system of integral
equations (1), (2) is discretized via the Method of Mo-
ments resulting in the Generalized Scattering Matrix
(GSM) for evanescent and propagating TE and TM
modes [1], [2].

III. Electric Green’s Dyadics for a Layered
Waveguide

A. Electric-Type Boundary-Value Problem

To determine the electric Green’s dyadics, a bound-
ary value problem is formulated for a partially filled,
terminated rectangular waveguide with a ground plane
placed at z = τ as shown in Fig. 2. The problem is
solved in the absence of metal surfaces Sq

m and aper-
tures Si

a with an electric point source positioned in
region V1. Electric dyadic Green’s functions in regions
V1 and V2 are obtained as the solution of the system
of dyadic differential equations [4]:

∇×∇× G
(1)

e11(�r, �r
′) − k2

1G
(1)

e11(�r, �r
′) = Iδ(�r − �r ′), (3)

�r, �r ′ ∈ V1

∇×∇× G
(1)

e21(�r, �r
′) − k2

2G
(1)

e21(�r, �r
′) = 0, (4)

�r ∈ V2 , �r ′ ∈ V1

subject to boundary conditions of the first kind on the
waveguide surface SM and surface of the ground plane
SG (Fig. 2),

n̂ × G
(1)

e11(�r, �r
′) = 0, �r ∈ SM (5)

n̂ × G
(1)

e21(�r, �r
′) = 0, �r ∈ SM ∪ SG (6)

and mixed continuity conditions for the electric
Green’s dyadics of the third kind across the dielectric
interface SD:

ẑ × G
(1)

e11(�r, �r
′) = ẑ × G

(1)

e21(�r, �r
′), �r ∈ SD

ẑ ×∇× G
(1)

e11(�r, �r
′) = ẑ ×∇× G

(1)

e21(�r, �r
′), �r ∈ SD (7)

Here, k1,2 = k0
√

ε1,2, k0 = 2π/λ0; n̂ is an outward
normal to the surface enclosing volumes V1 and V2,
respectively. The radiation condition at infinity for the

dyadic Green’s function G
(1)

e11 is also satisfied (similar
to the limiting absorption principle for scattered fields
[22]).

The solution of the boundary value problem (3)-(7)
yields nine components of the electric Green’s dyadics,
which can be expressed as a partial eigenfunction ex-
pansion,{

G
(1)νυ
e11

G
(1)νυ
e21

}
=

∞∑
m=0

∞∑
n=0

φ(1)ν
mn (x, y)φ(1)υ

mn (x′, y′)

{
f

(11)νυ
mn (z, z′)

f
(21)νυ
mn (z, z′)

}
(8)

for ν, υ = x, y, z, where φ
(1)ν
mn (x, y) are the orthonormal

eigenfunctions of the transverse Laplacian operator de-
termined as

φ(1)x
mn (x, y) =

√
ε0mε0n

ab
cos

(mπx

a

)
sin

(nπy

b

)

φ(1)y
mn (x, y) =

√
ε0mε0n

ab
sin

(mπx

a

)
cos

(nπy

b

)

φ(1)z
mn (x, y) =

√
ε0mε0n

ab
sin

(mπx

a

)
sin

(nπy

b

)
(9)

and f
(11)νυ
mn (z, z′) and f

(21)νυ
mn (z, z′) are the one-

dimensional characteristic Green’s functions. In (9),
ε0m, ε0n are Neumann indexes, such that ε00 = 1
and ε0m = 2, m �= 0. Note that the Green’s dyadics
developed here are used in the integral equation for-
mulations for transverse planar metal conductors and
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slot apertures. Thus, z-directed current sources are
not considered, which eliminates the need to con-
sider Green’s function components G

(1)νz
e11 and G

(1)νz
e21 ,

ν = x, y, z, in the analysis to follow.
Using the properties of orthogonality∫ a

0

∫ b

0

φ(1,2)ν
mn (x, y)φ(1,2)ν

ps (x, y)dydx = δmpδns (10)

and completeness

∞∑
m=0

∞∑
n=0

φ(1,2)ν
mn (x, y)φ(1,2)ν

mn (x′, y′) = δ(x − x′)δ(y − y′)

(11)
of the eigenfunctions φ

(1)ν
mn (x, y) in the double se-

ries expansion (8) allows the system of dyadic dif-
ferential equations (3) and (4) to be reduced to
a system of second-order differential equations for
the one-dimensional characteristic Green’s functions
f

(11)νυ
mn (z, z′) and f

(21)νυ
mn (z, z′),(

∂2

∂z2
− γ(1)2

mn

)
f (11)νυ

mn (z, z′) = −ξνυ
mnδ(z − z′) (12)(

∂2

∂z2
− γ(2)2

mn

)
f (21)νυ

mn (z, z′) = 0, ν, υ = x, y

where

ξxx
mn =

k2
1 − (

mπ
a

)2

k2
1

, ξyy
mn =

k2
1 − (

nπ
b

)2

k2
1

,

ξxy
mn = ξyx

mn = −
(

mπ
a

) (
nπ
b

)
k2
1

and

γ(1,2)
mn =

√(mπ

a

)2

+
(nπ

b

)2

− k2
1,2. (13)

The boundary condition (6) on the ground plane SG,
written in terms of the Green’s function components,
is reduced to the boundary condition for the one-
dimensional characteristic Green’s functions at z = τ
and z > z′,

f (21)νυ
mn (τ, z′) = 0. (14)

The continuity conditions (7) on the dielectric inter-
face at z = 0 and z > z′ are obtained as

f (11)νυ
mn (0, z′) = f (21)νυ

mn (0, z′), (15)
mπ

a
f (11)zυ

mn (0, z′) − ∂

∂z
f (11)xυ

mn (0, z′)

=
mπ

a
f (21)zυ

mn (0, z′) − ∂

∂z
f (21)xυ

mn (0, z′), (16)

nπ

b
f (11)zυ

mn (0, z′) − ∂

∂z
f (11)yυ

mn (0, z′)

=
nπ

b
f (21)zυ

mn (0, z′) − ∂

∂z
f (21)yυ

mn (0, z′),

and the z-directed Green’s functions f
(11)zυ
mn and

f
(21)zυ
mn introduced in (16) can be expressed in terms

of transverse components,

f (i1)zυ
mn =

1

γ
(i)2
mn

∂

∂z

(mπ

a
f (i1)xυ

mn +
nπ

b
f (i1)yυ

mn

)
(17)

for i = 1, 2.
The solution of the system of differential equations

(12) is obtained as a superposition of primary and scat-
tered parts,

f (11)νυ
mn (z, z′) = ξνυ

mn

e−γ(1)
mn|z−z′|

2γ
(1)
mn

+ η−(11)
νυ (z′)eγ(1)

mnz (18)

f (21)νυ
mn (z, z′) = η+(21)

νυ (z′)e−γ(2)
mnz

+η−(21)
νυ (z′)eγ(2)

mn(z−τ). (19)

In (18) the primary part is due to a point source posi-
tioned in region V1, and the scattered part represents
waves reflected from the interface at z = 0, traveling
in the negative z-direction. In (19) we have only the
scattered part which is described by traveling back-
ward and forward waves propagating in region V2 (be-
tween the interface at z = 0 and the ground plane at
z = τ). The unknown η-coefficients to be determined
are subject to the boundary and continuity conditions
(14) and (15), (16), respectively, and can be obtained
in closed form.

Finally, this procedure results in the representa-
tion of the one-dimensional transverse characteristic
Green’s functions f

(11)νυ
mn (z, z′) in terms of the primary

and scattered parts,

f (11)xx
mn (z, z′) = ξxx

mn

e−γ(1)
mn|z−z′|

2γ
(1)
mn

(20)

−eγ(1)
mn(z+z′)

(
ξxx
mn

2γ
(1)
mn

− 1
ZTE

o

+
(mπ

a )2ZTE
e

k2
1Z

TE
o ZTM

e

)

f (11)xy
mn (z, z′) = f (11)yx

mn (z, z′) = ξxy
mn

×
(
e−γ(1)

mn|z−z′|

2γ
(1)
mn

−eγ(1)
mn(z+z′)

(
1

2γ
(1)
mn

− ZTE
e

ZTE
o ZTM

e

))

f (11)yy
mn (z, z′) = ξyy

mn

e−γ(1)
mn|z−z′|

2γ
(1)
mn

−eγ(1)
mn(z+z′)

(
ξyy
mn

2γ
(1)
mn

− 1
ZTE

o

+
(nπ

b )2ZTE
e

k2
1Z

TE
o ZTM

e

)

and functions f
(21)νυ
mn (z, z′) are obtained in terms of

scattered waves,

f (21)xx
mn (z, z′) = −

(
1

ZTE
o

− (mπ
a )2ZTE

e

k2
1Z

TE
o ZTM

e

)
(21)
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×eγ(1)
mnz′

sinh γ
(2)
mn(z − τ)

sinh γ
(2)
mnτ

f (21)xy
mn (z, z′) = f (21)yx

mn (z, z′) =

−ξxy
mn

ZTE
e

ZTE
o ZTM

e

eγ(1)
mnz′

sinh γ
(2)
mn(z − τ)

sinh γ
(2)
mnτ

f (21)yy
mn (z, z′) = −

(
1

ZTE
o

− (nπ
b )2ZTE

e

k2
1Z

TE
o ZTM

e

)

×eγ(1)
mnz′

sinh γ
(2)
mn(z − τ)

sinh γ
(2)
mnτ

.

The z-coordinate Green’s functions f
(i1)zx
mn (z, z′) and

f
(i1)zy
mn (z, z′) for i = 1, 2, are determined by (17) with

(20) and (21).
Here, ZTE

e , ZTE
o , and ZTM

e are the characteristic
functions of even and odd TE and TM modes, re-
spectively, of a grounded dielectric slab of thickness
τ bounded with electric walls at x = 0, a and y = 0, b
(region V2), given as

ZTE
e = γ(1)

mn + γ(2)
mn tanh γ(2)

mnτ (22)

ZTE
o = γ(1)

mn + γ(2)
mn coth γ(2)

mnτ

ZTM
e =

ε2

ε1
γ(1)

mn + γ(2)
mn tanh γ(2)

mnτ

where the propagation constant γ
(1,2)
mn is given by

(13) in terms of transverse wave numbers kmn =√
(mπ

a )2 + (nπ
b )2. Zeros of the characteristic functions

(22) represent resonance frequencies of TE and TM
oscillations in the waveguide cross-section. It can be
seen that zeros of ZTE

o and ZTM
e for TE-odd and TM-

even modes correspond to poles of the characteristic
Green’s functions (20) and (21). Moreover, the char-
acteristic functions (22) for an infinite grounded di-
electric slab of thickness τ define even and odd TE
and TM surface waves with the propagation constant
ksw ≡ kmn.

At a resonance frequency corresponding to the
transverse wavenumber kmn of the shielded grounded
dielectric slab, the value of kmn is equal to the value of
the propagation constant ksw of a surface wave associ-
ated with an infinite dielectric slab. This is related
to coupling of waves propagating along the waveg-
uide in the z-direction with propagation constants
γ

(1,2)
mn to TE and TM surface waves propagating in

an infinite grounded dielectric slab (associated with
resonance wavenumbers kmn in the waveguide cross-
section). This becomes important in the analysis of
waveguide-based aperture-coupled patch amplifier ar-
rays, where coupling to surface waves results in a loss
of power and undesirable cross-talk between neighbor-
ing antennas.

It should be noted that the characteristic Green’s

y

0 τ

ε1 2

SM

V3

ε ε3

z

SG

V1 V2

✱
DS

r12
rs r22

Fig. 3. Two-layered, terminated rectangular waveguide with an
electric point source (starred) arbitrarily located in region
V2 used in the magnetic-field formulation.

functions for a transversely layered, terminated waveg-
uide with respect to the wave propagation repre-
sent spectral-domain Green’s functions for an infinite
grounded dielectric slab. The poles of Green’s func-
tions in both cases are determined as the zeros of
characteristic functions ZTE

o and ZTM
e defined by (22).

The difference appears only in the nature of roots of
(22). In the closed-boundary layered waveguide they
represent resonance frequencies corresponding to dis-
crete transverse wave numbers in the waveguide cross-
section. In the case of open-boundary grounded di-
electric slab we determine propagation constants of
TE and TM surface waves. In this paper we study
the correlation between transverse resonances and sur-
face waves by investigating the resonance characteris-
tics of the scattering parameters for the examples of
waveguide-based aperture-coupled patch arrays.

B. Magnetic-Type Boundary-Value Problem

The magnetic-type boundary value problem is for-

mulated for the electric Green’s dyadics, G
(2)

e12 and

G
(2)

e22, due to an electric point source positioned in re-
gion V2 (Fig. 3). The electric dyadic Green’s functions
of the third kind are determined as the solution of a
coupled set of dyadic differential equations

∇×∇× G
(2)

e12(�r, �r
′) − k2

1G
(2)

e12(�r, �r
′) = 0, (23)

�r ∈ V1 , �r ′ ∈ V2

∇×∇× G
(2)

e22(�r, �r
′) − k2

2G
(2)

e22(�r, �r
′) = Iδ(�r − �r ′), (24)

�r, �r ′ ∈ V2

satisfying boundary conditions of the second kind on
the surface of a conducting shield SM and ground
plane SG,

n̂ ×∇× G
(2)

e12(�r, �r
′) = 0 , �r ∈ SM (25)
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n̂ · G(2)

e12(�r, �r
′) = 0 , �r ∈ SM

n̂ ×∇× G
(2)

e22(�r, �r
′) = 0 , �r ∈ SM ∪ SG (26)

n̂ · G(2)

e22(�r, �r
′) = 0 , �r ∈ SM ∪ SG

and the mixed continuity conditions for the electric
Green’s dyadics of the third kind across the dielectric
interface SD,

ẑ × G
(2)

e12(�r, �r
′) = ẑ × G

(2)

e22(�r, �r
′),
�r ∈ SD

1
ε1

ẑ ×∇× G
(2)

e12(�r, �r
′) =

1
ε2

ẑ ×∇× G
(2)

e22(�r, �r
′), (27)

�r ∈ SD.

Note that the radiation condition at infinity for the

Green’s function G
(2)

e12 is also satisfied.
The solution of the boundary value problem (23)-

(27) can be expressed in the form of a partial eigen-
function expansion,{

G
(2)νυ
e12

G
(2)νυ
e22

}
=

∞∑
m=0

∞∑
n=0

φ(2)ν
mn (x, y)φ(2)υ

mn (x′, y′)

{
g
(12)νυ
mn (z, z′)

g
(22)νυ
mn (z, z′)

}
(28)

for ν, υ = x, y, z, where φ
(2)ν
mn (x, y) are the second-kind

orthonormal eigenfunctions of the transverse Lapla-
cian operator given by

φ(2)x
mn (x, y) =

√
ε0mε0n

ab
sin

(mπx

a

)
cos

(nπy

b

)

φ(2)y
mn (x, y) =

√
ε0mε0n

ab
cos

(mπx

a

)
sin

(nπy

b

)

φ(2)z
mn (x, y) =

√
ε0mε0n

ab
cos

(mπx

a

)
cos

(nπy

b

)
(29)

and g
(12)νυ
mn (z, z′) and g

(22)νυ
mn (z, z′) are the one-

dimensional characteristic Green’s functions to be de-
termined as the solution of a Sturm-Liouville prob-
lem. As in the case of the electric-type boundary value
problem discussed above, the longitudinal components
G

(2)νz
e12 and G

(2)νz
e22 for ν = x, y, z do not appear in the

formulation for the magnetic field (2) and will not be
considered here.

A system of second-order differential equations for
the one-dimensional characteristic Green’s functions
g
(12)νυ
mn (z, z′) and g

(22)νυ
mn (z, z′) is obtained from (23)

and (24) using properties of orthogonality (10) and
completeness (11) of the eigenfunctions φ

(2)ν
mn (x, y),(

∂2

∂z2
− γ(1)2

mn

)
g(12)νυ

mn (z, z′) = 0, ν, υ = x, y (30)

(
∂2

∂z2
− γ(2)2

mn

)
g(22)νυ

mn (z, z′) = −ζνυ
mnδ(z − z′)

where

ζxx
mn =

k2
2 − (

mπ
a

)2

k2
2

, ζyy
mn =

k2
2 − (

nπ
b

)2

k2
2

,

ζxy
mn = ζyx

mn = −
(

mπ
a

) (
nπ
b

)
k2
2

.

The boundary conditions for the transverse character-
istic Green’s functions at z = τ and z > z′ are ob-
tained directly from (26) using the eigenfunction ex-
pansion (28),

∂

∂z
g(22)νυ

mn (τ, z′) = 0 (31)

and the continuity conditions (27) are reduced to the
continuity conditions for the one-dimensional Green’s
functions determined on the dielectric interface at z =
0 and z < z′,

g(12)νυ
mn (0, z′) = g(22)νυ

mn (0, z′), (32)
1
ε1

(
mπ

a
g(12)zυ

mn (0, z′) +
∂

∂z
g(12)xυ

mn (0, z′)
)

=
1
ε2

(
mπ

a
g(22)zυ

mn (0, z′) +
∂

∂z
g(22)xυ

mn (0, z′)
)

, (33)

1
ε1

(
nπ

b
g(12)zυ

mn (0, z′) +
∂

∂z
g(12)yυ

mn (0, z′)
)

=
1
ε2

(
nπ

b
g(22)zυ

mn (0, z′) +
∂

∂z
g(22)yυ

mn (0, z′)
)

.

The z-directed characteristic Green’s functions g
(12)zυ
mn

and g
(22)zυ
mn introduced in (33) are obtained in terms

of transverse Green’s functions as

g(i2)zυ
mn = − 1

γ
(i)2
mn

∂

∂z

(mπ

a
g(i2)xυ

mn +
nπ

b
g(i2)yυ

mn

)
(34)

for i = 1, 2.
The solution of the system of second-order differ-

ential equations (30) is given by a superposition of
primary and scattered parts,

g(12)νυ
mn (z, z′) = θ−(12)

νυ (z′)eγ(1)
mnz (35)

g(22)νυ
mn (z, z′) = ζνυ

mn

e−γ(2)
mn|z−z′|

2γ
(2)
mn

+θ+(22)
νυ (z′)e−γ(2)

mnz + θ−(22)
νυ (z′)eγ(2)

mn(z−τ). (36)

In (35) we have only backward traveling waves prop-
agating in the negative z-direction in region V1. In
(36) the solution is represented by the primary Green’s
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function due to a point source positioned in region V2,
and the scattered part is a superposition of backward
and forward traveling waves propagating in region V2

(between the interface at z = 0 and the ground plane
at z = τ). The unknown θ-coefficients are determined
subject to the boundary and continuity conditions (31)
and (32), (33), respectively.

The one-dimensional transverse characteristic Green’s
functions g

(12)νυ
mn (z, z′) are obtained as

g(12)xx
mn (z, z′) =

(
1

ZTM
e

− (mπ
a )2Z

k2
2Z

TE
o ZTM

e

)
(37)

×eγ(1)
mnz cosh γ
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mn(z′ − τ)

cosh γ
(2)
mnτ

g(12)xy
mn (z, z′) = g(12)yx
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mn

Z

ZTE
o ZTM

e
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(2)
mnτ
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b )2Z
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TE
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e

)

×eγ(1)
mnz cosh γ

(2)
mn(z′ − τ)

cosh γ
(2)
mnτ

and transverse Green’s functions g
(22)νυ
mn (z, z′) are de-

termined in terms of the primary and scattered parts,

g(22)xx
mn (z, z′) = (38)
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Fig. 4. A waveguide-based aperture-coupled patch array in the
N -port waveguide transition.

×cosh γ
(2)
mn(z − τ) cosh γ

(2)
mn(z′ − τ)

cosh γ
(2)
mnτ

where Z = γ
(1)
mn + ε2

ε1
γ

(2)
mn coth γ

(2)
mnτ . Poles of the

Green’s functions g
(12)νυ
mn (z, z′) and g

(22)νυ
mn (z, z′) rep-

resent zeros of characteristic functions corresponding
to the resonance frequencies of TE-odd and TM-even
oscillations in the layered waveguide cross-section.

The z-directed Green’s functions g
(i2)zx
mn (z, z′) and

g
(i2)zy
mn (z, z′), i = 1, 2, can be obtained from (34) using

the expressions for the transverse Green’s functions
(37) and (38).

IV. Numerical Results and Discussion

The integral equation formulation and the electric
dyadic Green’s functions presented in this paper were
implemented in the numerical algorithm for the GSM
of an aperture-coupled patch array in the N -port
waveguide transition (Fig. 4). The GSM parameters
generated were used in the cascading scheme to deter-
mine an overall response (return loss and gain) of a
waveguide-based aperture-coupled patch amplifier ar-
ray [2].

The accuracy of the full-wave modeling has been
verified by performing an experiment for a single unit
cell (Fig. 5) at X-band (see also [2]). The unit cell
contains an aperture-coupled patch antenna and a
waveguide-to-microstrip transition. The latter tran-
sition was used in the active patch array to feed am-
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Fig. 5. A rectangular patch antenna coupled through slot to a
waveguide-to-microstrip line junction.
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Fig. 6. Numerical and experimental results for the reflection
and transmission coefficient of the single unit cell, including
a waveguide-based aperture-coupled patch antenna and a
waveguide-to-microstrip line junction.

plifiers (modeling and experiments for the amplifier
array are discussed in [2], [21], [23]). In the mea-
surement of a passive structure, a WR90 waveguide
and coaxial transmission line were used to feed the
patch antenna and microstrip line, respectively. The
patch antenna has 340 mil (8.636 mm) width and
320 mil (8.128 mm) height, slot is of 250 mil (6.35 mm)
width and 15 mil (0.381 mm) height, and substrate
thickness is 31 mil (0.7874 mm) with permittivity
of 2.2. The dielectric-filled waveguide has 450 mil
(11.43 mm) width, 15 mil (0.381 mm) height, and
100 mil (2.54 mm) length. The length of the microstrip
line is 1800 mil (45.72 mm), and the width is 45 mil
(1.143 mm). The numerical results for the scattering
parameters of the waveguide-to-microstrip line junc-
tion were generated using Agilent HFSS and cascaded
with the full-wave results (scattering parameters) of a
waveguide-based aperture-coupled patch antenna gen-
erated by the integral equation method described here
and in [1], [2]. The frequency-dependent character-
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Fig. 7. Magnitude of the S-parameters versus frequency for the
2×3 aperture-coupled patch array in the 7-port rectangular
waveguide transition.

istics of the reflection and transmission coefficient of
the complete unit cell (a waveguide-based aperture-
coupled patch antenna and a waveguide-to-microstrip
line junction) are shown in Fig. 6. The reference plane
for the reflection coefficient S11 is at z = 0 (position of
the patch antenna with respect to the excitation) and
the reference plane for the transmission coefficient S21

is at the end of the microstrip line (see “Output Port”
in Fig. 5). The dispersion behavior and the resonance
frequency simulated are compared well with the ex-
perimental data.

Numerical results for the S-parameters (magnitude
and phase) of the dominant TE10 mode in the 2×3
aperture-coupled patch array waveguide transition op-
erating at X-band (similar to the N-port waveguide
transition shown in Fig. 4) are shown in Figs. 7
and 8 . The geometrical and material parameters for
patch and slot antennas are the same as in the exam-
ple of a single unit cell. The large waveguide (regions
V1 and V2 in Fig. 4) has 1200.787 mil (30.5 mm)
height and 1811.024 mil (46. mm) width, and the
small waveguides (regions V i

a in Fig. 4) have 450 mil
(11.43 mm) width and 15 mil (0.381 mm) height. Unit
cells in the array are separated by a distance of 600
mil (15.24 mm). In Figs. 7 and 8, S11 is the reflec-
tion coefficient at the interface z = 0 in region V1

(with the excitation from V1), and S22 and S33 are
the reflection coefficients at z = τ (ground plane) in
regions V 2

a and V 3
a (with the excitation from V 2

a and
V 3

a , respectively). Note that other waveguides V i
a in

the 2×3 array are symmetric to V 2
a and V 3

a . The port
numbering in the array starts with the lower row of
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Fig. 8. Phase of the S-parameters versus frequency for the
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waveguide transition.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Frequency (GHz)

1.000

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

1.009

1.010

TM 0

f

k

r

31/k0

k s
w

/k
0

Fig. 9. Dispersion behavior of the normalized propagation con-
stant of the dominant TM0 mode in a grounded dielectric
slab waveguide.

antenna elements (port number 2, 3, and 4) and con-
tinues to the upper row (port number 5, 6, and 7).
The transmission coefficients from V1 into V 2

a and V 3
a

are denoted as S21 and S31, respectively. The sharp
resonance obtained at fr=10.8965 GHz corresponds to
the occurrence of a transverse resonance, and is asso-
ciated with the coupling of a mode propagating along
the waveguide to the surface wave TM0 of a dielectric
slab (substrate) propagating in the transverse direc-
tion (waveguide cross-section).

The dispersion behavior of the normalized propa-
gation constant ksw/k0 of the dominant TM0 mode
in a grounded dielectric slab waveguide is shown in
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Fig. 10. Port-to-port coupling in the 2 × 3 aperture-coupled
patch array.

Fig. 9. The transverse wave number kmn at the reso-
nance frequency fr corresponds to k31 (m = 3, n = 1)
and its normalized value k31/k0 = ksw/k0 is equal to
1.00484. This phenomenon is discussed in the previ-
ous section in the analysis of Green’s function compo-
nents. Note that for the geometrical and material pa-
rameters of the substrate considered in this example,
only TM0 proper mode will propagate (other proper
TM-even and TE-odd modes are cutoff at X-band). In
the example of a single unit cell considered above in
the X-band waveguide there are no discrete wave num-
bers kmn which are resonant in the layered waveguide
cross-section in the frequency range from 9 GHz to
12 GHz (no zeros of the characteristic functions ZTE

o

and ZTM
e , even though the surface wave TM0 of the

dielectric slab propagates at all the frequencies).
Port-to-port coupling is studied for the example of a

2× 3 aperture-coupled patch array in the 7-port rect-
angular waveguide transition (Fig. 10). The excita-
tion is considered at port 2 (region V 2

a ) with the refer-
ence plane at z = τ . The transmission coefficients Si2,
i = 3, ..., 7 correspond to the coupling of energy from
the waveguide V 2

a to the waveguides V i
a through the

slot apertures at z = τ (reference plane for transmis-
sion). It can be seen that at the resonance frequency,
associated with the coupling to the surface wave of the
dielectric slab, the port-to-port transmission charac-
teristics are significantly perturbed. Fig. 10 shows the
resonance nature of the S-parameters at fr=10.8965
GHz.

Numerical results were also obtained for a 3 × 4
waveguide-based aperture-coupled patch array (13-
port waveguide transition). The large waveguide in
the transition has 2125 mil (53.975 mm) height and
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Fig. 11. Magnitude of the reflection coefficients versus fre-
quency for the 3 × 4 aperture-coupled patch array in the
13-port rectangular waveguide transition.

2875 mil (73.025 mm) width. Magnitude of the reflec-
tion coefficients with the excitation at ports 1, 2, 3,
6, and 7 (regions V1, V 2

a , V 3
a , V 6

a , and V 7
a ), respec-

tively, is shown in Fig. 11. Note that other ports
in the transition are symmetric to ports 2, 3, 6, and
7. The nature of the sharp resonances observed for
the reflection coefficients in Fig. 11 can also be ex-
plained by the occurrence of transverse resonances in
the waveguide cross-section. It can be seen that an
increase of the waveguide size results in an increase in
the number of transverse resonances corresponding to
coupling of waveguide modes to the surface wave TM0.
Also note that the propagation constants γ

(1,2)
mn (modes

propagating in regions V1 and V2 in the waveguiding
direction), which are associated with transverse reso-
nances for certain m and n, behave in such a way that
γ

(1)
mn represent an evanescent mode in region V1 and

γ
(2)
mn correspond to propagating mode in region V2 at

the transverse resonance frequency. This is similar to
dispersion characteristics of surface waves propagating
in a grounded dielectric slab.

V. Conclusion

In this paper, an efficient technique for develop-
ing electric dyadic Green’s functions with an electric
point source was presented for a partially filled, ter-
minated rectangular waveguide. These Green’s func-
tions are used in the integral equation formulation
for the full-wave analysis of waveguide-based aperture-
coupled patch arrays. The electric-type and magnetic-
type boundary value problems are formulated for elec-

tric Green’s dyadics of the third kind. The compo-
nents of Green’s functions are expressed as a partial
eigenfunction expansion. This representation, wherein
transverse and longitudinal coordinates are function-
ally separated, enables the initial dyadic problem to
be immediately reduced to the Sturm-Liouville prob-
lem for one-dimensional characteristic Green’s func-
tions using properties of completeness and orthogo-
nality of transverse eigenfunctions. The characteristic
Green’s functions are obtained by a superposition of
primary and scattered parts subject to boundary and
continuity conditions. The analytical form of the ob-
tained characteristic Green’s functions provides phys-
ical insight into resonance and surface wave effects oc-
curring in overmoded layered waveguide transitions.
This was demonstrated for the examples of aperture-
coupled patch arrays in the N -port waveguide tran-
sition, although the analysis is applicable to other
waveguide-based antenna structures, which allow for
the propagation of surface waves.
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