

Electrical Circuits practice worksheet
Part A. Use the word bank to label each of the circuit symbols shown below.

Ammeter	Bulb	Resistor
Battery	Closed switch	Open switch
Motor	Series circuit	Parallel circuit

Electrical Circuits answer key
Part A. Use the word bank to label each of the circuit symbols shown below.

Part B. Use the Ohm's Law formula to answer the following questions.

V (voltage) $=I$ (current) $\times R$ (resistance)

1.

$I=$
3.

$R 1=$
5.

$\mathrm{V}=$
7.

$I=$
2.

$\mathrm{V}=$
6.

$/=$
8.

$1=$

Part B. Use the Ohm's Law formula to answer the following questions.

$V($ voltage $)=I$ (current) $\times R$ (resistanct $)$

1.

$I=9 \mathrm{amps}$
3.

$R 1=1 \Omega$ (1/2 of the total resistance.
Since there are 2 resistors and the total resistance is 2 , each resistor provides 1Ω of resistance)
5.

$\mathrm{V}=1950 \mathrm{~V}$
7.

$I=10 \mathrm{amps}$
2.

$$
\mathrm{V}=4800 \mathrm{~V}
$$

6.

$I=3 \mathrm{amps}$
8.

I = no current will flow because this is an open circuit

Part C. Answer the following word problems using the formula below.

$V($ voltage $)=I$ (current) $\times R($ resistanct $)$

1. Calculate the current flowing through the circuit of a radio that has a resistance of 20Ω and is powered by a 3 volt battery. (show your work)
2. Calculate the voltage difference in a circuit with a resistance of 50Ω if the current is 2.5 amps . (Show your work)
3. Calculate the resistance of a 9 volt battery that provides a current of 3 amps through a conductor. (Show your work)
4. Complete the chart.

I (amp8)	\mathbf{V} (volts)	\boldsymbol{R} (Ohms)
0.5		30
	120	5
6	24	
16		2
	1.5	10

Part C. Answer the following word problems using the formula below.

$V($ voltage $)=I$ (current) $\times R($ resistanct $)$

1. Calculate the current flowing through the circuit of a radio that has a resistance of 20Ω and is powered by a 3 volt battery. (show your work)
$\mathrm{I}=\mathrm{V} \div \mathrm{R}$
$=3+20$
$=0.15 \mathrm{amps}$
2. Calculate the voltage difference in a circuit with a resistance of 50Ω if the current is 2.5 amps . (Show your work)
$V=1 \times R$
$=2.5 \times 50$
$=125$ volts
3. Calculate the resistance of a 9 volt battery that provides a current of 3 amps through a conductor. (Show your work)

$$
\begin{aligned}
\mathrm{R} & =\mathrm{V}+1 \\
& =9+3 \\
& =3 \Omega
\end{aligned}
$$

4. Complete the chart.

\mathbf{I} (amp8)	\mathbf{V} (volts)	\boldsymbol{R} (Ohms)
0.5	$\mathbf{1 5}$	30
$\mathbf{2 4}$	120	5
6	24	4
16	32	2
$\mathbf{0 . 1 5}$	1.5	10

you may also be interested in... clelalolololololol lolalolelolo

Dompleve

BUNDLE
For High School and Middle School Physical Science

Check Out The Trendy Science Teacher for more bundles, activities, freebies \& MORE!

\section*{

